
volumes.sty: Support for Printing of only parts of

a LaTeX document, with complete indices etc.

Frank Küster

2004/06/02

Abstract

This package tries to help you if you want to produce separate printed vol-
umes from one LaTeX document, as well as one comprehensive ”all inclusive”
version. It suppresses the parts of the table of contents that are not typeset,
while counters, definitions, index entries etc. are kept consistent throughout
the input file. The same goal can probably also be achieved by different
approaches, e.g. packages to combine separate documents in one typeset
version. But for me it was easier this way – I define lots of macros in the
document on-the-fly, and have to avoid double definitions in the different
parts.

This file also provides nowtoaux.sty which allows writing to the aux file,
and thus to the toc, lof and lot files, without waiting for a page to be
shipped out.

Contents

I User documentation 2

1 Purpose, alternatives, and credits 2

2 Using the volumes Package 2
2.1 Customization . 3
2.2 Options: Determining what to exclude 4
2.3 Future plans . 4

3 The nowtoaux Package 4

4 The test suite 5

II Implementation 5

5 The nowtoaux package 5

1

6 The volumes Package 6
6.1 Option handling and needed packages 6
6.2 Suppressing \addtocontents commands 7
6.3 Suppressing entries in the table of contents 7
6.4 User commands for the appearance of volumes 9
6.5 Determining which part(s) to typeset 9

6.5.1 Helper macros: checking for numbers 9
6.5.2 Specifying the basename of included files 10
6.5.3 Specifying constant \include’s 10
6.5.4 Typesetting the right part 10

Part I

User documentation

1 Purpose, alternatives, and credits

If you use \includeonly to typeset only parts of your document, you have only
two choices: Either you delete the old aux files, and get no information at all
about the parts that are not typeset, or you keep it, but then you get a full table
of contents, lists of figures and tables, etc., even for the parts that are not included.
Thus, \includeonly is only suitable to keep compilation times short while writing
parts of your document, but not for the final typesetting of parts of a document.

If you want to have a more fine-grained control over what is being typeset,
volumes.sty may help you. There are, however, some alternatives. If you know in
advance that you will want to typeset your package in two or more volumes, it
might be better to develop it as separate documents, using xr.sty for references to
the other document, or to use tools as shorttoc.

When I developed this package, I had yet written a large part of the document
– in fact it was a laboratory diary (using my own labbook class) – and was using
lots of automated indexing commands that occurred in all parts, and macros that
defined and re-used command sequences on-the-fly. I wanted those commands to
be consistent throughout my work in this lab, avoiding dobule definitions, and I
wanted the complete index, also for older volumes, in every volume. Therefore it
seemed harder to take apart the whole document, than suppressing a part of the
table of contents.

In a discussion with Markus Kohm, he came up with the basic idea for this,
and I am much in debt to him for his help. Some definitions where also taken
and/or adapted from his scrclass.dtx, as well as from basic LATEX2ε files, and the
contributors of the newsgroup de.comp.text.tex also helped me, as usual.

2 Using the volumes Package

To use the Package, you must at least load it and call the \onlyvolumes macro:\onlyvolume

\usepackage{volumes}

\onlyvolume

2

The reason why you need two commands is that it makes it possible to customize
it’s behavior between the \usepackage and \onlyvolume (see below).

volumes.sty assumes that you are using \include for the parts that you want
to typeset conditionally, and standardized, numbered filenames (see below). How-
ever, the appearance of your document still won’t change if you insert just the
lines above. You also need to specify which part should be typeset. There are two
ways to accomplish that:

1. You can specify the part you want as an optional argument to \onlyvolume,
for example:

\onlyvolume[2]

to get the second part. The disadvantage for this is that you have to change
the document when you want to change the part to be typeset.

2. Alternatively, you can define the macro \volume outside the file, it should\volume

expand to the number of the part you want. This can be done on the
command line, e.g. like this:

latex "\def\volume{2} \input{filename}"

volumes.sty will handle each file that is included with \include as one volume,
and treat the rest as fixed parts. It does not take care of \input at all, therefore
you’re free to use it as you want.

