
Drawing with Metapost
Toby Thurston — March 2017 – October 2024

(4, 6, 12) (4, 82)

(3, 122) (3, 4, 6, 4)

1 Start here
This document contains a collection of ideas and techniques for producing attractive
technical drawings with John Hobby’s METAPOST language. I’m assuming that you
already know the basics of the language, that you have it installed as part of your
up to date TEX ecosystem, and that you have established a reasonable workflow
that let’s you write a METAPOST program, compile it, and include the results in
your TEX document. If not, you might like to start at the METAPOST page on
CTAN, and read some of the excellent tutorials, including mpintro.pdf. If you
have already done this, please read on.

These notes are partly based on the examples I have developed as answers to
questions about technical drawing on the TEX Stack Exchange site. In accordance
with their terms and conditions, I’ve only included material here that I’ve written
myself — if you want other people’s code then visit the site; while most answers
there focus on writing LATEX documents, there are a great many questions about
drawing, and some of the answers are very illuminating.

My approach here will be to explore plain METAPOST, with examples grouped
into themes. One approach to using this document would be to read it end to end.
Another would be to flick through until you see something that looks like it might
be useful and then see how it’s done.

And when I say plain METAPOST I mean METAPOST with the default format
(as defined in the file plain.mp) loaded and only a few simple external packages
(like colorbrewer) occasionally. Nearly all of the examples here are supposed to
be self contained, and any macros are defined locally so you can get to grips with
what’s going on. METAPOST is a very subtle language, and it’s possible to do some
very clever and completely inscrutable things with it; but here I have tried to be as
clear as possible in my examples.

Copyright © 2024 by Toby Thurston. This material may be distributed only subject to the terms
and conditions set forth in the Open Publication License, v1.0 or later (the latest version is
presently available at http://www.opencontent.org/openpub/).

2

2 Some features of the syntax
• Assignment or equation: the equation a=3; means “a is the same as 3 through-

out the current scope”; the assignment a:=3; means “update the value of a
to the value 3 immediately”. The difference becomes apparent when you try
to update a variable in the same scope.
This difference also lets you write linear equations like a=-b;. After this, as
soon as you give a value to a, METAPOST immediately works out the value
of b. This is clever but has its limitations. As the following snippet reveals:

% if you run this you will get this in the log
a + b = 0; show (a,b); % >> (a,-a)
a=42; show (a,b); % >> (42,-42)
a:=43; show (a,b); % >> (43,-42)

As soon as you assign to variable with := METAPOST breaks any previously
established equations.

• Variable types:
— 〈numeric〉 a, 〈pair〉 (a,b)
— 〈color〉 (r,g,b), 〈cmykcolor〉 (c,m,y,k) 〈transform〉 (x,y,xx,xy,yx,yy)
— 〈string〉, 〈path〉, 〈picture〉
If you don’t declare a variable, it’s assumed that it’s a 〈numeric〉. When you
do declare a variable — 〈numeric〉 or otherwise — any value that it already
had in the current scope is removed.

• Implicit multiplication: METAPOST inherits a rich set of rules about numeri-
cal expressions from METAFONT, and of special interest is the scalar multipli-
cation operator. Any simple number, like 42, 3.1415, or .6931, or any simple
fraction like 1/2 or 355/113 standing on it’s own (technically at the primary
level) and not followed by + or - becomes a scalar multiplication operator
that applies to the next token (which should be variable of some appropriate
type). So you can write things like 3a, or even 1/2 a (the space between the
number and the variable name is optional). This lets you write very readable
mathematical expressions. It’s quite addictive after a while.

The sqrt operator is defined at the same (top) level of precedence,
so that sqrt2+1 is read as (sqrt2)+1 and not sqrt(2+1), but
fractions trump even that, so sqrt 1/2 = 0.7071 is true.

3

3 Workflow
This document is not meant for beginners, so you won’t find step by step tutorials
for something so simple as running METAPOST. But since you might not find it all
that simple, and since the basic tutorials can go out of date, here are descriptions
of my own workflows that you might find helpful. You might also think I’m being
really inefficient; if so please drop me a line and suggest an improvement.

The common features of each of these workflows are: Mac OS, the MacVim
editor to edit METAPOST source code, and Skim.app to view PostScript and PDF
files. I have the complete MacTeX distribution installed; any commands mentioned
below are supplied by MacTeX.

3.1 Stand alone graphics with plain METAPOST

METAPOST source files have the extension .mp, when I open a file in MacVim that
matches *.mp, my editor profile sets the file type to mp (which picks up the highlight
and indentation rules supplied with MacVim), and adds some relevant directories to
the search tree. Finally, if the file is a new file, then the profile loads this template:

prologues := 3;
outputtemplate := "%j%c.%{outputformat}";
beginfig(1);

endfig;
end.

The first two lines are important: prologues := 3; makes METAPOST put the full
font details in the output so that the files are self-contained; the outputtemplate
line means that the output will be written to files with an extension that matches
the chosen output format, which will be png, svg, or more usually eps, which is
the default (and suggests that the output is Encapsulated PostScript).

I then add drawing and label commands, using all the traditional facilities for
typesetting labels described in section 11. I compile the source with mpost. I usually
do this from within MacVim using the command line :!mpost % where ! means
“this is an external command” and the % picks up the current file name. Usually I
need several attempts to get a diagram right, so I open Skim to preview the output.

MP source

Edit with
MacVim

EPS PDF

Preview with
Skim.app

Use in LATEXwith
\includegraphics

mpost epstopdf

Until recent (2024) versions of Mac OS, it was possible to get
Skim to view the PostScript output directly, with automatic up-
dates on recompile, but the conversion from PostScript no longer
works properly, so I now prefer to convert the EPS to PDF using
epstopdf. This slightly complicates the edit, compile, and preview
loop. On the other hand the PDFs are generally more useful files
to create, so it is worth the extra effort.

I use a small Python script to automate the process: run mpost
with the -recorder option; scan the list of files to see what got
produced; check which ones are PostScript; call epstopdf to make
each one into a PDF file; remove each EPS file if successful. Your
mileage may vary.

4

3.2 Stand alone graphics with LuaLATEX
For graphics with more complicated text formatting, I prefer now to use lualatex
with the luamplib package. The work flow is a bit simpler because there are no

MP source
in wrapper

Edit with
MacVim

PDF

Preview with
Skim.app

Use in LATEXwith
\includegraphics

lualatex

intermediate EPS files to worry about. Instead of compiling with plain mpost I use
lualatex with the luamplib package, which calls METAPOST from within the Lua
environment. The METAPOST engine actually used is exactly the same. Here is
the template I use:

\documentclass[border=5mm]{standalone}
\usepackage{luamplib}
\mplibtextextlabel{enable}
\begin{document}
\begin{mplibcode}

beginfig(1);

endfig;
\end{mplibcode}
\end{document}

As you can see, we have METAPOST source code wrapped up in a minimal LATEX
document using the standalone class, which automatically adjusts the page size to
fit the contents of document, so is ideal for single diagrams. One small disadvantage
is that you can only produce a single PDF output file, so you need to have a separate
file for each picture, but the good news is that you get a much simpler and more
effective integration with LATEX, in particular with the font environment, but as
this only works with lualatex you have to use the fontspec package, as explained
in section 12.

+ If you like the fancier METAPOST format provided with ConTexT, you
can use it directly with this luamplib approach. Just add this option to
your preamble:

\mplibsetformat{metafun}

3.3 Integrated graphics with LuaLATEX
If you are ready to use lualatex for processing your entire document, then you can
directly embed your METAPOST drawings in a series of mplibcode environments.
Each one produces a horizontal-mode box. For details try texdoc luamplib. The
only drawback of this all-in-one approach is that you have to compile all the draw-
ings every time you compile the document, which might slow you down — although
on a modern machine this is not really an issue any more.

5

4 Making and using paths
In METAPOST there are two sorts of paths: open and closed. A closed path is

(55, 34)

fill t withcolor 0.8[blue,white]; draw t;

called a cycle, and is created with the cycle primitive like this:

path t; t = origin -- (55,0) -- (55,34) -- cycle;

You can think of cycle as meaning ‘connect back to the start and close the path’.
Note that you have explicitly put cycle to make a closed path. If you wrote

path u; u = origin {right} .. (55,0) .. (55,34) .. {-2,-1} origin;

then u would be an open path even though the last point is the same as the first.
Any path that does not have cycle at the end is an open path.

(55,34)

(55,0)(0,0)

drawarrow u cutafter fullcircle scaled 4;

You can use draw with either sort of path, but you can only use fill with a
cycle. This concept is common to most drawing languages but it’s often hidden: an
open path might be automatically closed for you when you try to fill it. METAPOST

takes a more cautious approach; if you pass an open path to fill you will get an
error that says ‘Not a cycle’, even if the first and last points are the same like path
u above.

If you want to write a macro that deals differently with the two types of path,
then you can use cycle in a boolean context to test whether a given path p is closed:

if cycle p:
% do something for closed path p

else:
% do something for open path p

fi

METAPOST inherits the rich path-making syntax directly from METAFONT, so if
you want a general refresher, or you are not quite sure what the five joiners do, −→

.. free curve

... bounded curve
-- straight line
--- tense line
& splice.

or you would like to bone up on exactly what curl and tension are for, then you
are recommended to review Chapter 14 of The METAFONTbook.

Most of the examples in this document use only the two simple joiners -- and ..
with the occasional use of a direction-specifying pair before or after a point.

