limap: A IATEX Package and Class
for Typesetting Information Maps

Gerd Neugebauer
Net: gene@gerd-neugebauer.de

This file documents limap.dtx version 2.2 as of 2016/05/29.
Documentation date: 2016/05/29

The Information Mapping® method provides a methodology for structur-
ing and presenting information. It claims to be useful for readers who are
more concerned about finding the right information than reading the doc-
ument as a whole. Thus short, highly structured, and context free pieces
of information are used.

limap provides a ITEX package and a IATEX class. The package con-
tains definitions to typeset maps and blocks according to the Information
Mapping® method. The class provides all definitions to typeset a whole
document.

mailto:gene@gerd-neugebauer.de

limap — Package and Class 2

Copyright

Licenses

Net

Contact

Copyright © 1999-2016 Gerd Neugebauer

The source files of 1imap and the derived files

e limap.dtx
* limap.ins
* README.md
* Makefile

e limap.sty
e limap.cls

e limap.pdf
may be distributed under the terms of the IATEX Project Public License
version 1.3c, as described in the file 1ppl. txt.

The documentation can be used under the Creative Commons
Attributation-Share Alike 4.0 License (CC BY-SA 4.0).

The files in the samples directory are distributed unter Creative Commons
CCO0 1.0 Universal.

The sources of limap are hosted on Sourceforge as part of the project
gene-tex-1lib. The sources can be found under the URL https://
sourceforge.net/p/gene-tex-1ib/svn/HEAD/tree/limap/.

A bundled distribution can be obtained via CTAN under the package URL
https://www.ctan.org/pkg/limap or from the package's home page un-
der http://www.gerd-neugebauer.de/sowftware/TeX/limap

The author can be contacted under the following coordinates:

Gerd Neugebauer

Im Lerchelsbéhl 5
64521 Gro3-Gerau
Germany

gene@gerd-neugebauer.de

http://www.gerd-neugebauer.de
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons/zero/1.0
http://creativecommons/zero/1.0
https://sourceforge.net/p/gene-tex-lib/svn/HEAD/tree/limap/
https://sourceforge.net/p/gene-tex-lib/svn/HEAD/tree/limap/
https://www.ctan.org/pkg/limap
http://www.gerd-neugebauer.de/sowftware/TeX/limap
mailto:gene@gerd-neugebauer.de

limap — Package and Class 3

Contents
Motivation 4
Getting Started 7
Using the Document Class i i i e e e e e e 8
Document Class Options for Language Selection 9
Document Class Options for Variant Selection. 10
Document Class Options for Base Class Selection 11
Usingthe Package o e 12
Package Options for Language Selection 13
The Block 15
Configuring Blocks e e e 16
Configuringthe Rulesof Blocks 17
AWideBlock e 18
The Map 19
Referencing Maps e e e e 21
Configuring Maps o e 22
The Table of Contents 24
Blocks inthe Table of Contents 25
Tables 26
Configuration 27
The Configuration File limap.cfg 28
Changing or Adding Language Specific Settings 29
The Implementation 30
The Version Information e 31
The Documentation Driver e 32
The TEX Code o 35
The Package and Class Declarations 36
Language Specific Macros e 37
Layout Parameters L e 42
Adaptable Macros 45
Internal Macros, Lengths,and Counters 47
TypesettingaMap 48
TypesettingaBlock e 54
Typesettinga Tableof Contents 55
Typesettinga Table 57
Typesettingthe TitlePage 58

Final Actions e e 60

limap — Package and Class 4

Motivation

Methodology

No tutorial

Principles

The information mapping® method provides a methodology to structure
information in a special way. The aim is to help a reader who uses the
document to search for relevant information instead of consuming it from
start to end. The information mapping method also claims to raise the
productivity of writers.

This document does not include an introduction to the information map-
ping method itself. The reader is referred to other documents. Maybe an
accompanying document will be distributed along with this package.

Unfortunately the methodology — or the name — is protected by a trade-
mark. Thus the teaching of the methodology is restricted to licensed insti-
tutions.

Continuing...

limap — Package and Class

Motivation, Continued

Information Type

Problems of
restructuring

qnfor-

mation Type

You as IATEX user may have encountered the problem when restructuring
a document: The sections know exactly the level they belong to. If you
introduce a new section and put another section into it you have to change
all sectioning commands to reflect the new level of the section and their
subsections.

The macros of 1imap abstract away the level of the document structuring.
Any structuring unit is a “Block”. It may contain text or other blocks. Such
blocks are the replacement or the sectioning commands. When you re-
structure your document you simply shift the block and anything it contains
to the new place and you are done.

The same mechanism can help you to include the same material in several
documents — at different sectioning levels!

Continuing...

limap — Package and Class 6

Motivation, Continued

Structure and The general approach focuses very much on the structure of the docu-
constituents ment. The following diagram illustrates the terminology used within this
documentation.
Document

1. / 0.* |

Map

1.9

Block

0. o../ \(3..1 1
Text Table Image Diagram

Class or package To support the information mapping® method several IATEX macros and

environments are provided which allow you to enter a logical description
of the relevant concepts. Those macros are provided in the package and
class file. It is up to you to choose one of them.

Interoperabilty The main part of the user interface is inherited from IATEX. The major differ-
with other classes ences are the sectioning commands which are made obsolete in parts by
and packages the information mapping® method. Thus most packages can be used to

typeset contents of a block.

limap — Package and Class 7

Getting Started

Introduction

Class or package

Contents

If you are starting to use limap you should be vaguely familiar with the
underlying methodology. This documentation does not provide an intro-
duction.

When you start using this class or package you should say “Good bye” to
the classical document structuring macros in the IATEX standard classes.

First of all you should decide whether to use the limap class or the limap
package. The class is meant for a complete document. The package
allows to combine 1imap with arbitrary other document classes.

In the maps contained herein you will find an introduction on the use of the
limap macros and environments. They are accompanied by illustrating
sample code.

Title Page

Using the Document Class 8
Using the Package 12

limap — Package and Class 8

Using the Document Class

Using the
document class

Suppressing the
block lines

Other options

Several types of
options

This package provides both a class file as well as a package. The package
contains the definitions of maps, blocks, and others. They can be used
together with any base class. This is illustrated in the following preamble:

\documentclass{book}
\usepackage{limap}
\begin{document}

This class option nolines can be used to suppress the line above and
below block. This is illustrated in the following preamble:

\documentclass[nolines]{limap}
\begin{document}

Any option not processed by limap.cls is passed to the underlying docu-
ment class used. Thus it is possible to customize the underlying class any
further.

In the maps contained herein you will find the supported options for the
document class limap.

Title Page
Document Class Options for Language Selection 9
Document Class Options for Variant Selection 10

Document Class Options for Base Class Selection 11

limap — Package and Class 9

Document Class Options for Language Selection

Introduction

Supported
languages

Default language

Beware of
hyphenation

The document class limap inserts some words. Thus it has to know the
language it is supposed to use. Thus the language has to be specified as
one document class option.

\documentclass[german]{1limap}
\begin{document}

First, we describe the settings influencing the language specific settings.
They do not make provisions to use the appropriate hyphenation patterns.
They just arrange things such that the internally used texts are displayed
in the chosen language.

Option Description

austrian Activate the language specific text fragments for the
Austrian language (in fact German with one minor mod-
ification).

english Activate the language specific text fragments for the En-
glish language.

french Activate the language specific text fragments for the
French language.
german Activate the language specific text fragments for the

German language.
USenglish Activate the language specific text fragments for the
American English.

The default language is english. It is used if no language is set.