2.1 Customization

Filenames By default, volumes.sty expects the included files to be named\volumename

volume1.tex, volume2.tex etc.1 The numbers at the end must always be there,
but you can change the basename from volume to 〈anything〉 else using

\volumename{〈anything〉}

Commands specific to volumes You might want certain commands only to\allvolumescommand

\volumecommand be executed when the whole document is typeset, and others only for a spe-
cific volume. To achieve this, write \allvolumescommand{〈commands〉} and/or
\volumecommand{〈number〉}{〈commands〉}.

The commands are currently2 executed at the end of the preamble using
\AtBeginDocument. Therefore you cannot typeset anything, instead you should
define commands that are later typeset, e.g. change the \title or \date.

Excluding \addtocontents commands The mechanisms presented so far only
exclude things added to the toc, lof, or lot files by sectioning commands or floats,
or using \addcontentsline. If you add some stuff manually to those lists using
\addtocontents, it still gets typeset.

1In fact this is only true for conditionally included files. If you use \alwaysinclude (see
below), those files can have arbitrary names.

2In future versions, this might be moved to an other place - don’t rely on that.

3

To circumvent this, you can use \voladdtotoc{〈Text〉}, \voladdtolof{〈Text〉},
and \voladdtolot{〈Text〉}, instead of \addtocontents{〈Text〉}. These texts will
automatically be suppressed if the respective list is suppressed in the part where
they are used.

2.2 Options: Determining what to exclude

volumes.sty by default suppresses the unprinted entries into the Table of Contents
(lof), List of Figures (lof) and List of Tables (lot). You can change this using
the following options:

tocall The complete table of contents is printed even when only typesetting one
part, i.e. only the lists of tables and of figures is suppressed

lofall The complete list of figures is printed even when only typesetting one
part, i.e. only the lists of tables and table of contents is suppressed.

lotall The complete list of tables is printed even when only typesetting one part,
i.e. only the lists of figures and table of contents is suppressed.

We redefine the \include command to achieve this. If this causes incompatibilities\volumeone

\volumetwo

\volumethree

...

with other packages, use the option

manual You must then specify the beginning of a volume by putting the commands
\volumeone, \volumetwo, \volumethree and so forth directly before the
corresponding \include. The filenames still need to follow the conventions
described above.

2.3 Future plans

Here are some ideas that I had, and believe can be implemented quite easily – but
I didn’t have time yet:

• Check whether the filename in \include maches the pattern \volumename〈number〉
and include it always if it does not.

• Provide a user interface that allows to suppress entries in other lists, like
lists of equations, listings, or user-defined floats.

3 The nowtoaux Package

The \addtocontents macro uses the TEX primitive \write to insert its text into
the aux file, from where it will finally end up in the toc file etc. \write puts its
contents into a whatsit, and the actual writing is done when the material currently
processed fills a page, and the page is shipped out. This way, putting \thepage
into the arguments of \addtocontents will produce the correct page number.
However, sometimes one really wants the writing to take place immediately, when
the macro is expanded. This can be achieved with the nowtoaux package.

Consider the following example, which tries to typeset the table of contents in
the main part of the document in red:

\documentclass{report}

4

\usepackage{color}

\begin{document}

\tableofcontents

\include{intro}

\addtocontents{toc}{\color{red}}

\include{main}

\end{document}

Here, the \addtocontents command is at a place where nothing is typeset:
The previous \include has just caused a page break, and the next include will
open its own aux file, before also doing a \clearpage and starting the typesetting,
probably of many pages with sections that go into the toc. It’s only after the
processing comes back from main.tex that TEX notices that a whatsit is left, and
writes to the aux file.

What you want instead is a command like \addtocontents that writes imme-\immediateaddtocontents

diately to the aux file, without waiting for a page shipout. The nowaux package
defines \immediateaddtocontents{〈table〉}{〈Text〉} which does exactly that. If
you substitute it for the \addtocontents in the above example, the entries in the
table of contents that come from main.tex are colored red (how horrible. . .).