6

4.1 Predefined closed paths
There are several closed paths defined for you in plain METAPOST.

unitsquare

fullcircle

superellipse()

(1,0)

• unitsquare is defined as the path (0,0)--(1,0)--(1,1)--(0,1)--cycle.
It runs counter-clockwise from the origin, and you can use it to draw any
rectangle with appropriate use of xscaled and yscaled, or a parallelogram
with slanted, or a diamond with rotated — but note that the definition
means that is it centred on point (1/2, 1/2) so you might want to shift it
by -(1/2,1/2) before you transform it.

• fullcircle which you can use to draw any circle or ellipse with appropriate
use of xscaled and yscaled. Unlike the square, it is defined so that it is
centred at the origin. But beware that it has unit diameter, so its radius is
0.5bp long. The path runs counter-clockwise and starts at 3 o’clock; which
means point 0 of fullcircle = 1/2 right is true.

• superellipse() which creates the shape beloved of the Danish designer Piet
Hein. Unlike the other two, this one is defined as a function rather than a
〈path〉 constant, so you need to call it like this:

path s;
s = superellipse(1/2 right, 1/2 up, 1/2 left, 1/2 down, 13/16);

to create a ‘unit’ shape that matches fullcircle as shown above. The fifth
parameter is the ‘superness’: the value 1 makes it look almost square; 1

2 gives

5
8

21
32

11
16

23
32

3
4

25
32

13
16

27
32

7
8

29
32

15
16

31
32

you a diamond; a value somewhere between 3
4 and 7

8 looks about right. −→
Values outside the range (0.5, 1) give you rather weird propeller shapes.

Note that, unaccountably, superellipse() is defined in plain.mp with a def
rather than a vardef. This means you need to enclose it in a group before
you can transform it in any way. One way to do this is to use parentheses; or
you can assign it to a 〈path〉 variable, as shown above.

7

4.2 Points on the standard closed paths
Here are the three shapes centred on the origin and labelled to show the points

0 1

23

0

1
2

3

4

5
6

7

0

1
2

3

4

5
6

7

along them. Note that the unitsquare shape has been shifted so that it is centred
on the origin in all of these examples. The small red circle marks the origin, and
the labelled red dots are the points of each path. The unitsquare has four points,
while the other two shapes both have eight. The small arrows between point 0 and
point 1 of each shape indicate the direction of the path that makes up the shape.

If you want to highlight a segment of your shape, there’s a neat way to define it
using subpath. Assuming p is the path of your shape, then this:

center p -- subpath(1,2) of p -- cycle

creates a useful wedge shape which looks like this in our three ‘standard’ shapes.

Better still, you are not limited to integer points along the path of your closed
shape. So if you wanted a wedge that was exactly 1/5 of the area of your shape,
you could try

center p -- subpath(0,1/5 length p) of p -- cycle

Clearly this works rather better with more circular shapes. Indeed for a circle you
can convert directly between circumference angle and points along the path. So you
have defined path c to be scaled copy of fullcircle, then point 1 of c is 45◦

round and 1 radian is point 1.27324 of c, (because 4/π ' 1.27324).

In a closed path, the point numbering in METAPOST wraps round: so in a circle,
point n is the same as point n + 8; and in general point n is the same as point
n+ length p. This works with negative numbers too, so we could use

center p -- subpath(-1,1) of p -- cycle

to get wedge that extends either side of point 0. The same idea was used to draw
the arrows in the first row:

drawarrow subpath(1/2, length p + 1/2) of p;

8

4.3 Regular polygons of a given radius
Regular polygons with a given radius can be defined or drawn directly with a

0

1
2

3
4

0

12

3

4 5

0

1
2

3

4

5
6

simple inline loop:

draw for i=0 upto 5: 20 dir 60i -- endfor cycle;

which works because dir d expands to right rotated d. But you might prefer to
make a macro:

vardef polygon(expr n, r) =
for i=0 upto n-1: (r, 0) rotated (360/n * i) -- endfor cycle

enddef;

This produces a closed path to represent an n-sided polygon that fits in a circle
of radius r centred at the origin and that starts at (r, 0), like the corresponding
circular path, as shown in this polygonal version of the previous segment chart. →
If you need polygon paths that start at the top, you can just swap the coordinates:

vardef polygon(expr n, r) =
for i=0 upto n-1: (0, r) rotated (360/n * i) -- endfor cycle

enddef;

0

1

2 3

4

0

1

2

3

4

5

0
1

2

3 4

5

6

+ Note also that some extra care is required to find the centres of these shapes. The
center macro defined in plain.mp gives you the centre of the bounding box, but
this is not the same as the centre of the polygon when the number of sides is odd.
What you need instead is the geometric center or centroid:

vardef centroid primary p =
origin for i=1 upto length p: + point i of p / length p endfor

enddef;

This should work for any closed path, not just regular polygons. For ways to label
the vertices neatly, as shown above, see §12.5.

9

4.4 Regular polygons of a given side length
But you might want a polygon with a fixed side instead of a fixed radius. This
needs a little trigonometry, using the sine rule:

vardef polygon_with_side(expr n, s) =
save a, b, r; numeric a, b, r;
a * n = 360; a + 2b = 180; r = s * sind(b) / sind(a);
for i = 0 upto n-1: (0, r) rotated (a * i) -- endfor cycle

enddef;

Which you can use like this to produce a nest of polygons −−−−−−−−−−−−−−−−−→
for n = 11 downto 3:

path p; p = polygon_with_side(n, 72);
fill p withcolor (n/32)[white, 3/4 if odd n: red else: blue fi];
draw p;

endfor

These polygon paths are centred on (0, 0) but sometimes it is more convenient to
construct a polygon on a known segment rather than working out how to rotate
and shift it into place.

45
6

7

8 9 10

11

12

13

14

15

16
1718

19

20

21

22

23

Here is a way to do that using the “of” syntax in the macro construction −−−−−→

vardef poly expr n of p =
clearxy; z0 = point 0 of p; z1 = point 1 of p;
for i=2 upto n-1:
z[i] = z[i-2] rotatedabout(z[i-1], 360/n-180);

endfor
for i=0 upto n-1: z[i] -- endfor cycle

enddef;
beginfig(1);

path P[]; P3 = for i=0 upto 2: 6 up rotated 120i -- endfor cycle;
fill P3 withcolor 3/4 red; undraw P3;
for n = 4 upto 23:
numeric m; m = floor(n / 2);
P[n] = poly n of subpath (m, m-1) of P[n-1];
fill P[n] withcolor (n/48)[3/4 if odd n: red else: blue fi, white];
undraw P[n]; label(decimal n, center P[n]) withcolor white;

endfor
endfig;

10

4.5 Curved polygons
The regular polygons above are all defined with straight edges using the --
connector that makes a tense path. If you changed each connector to .. you would
get a circle, and contrariwise, if you try tensepath(fullcircle scaled 20) you
will get a regular octagon. But we can also adjust the directions at the corners to
make a variety of closed polygon shapes with closed edges.

One of the most pleasing is the Reuleaux polygon, with circular arcs for edges.

The figure on the right attempts to explain the geometry.

α

α

α

α

2α

3α

4α

A

B

C

O

r

This proof only works for Reuleaux polygons with an odd number of
sides, because otherwise the point C does not (quite) lie on the circle.

vardef reuleaux(expr n, r) =
save a; numeric a; a = 90/n;
for t = 0 step 4a until 359:
(0,r) rotated t {left rotated (a+t)} .. {left rotated (3a+t)}

endfor cycle
enddef;

If you swap the directions at each point you get shapes that are not quite like
hypocycloids; play about a bit more to get flower shapes or windmills.

11

4.6 A triangle of Schläfli polygons
Apart from the curious polygon patterns in the display, the main METAPOST point
of interest is the recursive gcd macro to find the greatest common divisor.

2

3

42

5

632

7

842

93

1052

11

126432

13

1472

1553

16842

17

189632

19

2010542

2173

22112

23

241286432

input colorbrewer-rgb

vardef gcd(expr a, b) =
if b = 0: a else: gcd(b, a mod b) fi

enddef;

beginfig(1);
for n=2 upto 24:
for s=1 upto floor n/2:
pair p; p = (12n - 24s, -24n);
path gon; gon = for t=0 upto n/gcd(s,n) - 1:

10 up rotated (360/n * s * t) --
endfor cycle;
if (n mod s = 0):

fill gon shifted p withcolor PuBuGn[9][1+floor (n/s/6)];
label("$" & decimal (n/s) & "$", p);

fi
draw gon shifted p withpen pencircle scaled 1/8;

endfor
endfor

endfig;

The macro also leads directly to an efficient way to find the least common multiple:

vardef lcm(expr a, b) = a / gcd(a, b) * b enddef;

As always in METAPOST, it is safer to divide as early as possible to reduce the
chance of arithmetic overflow.

12

4.7 Building cycles from parts of other paths
Plain METAPOST has a built-in function to compute the intersection points of two
paths, and there’s a handy high level function called buildcycle that uses this
function to create an arbitrary closed path. The arguments to the function are
just a list of paths, and providing the paths all intersect sensibly, it returns a closed
path that can be filled or drawn. This is often used for colouring an area under a
function in a graph. Here is an example. The red line has been defined as path f
and the two axes as paths xx, and yy. The light blue area was defined with

buildcycle(yy shifted (u,0), f, yy shifted (2.71828u,0), xx)

Note the re-use of the y-axis path shifted along by different amounts.

There are similar examples in the METAPOST manual, but buildcycle can also be
useful in more creative graphics. Here’s a second example that uses closed paths to
give an illusion of depth to a simple graphic of the planet Saturn.

Notes

• The first five paths are just circles and ellipses based on
fullcircle.