Note that the hyphenation patterns are not loaded automatically. You have
to load the hyphenation patterns, for instance with the babel package.

This behavior has been chosen to allow you to select the language pack-
age of your choice. Also you can pass in additional options to this package
more easily.

https://www.ctan.org/pkg/babel

limap — Package and Class 10

Document Class Options for Variant Selection

Introduction The document class 1imap is based on another document class. Thus you
can use the well-known macros and environments defined there and take
advantage of the extensions provided by limap.

\documentclass{limap?}
\begin{document}

Variants The class has two additional options to determine the base class to be
used. The first option is the variant. It can take the following values:

Option Description

base Use the base set of classes. This is the default.
koma Use the set of classes from koma-script.

Default variant If no document class option is used then base is the default variant.

https://www.ctan.org/pkg/koma-script

limap — Package and Class 1

Document Class Options for Base Class Selection

Introduction The document class 1imap follows the logic introduced in the KTEX stan-
dard document classes. The type of the base document class can be given
as argument to the limap class.

\documentclass[book]{1limap}
\begin{document}

Class type The second option is the class type. It determines which kind of document
to typeset. It can take the following values:

Option Description

book Typeset a book type document.
report Typeset a report type document.
article Typeset an article type document.
letter Typeset a letter type document.

Mapping of The following table shows which base classes are loaded according to the
variant and type given values:

Type /variant base koma

book book scrbook
report report scrreprt
article article scrartcl
letter letter scrlettr

Default type The default type is report. It is used if no type is set.

limap — Package and Class 12

Using the Package

Introduction The package limap can be used together with most document classes. An
exception are classes for slides like the beamer class.

As usual it is declared in the document preamble.
\documentclass{report}

\usepackage{limap}
\begin{document?}

Content The following additional information is available.

Title Page

Package Options for Language Selection 13

https://www.ctan.org/pkg/beamer

limap — Package and Class 13

Package Options for Language Selection

Introduction

Inheritance of
document class
options

Supported
languages

Default language

The package limap inserts some words. Thus it has to know the language
it is supposed to use. Thus the language has to be specified as package
option.

\usepackage[german]{limap}
\begin{document}

Alternatively the language selecting option can be specified as document
class option. Thus several packages can share the same setting.

\documentclass[german]{scrbook}
\documentclass{limap}
\begin{document}

Here we describe the settings influencing the language specific settings.
They do not make provisions to use the appropriate hyphenation patterns.
They just arrange things such that the internally used texts are displayed
in the chosen language.

Option Description

austrian Activate the language specific text fragments for the
Austrian language (in fact German with one minor mod-
ification).

english Activate the language specific text fragments for the En-
glish language.

french Activate the language specific text fragments for the
French language.
german Activate the language specific text fragments for the

German language.
USenglish Activate the language specific text fragments for the
American English.

The default language is english. It is used if no language is set.

Continuing...

limap — Package and Class 14

Package Options for Language Selection, continued

Beware of Note that the hyphenation patterns are not loaded automatically. You have
hyphenation to load the hyphenation patterns, for instance with the babel package.

This behavior has been chosen to allow you to select the language pack-
age of your choice. Also you can pass in additional options to this package
more easily.

https://www.ctan.org/pkg/babel

limap — Package and Class 15

The Block

Meaning

Appearance

\Block

Example

Just in a map

More on blocks

A “block” is the essential building units of the 1imap package. You can
think of it as paragraph with a title.

The blocks are usually typeset with the block label on the left side and the
contents to its right. They are surrounded by white-space and a thin line
above and below.

The macro \Block can be used to typeset an block. It takes one argument
which is the block label.

This is a shorthand for denoting a block. The end mark can be omitted if
you use the macro instead of the environment. Nevertheless this is depre-
ciated.

The following sample illustrates how to enter a block.

\Block{Block Label}

And now comes the block text. It can consist of one or more
classical paragraphs, or tables, or pictures, or something
else.

Note that the macro \Block can be used inside a map only. If you try to
use it outside the scope of a map you will get an error.

Several more aspects of blocks are covered in the following maps.

Title Page
Configuring Blocks 16
Configuring the Rules of Blocks 17

A Wide Block 18

limap — Package and Class 16

Configuring Blocks

\MapBlockLabelFont

Colored block
labels

\MapParskip

\MapTitleFraction

\MapTextFraction

The macro \MapBlockLabelFont determines the font changing command
to be used for typesetting the block label. The default is empty.

The macro \MapBlockLabelFont can for instance be used to achieve col-
ored block labels. For this purpose we can include the package xcolor in
the preamble and select for instance a named color for the rule. This is
illustrated in the following example.

\usepackage[svgnames]{xcolor}
\renewcommand\MapBlockLabelFont{\color{Navy}?}

The macro \MapParskip determines the vertical distance of the text from
the separating rules. The default is 2ex.

\renewcommand\MapParskip{.25ex}

The macro \MapTitleFraction determines the part of the page width de-
voted to the block label area. It is a fraction in the range from 0 to 1. The
default value of \MapTitleFraction is 0.2.

\renewcommand\MapTitleFraction{.25}

This macro determines the part of the page width devoted to the text
area. It is a fraction in the range from 0 to 1. The default value of
\MapTextFraction is 0.75.

\MapTitleFraction and \MapTextFraction should add up to something
less or equal to 1. Otherwise you will get some “overfull hbox” messages.

\renewcommand\MapTextFraction{.8}

limap — Package and Class 17

Configuring the Rules of Blocks

Motivation

\MapRuleWidth

Suppress visible
rules

\MapRuleStart

Colored rules

Blocks are usually surrounded by horizontal rules. The appearance of
these rules can be influenced by some macros.

The macro \MapRuleWidth determines the width of the rules drawn be-
tween blocks. It is defined as a macro containig a length. The default is

1pt.

\setlength\MapRuleWidth{Tmm}

For some people the rules are distracting since they emphasize the struc-
ture too much. In such situations the rule width might be reduced. In the
extreme case it can even be set to Opt to suppress the lines at all as in the
following example:

\renewcommand\MapRuleWidth{@pt}

The macro \MapRuleStart is inserted before rules around blocks. It can
be used to inject some code before the rule is typeset. Initially it is empty.

The macro \MapRuleStart can for instance be used to achieve colored
rules. For this purpose we can include the package xcolor in the preamble
and select a named color for the rule. This is illustrated in the following
example.

\usepackage[svgnames]{xcolor}
\renewcommand\MapRuleStart{\color{Silver}}

limap — Package and Class 18

A Wide Block

Motivation

\WideBlock

Example

Block Label

Sometimes it is necessary to extend the content of a block to the whole
width of the page. This can be the case for illustrations or large tables.

The macro \WideBlock can be used to typeset a piece of information on the
whole page width. It is normally used after an initiating block containing
the title of the whole construction.

The macro \WideBlock takes one argument which contains the material to
span the whole page width.

The following sample illustrates how to enter a wide block.

\Block{Block Label}
And now comes the block text.
\WideBlock{\includegraphics{images/overview.svg}}

And now comes the wide block produced with the help of TikZ and its
decoration with random steps.

A very, very, very, very, very, very, very, very, very, very, very, ver

limap — Package and Class 19

The Map

Structuring The maps are the structuring units of the 1imap package. Maps may re-
documents cursively contain maps and other material. The other material is usually
named a block. This recursive structure is illustrated in the following figure.

Map

Block

Block

Map

Block

Block

Block

Map

Block

Block

Block

Map

Map

Block

Block

Block

Map The environment Map can be used to typeset a map. It takes a single
argument which contains the map title. The map title is typeset above the
map and is repeated on each continuation page.
Example

\begin{Map}{Map Title}
\Block{Block Label}

And now comes the block text. It can consist of
one or more classical paragraphs, or tables, or
pictures, or something else.