You can also write arbitrary commands to the aux file, if you find a use for this.\immediatewriteaux

\writeaux{〈commands〉} writes the commands to the aux file, using a whatsit as
usual. \immediatewriteaux{〈commands〉} does the same, but with \immediate.
The commands in their argument need to be properly protected. It is best to define
one command to perform all the tasks that you want to be done in the aux file. You
can then put this command into the aux file with \macrotoaux{〈one command〉},
without further protection, because this is done internally. Here’s an example:

4 The test suite

The principles of the test suite will be described elsewhere. Here are just some
remarks on how it works in this particular case.

• In the first run, the file switch-onlytwo.tex does not exist. Therefore,
\volume is undefined, and the complete document is processed, producing
aux files also for the files that will not be included in later runs.

Part II

Implementation

5 The nowtoaux package

\immediateaddtocontents

\immediate@protected@write

The definitions of \immediateaddtocontents and \immediate@protected@write
are taken from the definition of \addtocontents in ltsect.dtx and \protected@write
in ltfiles.dtx, and the only change is the addition of \immediate before \write.

1 〈∗nowtoaux〉

5

2 \long\def\immediateaddtocontents#1#2{%

3 \immediate@protected@write\@auxout

4 {\let\label\@gobble \let\index\@gobble \let\glossary\@gobble}%

5 {\string\@writefile{#1}{#2}}

6 }

7 \long\def \immediate@protected@write#1#2#3{%

8 \begingroup

9 \let\thepage\relax

10 #2%

11 \let\protect\@unexpandable@protect

12 \edef\reserved@a{\immediate\write#1{#3}}%

13 \reserved@a

14 \endgroup

15 \if@nobreak\ifvmode\nobreak\fi\fi

16 }

\macrotoaux

\immediatewriteaux

\writeaux

Here come three goodies: \immediatewriteaux allows you to write arbitrary com-
mands to the aux file. \writeaux does the same, but in the standard way, without
\immediate. The commands in their argument need to be properly protected. It
is best to define one command to perform all the tasks that you want to be done in
the aux file. You can then put this command into the aux file with \macrotoaux,
without further protection, because this is done internally.

17 \long\def\writeaux#1{%

18 \protected@write\@auxout

19 {\let\label\@gobble \let\index\@gobble \let\glossary\@gobble}%

20 {#1}

21 }

22 \long\def\immediatewriteaux#1{%

23 \immediate@protected@write\@auxout

24 {\let\label\@gobble \let\index\@gobble \let\glossary\@gobble}%

25 {#1}

26 }

27 \long\def\macrotoaux#1{%

28 \immediatewriteaux{\string#1}

29 }

30 〈/nowtoaux〉

6 The volumes Package

6.1 Option handling and needed packages

For the all options, we simply create a conditional that is checked later, when
the necessary commands have been or will be defined. Furthermore, we need the
nowtoaux helper package.

31 〈∗volumes〉
32 \newif\if@allincludes\@allincludestrue

33 \newif\if@tocall\@tocallfalse

34 \newif\if@lofall\@lofallfalse

35 \newif\if@lotall\@lotallfalse

36 \DeclareOption{manual}{\@allincludesfalse}

37 \DeclareOption{tocall}{\@tocalltrue}

38 \DeclareOption{lofall}{\@lofalltrue}

6

39 \DeclareOption{lotall}{\@lotalltrue}

40 \ProcessOptions%

41 \RequirePackage{nowtoaux}

6.2 Suppressing \addtocontents commands

42 \newcommand{\vol@do@addto}[1]{#1}

43 \let\vol@dont@addto\@gobble

44 \newcommand{\voladdtotoc}[1]{%

45 \addtocontents{toc}{\protect\vol@maybe@addto@toc{#1}}%

46 }%

47 \let\vol@maybe@addto@toc\vol@do@addto

48 \newcommand{\voladdtolof}[1]{%

49 \addtocontents{lof}{\protect\vol@maybe@addto@lof{#1}}%

50 }%

51 \let\vol@maybe@addto@lof\vol@do@addto

52 \newcommand{\voladdtolot}[1]{%

53 \addtocontents{lot}{\protect\vol@maybe@addto@lot{#1}}%

54 }%

55 \let\vol@maybe@addto@lot\vol@do@addto

6.3 Suppressing entries in the table of contents

In order to get the table of contents, list of figures and list of tables with entries
only for the part that we want to print, we redefine \contentsline to do nothing.
This is done by writing \let assignments into the respective files (*.toc, *.lof,
*.lot).