• The drawing is done inside an image simply so that the final
result can be drawn at an angle

• unfill gap means: fill gap withcolor background

• The subpaths passed to buildcycle are chosen carefully to
make sure we get the intersections at the right points and so
that the component paths all run in the same direction. Note
that subpath (8,4) of globe runs clockwise (that is
backwards) from point 8 to point 4.

path globe, gap, ring[], limb[];
globe = fullcircle scaled 2cm;
gap = fullcircle xscaled 3cm yscaled .8cm;
ring1 = fullcircle xscaled 4cm yscaled 1.2cm;
ring2 = ring1 scaled 0.93;
ring3 = ring1 scaled 0.89;
limb1 = buildcycle(subpath(5,7) of ring1, subpath(8,4) of globe);
limb2 = buildcycle(subpath(5,7) of gap, subpath(-2,6) of globe);
picture saturn; saturn = image(
fill ring1 withcolor .1 red + .1 green + .4 white;
fill ring2 withcolor .2 white;
fill ring3 withcolor .1 red + .1 green + .6 white;
unfill gap;
fill limb1 withcolor .2 red + .1 green + .7 white;
fill limb2 withcolor .2 red + .1 green + .7 white;

);
draw saturn rotated 30;

13

4.8 The implementation of buildcycle

The implementation of buildcycle in plain METAPOST is interesting for a num-
ber of reasons. Here it is copied from plain.mp (with minor simplifications) −→ vardef buildcycle(text input_path_list) =

save ta, tb, k, j, pp; path pp[];
k=0;
for p=input_path_list: pp[incr k]=p; endfor
j=k;
for i=1 upto k:
(ta[i], length pp[j]-tb[j])
= pp[i] intersectiontimes reverse pp[j];

if ta[i]<0:
errmessage("Paths " & decimal i &

" and " & decimal j & " don't intersect");
fi
j := i;

endfor
for i=1 upto k:
subpath (ta[i],tb[i]) of pp[i] ..

endfor cycle
enddef;

Notice how freely the indentation can vary; this is both a blessing (because you can
line up things clearly) and a curse (because the syntax may not be very obvious at
first glance). Notice also the different ways we can use a for-loop. The first two are
used at the ‘outer’ level to repeat complete statements (that end with semi-colons);
the third one is used at the ‘inner’ level to build up a single statement.

The use of a text parameter allows us to pass a comma-separated list as an
argument; in this case the list is supposed to be a list of path expressions that (we
hope) will make up a cycle. The first for loop provides us with a standard idiom to
split a list; in this case the comma-separated value of input_path_list is separated
into into a more convenient array of paths called pp indexed by k. Note that the
declaration of the array as 〈path〉 forces the argument to be a list of paths.

The second for loop steps through this array of paths looking for intersections.
The index j is set to be k when i=1, and then set to the previous value of i at the
end of the loop; in this way pp[j] is the path before pp[i] in what is supposed to
be a cycle. The macro uses the primitive operator intersectiontimes to find the
intersection points, if any. Note that we are looking for two path times: the time to
start a subpath of the current path and the time to end a subpath of the previous
path; the macro does this neatly by reversing the previous path and setting the
b-point indirectly by subtracting the time returned from the length of the path.

If all has gone well, then ta will hold all the start points of the desired subpaths,
and tb all the corresponding end points. The third and final for loop assumes that
this is indeed the case, and tries to connect them all together. Note that it uses ..
rather than & just in case the points are not quite co-incident; finally it finishes with
a cycle to close the path even though point tb[k] of pp[k] should be identical
(or at least very close) to point ta[0] of pp[0].

This implementation of buildcycle works well in most cases, provided that
there are enough components to the cycle of paths. If you only have two paths,
then the two paths need to be running the same direction, and the start of each
path must not be contained within the other. This is explored in the next section.

14

4.9 Strange behaviour of buildcycle with two closed paths
The implementation of buildcycle in plain METAPOST can get confused if you
use it with just two paths. Consider the following example:

Where has the fill colour gone?

A
B

path A, B;
A = fullcircle scaled 2.5cm;
B = fullcircle scaled 1.8cm shifted (1cm,0);
fill buildcycle(A,B) withcolor .8[blue,white];
drawarrow A;
drawarrow B;
label.ulft(btex A etex, point 3 of A);
label.urt(btex B etex, point 1 of B);

When we compile this example, we get no error message from buildcycle, but
there is no fill colour visible in the output. The problem is that the points found
by buildcycle are the same both times that it steps through the middle loop, so
the closed path it returns consists of two identical (or very close) points and the so
the fill has zero area.

Now observe what happens when we rotate and reverse each of the paths in
turn. Number 1 corresponds to the example shown above; point 0 of A is inside the

1 2 3 4

5 6 7 8

To rotate a circular path, you can use: p rotatedaround(center p, 180)

closed path B. In 2 we have rotated path A by 180° so that the start of path A is
no longer inside B, and now buildcycle works ‘properly’ — but this is the only
time it does so. In 3, we’ve rotated B by 180° as well, so that B starts inside A and
as expected buildcycle fails. In 4 we’ve rotated A back to its original position, so
that both paths start inside each other; and we get the union of the two shapes. In
5–8, we’ve repeated the exercise with path A reversed, and buildcycle fails in yet
more interesting ways.

You could use this behaviour as a feature if you need to treat A and B as sets
and you wanted to fill the intersection, union, or set differences, but if you just
wanted the overlap, then you need to ensure that both paths are running in the
same direction and that neither of them starts inside the other.

15

4.10 Find the overlap of two closed paths
As we have seen, in order to get the overlap of two closed paths from buildcycle,
we need both paths to be running in the same direction, and neither path should
start inside the other one. It’s not hard to create an overlap macro that does this
automatically for us. The first element we need is a macro to determine if a given
point is inside a given closed path. Following Robert Sedgwick’s Algorithms in C
we can write a generic inside function that works with any simple closed path.
The approach is to extend a horizontal ray from the point towards the right margin
and to count how many times it crosses the closed path; if the number is odd, the
point must be inside.

vardef inside(expr p, ring) =
save t, count, test_line;
count := 0;
path test_line;
test_line = p -- (infinity, ypart p);
for i = 1 upto length ring:

t := xpart(subpath(i-1,i) of ring
intersectiontimes test_line);

if ((0<=t) and (t<1)): count := count + 1; fi
endfor
odd(count)

enddef;

Equipped with this function we can create an overlap function that first uses
the handy counterclockwise function to ensure the given paths are running in the
same direction, and then uses inside to determine where the start points are.

vardef front_half primary p = subpath(0, 1/2 length p) of p enddef;
vardef back_half primary p = subpath(1/2 length p, length p) of p enddef;
% a and b should be closed paths...
vardef overlap(expr a, b) =

save A, B, p, q;
path A, B; boolean p, q;
A = counterclockwise a;
B = counterclockwise b;
p = not inside(point 0 of A, B);
q = not inside(point 0 of B, A);
if (p and q):
buildcycle(A,B)

elseif p:
buildcycle(front_half B, A, back_half B)

elseif q:
buildcycle(front_half A, B, back_half A)

else:
buildcycle(front_half A, back_half B, front_half B, back_half A)

fi
enddef;

Using this overlap macro in place of buildcycle produces less surprising results.

1 2 3 4

5 6 7 8

16

5 Numbers
This section discusses plain METAPOST scalar numeric variables and what you can
do with them. METAPOST inherits its unusual native system of scaled numbers from
METAFONT; like many of Knuth’s creations it is slightly quirky, but works very well
once you get the hang of it. The original objective was to make METAFONT produce
identical results on a wide variety of computers. By default all arithmetic is carried
out using 28-bit integers in units of 1/65536. This is done automatically for you, so
you don’t need to worry about it, but you should be aware of a couple of practical
implications:

• All fractions are rounded to the nearest multiple of 1
65536 , so negative powers

of 2 (1
2 , 1

4 , 1
8 , . . .) are exact, but other common fractions are not: for example

1
3 is represented as 21845

65536 ' 0.333328, and 1
10 as 6554

65536 ' 0.100006. You should
bear this in mind particularly when you choose fractional step-values in a for
loop; the errors can accumulate so that you may miss your expected terminal
value.

Compare the following two snippets:

Code Output

for i = 0 step 1/10 until 1:
show i;

endfor

>> 0
>> 0.1
>> 0.20001
>> 0.30002
>> 0.40002
>> 0.50003
>> 0.60004
>> 0.70004
>> 0.80005
>> 0.90005

for i = 0 step 1 until 10:
show i/10;

endfor

>> 0
>> 0.1
>> 0.2
>> 0.3
>> 0.4
>> 0.5
>> 0.6
>> 0.7
>> 0.8
>> 0.9
>> 1

Unless you run this with -numbersystem=decimal, you will get 11
iterations in the second but only 10 with the first.

• The system limits you to numbers that are less than 4096 in absolute value.
This can be an irritation if you are trying to plot data with large values, but
the solution is simple: scale your values to a reasonable range first.

• Intermediate calculations are allowed to be up to 32768 in absolute value
before an error occurs. You can sometimes avoid problems by using the special
Pythagorean addition and subtraction operators, but the general approach
should be to do your calculations before you scale a path for filling or drawing.

• You can turn a number up to 32768 into a string using the decimal command,
and then you could append zeros to it using string concatenation.

If you are using a recent version of METAPOST you can avoid all these issues
by choosing one of the three new number systems: double, binary, or decimal, with
the numbersystem command line switch. But beware that if you write programs
that depend on these new systems, they might not be so portable as others. It’s
nice to have these new approaches just in case, but you will not need to use them
very often.