\end{Map?}

Continuing...

limap — Package and Class 20

The Map, Continued

To at most There is a technical restriction in the current implementation of Maps. This
12 cascaded restriction does not allow more than 12 cascaded Maps, i.e. Maps in Maps
Maps ...in Maps.

According to the good old 7+2 rule a full populated document of this level
would contain 282 429 536 481 Maps. | think it should take some time until
this limit is reached.

More on maps Some more aspects are covered in the following pages.
Title Page
Referencing Maps 21

Configuring Maps 22

limap — Package and Class 21

Referencing Maps

Referencing Maps can be referenced in the usual IKTEX way. For this purpose you place
maps a macro invocation of \label right behind the beginning of the Map.

Then you can add references somewhere in the document with \ref and
\pageref. For backward references two IATEX runs are required.

Example
\begin{Map}{Map Title}\label{my.label}
\Block{Block Label}
As said on page~\pageref{my.label}...
Caveat emptor limap automatically labels any map with a label of the form Map@n where n

is a sequence number. Thus avoid to use such labels yourself.

limap — Package and Class 22

Configuring Maps

\MapFont

\MapTitleFont

\MapContinued

\MapContinuing

\MapTitleContinued-
Font

The macro \MapFont determines the font changing command to be used
when starting a new map.

\renewcommand\MapFont{\tt}

The macro \MapTitleFont determines the font changing command to be
used when typesetting the title of a map. The default is \Large.

\renewcommand\MapTitleFont{\huge\bfseries}

The macro \MapContinued contains the text appearing at the end of map
which are continued on the next page. It is initiated when the class or pack-
age is loaded. It can overwritten afterwards — for instance in the preamble.

\renewcommand\MapContinued{}

The macro \MapContinuing contains the text appearing at the beginning
of map which are continued from the previous page. It is typeset after
the map title. It is initiated when the class or package is loaded. It can
overwritten afterwards — for instance in the preamble.

\renewcommand\MapContinuing{}

This macro determines the font changing command to be used for typeset-
ting the additional text after titles on followup pages of multi-page maps.

The default value is \small.

\renewcommand\MapTitleContinuedFont{\normalsize}

Continuing...

limap — Package and Class 23

Configuring Maps, continued

\MapNewpage The macro \MapNewpage is expanded whenever a new page is required
between maps. Thus it can be used to suppress the newpages by \leting
it to \relax. Note that this is not in the spirit of the Information Mapping®
method.

\MapTOC The macro \MapTOC is expanded to generate the entry in the table of con-
tents. It can be redefined to allow another behavior.

limap — Package and Class 24

The Table of Contents

Everything is
local

Direct children
are included

Block context
required

\MapTableOfContents

Example

\MapTableOfCon-
tentsStyle

The concept of the underlying methodology is that everything should be
addressed relative to the current location. We see this when dealing with
maps (see page 19). The same principle is applied to the table of contents.

The table of contents includes all maps contained in the map in which it
appears. This means the immediate children of the map are shown.

The table of contents is typeset inside a block (see page 15).

The macro \MapTableOfContents can be used to typeset the table of con-
tents for a map. This table of contents includes all sub-maps of the map it
is contained in — not recursively but only one level deeper.

The macro \MapTableOfContents does not take any argument.

\Block{Contents}
And some wise words about the table of contents.
\MapTableOfContents

The macro \MapTableOfContentsStyle can be used to determine the style
of the \MapTableOfContents The default style is an open layout utilizing
the package booktabs.

The macro \MapTableOfContentsStyle takes one argument. This argu-
ment may have one of the following values:

Argument Meaning

open an open style for the TOC
boxed a boxed style for the TOC

https://www.ctan.org/pkg/booktabs

limap — Package and Class 25

Blocks in the Table of Contents

Motivation Sometimes it can be desirable to add the blocks to the global table of
contents. Here we will see how this can be achieved.

\MapBlockStartHook The macro \MapBlockStartHook is expanded at the beginning of each
block it if is defined. It takes a single argument which is the title of the
block.

\MapBlockTOC The macro \MapBlockTOC is a macro which adds one line to the table of

contents. It takes one argument which is the text to be added.

Example Put the following code in the preamble to get the blocks into the table of
contents.

\let\MapBlockStartHook\MapBlockTOC

limap — Package and Class 26

Tables

Introduction

Combination with
booktabs

MapTabular

Example

\MapTabularFraction

Tables play an important role as part of maps. Usually they are included
into a block and preceded by some useful introduction.

The document class limap and the package limap automatically include
the package booktabs. This package contains some support for type-
setting proper tables. You should have a look at the documentation of
booktabs and follow the recommendations given there.

booktabs is automatically loaded by 1imap upon start-up.

The environment MapTabular provides a convenient way to include a table
into a block. It produces a tabular* environment and sets the width to the
width of the text column of the block.

\Block{Table block}
Sheding some insight on the following table.

\begin{MapTabular}{111}\toprule
a & b & \\\midrule
x & y & Z\\\hline
X & Y & Z\\\bottomrule
\end{MapTabular}

The tabular is always centered in the text column of the block. The macro
\MapTabularFraction contains a factor for the line width occupied by the
tabular. This value is used to determine the width of the tabular. The
default value for the macro \MapTabularFraction is 0.95.

\renewcommand\MapTabularFraction{.7}

https://www.ctan.org/pkg/booktabs

limap — Package and Class 27

Configuration
Introduction limap is designed with a set of extension points. Those are mainly defini-
tion which can be overwritten to achieve a certain effect.
Configuration in Any configuration change performed in the preamble of a document is
the preamble global. It lasts until oberwritten within the document.
Configuration in The configuration parameters can be overwritten in the document just be-
the document fore they are needed. This is not recommended since it makes it harder
to achieve consistency.
External The confiration can be externalised. For this purpose a special file
configuration limap.cfg is loaded with the class or package in case it exists. This file
can contain configuration options for 1imap. Thus it is possible to share
the same appearance among different documents.
Contents The following maps contain the various aspects of the configuration of
limap.
Title Page
The Configuration File limap.cfg 28

Changing or Adding Language Specific Settings 29

limap — Package and Class 28

The Configuration File limap.cfg

Default When the class or package is loaded as a last action a configuration file is

configuration file loaded if it can be found. The name of the configuration file is limap.cfg.
This file can contain re-definitions of the several macros to adjust the be-
havior of 1imap on a per directory, per user or per installation base.

Note Some settings are activated before the configuration file is loaded. Thus
some settings may not have any effect at all.

limap — Package and Class 29

Changing or Adding Language Specific Settings

Overview

\MapTOCname

\MapTOCpage

Providing a new
language

Several strings are used automatically by the current class or package.
Default values for several languages are hardwired in the implementation.
Nevertheless it is possible to change those language specific settings.

If you create settings for a new language it is highly recommended to con-
tact the author to integrate them into the default distribution.

The following macros can be redefined in the preamble after the package
or class has been loaded to reset the language specific text.

The macro \MapTOCname contains the text of the heading in table of con-
tents of maps for the column of map titles. It is initiated when the class
or package is loaded. It can overwritten afterwards — for instance in the
preamble.

\renewcommand\MapTOCname{Issue}

The macro \MapTOCpage contains the text of the heading in table of contents
of maps for the column of page numbers. It is initiated when the class
or package is loaded. It can overwritten afterwards — for instance in the
preamble.

\renewcommand\MapTOCname{Reference}

If you want to provide a new language lang you can define the macro
\LIMAP@SelectLanguage@lang which redefines the macros given above.
This definition has to be present before the package is loaded.