\contentsline

\volumes@orig@contentsline

But we need to be able to suppress parts at the beginning, and reenable later
parts. Therefore we save the old definition of \contentsline in the macro
\volumes@orig@contentsline. If the hyperref Package will be loaded later, it
will redefine \contentsline. Therefore we have to repeat our command after
(and only if) hyperref has been loaded:

56 \let\volumes@orig@contentsline\contentsline \RequirePackage{scrlfile}

57 \AfterPackage{hyperref}{\let\volumes@orig@contentsline\contentsline}

The new \contentsline macro should do nothing, but just gobble its argu-
ments. Again a hyperref problem: If the package has been loaded, \contentsline
will have 4 arguments instead of 3. We do the same trick, but this time we also
have to check whether hyperref has been loaded yet:

58 \@ifpackageloaded{hyperref}{%

59 \let\volumes@new@contentsline\@gobblefour

60 }{%

61 \def\volumes@new@contentsline#1#2#3{}

62 \AfterPackage{hyperref}{%

63 \let\volumes@new@contentsline\@gobblefour

64 }

65 }

We want to \let the \contentsline macro to the meaning we want in the
*.toc file etc., but we cannot write directly to those files. Instead, we write to
the *.aux file using \immediateaddtocontents. Commands written to the aux
and toc file this way need to be proctected; in order to make this easier, we define

7

macros that will do the \let assignment and can be proctected with one \protect
command:

66 \def\volumes@switch@orig@contentsline@toc{%

67 \let\contentsline\volumes@orig@contentsline%

68 \let\vol@maybe@addto@toc\vol@do@addto

69 }

70 \def\volumes@switch@new@contentsline@toc{%

71 \let\contentsline\volumes@new@contentsline%

72 \let\vol@maybe@addto@toc\vol@dont@addto

73 }

74 \def\volumes@switch@orig@contentsline@lof{%

75 \let\contentsline\volumes@orig@contentsline%

76 \let\vol@maybe@addto@lof\vol@do@addto

77 }

78 \def\volumes@switch@new@contentsline@lof{%

79 \let\contentsline\volumes@new@contentsline%

80 \let\vol@maybe@addto@lof\vol@dont@addto

81 }

82 \def\volumes@switch@orig@contentsline@lot{%

83 \let\contentsline\volumes@orig@contentsline%

84 \let\vol@maybe@addto@lot\vol@do@addto

85 }

86 \def\volumes@switch@new@contentsline@lot{%

87 \let\contentsline\volumes@new@contentsline%

88 \let\vol@maybe@addto@lot\vol@dont@addto

89 }

90 % \def\volumes@switch@orig@contentsline{%

91 % \let\contentsline\volumes@orig@contentsline}

92 % \def\volumes@switch@new@contentsline{%

93 % \let\contentsline\volumes@new@contentsline}

\volume@switch@off

\volume@switch@on

The actual writing to *.aux will done by \volume@switch@on and
\volume@switch@off. While \volume@switch@on switches on unconditionally,
\volume@switch@off checks whether any of the tocall, lofall, or lotall op-
tions was given; if writes to the respective file only if the option wasn’t given.