17

5.1 Numeric constants
Alongside the quirky number system, plain METAPOST also inherits three numeric
constants from METAFONT: infinity, epsilon, and eps:

• eps is defined to be a small amount that is noticeable to METAFONT’s rounding
algorithms, namely 32

65536 = 1
2048 ' 0.00049. As a distance on the page or

screen, it’s invisible at any resolution less than 150,000 dots per square inch.
If you were designing fonts in METAFONT, eps could help you avoid bad
choices of pixels at low resolutions, but in METAPOST it’s only really useful
in comparisons that might suffer from rounding errors. eps is tiny, but it’s
bigger than any rounding error you may encounter, so you can safely test for
equality with: abs(a− b) < eps.

• epsilon is defined to be 1
65536 , the smallest positive scaled number.

• infinity is defined to be 4096 − epsilon, which is the largest number you will
normally deal with. This is useful when you just want a quantity larger than
any other in the immediate vicinity. For an example, look at the definition of
the inside function in section 4.10.

These three quantities retain (approximately) the same value even if you choose one
of the alternative, higher precision, number systems. This is probably the most sane
approach, but the constants lose their status as the smallest and largest numbers
you can have.

Running the toy program:

show numbersystem, eps, epsilon, infinity; end.

gives the following results with the different number systems:

>> "scaled"
>> 0.00049
>> 0.00002
>> 4095.99998

>> "double"
>> 0.00048999999999999998
>> 1.52587890625e-05
>> 4095.9999800000001

>> "binary"
>> 0.00048999999999999999999999999999999993
>> 0.0000152587890625
>> 4095.9999800000000000000000000000001

>> "decimal"
>> 0.00049
>> 0.0000152587890625
>> 4095.99998

The messy set of results shown on the right arises because plain.mp defines
these constants like this (in version 1.005, which is current at the time of writing):

eps := .00049; % this is a pretty small positive number
epsilon := 1/256/256; % but this is the smallest
infinity := 4095.99998; % and this is the largest

If you want cleaner constants, feel free to redefine the two decimals as:

eps := 1/2048;
infinity := 64*64-epsilon;

These definitions are equivalent with scaled numbers, but more consistent at higher
precision. In particular they ensure that we always have 4096 = infinity+ epsilon
whichever number system is in use.

18

5.2 Units of measure
In addition to the very small and very large numeric variables, plain METAPOST

inherits eight more that provide a system of units of measure compatible with TEX.
The definitions in plain.mp are very simple: −→

mm=2.83464; pt=0.99626; dd=1.06601; bp:=1;
cm=28.34645; pc=11.95517; cc=12.79213; in:=72;

When the output of METAPOST is set to be PostScript, then the basic unit of
measure is the PostScript point. This is what TEX calls a bp (for ‘big point’), and
it is defined so that 1 inch = 72 bp. The traditional printers’ point, which TEX calls
a pt, is slightly smaller so that 1 inch = 72.27pt.

Normal use of these units relies on METAPOST’s implicit multiplication feature.
If you write ‘w = 10 cm;’ in a program, then the variable w will be set to the
value 283.4645. The advantage is that your lengths should be more intuitively
understandable, but if you are comfortable thinking in PostScript points (72 to the
inch, 28.35 to the centimetre) then there is no real need to use any of the units. Bizarrely, 28.35 is also the number of grammes to the ounce.

It is sometimes useful to define your own units; in particular many METAPOST

programs define something like ‘u = 1 cm;’ near the start, and then define all other
lengths in terms of u. If you later wish to make a smaller or larger version of the
drawing then you can adjust the definition of u accordingly. Two points to note:

• If you want different vertical units, you can define something like ‘v = 8mm’
and specify horizontal lengths in terms of u, but verticals in terms of v.

• If you want to change the definition of u or v from one figure to the next,
you will either have to use ‘numeric u, v;’ at the start of the your program
in order to reset them, or use the assignment operator instead of the equality
operator to overwrite the previous values.

The unit definitions in plain.mp are designed for use with the default scaled
number system; if you want higher precision definitions, then you can update them
by including something like this at the top of your program: −→

% exact values to re-define the plain.mp units
numeric bp, in, mm, cm, pt, pc, dd, cc;
72 = 72 bp = 1 in;
800 = 803 pt = 803/12 pc;
3600 = 1270 mm = 127 cm;
1238 pt = 1157 dd = 1157/12 cc;

The effect of the numeric keyword is to remove the previous definitions; the
four equation lines then re-establish the units with very slightly more accurate
definitions. You can safely use these definitions with scaled, as they are equivalent
to the decimals currently given in plain.mp, but the main point of the example is
to show how you can do implicit definitions with equations.

19

5.3 Integer arithmetic, clocks, and rounding
Native METAPOST provides nothing but a floor function, but plain.mp provides
several more useful functions based on this.

• ‘floorx’ returns bxc, the largest integer ≤ x. You can use x=floor x to check
that x is an integer.

• ‘ceilingx’ returns dxe, the smallest integer ≥ x.

• ‘x div y’ returns bx/yc, integer division.

• ‘x mod y’ returns x− y × bx/yc, integer remainder.

Note that mod preserves any fractional part, so 355/113 mod 3 = 0.14159.
This behaviour is usually what you want. For exam-

1
2

3

4
567

8

9

10
11 12ple we can use it to turn the time of day into an appro-

priate rotation for the hands of a clock. In the program

path hand[];
hand1 = origin .. (.257,1/50) .. (.377,1/60)

& (.377,1/60) {up} .. (.40,3/50)
.. (.60, 1/40) .. {right} (.75,0);

hand1 := (hand1 .. reverse hand1 reflectedabout(left,right)
.. cycle) scaled 50;

hand2 = origin .. (.60, 1/64) .. {right} (.925,0);
hand2 := (hand2 .. reverse hand2 reflectedabout(left,right)

.. cycle) scaled 50;

% hour of the day to degrees
vardef htod(expr hours) = 30*((15-hours) mod 12) enddef;
vardef mtod(expr minutes) = 6*((75-minutes) mod 60) enddef;

vardef clock(expr hours, minutes) = image(
% face and outer ring
fill fullcircle scaled 100 withcolor 1/256(240, 240, 230);
draw fullcircle scaled 99 withcolor .8 white;
draw fullcircle scaled 100 withpen pencircle scaled 7/8;
% hour and minute marks
for t=0 step 6 until 359:
draw ((48,0)--(49,0)) rotated t;

endfor
for t=0 step 30 until 359:
draw ((47,0)--(49,0)) rotated t withpen pencircle scaled 7/8;

endfor
% numerals
for h=1 upto 12:
label(decimal h infont "bchr8r", (40,0) rotated htod(h));

endfor
% hands rotated to the given time
pickup pencircle scaled 7/8;
filldraw hand1 rotated htod(hours+minutes/60);
filldraw hand2 rotated mtod(minutes);
% draw the center on top
draw origin withpen pencircle scaled 5;

undraw origin withpen pencircle scaled 3;
) enddef;

given on the right, this idea is used to define functions
that convert from hours and minutes to degrees of ro-
tation on the clock. METAPOST provides two internal
variables hour and minute that tell you the time of day
when the current job started. The clock face shown here
was generated using

beginfig(1); draw clock(hour,minute); endfig;

to give a sort of graphical time stamp.

There is also a round function that rounds a number to the nearest integer.
It is essentially defined as floor(x + 0.5) except that it is enhanced to deal with
〈pair〉 variables as well. If you round a pair the x-part and the y-part are rounded
separately, so that round(3.14159, 2.71828) = (3, 3).

The round function only takes a single argument, but you can use it to round
to a given number of places by multiplying by the precision you want, rounding,
and then dividing the result. So to round to the nearest eighth you might use
‘round(x × 8)/8’, and to round to two decimal places ‘round(x × 100)/100’. The
only restriction is that the intermediate value must remain less than 32767 if you
are using the default number system.

20

5.4 Integer powers
Occasionally you might get caught out by the implementation of the ** operator.
As the table on the right shows, you may get an approximate answer from x ** y
even when x and y are both integers. Note that the squares are all integers, and

x x2 x3 x4 x5 x6 x7

2 4 8 16 32 64 128

3 9 27 81 243.00003 729.00009 2187.00024

4 16 64 256 1024.00003

5 25 124.99998 624.99992 3124.99944

6 36 216.00002 1296.0001

7 49 343.00002 2401

8 64 512.00002

9 81 728.99995

10 100 999.99992

11 121 1331.00002

12 144 1728.00012

13 169 2196.99977

14 196 2744

15 225 3374.9998

16 256

17 289

18 324

19 361

Results of x**y for small values, using
the default scaled number system

the powers of two appear to be ok (although if the page was wider you would see
that 2**9 is 512.00002), but that with a couple of exceptions cubes and higher
powers are all slightly off. Changing to one of the new number systems makes it
worse; even x1 is not always an integer. The reason can be found in the way that
the ** operator is defined in plain.mp.
primarydef x ** y = if y = 2: x * x else: takepower y of x fi enddef;
def takepower expr y of x =

if x > 0:
mexp(y * mlog x)

elseif (x = 0) and (y > 0):
0

else:
if y = floor y:

if y >= 0: 1 for n=1 upto y: * x endfor
else: 1 for n=-1 downto y: / x endfor
fi

else:
hide(errmessage "Undefined power: " & decimal x & "**" & decimal y)

fi
fi

enddef;