Note that the macro name contains the @ character. Thus the definition
should be made in a package of its own.

limap — Package and Class 30

The Implementation

Overview This part of the document describes the implementation. Usually it is
not meant for the casual user. Nevertheless it might be fruitful for those
searching for inspiration or for tricks when using this class or package.

Contents Title Page
The Version Information 31
The Documentation Driver 32

The TeX Code 35

limap — Package and Class 31

The Version Information

Purpose

\filename

\fileversion

\filedate

\docversion

\docdate

The version information is included for printing it on the documentation
and at start-up when the class or package is loaded. It has to preceed the
documentation driver to properly include this information into the printed
manual.

\filename is the name of the dtx file containing this class and package.

1 \def\filename{limap.dtx}

\fileversion is the version number of the dtx file. It is used as a version
number for the class and package.

2\def\fileversion{2.2}

\filedate is the change date of the dtx file. It is used as a version date
and documentation date.

3\def\filedate{2016/05/29}

\docversion is the version number of the documentation. It is identical to
the version number of the dtx file.

4\let\docversion=\fileversion

\docdate is the change date of the documentation. It is identical to the
change date of the dtx file.

5\1let\docdate=\filedate

limap — Package and Class 32

The Documentation Driver

Purpose

Driver code

Page Layout

Headings

Links and such

The documentation driver is necessary to provide a self documenting dtx
file. With this construction the dtx file can be run through IATEX to produce
the documentation.

The driver section contains a complete IKTEX document which loads the
dtx file. The special class ltxdoc is used and some arrangements are
made for this purpose.

The driver code is not exported by the installer.

6 (xdriver)

7 \documentclass[a4paper]{1ltxdoc}

8 \RequirePackage{textcomp}

9 \usepackage{limap}

10 \let\LimapFilename\filename

11 \let\LimapFileversion\fileversion
12\let\LimapFiledate\filedate

13 \1let\LimapDocdate\docdate

14 \oddsidemargin=10pt
15 \evensidemargin=10pt
16 \textwidth=430pt

17 \textheight=650pt

18 \voffset=-12mm

19 \usepackage{fancyhdr}

20 \addtolength{\headheight}{2ex}%

21 \pagestyle{fancy}%

22 \cfoot{}

23 \rhead{\small\sf\thepage}

24 \lhead{\textit{\footnotesize limap} Package and Class}

25 \usepackage{hyperref}

Continuing...

limap — Package and Class 33

The Documentation Driver, continued

Fonts

Coloring

Graphics

Saving version

Adapting doc.sty

26 \usepackage{fontspec}

27 \setmainfont{TeX Gyre Heros}

28 \setsansfont{TeX Gyre Heros}%[Scale=MatchLowercase]
29 \setmonofont{Inconsolata}%[Scale=MatchLowercase]

30 \usepackage[svgnames]{xcolor}

31 \renewcommand\MapTitleFont{\Large\bfseries\color{Navy}}
32 \renewcommand\MapBlockLabelFont{\bfseries\color{Navy}}
33 \definecolor{linkColor}{rgb3}{.66,.2,.2}

34 \hypersetup{colorlinks,

35 citecolor=linkColor,
36 filecolor=linkColor,
37 linkcolor=1linkColor,
38 urlcolor=linkColor}

39 \renewcommand\MapRuleStart{\color{Navy}}
40 \renewcommand\MapRuleWidth{1pt}

41 \usepackage{tikz?}

42 \usetikzlibrary{decorations.pathmorphing}
43 \usetikzlibrary{shadows}

44 \usetikzlibrary{mindmap}

45 \usetikzlibrary{calc}

46 \let\filename\LimapFilename

47 \let\fileversion\LimapFileversion
48 \let\filedate\LimapFiledate

49 \let\docdate\LimapDocdate

50 \def\theCodelineNo{\color{DarkGreen}\rmfamily\scriptsize\arabic{Code-
lineNo}}%

51 \makeatletter

52 \renewcommand\DescribeMacro{\catcode"'\\=12\Describe@@Macro}

53 \def\Describe@@Macro#1{\Block{\PrintDescribeMacro{#1}}%

54 \SpecialUsageIndex{#1}\@esphack\ignorespaces}

55 \renewcommand\DescribeEnv{\catcode"'\\=12\Describe@@Env}

56 \def\Describe@@Env#1{\Block{\PrintDescribeEnv{#1}}%

57 \SpecialEnvIndex{#1}\@esphack\ignorespaces}

58 \makeatother

59 \let\maketitle\MakeTitle

Continuing...

limap — Package and Class

34

The Documentation Driver, continued

Some additions

The content

60 \newcommand\R{\ ("{\textrm{\footnotesize\textregistered}}\) }
61 \let\marginpar\Block

62 \InputIfFileExists{limap.dcf}{3}{}

63 \RecordChanges

64 \EnableCrossrefs

65 \CodelineIndex

Now everything is prepared. Let the show begin...

66 \begin{document}

67 \DeleteShortVerb{|}

68 \DocInput{\filename}

69 %\newpage

70 %\PrintChanges

71 \newpage

72 \setcounter{IndexColumns}{2}
73 \PrintIndex

74 \end{document}

75 (/driver)

limap — Package and Class 35

The TgX Code
Overview The rest of the document describes the implementation. Usually it is
not meant for the casual user. Nevertheless it might be fruitful for those
searching for inspiration or for tricks when using this class or package.
Contents Title Page
The Package and Class Declarations 36
Language Specific Macros 37
Layout Parameters 42
Adaptable Macros 45
Internal Macros, Lengths, and Counters 47
Typesetting a Map 48
Typesetting a Block 54
Typesetting a Table of Contents 55
Typesetting a Table 57
Typesetting the Title Page 58

Final Actions 60

limap — Package and Class 36

The Package and Class Declarations

Preliminaries

Package
identification

Class
identification

First of all we request a descent version of IATEX to be used. | don't think it
does have to be too new.

76 \NeedsTeXFormat{LaTeX2e}

When the package is generated, the package identification is included.

77 (xpackage)
78 \ProvidesPackage{limap}[\filedate\space Gerd Neugebauer]
79 (/package)

When the class is generated, the class identification is included.

80 (xclass)
81 \ProvidesClass{limap}[\filedate\space Gerd Neugebauer]
82 (/class)

limap — Package and Class 37

Language Specific Macros

Introduction

\definelLimapLanguage

Definitions for the
language
“austrian®

Definitions for the
language
“german®

Definitions for the
language
“english”

This section contains internal macros used to implement the functionality.
New languages can be easily be added. For this purpose only a new
macro has to be defined and a package/class option for the convenience
of the user.

Consider you want to add a new language “latin” then you have to provide
the command \LIMAP@SelectlLanguage@latin. This macro should simply
redefine the macros containing strings of the language specific texts. Ex-
amples for other languages are provided in this section.

To enable the language settings for “latin” the macro \LIMAP@Language has
to be defined to contain the value “latin”. Usually this is accomplished by
providing a convenient option to the package or class.

Provide the definitions for a language. The different texts to be used are
stored in a macro which defines the target macros when expanded.