94 \def\volume@switch@off{%

95 \if@tocall\else%

96 \immediateaddtocontents{toc}{\protect\volumes@switch@new@contentsline@toc}%

97 \fi%

98 \if@lofall\else%

99 \immediateaddtocontents{lof}{\protect\volumes@switch@new@contentsline@lof}%

100 \fi%

101 \if@lotall\else%

102 \immediateaddtocontents{lot}{\protect\volumes@switch@new@contentsline@lof}%

103 \fi%

104 }

105 \def\volume@switch@on{%

106 \immediateaddtocontents{toc}{\protect\volumes@switch@orig@contentsline@toc}%

107 \immediateaddtocontents{lof}{\protect\volumes@switch@orig@contentsline@lof}%

108 \immediateaddtocontents{lot}{\protect\volumes@switch@orig@contentsline@lof}%

109 }

8

6.4 User commands for the appearance of volumes

\allvolumescommand

\volumecommand

In order to allow the user to define commands that should be executed con-
ditionally only if a particular volume is typeset, we provide the command
\volumecommand{〈number〉}{〈LATEX commands〉}. Similarly, the macro
\allvolumescommand{〈LATEX commands〉} is executed when the whole docu-
ment is typeset. The internal commands that are generated by both macros
need to be set to \relax, so that no error occurs if the user does not use
(some of) the \volumecommands and \allvolumescommand. For the numbered
\volume@command@.., this is done later.

110 \def\volumecommand#1#2{%

111 \expandafter\def\csname volume@command@#1\endcsname{%

112 #2%

113 }%

114 }

115 \def\allvolumescommand#1{%

116 \def\all@volumes@command{#1}%

117 }

118 \let\all@volumes@command\relax

6.5 Determining which part(s) to typeset

Now we define the macro that will finally be used to determine if, and which
volume is typeset. The key is the macro \volume – if it is undefined, the whole
document will be typeset. If it is set to a number, the respective volume will be
typeset.

6.5.1 Helper macros: checking for numbers

\ifnumber In order to test whether \volume, if defined, is in fact a number, we use a command
taken from scrclass.dtx, and explained there (albeit in german):

119 \providecommand\ifnumber[3]{

120 \begingroup\@tempswafalse\let\scr@next\test@number

121 \expandafter\scr@next#1\scr@next

122 \if@tempswa\endgroup#2\else\endgroup#3\fi

123 }

124 \providecommand*{\test@number}[1]{

125 \ifx \scr@next#1

126 \let\scr@next\relax

127 \else

128 \@tempcnta=\expandafter\expandafter\expandafter\number

129 \expandafter‘#1\relax

130 \ifnum \@tempcnta>47\relax

131 \ifnum \@tempcnta<58\relax

132 \@tempswatrue

133 \else\@tempswafalse\fi

134 \else\@tempswafalse\fi

135 \if@tempswa\else\let\scr@next\gobble@till@next\fi\fi

136 \scr@next}

137 \providecommand*{\gobble@till@next}{}

138 \def\gobble@till@next#1\scr@next{}

9

6.5.2 Specifying the basename of included files

\volumenname The name of the included files corresponding to the individual volumes must
end with a number, but it can have any legal filename before this. By default,
Buch1.tex, Buch2.tex etc. are used, but this is stored in \volume@name and can
be changed with the user command \volumename:

139 \newcommand*{\volumename}[1]{%

140 \def\volume@name{#1}%

141 }%

142 \volumename{volume}%

6.5.3 Specifying constant \include’s

\alwaysinclude This macro is used to specify parts that should always be included, and can only
be used with the manual option.

143 \newcommand*{\alwaysinclude}[1]{%

144 \if@allincludes

145 \PackageError{volumes}{%

146 need option "manual" for \string\alwaysinclude.%

147 }{%

148 You must use the option "manual" when you want to use

149 \string\alwaysinclude, and\MessageBreak specify

150 the volumes using \string\volumeone\space etc. - see

151 the package documentation.

152 }

153 \else

154 \def\always@include{,#1}

155 \fi

156 }

157 \def\always@include{}

6.5.4 Typesetting the right part

\onlyvolume The command that triggers conditional typesetting is \onlyvolume. If it is called
with a number as optional argument, it defines \volume to expand to that number,
meaning the volume to be typeset. If no optional argument is given, \volume is not
assigned, but the check whether it is assigned is still done. This enables the user
to switch between typesetting the whole document or only one volume without
changing the file, by assigning \volume on the command line:

latex "\def\volume{3} \input{filename}"