This is inherited directly from plain METAFONT, and as it says in the The META-
FONTbook, it is optimized for x2 and takes care to handle correctly negative num-
bers and zeros. But for all positive values of x other than 2 it is implemented using
logs, and the results are therefore only approximate. To avoid confusion where this
might matter (such as a particular offset into a recursively defined path) you could
simply use round(7**3) to get a whole number, or if you are sure that your y values
are all non-negative integers, you could temporarily replace the definition:

primarydef x ** y = 1 for n=1 upto y: * x endfor enddef;

21

6 Pairs, triples, and other tuples

METAPOST inherits a generalized concept of number from METAFONT that includes
ordered pairs. Pairs are primarily used as Cartesian coordinates, but can also be
used as complex numbers, as discussed below. METAPOST extends this general-
ization with 3-tuples and 4-tuples. Just like pairs, the elements in these tuples can
take any numeric value, so in theory it would be possible to use them for three-
and four-dimensional coordinates, but there are no built-in facilities for this in plain
METAPOST, so some external library is needed. All of the various attempts at three
dimensions in METAPOST are rather difficult to use, so none of them is discussed
in this document.
Unlike simple numerics, the extended tuple variables are not automatically declared
for you, so if you want to define points A and B you need to explicitly write
‘pair A,B;’ before you assign values to them. Once you have declared them, you
can equate them to an appropriate tuple using = as normal.

pair A,B; A = B = (1,2);
color R; R = (1,2,3);
cmykcolor C; C = (1,2,3,4);

The normal use of triples and quads is for colours (RGB colours and CMYK
colours); Triples are type color, quads are type cmykcolor. You can’t have tuples
of any other length, not even as constants, except for transforms.

A transform is how METAPOST represents an affine transformation such as
rotated 45 shifted (10,20). They are represented as 6-tuples, but if you try to
write:

transform T; T = (1,2,3,4,5,6); % <-- doesn't work

you will get a parsing error (that complains about a missing parenthesis after the
4). You can examine and assign the individual parts using ‘xpart T’ etc. More
details below, and full details in the METAFONT book.

22

6.1 Pairs and coordinates
Now pairs: if you enclose two numerics in parentheses, you get a 〈pair〉. A pair
generally represents a particular position in your drawing with normal, orthogonal
Cartesian x- and y-coordinates, but you can use a pair variable for other purposes
if you wish. As far as METAPOST is concerned it’s just a pair of numerics.

METAPOST provides a simple, but slightly cumbersome, way to refer to each
half of a pair. The syntax ‘xpart A’ returns a numeric equal to the first number in
the pair, while ‘ypart A’ returns the second. The names refer to the intended usage
of pair variable to represent pairs of x and y-coordinates. Note that they are read-
only; you can’t assign a value to an xpart or a ypart. So if you want to update
only one part of a pair, you have to do something like this: A := (42,ypart A);

In addition there is a neat macro definition in plain METAPOST that allows you
do deal with the x- and y-parts of pairs rather more succinctly. The deceptively

Plain METAPOST provides this definition

vardef z@#=(x@#,y@#) enddef;

which you can use to find orthogonal points.

(0,y1)

(x1,0)

z1

(0,y2)

(x2,0)

z2

simple definition of z as a subscripted macro allows you to write z1 = (10,20);
and have it automatically expanded into the equivalent of x1=10; and y1=20;. You
can then use x1 and y1 as independent numerics or refer to them as a pair with z1.
A common usage is to find the orthogonal points on the axes in graphs, like so −→

There is also a simple way to write coordinates using a polar notation using dir.
This macro is defined so that dir 30 expands to right rotated 30 and then to
(1,0) rotated 30, which becomes (cosd(30), sind(30) or (0.86603, 0.5). So
to get the polar notation point (r, θ), where r is the radius and θ is the angle in de-
grees counter-clockwise from the positive x-axis, you can write ‘r * dir theta’. As
usual, with a constant you can omit the multiplication sign, so ‘2 dir 30’ provides
another way to define the point (sqrt(3),1).

Plain METAPOST defines five useful pair variables: origin, right, up, left, and
down. As so often, Knuth-Hobby definitions in plain.mp are quite illuminating −→
As you can see, pair variables can be used in implicit equations.

% pair constants
pair right,left,up,down,origin;
origin=(0,0); up=-down=(0,1); right=-left=(1,0);

They can also be scaled using implicit multiplication, so writing ‘144 right’ is
equivalent to writing ‘(144, 0)’ but possibly a bit more readable. In particular the
idiom ‘shifted 200 up;’ works well when applied to a point, a path, or an image.
Unfortunately, this convenient notation does not work well with units of measure.
This is because implicit multiplication only works between a numeric constant and
a variable. So ‘2 in right’ does not work as you might expect; you can write ‘2 in ∗
right’ but by that stage it’s probably simpler to write ‘(2 in, 0)’ or even just ‘(144, 0)’.

23

6.2 Pairs as complex numbers
As you might expect in a language designed by mathematicians, METAPOST’s pair
variables work rather well as complex numbers. To represent the number 3 + 4i
you can write (3,4). To get its modulus, you write abs (3,4) (which gives 5 in
this case), and to get its argument, you write angle (3,4) (which gives 53.1301).
Note that angle returns the argument in degrees rather than radians, and that the
result is normalized so that −180 < angle(x, y) ≤ 180.

The standard notation for points supports this usage. You can write z0=(3,4);
and then extract or set the real part with x0 and the imaginary part with y0. If
you want to use other letters for your variable names, you can use xpart and ypart
to do the same thing. So after ‘pair w; w=(3,4);’ you can get the real part with
xpart w and the imaginary part with ypart w. You can also use the polar notation
shown above to write complex numbers. For reiθ you can write ‘r * dir theta’
where r is the modulus and theta is the argument in degrees.

The predefined constants up, down, left, and right also provide points on the
unit circle corresponding to i, −i, −1, and +1 respectively. It’s tempting to define
‘pair i; i=(0,1);’, so that you can write constants like 4i directly, but this is
not very helpful, because 3+4i will give you an error since METAPOST does not let
you add a numeric to a pair.

However METAPOST does let you add (and subtract) two pairs, so complex
addition and subtraction are just done with the normal operators. To get the

1

i

A

B

A+B

A×B

Ā

beginfig(1);
numeric u; u = 1cm;
z1 = 2 dir 15; z2 = 1.2 dir 60;
z3 = z1+z2; z4 = z1 zscaled z2; z5 = (x1,-y1);
drawoptions(withcolor 2/3 white);
draw (1/2 left -- 3 right) scaled u ;
draw (1/2 down -- 3 up) scaled u ;
draw subpath (0,3) of fullcircle scaled 2u rotated -22.5;
drawoptions();
dotlabel.lrt (btex $\scriptstyle 1$ etex, (u,0));
dotlabel.ulft(btex $\scriptstyle i$ etex, (0,u));
interim ahangle := 30;
forsuffixes @=1,2,3,4,5:
x@ := x@ * u; y@ := y@ * u;
drawarrow origin -- z@
cutafter fullcircle scaled 5 shifted z@
withcolor 2/3 if @ < 3: blue else: red fi;

endfor
fill fullcircle scaled dotlabeldiam;
dotlabel.rt (btex A etex, z1);
dotlabel.urt(btex B etex, z2);
dotlabel.top(btex $A+B$ etex, z3);
dotlabel.top(btex $A \times B$ etex, z4);
dotlabel.rt (btex \bar{A} etex, z5);

endfig;

complex conjugate you could use reflectedabout(left,right), but it’s probably
easier just to write (x0,-y0) or define a simple function:

def conj(expr z) = (xpart z, -ypart z) enddef;

Complex multiplication is provided as part of the core language by the zscaled
operator. This is defined with the same precedence as scaled or normal scalar
multiplication (which is what you usually want). So (3,4) zscaled (1,2) gives
(-5,10) because (3 + 4i)× (1 + 2i) = 3 + 6i+ 4i− 8 = −5 + 10i. zscaled is only
defined to work on two pair variables, so you can’t write (3,4) zscaled 4. To
get that effect with zscaled you would have to write (3,4) zscaled (4,0), but
this is the same as (3,4) scaled 4, which is usually simpler to write. If your pair
is stored as a variable you can write (for example) 4 z0 to get the same effect. Or
1/4 z0 or z0/4 for scalar division.

There are no other complex operators available, but it is not hard to implement
the usual operations when they are required…

24

6.2.1 Extra operators for complex arithmetic

Since multiplication by z can be thought of as a transformation consisting of rotation
by the argument of z and scaling by |z|, you can define the complex inverse and
complex square root simply using angle and abs.