83 \def\definelLimaplLanguage#1#2#3#4#5{%

84 \expandafter\def\csname LIMAP@SelectlLanguage@#1\endcsname{%
85 \def\MapContinued{#2}%

86 \def\MapContinuing{#33}%

87 \def\MapTOCname{#4}%

88 \def\MapTOCpage{#53}%

89 %

91 \defineLimaplLanguage{austrian}%
92 { Fortsetzung}{Fortsetzung\dots}%
93 {Titel}{Seite}

94 \defineLimaplLanguage{german}%
95 { Fortsetzung}{Fortsetzung\dots}%
96 {Titel}{Seite}

97 \defineLimapLanguage{english}%
98 { Continued}{Continuing\dots}%
99 ({Title}{Page}

Continuing...

limap — Package and Class 38

Language Specific Macros, continued

Definitions for the
language
“USenglish*

Definitions for the
language
“french”

\LIMAP@Language

\ifLIMAP@strict

100 \defineLimapLanguage{USenglish}%
101 { Continued}{Continuing\dots}%
102 {Title}{Page}

103 \defineLimapLanguage{french}%
104 { continuation}{continuation\dots}%
105 {Intitulé}{Page}

The macro \LIMAP@Language determines the language to be used for sev-
eral small text fragments to be inserted at certain places. It is redefined by
package/class options and evaluated at the end to activate the selected
settings.

106 \providecommand\LIMAP@Language{english}

107 \DeclareOption{austrian}{\renewcommand\LIMAP@Language{austrian}}
108 \DeclareOption{german}{\renewcommand\LIMAP@Language{german}}

109 \DeclareOption{french}{\renewcommand\LIMAP@Language{french}}

110 \DeclareOption{english}{\renewcommand\LIMAP@Language{english}}

111 \DeclareOption{USenglish}{\renewcommand\LIMAP@Language{USenglish}}

The boolean \ifLIMAP@strict determines if the lower sectioning macros
should be disabled in the class.

112 \newif\ifLIMAP@strict \LIMAP@stricttrue

113 \DeclareOption{nonstrict}{\LIMAP@strictfalse}

114 \DeclareOption{nolines}{\def\MapRuleWidth{@pt}\ignorespaces}

limap — Package and Class 39

Determining the Appropriate Base Class

\LIMAP@ClassType

\LIMAP@Variant

Options for
selecting the
variant

Mapping to
document class

115 (xclass)

The macro \LIMAP@ClassType determines the type of the class to be used.
Usually it can take the values book, report, article, and letter (for com-
pleteness). This macro is redefined when the options of the class are
evaluated. Finally this macro helps to select the appropriate base class.

116 \providecommand\LIMAP@ClassType{report}

117 \DeclareOption{book}{\renewcommand\LIMAP@ClassType{book}}

118 \DeclareOption{report}{\renewcommand\LIMAP@ClassType{report}}
119 \DeclareOption{article}{\renewcommand\LIMAP@ClassType{article}}
120 \DeclareOption{letter}{\renewcommand\LIMAP@ClassType{letter}}

The macro \LIMAP@Variant determines the variant of the class to be used.
Usually it can take the values base and koma. This macro is redefined when
the options of the class are evaluated. Finally this macro helps to select
the appropriate base class.

121 \providecommand\LIMAP@Variant{base}

122 \DeclareOption{koma}{\renewcommand\LIMAP@Variant{koma}}
123 \DeclareOption{base}{\renewcommand\LIMAP@Variant{base}}

Define a mapping between the variant and class type to the class name to
be used.

124 \newcommand\LIMAP@Class@base@article{article}
125 \newcommand\LIMAP@Class@base@report{report}
126 \newcommand\LIMAP@Class@base@book{book}

127 \newcommand\LIMAP@Class@base@letter{letter}
128 \newcommand\LIMAP@Class@koma@article{scrartcl}
129 \newcommand\LIMAP@Class@koma@report{scrreprt}
130 \newcommand\LIMAP@Class@koma@book{scrbook}

131 \newcommand\LIMAP@Class@koma@letter{scrlettr}
132 (/class)

Continuing...

limap — Package and Class 40

Determining the Appropriate Base Class, continued

Pass on the 133 (xclass)

unknown options 134 \DeclareOption*{\PassOptionsToClass{\CurrentOption}{%
135 \csname LIMAP@Class@\LIMAP@Variant @\LIMAP@ClassType\endcsname}%
136}
137 (/class)

Thus the class specific options are completed.

Now we can process all options.

138 \ProcessOptions

139 (xclass)

The requested class is loaded and the options remaining are processed.

140 \LoadClass{\csname
141 LIMAP@Class@\LIMAP@Variant @\LIMAP@ClassType\endcsname}
142 (/class)

limap — Package and Class 41

Loading Required Packages

longtable for
breakable tables

etoolbox

booktabs for nice
tables

fancyhdr for head
and foot lines

No vertical
adjustment of
pages

The package longtable is used internally to implement a part of the re-
quired functionality. Thus we need to ensure that it is loaded.

143 \RequirePackage{longtable}

144 \RequirePackage{etoolbox}

The package booktabs is used internally to implement a part of the re-
quired functionality. Thus we need to ensure that it is loaded.

145 \RequirePackage{booktabs}

146 (xclass)

147 \RequirePackage{fancyhdr}

148 \addtolength{\headheight}{2ex}%

149 \pagestyle{fancy}%

150 \cfoot{}

151 \rhead{\small\thepage}

152 \1head{\textit{\footnotesize\@title}}
153 \def\@title{}

154 (/class)

Since the blocks are not supposed to line up at the end of the page we
declare \raggedbottom.

155 \raggedbottom

https://www.ctan.org/pkg/longtable
https://www.ctan.org/pkg/booktabs

limap — Package and Class 42

Layout Parameters

Overview

\MapRuleWidth

\MapRuleStart

\MapContinued

The layout can be influenced by a large number of parameters. Thus
the design decisions have been made transparent (to a certain degree
at least). These options are not meant to be changed except when a new
layout is being designed and implemented.

The macro \MapRuleWidth determines the width of the rules drawn be-
tween blocks.

156 \providecommand\MapRuleWidth{.25pt}

The macro \MapRuleStart is inserted before the rules drawn between
blocks.

157 \newcommand\MapRuleStart{}

This macro determines the text to be used in the title of continued maps.
This macro is reset when the language specific initializations are per-
formed.

158 \newcommand\MapContinued{}

\MapContinuing The macro \MapContinuing determines the text to be used at the bottom

of the map which is continued. This macro is reset when the language
specific initializations are performed.

159 \newcommand\MapContinuing{}

Continuing...

limap — Package and Class 43

Layout Parameters, continued

\MapContinuingFormat This macro determines the format of the bottom line on continued maps.
l.e. it includes the text as well as font changing commands. The text is
passed to this command as argument 1.

160 \newcommand\MapContinuingFormat[1]{\textit{\footnotesize #1}}

\MapContinuedFormat This macro determines the format of the bottom line on continued maps.
l.e. itincludes the text passed to it as argument 1 as well as font changing
commands.

161 \newcommand\MapContinuedFormat[1]{, {\MapTitleContinuedFont #1}}

\MapFont The macro \MapFont determines the font changing command to be used
when starting a new map.

162 \1let\MapFont\textsf

\MapTitleFont The macro \MapTitleFont determines the size changing command to be
used when typesetting the title of a map.

163 \let\MapTitleFont\Large

\MapTitleContinuedFont This macro determines the font changing command to be used for type-
setting the additional text after titles on followup pages of multipage maps.

164 \let\MapTitleContinuedFont\small

\MapBlockLabelFont This macro determines the font changing command to be used for type-
setting the block label.

165 \def\MapBlockLabelFont{}

Continuing...

limap — Package and Class 44

Layout Parameters, continued

\MapParskip The macro \MapParskip determines the distance of the text from the sep-
arating rules.

166 \newcommand\MapParskip{2ex}

\MapTitleFraction The macro \MapTitleFraction determines the part of the page width de-
voted to the title area. It is a fraction in the range from 0 to 1.