The real work is then done by \@@onlyvolume:
158 \newcommand*{\onlyvolume}[1]{}

159 \def\onlyvolume{%

160 \@ifnextchar [{\@onlyvolume}{\@@onlyvolume}

161 }

162 \def\@onlyvolume[#1]{%

163 \ifnumber{#1}{%

164 \def\volume{#1}

165 }{%

166 \PackageError{volumes}{%

10

167 Argument to \string\onlyvolume\space must be a number%

168 }{%

169 The optional argument to \string\onlyvolume\space is used to

170 tell volumes.sty which volume it should typeset. You should have

171 specified a number there, but instead, you said: \volume%

172 }%

173 }%

174 \@@onlyvolume

175 }

\volume

\@@onlyvolume

To define \@@onlyvolume, we first neeed two counters. Then we check whether
\volume is defined – if not, we \let all \volume@switch@...es to \relax. This
is done for numberofvolumes volumes – there is no user interface yet to change
this value. Then we tell LATEX to execute \all@volumes@command at the begin of
the document

176 \newcounter{volume}%

177 \newcounter{numberofvolumes}\setcounter{numberofvolumes}{10}%

178 \def\@@onlyvolume{%

179 \ifx\volume\undefined%

180 \PackageWarningNoLine{volumes}{Typesetting complete document.}

181 \setcounter{volume}{0}%

182 \@whilenum\c@volume<\c@numberofvolumes\do

183 {%

184 \expandafter\let%

185 \csname volume@switch@\arabic{volume}\endcsname\relax%

186 \stepcounter{volume}%

187 }%

188 \setcounter{volume}{0}%

189 \AtBeginDocument{\all@volumes@command}%

If \volume is defined, we \let all \volume@switch@...es to \volume@switch@off.
Then we schedule the execution of the respective \volume@command@... to the
begin of the document, and make sure only the right part is included.

190 \else

191 \ifnumber{\volume}{%

192 \PackageWarningNoLine{volumes}{Typesetting part \volume.}

193 }{%

194 \PackageError{volumes}{\string\volume\space is defined, but not a

195 number}{%

196 The macro \string\volume\space is used to tell volumes.sty which

197 volume it should typeset. You have defined this macro, but it is

198 not a number. Instead, it is: \volume%

199 }%

200 }%

201 \setcounter{volume}{0}%

202 \@whilenum\c@volume<\c@numberofvolumes\do {%

203 \expandafter\let%

204 \csname volume@switch@\arabic{volume}\endcsname%

205 \volume@switch@off%

206 \stepcounter{volume}%

207 }

208 \setcounter{volume}{0}%

209 \AtBeginDocument{\csname volume@command@\volume\endcsname}

11

210 \expandafter\let%

211 \csname volume@switch@\volume\endcsname\volume@switch@on

212 \includeonly{\volume@name\volume\always@include}%

213 \fi

If the manual option was given, we define \volumeone, \volumetwo,. . . to be
the corresponding \volume@switch@....

214 \if@allincludes\else%

215 \@ifundefined{volumelist}{%

216 \def\volumelist{one,two,three,four,five,six,seven,eight,nine,ten}%

217 }{}%

218 \@for\vol@num:=\volumelist\do

219 {%

220 \stepcounter{volume}%

221 \expandafter\let\csname volume\vol@num\expandafter\endcsname%

222 \csname volume@switch@\arabic{volume}\endcsname%

223 }%

224 \setcounter{volume}{0}%

225 \fi

226 }

\include If the manual option was not given, we redefine \include so that it does the
necessary switching. Otherwise, we define commands with no @ signs as aliases for
\volume@switch@〈number〉. If the user wants more then ten volumes, or different
names, she can define \volumelist herself, but before the package is loaded.

TODO: Hier die Nummer als include-Argument einarbeiten!
227 \setcounter{volume}{0}%

228 \if@allincludes%

229 \let\volume@orig@include\include%

230 \def\include{%

231 \stepcounter{volume}%

232 \csname volume@switch@\arabic{volume}\endcsname%

233 \volume@orig@include%

234 }

235 \fi

236 〈/volumes〉

12