<

=zinverse()

<

=zsqrt()

The drawing uses the two functions defined on the left.
z1 = 0.8 dir 148; z2 = 1.5 dir 60; z3 = 1.0 dir 42;

input colorbrewer-rgb
numeric u; u = 42; ahangle := 30;
picture axes; axes = image(

path xx, yy; xx = (left--right) scaled 1.2 u; yy = xx rotated 90;
draw fullcircle scaled 2u;
drawarrow xx; label.rt("\Re", point 1 of xx);
drawarrow yy; label.top("\Im", point 1 of yy);

);
vardef connect(expr a, b, shade) =

save A, B; pair A, B; A = a scaled u; B = b scaled u;
drawarrow A -- origin -- B

cutafter fullcircle scaled 5 shifted B withcolor shade;
draw A withpen pencircle scaled dotlabeldiam;
draw B withpen pencircle scaled dotlabeldiam;
draw B withpen pencircle scaled 2/3 dotlabeldiam withcolor white;

enddef;
picture P[];
P1 = image(draw axes withcolor 3/4;

label.lrt("\small\texttt{zinverse()}", ulcorner axes shifted 10 left);
connect(z1, zinverse(z1), SetTwo 7 3);
connect(z2, zinverse(z2), SetTwo 7 4);
connect(z3, zinverse(z3), SetTwo 7 5);

);
P2 = image(draw axes withcolor 3/4;

label.lrt("\small\texttt{zsqrt()}", ulcorner axes);
connect(z1, zsqrt(z1), SetTwo 7 3);
connect(z2, zsqrt(z2), SetTwo 7 4);
connect(z3, zsqrt(z3), SetTwo 7 5);

);
beginfig(1);

labeloffset := 12; label.lft(P1, origin); label.rt(P2, origin);
endfig;

First an inverse function. The idea here is to find a function that is the opposite of
complex multiplication, so we want something that gives

z zscaled zinverse(z) = (1,0)

In other words you need to find a complex number with an argument that is the
negative of the argument of z and a modulus that will scale |z| to 1. You can use
the polar notation with dir to write this directly:

vardef zinverse(expr z) = 1/abs z * dir - angle z enddef;

The complex division, z/w, can now be done as: z zscaled zinverse(w). The
only difficulty with this function is how it deals with zero, or rather with the point
(0, 0). Since ‘abs (0,0)’ gives 0, the function will give you a ‘divide by zero’ error
if it’s called with (0, 0). But this is probably what you want it to do, since there
is no easy way to represent the point at infinity in the extended complex plane on
paper.

For square root, you want a function ‘zsqrt(z)’ that returns a complex number
with half the argument of z and a modulus that is the square root of the modulus
of z, so that ‘zsqrt(z) zscaled zsqrt(z) = z’. This does the trick:

def zsqrt(expr z) = sqrt(abs z) * dir 1/2 angle z enddef;

This function also has a difficulty with the point (0, 0), because angle (0,0) is
not well defined, and so METAPOST throws an error. If you want a function that
correctly returns (0, 0) as its own square root, then try something like this:

vardef zsqrt(expr z) =
if abs z > 0: sqrt(abs z) * dir 1/2 angle fi z

enddef;

25

6.2.2 Using complex numbers to draw fractals

As an example of what you can do with complex arithmetic, here is a version of the
diagram from §4.1 of Knuth’s Seminumerical Algorithms showing S, the set of all
points that can be written as

∑
k≥1 ak(i− 1)−k.

vardef fizz(expr X) =
pair m, n; m = right; n = origin;
numeric x; x = X;
forever:
exitif x = 0;
m := m zscaled (-1/2, -1/2);
if odd x:
n := n + m;

fi
x := x div 2;

endfor
n

enddef;
beginfig(1);
numeric s, t; s = 256; t = 4;
for n=0 upto (s/t*s/t-1):
draw fizz(n) scaled s
withpen pencircle scaled t
withcolor ((7+n mod 8)/16)[1/2 blue, white];

endfor;
path xx, yy;
xx = (left--right) scaled (s+8);
yy = xx rotated 90;
for i=-1 upto 1:
draw xx shifted (0, s*i) withpen pencircle scaled 1/8;
draw yy shifted (s*i, 0) withpen pencircle scaled 1/8;
if i=0:
dotlabel.lrt("$-i$", (i, -1) scaled s);
dotlabel.lrt("$+i$", (i, +1) scaled s);

else:
dotlabel.lrt("$" & decimal i & "-i$", (i,-1) scaled s);
dotlabel.lrt("$" & decimal i & "$", (i, 0) scaled s);
dotlabel.lrt("$" & decimal i & "+i$", (i, 1) scaled s);

fi
endfor

endfig;

−1− i

−1

−1 + i

−i

+i

1− i

1

1 + i

Note: you can adjust the “resolution” with the parameter t, but don’t make it smaller
than 1 if you are using the default number system; the diagram looks a bit strange unless
t is an integer power of 2.

26

7 Colours
METAPOST implements colours as simple numerics, or tuples of three or four nu-
meric values. Three-tuples (which are type color) represent RGB colours; four-
tuples (which are type cmykcolor) represent CMYK colours. Simple numerics are
used to represent grey scale colours.

The numeric values of the colours can take any numeric value, but METAPOST

only considers the range 0 to 1 — values less than zero are treated as zero, values
greater than 1 are treated as 1. So British Racing Green with RGB code (1,66,37),
or Pillar Box Red with code (223,52,57), can be defined like this:

color brg, pbr;
brg = (0.00390625, 0.2578125, 0.14453125);
pbr = (0.87109375, 0.203125, 0.22265625);

or, slightly more idiomatically:

brg = 1/256 (1, 66, 37);
pbr = 1/256 (223, 52, 57);

As you can see, you can apply implicit multiplication to a color, so after the
declaration above 2 brg would be a valid colour, although you have to think a bit
to know what that means in terms of colour in your drawings.

To use RGB hex strings, you’ll need to write a function:

vardef hexrgb(expr Spec) =
save r, g, b;
numeric r, g, b;
r = hex substring (1,3) of Spec;
g = hex substring (3,5) of Spec;
b = hex substring (5,7) of Spec;
1/256(r,g,b)

enddef;
brg = hexrgb("#014225");
pbr = hexrgb("#df3439");

+ The hex function is a built-in primitive operation.Plain METAPOST defines five basic colour constants: red, green, blue, white,
black. These are quite useful with leading fractions: 2/3 red gives a nice dark
red, that is good for drawing lines you want to emphasize; 1/2 white gives you a
shade of grey; and so on. But since black is defined as (0,0,0), 1/2 black just
gives you black.

You can also add up colors. So red + 1/2 green gives you a shade of orange;
this is more long-winded than writing (1, 0.5, 0) but maybe slightly easier to
read. Much more usefully, you can use the mediation notation to get a colour that
is part way between two others. So 1/2[red, white] gives you a shade of pink,
and 2/3[blue, white] a sort of sky blue. You can also use this idea to vary colour
with data, as in (r)[red, blue] where r is some calculated value. Here’s a toy

color brg, pbr;
brg = 1/256 (1, 66, 37); % British Racing Green
pbr = 1/256 (223, 52, 57); % Pillar Box Red
N = 5; n = 0;
for y=1 upto N:
for x=1 upto N:
fill fullcircle scaled 16 shifted 20(x,y)
withpen pencircle scaled 2
withcolor (n/N/N)[pbr, brg];

label(decimal incr n infont "phvr8r", 20(x,y))
withcolor white;

endfor
endfor

example:

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

27

7.1 CMYK colours
METAPOST also implements a CMYK colour model, using tuples of four numerics.
In this model the four components represent cyan, magenta, yellow, and black.
White is (0,0,0,0) and black is anything where the last component is 1.

Beware that the five colour constants defined in plain.mp are defined as RGB
colours, and you can’t mix colour models, so anything like 1/2[(1,1,0,0), white]
will not work, unless you redefine the color constants as CMYK colours:

cmykcolor black, white, red, green, blue;
black = (0,0,0,1); white = (0,0,0,0);
red = (0,1,1,0); green = (1,0,1,0); blue = (1,1,0,0);

shade: 0.5, k: 0

shade: 0.5, k: 0.25

shade: 0.75, k: 0

shade: 0.75, k: 0.25

+ The apparent blending of colours here is done by calculating the overlaps and filling
them in order. With plain mpost, there is no support for transparency in any of
the colour models; but luamplib gives you access to PDF transparency, see §12.7.

path C[], B[];

% arrange each circle so that point 0 is outside the others
C1 = fullcircle scaled 100 rotated 90 shifted 40 up;
C2 = C1 rotated 120;
C3 = C2 rotated 120;

% the illusion of blended colours is helped by buildcycle
B0 = buildcycle(C1, C2, C3);
B1 = buildcycle(C1, C2);
B2 = buildcycle(C2, C3);
B3 = buildcycle(C3, C1);

picture P;
for x=0 upto 1:
for y=0 upto 1:
P := image(
s := 1/2 + x/4;
k := 0 + y/4;
fill C1 withcolor s*(1,0,0,k);
fill C2 withcolor s*(0,1,0,k);
fill C3 withcolor s*(0,0,1,k);
fill B3 withcolor s*(1,0,1,k);
fill B2 withcolor s*(0,1,1,k);
fill B1 withcolor s*(1,1,0,k);
fill B0 withcolor s*(1,1,1,k);
undraw C1; undraw C2; undraw C3;

) shifted (200x, 180y);
draw P;
label.bot(("shade: " & decimal s & ", k: " & decimal k)

infont "phvr8r", point 1/2 of bbox P);
endfor

endfor

28

7.2 HSV colours
HSV colours are colours defined by a triple of hue, saturation, and value. Unlike
RGB and CMYK colours there is no native support in METAPOST but it is possible
to write a routine that maps HSV triples into RGB colours:

vardef hsv_color(expr h, s, v) =
save chroma, hh, x, m;
chroma = v * s;
hh = h / 60;
x = chroma * (1 - abs(hh mod 2 - 1));
m = v - chroma;
if hh < 1: (chroma,x,0)+(m,m,m)
elseif hh < 2: (x,chroma,0)+(m,m,m)
elseif hh < 3: (0,chroma,x)+(m,m,m)
elseif hh < 4: (0,x,chroma)+(m,m,m)
elseif hh < 5: (x,0,chroma)+(m,m,m)
else: (chroma,0,x)+(m,m,m)
fi

enddef;

This is based on information from the Wikipedia article on on “HSL and HSV”.
The hue values in HSV colours map nicely to the familiar spectrum of the rainbow.
In the model used here 0 is red, 120 green, and 240 blue:

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360

Less saturation

Lower value

With less saturation the colours look faded; if you lower the value they get darker.
Once you get the hang of them, they make choosing colours rather easier. You can
produce ranges of colour by changing hue, or make gradations of a single colour by
changing the saturation or value.

input color-hsv-macro
beginfig(1);
defaultfont := "phvr8r";

numeric s[], v[];
s0 = 1/2; v0 = 7/8;
s1 = 7/8; v1 = 7/8;
s2 = 7/8; v2 = 1/2;

path r;
for y=0, 1, 2:
for h=0 step 15 until 360:
r := fullcircle scaled 24 shifted (h, -36y if y=2: +8 fi);
fill r withcolor hsv_color(h, s[y], v[y]);
draw r withcolor white;
if y=1:
label(decimal h infont defaultfont scaled 0.7, (h,-18));

fi
endfor

endfor

label.urt("Less saturation", (-20,14));
label.lrt("Lower value", (-20,-78));

drawarrow (-15, -21) -- (-15,12);
drawarrow (-15, -43) -- (-15,-76);

endfig;

29

An HSV example of a graduated scale
This example requires the hsv_color macro from the previous page.