167 \newcommand\MapTitleFraction{.2}

\MapTextFraction This macro determines the part of the page width devoted to the text
area. It is a fraction in the range from 0 to 1. \MapTitleFraction and
\MapTextFraction should add up to something less or equal to 1. Other-
wise you will get some “overfull hbox” messages.

168 \newcommand\MapTextFraction{.75}

limap — Package and Class 45

Adaptable Macros

Overview _))
\MapNewpage The macro \MapNewpage is expanded whenever a new page is required
between maps. Thus it can be used to suppress the newpages by \1leting

it to \relax.

169 \let\MapNewpage\newpage

\MapToC The macro \MapTOC is expanded to generate the entry in the table of con-
tents. It can be redefined to allow another behavior.

170 \newcommand\MapTOC[11{%
171 \refstepcounter{\@nameuse{Map@TOC@name\the\Map@level}}%

172 \addcontentsline{toc}{\@nameuse{Map@TOC@name\the\Map@level }}{#1}%
173}

\MapBlockToC The macro \MapBlockTOC can be used to add an entry for a block to the
table of contents.

174 \newcommand\MapBlockTOC[11{%
\begingroup\count@=\Map@level \advance\count® 1%

175
176 \addcontentsline{toc}{\@nameuse{Map@TOCE@name\the\count®}}{#13}%
177 \endgroup

178 }

The macro \MapTOCname contains the heading for the section title in con-
tents blocks. This macro is reset when the language specific initializations

are performed.

\MapTOCname

179 \newcommand\MapTOCname{ }

Continuing...

limap — Package and Class 46

Adaptable Macros, continued

\MapTOCpage The macro \MapTOCpage contains the heading for the page number in con-
tents blocks. This macro is reset when the language specific initializations
are performed.

180 \newcommand\MapTOCpage{ }

\MapTOCheadfont The macro \MapTOCheadfont contains the font switching command for
typesetting the head line of map table of contents.

181 \newcommand\MapTOCheadfont{\scriptsize\emph}

limap — Package and Class

47

Internal Macros, Lengths, and Counters

\Map@length

\Map@level

\Map@blockcount

\LT@final@warn

This section contains internal macros used to implement the functionality.

The length register \Map@length is allocated to store the width of the space
between the columns of a block.

182 \newlength{\Map@length?}

The macro \Map@level determines the level of inclusion of maps. Itis used
to determine the appearance in the table of contents.

183 \newcount\Map@level
184 \Map@level=0

The macro \Map@blockcount is used to count the blocks per map to issue
a package warning if required.

185 \newcount\Map@blockcount

The macro \LTefinal@warn is defined in longtable. It is redefined to show
limap are originator.

186 \def\LT@finale@warn{%

187 \AtEndDocument{%

188 \PackageWarning{limap}%

189 {Table \@width s have changed. Rerun LaTeX.\@gobbletwo}}%

190 \global\let\LT@final@warn\relax}

limap — Package and Class 48

Typesetting a Map

Map The environment Mapdetermines the appearance of a map. It is imple-
mented as a longtable environment which takes care for the page breaks
and inserts material at the end of the page and the beginning of the new
page upon page break.

191 \def\Map#1{%

First the messages of longtable are modified to show this package name
instead.

192 \def\LT@err{\PackageError{limap}}%
193 \def\LT@warn{\PackageWarning{limap}}%

The map local macro \Block is activated. The counter for blocks is reset.

194 \let\Block\Map@Block
195 \let\endBlock\Map@endBlock
196 \Map@blockcount=0

The number of the map in the internal counting is set by incrementing the
old value.

197 \global\advance\Map@no1

198 \ifx\Map@UP\empty\else

199 \immediate\write\@auxout

200 {\string\expandafter\string\xdef\string\csname\space

201 Map@parts@\Map@UP\string\endcsname{\string\csname\space
202 Map@parts@\Map@UP\string\endcsname\the\Map@no: }}%

203 \fi

Continuing...

limap — Package and Class 49

Typesetting a Map, continued

204 \edef\Map@UP{\the\Map@no}%
205 \ifnum\Map@level>0
206 \xdef\Map@@up{\Map@UP}% Just to save the value across blocks.

207 \endgroup
208 \Map@end
209 \begingroup

210 \edef\Map@UP{\Map@Rup}%
211 \def\@currenvir{Map}%

212 \fi

213 \edef\Map@this{\the\Map@no}%

The entries for future use of sub-maps are written to the aux file.

214 \immediate\write\@auxout
215 {\string\global\string\@namedef{Map@parts@\the\Map@no}{}3}%

216 \global\advance\Map@level1
217 \def\Map@TITLE{#1}%

218 \Map@start

219}

220 \def\endMap{%

221 \Map@end

222 \global\advance\Map@level-1
223 \ignorespaces

224 }

\ifMap@open@ The conditional \ifMap@open@ is used to record the opening and closing
of the longtable environment, since can not be used inside itself. Thus it
can be closed before a new instance is opened.

225 \newif\ifMap@open@
226 \Map@open@false

Continuing...

limap — Package and Class 50

Typesetting a Map, continued

\Map@TOC@name

The macros \Map@TOC@nanme...provide a mapping between a number and
a sectioning unit. This mapping is used when the entry in the table of
contents is generated.

227 \@namedef{Map@TOCE@name@}{chapter}

228 \@namedef{Map@TOC@name1}{section}

229 \@namedef{Map@TOC@name2}{subsection}

230 \@namedef{Map@TOCE@name3}{subsubsection}
231 \@namedef{Map@TOC@name4}{paragraph}

232 \@namedef{Map@TOCE@name5}{subparagraph}

233 \@namedef{Map@TOCE@name6}{subsubparagraph}
234 \@namedef{Map@TOC@name7}{subsubparagraph}
235 \@namedef{Map@TOCE@name8}{subsubparagraph}
236 \@namedef{Map@TOCE@name9}{subsubparagraph}
237 \@namedef{Map@TOC@name10}{subsubparagraph?}
238 \@namedef{Map@TOC@name11}{subsubparagraph?}
239 \@namedef{Map@TOC@name12}{subsubparagraph?}

Continuing...

limap — Package and Class

51

Typesetting a Map, continued

\Mapestart The macro \Map@start is used to initiate the use of a map. It takes no
arguments. The map title is passed in via the macro \Map@TITLE.

It uses the longtable environment to perform the page breaking and mark-
ing of continued pages.

240 \newcommand\Map@start{%

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272}

\advance\Map@counter1
\setlength{\Map@length}{\textwidth}%
\addtolength{\Map@length}{-\MapTitleFraction\textwidth}%
\addtolength{\Map@length}{-\MapTextFraction\textwidth}%
\ifx\Map@TITLE\empty\else
\MapTOC{\Map@TITLE}%
\fi
\longtable
{@{}p{\MapTitleFraction\textwidth}@{\hspace{\Map@length}}
p{\MapTextFraction\textwidth}@{}}%
\multicolumn{2}{@{}p{\textwidth}@{}}{%
\MapFont{\MapTitleFont\rule{@pt}{3ex}%
\Map@TITLE}}
\endfirsthead
\multicolumn{2}{@{}p{\textwidth}@{}}{%
\MapFont{\MapTitleFont\rule{@pt}{3ex}%
\Map@TITLE\MapContinuedFormat{\MapContinued}}}%
\endhead
A\

&\MapRuleStart
\rule{\MapTextFraction\textwidth}{\MapRuleWidth}\newline
\mbox{}\hfill
\raisebox{3pt}{\MapContinuingFormat{\MapContinuing}}

\endfoot

&\MapRuleStart
\rule{\MapTextFraction\textwidth}{\MapRuleWidth}%
\vspace{\MapParskip}

\endlastfoot
\xdef\@currentlabel{\Map@TITLE}%
\label{Map@\the\Map€no}%
\global\Map@open@true

Continuing...

limap — Package and Class 52

Typesetting a Map, continued

\Map@end The macro \Map@end is expanded when the end of the end of the longtable
environment might be needed. The boolean \ifMap@open@ determines
whether such an environment is really open.

273 \newcommand\Map@end{ %

274 \ifMap@open@\vspacex*{1.5ex}

275 \global\MapQ@open@false

276 \endlongtable

277 \MapNewpage

278 \fi

279 \iftrue

280 \ifnum\Map@blockcount>9

281 \PackageWarning{limap}%

282 {*** The current map contains too much blocks:
283 \the\Map@blockcount}%

284 \else\ifnum\Map@blockcount>7

285 \PackageWarning{limap}%

286 {--- The current map contains \the\Map@blockcount blocks.}%

287 \fi\fi
288 \fi
289 }

\MapeUP The macro \Map@UP contains the number of the parent map or the empty
string.

290 \newcommand\Map@UP{ }

\Mapéno The counter \Map@no contains the sequence number for all maps. This
value is used internally to reference single maps.

291 \newcount\Map@no

\Map@counter The counter \Map@counter contains the number of a map in the context of
the containing map .

292 \newcount\Map@counter
293 \Map@counter=0

Continuing. ..

limap — Package and Class 53

Typesetting a Map, continued

\Map@parts@ The macro \Map@partse is used to store the parts of the top-level maps.
This is the initialization of a feature otherwise used in the aux file.

294 \@namedef{Map@parts@}{}

limap — Package and Class 54

Typesetting a Block

Blocks are the basic building unit of maps. Here the Block is defined in all
it's beauty.

Map@Block This macro is used to typeset a block inside a Map. To avoid abuse outside
of a map it is activated within a Map only.

295 \newenvironment{Map@Block}[1]{\par

296 \vspacex{-\parskip}\vspace*{-Tex}%

297 \\\null\par

298 \vspacex{\MapParskip}%

299 \raggedright\hspace{@pt}\MapFont{\MapBlockLabelFont{#13}}%
300 \gdef\@currentlabel{#13}%

301 &\parskip=\MapParskip

302 {\MapRuleStart

303 \rule{\MapTextFraction\textwidth}{\MapRuleWidth}}\par
304 \ifx\@undefined\MapBlockStartHook\else

305 \MapBlockStartHook{#13}%

306 \fi

The final action is empty. Thus the block can be used as a simple macro
as well.

307 H{%
308 }

\Block The macro \Block issues an error when used outside of a Map environ-
ment.

309 \newcommand\Block[1]{\PackageWarning{limap}{The sectioning command
310 ‘Block’ has been encountered outside the scope of a Map
311 environment.}}

\WideBlock The macro \WideBlock takes one argument which is added to the current
block where the whole width of the table is used.

312 \newcommand\WideBlock{\\\multicolumn2{@{}1@{}}}

limap — Package and Class 55

Typesetting a Table of Contents

313 \newif\if@Map@toc@sep@

\MapTableOfContents@open The macro \MapTableOfContents@open produces the table of contents for
the current map. It produces a tabular containing the titles and pages of
all maps directly contained in the current map. It utilizes a tabular environ-
ment and booktabs.

314 \def\MapTableOfContents@open{%

315 \centering

316 \begin{tabular}{p{.6\textwidth}r}\toprule
317 \MapTOCheadfont{\MapTOCname }&

318 \MapTOCheadfont{\MapTOCpage}\\\midrule
319 \ifcsdef{Map@parts@\the\Map@no}{

320 \edef\Map@tmp@{\csname Map@parts@\the\Map@no\endcsname: }%
321 \expandafter\Map@toc@loop\Map@tmp@

322 \\\bottomrule

323 H3

324 \end{tabular}

325 }

\MapTableOfContents@boxed The macro MapTableOfContents@boxed produces the table of contents for
the current map. It produces a tabular containing the titles and pages of
all maps directly contained in the current map. It utilizes a tabular environ-
ment and booktabs.

326 \def\MapTableOfContents@boxed{%

327 \centering

328 \begin{tabular}{|p{.6\textwidth}|r|}\hline
329 \MapTOCheadfont{\MapTOCname }&

330 \MapTOCheadfont{\MapTOCpage}\\\hline

331 \ifcsdef{Map@parts@\the\Map@no}{

332 \edef\Map@tmp@{\csname Map@parts@\the\Map@no\endcsname: }%
333 \expandafter\Map@toc@loop\Map@tmp@

334 \\\hline

335 X3

336 \end{tabular}

337}

Continuing...

limap — Package and Class 56

Typesetting a Table of Contents, continued

\MapTableOfContentsStyle

\MapTableOfContents

\Map@toc@loop

The macro MapTableOfContentsStyle determines the style of the TOCs. It
can take the values open or boxed.

338 \newcommand\MapTableOfContentsStyle{open}

The macro MapTableOfContents produces the table of contents for the cur-
rent map. It produces a tabular containing the titles and pages of all maps
directly contained in the current map.

339 \newcommand\MapTableOfContents{\par

340 \global\@Map@toc@sep@false

341 \csname MapTableOfContents@\MapTableOfContentsStyle\endcsname
342 \vspacex{-1.5\parskip}\par\ignorespaces

343 }

The macro \Map@toc@loop is a recursive solution to loop through all ele-
ments of a list of children. The argment is expected to be a colon separated
list of numbers. The end is marked by two colons in row.

Each number is a reference to a map. The respective line in the toc table
is produced.

344 \def\Map@toc@loop#1:{%

345 \def\Map@tmp@{#1}%

346 \ifx\Map@tmp@\empty

347 \global\let\Map@next@=\relax
348 \else

349 \if@Map@toc@sep@

350 \gdef\Map@next@{\\

351 \ref{Map@#13}&\pageref{Map@#13}%
352 \Map@toc@loop}%

353 \else

354 \gdef\Map@next@{%

355 \ref{Map@#13}&\pageref{Map@#13}%
356 \Map@toc@loop}%

357 \global\@Map@toc@sep@true

358 \fi

359 \fi

360 \Map@next@

361}

limap — Package and Class 57

Typesetting a Table

\MapTabularFraction

MapTabular

The macro \MapTabularFraction contains a factor for the line width. This
is used to determine the width of the table. The tabular is centered in the
text column.

362 \newcommand\MapTabularFraction{.95}

The environment MapTabular produces the tabular environment with the
width of the text column.

363 \newenvironment{MapTabular}{%

364 \begin{center}

365 \begin{tabularx}{\MapTabularFraction\linewidth}%
366 }{%

367 \end{tabularx*}

368 \end{center}\ignorespaces

369 }

limap — Package and Class 58

Typesetting the Title Page

\MakeTitle

Abstract

The macro \MakeTitle can be used as a replacement for the \maketitle
macro.

370 \newcommand\MakeTitle{\thispagestyle{empty?}
371 \rule{@pt}{.25\textheight}\par

372 \mbox{}\hfill

373 \begin{minipage}{\MapTextFraction\textwidth}
374 \raggedright

375 \rule{\textwidth}{2pt}\par

376 \vspace*{2.5\MapParskip}%

377 \sf{\huge \@title\parl}%

378 \vspace*{2.5\MapParskip}%

379 \rule{\textwidth}{2pt}\par

380 \vspace*{2.5\MapParskip}%

381 \MapFont{\large \@author} \par

382 \vspace*{2.5\MapParskip}%

383 \MapFont{\footnotesize \@date}

384 \vspace*{\MapParskip}%

385 \end{minipage}%

386 \vspace*{-22ex}%

387 \par

388 }

This macro is used to typeset the abstract.