200

200

500

500

1000

1000

2000

2000

3000

3000

4000

4000

5000

5000

6000

6000

7000

7000

Metres

Metres
H

yp
so

m
et

ric
 ti

nt
s

B
athym

etric tints

sea level
areas below sea level

defaultfont := "phvr8r"; defaultscale := 3/4;
path h,d,b; numeric n; n = 10;
h = ((-2,0)--(0,0)--(-1,3)--(-2,3)--cycle) scaled 64;
d = h rotated 180;
b = subpath (0,1) of h -- point 1+1/n of d --

(xpart point 0 of h, ypart point 1+1/n of d) -- cycle;
fill b withcolor hsv_color(123, 1/8, 7/8);
draw subpath (2.13,4) of b;
for i=1 upto n:
fill point 4-(i-1)/n of h -- point 1+(i-1)/n of h --

point 1+i/n of h -- point 4-i/n of h -- cycle
withcolor hsv_color(42, 1/4 + 3/4 * i/n, 1 - i/3n);

fill point 4-(i-1)/n of d -- point 1+(i-1)/n of d --
point 1+i/n of d -- point 4-i/n of d -- cycle
withcolor hsv_color(200, i/n - 1/n, 1 - i/3n);

endfor
string s;
for i=1 upto n-1:
draw point 4-i/n of h -- point 1+i/n of h;
draw point 4-i/n of d -- point 1+i/n of d;
s := decimal if i < 4: (i**2+1) else: (10 + (i-3)*10) fi & "00";
label.rt(s, point 1+i/n of h);
label.lft(s, point 1+i/n of d);

endfor
label.rt("Metres", point 2 of h);
label.lft("Metres", point 2 of d);
label.lft("Hypsometric tints" infont defaultfont

scaled defaultscale rotated 90, point 7/2 of h);
label.rt("Bathymetric tints" infont defaultfont

scaled defaultscale rotated -90, point 7/2 of d);
label.lft("sea level", point 0 of h);
label("areas below sea level", center b);
draw h; draw d;

30

7.3 Grey scale

beginfig(1);
numeric s; s = 8;
path atom;
atom = origin
-- (2s,0) rotated -30 -- (2s,0) rotated -30 + (0,s)
-- (s,0) rotated 30 -- (s,0) rotated 30 + (0,s)
-- (0,2s) -- cycle;

picture p[];
for i=0 upto 2:
p[i] = image(
fill atom rotated -120i withcolor (7/8 - 1/8i) ;
draw atom rotated -120i;

);
endfor

pair u, v;
u = point 3 of atom - point 1 of atom rotated -120;
v = u rotated 60;

n = 13;
for i=-n upto n:
for j=-n upto n:
forsuffixes $=0,1,2:
draw p$ shifted (i*u + j*v);

endfor
endfor

endfor

clip currentpicture to
unitsquare shifted -(1/2,1/2) scaled 5in yscaled 0.618;

endfig;

The withcolor command will also take a single numeric instead of a 3-tuple or
a 4-tuple. This produces a colour in grey scale (or gray scale if you prefer the
Webster spellings). Just as for the other colour types, values below 0 count as zero
and values above 1 count as one. And since the smallest possible positive number
in plain METAPOST is: epsilon = 1/256/256; then you can have at most 65,536
shades in between.

Grey scale is appropriate for some printed media, and can make effective textures
and patterns. The pattern below was produced by this program −−−−−−−−−−−−−→

First a basic path (named atom) is defined, then in the first loop three picture
variables, p1, p2, and p3, are defined, each one rotated 120° from the previous and
filled with a slightly darker shade of grey. The double loop then draws the three
versions of the shape on an up-and-down grid. Finally the picture is clipped to a
neat rectangle.

31

Drawing algorithmic shadows

beginfig(1);
path b, w;
b = ((-3,-4)--(3,-2)--(3,+2)--(-3,4)--cycle) scaled 5;
w = b reflectedabout(up, down);

picture B, W;
B = image(
for i=0 step 1/64 until 1:
draw point 4-i of b -- point 1+i**2 of b withcolor 1-i**8;

endfor
);

W = image(
for i=0 step 1/64 until 1:
draw point 4-i of w -- point 1+i**2 of w withcolor 3/4-i**8;

endfor
);

for i=-7 upto 7:
for j=-4 upto 4:
draw if odd (i+j): W else: B fi shifted ((i,j) scaled 30);

endfor
endfor

clip currentpicture to
unitsquare shifted -(.5,.5) scaled 5in yscaled 0.618;

endfig;

Here is a more complex pattern, showing one way to create an illusion of shadows
with multiple fine lines.

The first part defines two wedge-shaped closed paths, w being the mirror image of
b. Like the standard unitsquare path, the path b is defined so that point 0 is the
bottom left corner.

The two 〈picture〉 variables are produced by drawing lines across the shapes
from bottom to top. If you set the loop step small enough, these multiple lines
blend smoothly to give an even colour. And by using higher powers of the index
variable, an effective shadow can be drawn ‘bunched up’ into the top of each shape.
Note that METAPOST likes integer powers of two.

By repeating them alternately in a grid, we get an effective texture, which is
clipped at the end to a neat rectangle again.

32

7.4 Colorbrewer palettes

This map shows the RdYlBu[9] palette in action on a map of the
Brexit vote in London. The outlines are the 33 London boroughs,
and the colours show how we voted. The size of the labels shows
the turnout. The data and the outlines are from public domain
sources. They were prepared for METAPOST using various
scripts, and they are available in the source for this document.

Here is the code for the palette used as the legend:

input colorbrewer-rgb

for i = 1 upto 9:
path s; s = unitsquare scaled 12 shifted (12i, 0);
fill s withcolor RdYlBu[9][i]; draw s;
if i = 1:
label.top("Leave", point 5/2 of s);

elseif i = 9:
label.top("Remain", point 5/2 of s);

fi
endfor

The well-known Colorbrewer website (http://colorbrewer2.org) provides a use-
ful set of colour palettes that are suitable for a wide range of applications. They were
originally written for maps, but they are useful for many other types of drawing. If
you are using an up-to-date, and complete, TEX distribution, you should find that
my implementation of them for METAPOST is already installed on your system, oth-
erwise you can get it from https://ctan.org/pkg/metapost-colorbrewer. The
package provides two files that define all the colour ranges; one for CMYK and
another for RGB; an example of usage is shown below on the right.

Barking & Dagenham

Barnet

Bexley

Brent

Bromley

Camden

City

Croydon

Ealing

Enfield

Greenwich

Hackney

Ham
m

ersm
ith

&
Fulham

HaringeyHarrow

Havering

Hillingdon

Hounslow

Islington

Kensington &
Chelsea

Ki
ng

sto
n

up
on

Th
am

es

Lambeth Lewisham

Merton

Newham

Redbridge

Richmond
upon Thames

Southwark

Sutton

Tower Hamlets

Walt
ha

m
Fo

res
t

Wandsworth

Westminster

Leave Remain

Brexit vote in London 2016

33

8 Random numbers
METAPOST provides us with two built-in functions to generate random numbers.

vardef dice(expr pip_count, pip_color) =
save d,r,p, ul, ur, lr, ll; r = 1/8;
path d; d = for i=0 upto 3:

quartercircle scaled 3 shifted (15,15) rotated 90i --
endfor cycle;
picture p; p = image(

fill fullcircle scaled 6 withcolor pip_color;
draw fullcircle scaled 6;

);
pair ul, ur, ll, lr;
ul = 1/5[ulcorner d, lrcorner d]; ur = 1/5[urcorner d, llcorner d];
ll = 4/5[urcorner d, llcorner d]; lr = 4/5[ulcorner d, lrcorner d];
image(

fill d withcolor (1, 0.96, 0.8); draw d;
if odd(pip_count):

draw p shifted center d;
fi;
if pip_count > 1:

draw p shifted ul; draw p shifted lr;
fi;
if pip_count > 3:

draw p shifted ur; draw p shifted ll;
fi;
if pip_count = 6:

draw p shifted 1/2[ul,ll]; draw p shifted 1/2[ur,lr];
fi

)
enddef;
beginfig(1);
for i=0 upto 4:

draw dice(1+floor uniformdeviate 6, if odd i: red else: blue fi)
rotated (2 normaldeviate) shifted (36i,0);

endfor
endfig;
\end{mplibcode}

• ‘uniformdeviate n’ generates a random real number between 0 and n.
Note that the n is required. It can be negative, in which case you get negative
random numbers; or it can be zero, but then you just get 0 every time. In
other words the implementation generates a number r such that 0 ≤ r < 1
and then multiplies r by n.
If you want a random whole number, use ‘floor’ on the result. So to simulate
six-sided dice, you can use ‘1 + floor uniformdeviate 6’.
If you use the new number systems, and you find that the numbers generated
are all multiples of n/4096, so uniformdeviate 8192 (for example) generates
even integers instead of random real numbers, then you should update your
TEX distribution. This ‘feature’ was an accident of the original way that the
scaled arithmetic routines were adapted.