389 \newenvironment{Abstract}{\vfill

390 \par

391 \mbox{}\hfill

392 \begin{minipage}{\MapTextFraction\textwidth}\parskip=1ex
393 \rule{\textwidth}{1pt}\medskip\par

394 }{\par\rule{\textwidth}{1pt}
395 \end{minipage}%

396 \par

397 }

Continuing...

limap — Package and Class

59

Typesetting the Title Page, continued

Use maketitle and The new \maketitle macro is activated for the class.
abstract

398 (xclass)

399 \1let\maketitle\MakeTitle

400 \let\abstract\Abstract

401 \let\endabstract\endAbstract
402 (/class)

limap — Package and Class 60

Final Actions

Local
configuration

Finale

Load the configuration file at the end if it can be found.

403 \InputIfFileExists{limap.cfg}{3}{3}

Finally we have to activate the proper settings for the chosen language.

404 \csname LIMAP@SelectlLanguage@\LIMAP@Language\endcsname

405 \ifLIMAP@strict
406 \def\chapter{\PackageWarning{limap}{The sectioning command

407 ‘chapter’ is not available.}}

408 % \def\section{\PackageWarning{limap}{The sectioning command

409 % ‘section’' is not available.}}

410 \def\subsection{\PackageWarning{limap}{The sectioning command
411 ‘subsection’ is not available.}}

412 \def\subsubsection{\PackageWarning{limap}{The sectioning command
413 ‘subsubsection’ is not available.}}

414 \def\paragraph{\PackageWarning{limap}{The sectioning command

415 ‘paragraph’ is not available.}}

416 \def\subparagraph{\PackageWarning{limap}{The sectioning command
417 ‘subparagraph’ is not available.}}

418 \def\subsubparagraph{\PackageWarning{limap}{The sectioning command
419 ‘subsubparagraph’ is not available.}}

420 \fi

That's all for this time.

limap — Package and Class

61

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers
underlined refer to the code line of the definition; numbers in roman refer to the code lines where

the entry is used.

Symbols
\@Map@toc@sep@false 340
\@Map@toc@sep@true 357
\@esphack 54, 57
\@width 189

A
\Abstract, 400
Abstract (environment) 389
\abstract 400
\AtEndDocument 187
B
\Block 53, 56, 61, 194, 309
C
\count 175,176
D
\definelLimapLanguage 83, 91, 94, 97, 100, 103
\Describe@@Env 55, 56
\Describe@@Macro 52, 53
\docdate, 5,13, 49
\docversion 4
E
\endAbstract 401
\endabstract 401
\endBlock 195
\endfirsthead 254
\endfoot 264
\endhead 258
\endlastfoot 268
\endlongtable 276
\endMap 220
environments:
Abstract 389
MaP v e 191
Map@Block, 295
MapTabular 363
\evensidemargin 15
F
\filedate 3,5, 12, 48, 78, 81
\filename 1,10, 46, 68
\fileversion 2,4,11,47
H
\hline 328, 330, 334
|
\if@Map@toc@sep@ 313, 349
\ifcsdef 319, 331

\ifLIMAP@strict 112, 405
\ifMap@open@ 225, 274
L
\label 270
\LIMAP@Class@base@article 124
\LIMAP@Class@base@book 126
\LIMAP@Class@base@letter 127
\LIMAP@Class@base@report 125
\LIMAP@Class@koma@article 128
\LIMAP@Class@koma@book 130
\LIMAP@Class@koma@letter 131
\LIMAP@Class@koma@report 129
\LIMAP@ClassType 116, 117--120, 135, 141
\LIMAP@Language 106, 107--111, 404
\LIMAP@strictfalse 113
\LIMAP@stricttrue 112
\LIMAP@Variant 121, 122, 123, 135, 141
\LimapDocdate 13, 49
\LimapFiledate 12, 48
\LimapFilename 10, 46
\LimapFileversion 11, 47
\linewidth 365
\longtable 248
ALT@err ... e 192
\LTefinal@warn 186
ALT@Warnt 193
M
\MakeTitle 59, 370, 399
\maketitle 59, 399
AMap L 191
Map (environment) 191
\Map@RUP .+ . . i 206, 210
\Map@Block 194
Map@Block (environment) 295
\Map@blockcount 185, 196, 280, 283, 284, 286
\Map@counter 241, 292
\Map@end 208, 221, 273
\Map@endBlock, 195
\Map@length 182, 242--244, 249
\Map@level 171,172,175, 183, 205, 216, 222
\Map@next@ 347, 350, 354, 360

\Map@no 197, 202,
204, 213, 215, 270, 291, 319, 320, 331, 332
\Map@open@false 226, 275
\Map@open@true, 271
\Map@parts@ciiiiii.. 294
\Map@start 218, 240
\Map@this 213
\Map@TITLE 217, 245, 246, 253, 257, 269
\Map@tmp@ 320, 321, 332, 333, 345, 346

limap — Package and Class 62
\Map@toc@loop 321, 333,344 \MapTitleContinuedFont 161, 164
\Map@TOC@nameuuuviuunnnnnn 227 \MapTitleFont 31, 163, 252, 256
\Map@UP 198, 201, 202, 204, 206, 210, 290 \MapTitleFraction 167, 243, 249
\MapBlockLabelFont 32,165,299 \MapTOC o'vieiie 170, 246
\MapBlockStartHook 304, 305 \MapTOCheadfont 181, 317, 318, 329, 330
\MapBlOCll(TOC 174 \MapTOCname 87,179, 317, 329
\MapContlnued 85, @, 257 \MapTOCpage _______________ 88, @, 318, 330
\MapContinuedFormat 161, 257
\MapContinuing 86, 159, 263 P
\MapContinuingFormat 160, 263
\MapFont 162, 252, 256, 299, 381, 383 \pageref 351, 355
\MapNewpagecouuu... 169, 277
\MapParskip R

166, 267, 298, 301, 376, 378, 380, 382, 384 \ref . R 351, 355
\MapRuleStart 39, 157, 260, 265, 302 \rmfamily 50
\MapRuleWidth 40, 114, 156, 261, 266, 303
\MapTableOfContents 339 S
\MapTableOfContents@boxed 326 \scriptsize 50, 181
\MapTableOfContents@open 314
\MapTableOfContentsStyle 338, 341 T
MapTabular (environment) 363 \theCodelineNo 50
\MapTabularFraction 362, 365
\MapTextFractiono..... w

.... 168, 244, 250, 261, 266, 303, 373,392 \WideBlock 312

	Motivation
	Getting Started
	Using the Document Class
	Document Class Options for Language Selection
	Document Class Options for Variant Selection
	Document Class Options for Base Class Selection

	Using the Package
	Package Options for Language Selection

	The Block
	Configuring Blocks
	Configuring the Rules of Blocks
	A Wide Block

	The Map
	Referencing Maps
	Configuring Maps

	The Table of Contents
	Blocks in the Table of Contents

	Tables
	Configuration
	The Configuration File limap.cfg
	Changing or Adding Language Specific Settings

	The Implementation
	The Version Information
	The Documentation Driver
	The TeX Code
	The Package and Class Declarations
	Language Specific Macros
	Layout Parameters
	Adaptable Macros
	Internal Macros, Lengths, and Counters
	Typesetting a Map
	Typesetting a Block
	Typesetting a Table of Contents
	Typesetting a Table
	Typesetting the Title Page
	Final Actions