• ‘normaldeviate’ generates a random real number that follows the familiar
normal distribution. The algorithm used is discussed in The Art of Computer
Programming, section 3.4.1. If you generate enough samples, the mean should
be approximately zero, and the variance about 1. The chance of getting a
number between −1 and 1 is about 68.3%; between −2 and 2, about 95.4%.

10000 samples suggest
normaldeviate works.

Observed values
abs(r) ≤ 1: 68.5 %
abs(r) ≤ 2: 95.3 %
abs(r) ≤ 3: 99.7 %

−4 −3 −2 −1 0 1 2 3 4

To relocate the mean, just add a constant. To rescale the distribution, multi-
ply by the desired standard deviation (the square root of the desired variance).

34

8.1 Random numbers from other distributions
The normaldeviate function is provided as a primitive METAPOST operation. The
implementation is based on the ‘Ratio method’ presented in The Art of Computer
Programming, section 3.4.1. It turns out to be very straightforward to implement
the algorithm for this method as a user-level program −→

vardef normaldeviate =
save u, v, xa;
forever:
u := 1 - uniformdeviate 63/64;
v := sqrt(8/mexp(256)) * (-1/2 + uniformdeviate 1);
xa := v / u;
exitif (xa * xa <= -mlog(u)/64);

endfor
xa

enddef;

vardef exponentialdeviate expr mu =
save u;
u = 1 - uniformdeviate 1; % hence 0 < u <= 1 and so you avoid
-mu * 1/256 mlog(u) % the danger of calling mlog(0)

enddef;

vardef tand(expr theta) =
save x, y;
(x, y) = dir theta;
if abs(x) < eps: infinity else: y/x fi

enddef;
vardef exp(expr x) = mexp(256x) enddef;
vardef log(expr x) = 1/256 mlog(x) enddef;

% this is defined only for a > 1
vardef gammadeviate(expr a, b) =

save y, x, v, s, accept; boolean accept;
s = sqrt(2a - 1);
forever:
forever:
y := tand(uniformdeviate 180);
exitif abs(y) < 16;

endfor
x := s * y + a - 1;
accept := false;
if x > 0:
v := uniformdeviate 1;
if v <= (1 + y * y) * exp((a - 1) * log(x / (a - 1)) - s * y):

accept := true;
fi

fi
exitif accept;

endfor
x/b

enddef;

This version of normaldeviate is of academic interest only, in all real code you
should use the primitive operation, but there are a couple of programming notes.
If you put ‘u = uniformdeviate 1’, then you have 0 ≤ u < 1, so v/u might give
you a divides-by-zero error; using ‘u = 1 - uniformdeviate 63/64’ ensures that
1/64 < u ≤ 1, which not only avoids the possibility of a divide-by-zero error, but
also ensures that |(v/u)| < 64, so that you can square it without overflow. This
is a useful general technique, and justified in terms of the algorithm since large
values of v/u are rejected anyway. Secondly, the expression sqrt(8/mexp(256))
is a constant (

√
8/e ' 1.71553) and could be replaced by its value, but this does

not make an appreciable improvement to the speed of the routine. On a modern
machine, this routine is only very slightly slower than using the primitive function.

It is also fairly straightforward to implement random number generators that fol-
low other statistical distributions. The mathematical details are in the section of
TOACP referenced above. Two examples, for the exponential distribution and the
gamma distribution, are shown on the right. In both cases, note the care required
to avoid arithmetic overflow with the default scaled number system.

You can also see the special nature of METAPOST’s mexp and mlog functions.
They are defined so that mexpx = exp(x/256) and mlogx = 256 log(x). This is
another artefact of the scaled number system. METAPOST computes xy using the
formula mexp(y*mlog(x)), and the adjusted log values give more accurate results.
Note that this means that you have e = mexp(256).

It is sometimes useful to define macros for the usual versions of exp and log as
shown on the right. This not only helps you make fewer programming mistakes,
and

35

8.2 Random walks
You can use the random number generation routines to produce visualizations of
random walks, with various levels of analysis.

beginfig(1);
numeric w, h, n; w = 377; h = 80; n = 500;

draw (origin--right) scaled w;
draw (origin--right) scaled w shifted (0,+h/2) withcolor 3/4;
draw (origin--right) scaled w shifted (0,-h/2) withcolor 3/4;

pair zenith, nadir; zenith = nadir = origin;
color gain, lose; gain = .67 blue; lose = .85 red;
for i=1 upto 8:
path walk;
numeric y; y = 0;
walk = origin for x=w/n step w/n until w:
hide(
y := y if uniformdeviate 1 < 1/2: + else: - fi 1;
if y > ypart zenith: zenith := (x,y) ; fi
if y < ypart nadir: nadir := (x,y) ; fi

)
-- (x,y)

endfor;
undraw walk withpen pencircle scaled 3/4;
draw walk withcolor (1/2+y/h)[lose, gain];

endfor
draw origin withpen pencircle scaled 2;
drawarrow (12 up -- 2 up) shifted zenith withcolor gain;
drawarrow (12 down -- 2 down) shifted nadir withcolor lose;

endfig;

+ Note the undraw line using a slightly thicker pen; this makes it easier to
follow the lines as they cross each other.

In this example the random walk lines are coloured according to the final y-value,
and the global maximum and minimum points are marked.

Each walk is created with an ‘inline’ for-loop; the loop is effectively expanded
before the assignment, so that each walk variable becomes a chain of connected
(x, y) pairs. Inside the loop you can conceal yet more instructions in a ‘hide’ block.
These instructions contribute nothing to the assignment, but can change the values
of variables outside the block.

Note the first line of the hide block adds ±1 to y with equal probability. You
can (of course) create different kinds of random walks, by changing the way you set
this delta value, for example by using a different type of random variate, or scaling
the value, or changing the odds in favour of one direction or the other. For example:

y := y if uniformdeviate 1 < p: + 2 else: - 1 fi;

will set the delta to +2 with probability p and and to −1 with probability 1− p.

36

8.2.1 Random walks with different constraints

Formally, a random walk is constrained to move one unit at a time, but if you
relax that constraint and use ‘normaldeviate’ in place of ‘uniformdeviate’ you
may get more “realistic” patterns.

The drawing here is much the same as the previous page, except that
the definition of walk in the central loop is simplified to this:

path walk; walk = (0, y) for x=w/n step w/n until w:
hide(y := y + 2 normaldeviate)
-- (x, y)

endfor;

1

2

3

4

Alternatively you could add an extra constraint that the final value should be zero
(or some other desired target value); this is the so-called “Brownian bridge”.

To do this, you make a random walk path, as above, with n points, and then copy
it into a new path where the i-th point is adjusted by i/n × (t − y) where t is the
target value, and y is the y-value of the last point on the walk path.

beginfig(1);
randomseed := 3612.11746;
numeric w, h, n; w = 377; h = 80; n = 500;
draw (origin--right) scaled w;
draw (origin--right) scaled w shifted (0,+h/2) withcolor 3/4;
draw (origin--right) scaled w shifted (0,-h/2) withcolor 3/4;
numeric y; y = 0;
path walk; walk = (0, y) for x=w/n step w/n until w:
hide(y := y + 4 normaldeviate)
-- (x, y)

endfor;
path bridge; bridge = point 0 of walk for i=1 upto n:
-- point i of walk + (0, i/n * -y) endfor;

draw walk withcolor 7/8; % so you can see how it works
undraw bridge withpen pencircle scaled 3/4;
draw bridge withcolor 3/4 blue;

endfig;

37

8.3 Brownian motion
Relaxing all the constraints, can give you even more interesting patterns. If you

beginfig(1);
% randomseed := uniformdeviate infinity;
randomseed := 2141.34242;
numeric u, v; u = 5; v = 4;
for n=1 upto 4:
numeric x, y; x = y = 0;
path w; w = (x, y) for i=1 upto 2048:
hide(x := x + normaldeviate * u ; y := y + normaldeviate * v)
.. (x, y)

endfor;
draw w withcolor (2n/10)[white, 2/3 blue];
draw (x, y) withpen pencircle scaled 3 withcolor 2/3 red;

endfor
draw origin withpen pencircle scaled 3 withcolor 3/4 green;
endfig;

Using these random number generators means that the output is dif-
ferent each time because METAPOST produces a different sequence
of numbers. You may find yourself running the program a few times
until you find one you like. At this point you will wish that you knew
what randomseed had been used, so that you can re-create picture.
Unfortunately METAPOST does not log the value used, unless you set
it manually. So here’s a trick to use in this situation: set your own
random seed using a random number at the top of your program.

randomseed := uniformdeviate infinity;

Now METAPOST writes the (random) value used in the log for you
to copy. Note that if you are using luamplib you need to add the
\mplibshowlog{enable} option to get this value in the log.

also allow the x-coordinates to wander at random as well as the y-coordinates you
get two-dimensional random patterns. And if you replace the straight line segments
-- with .. so that METAPOST draws a smooth curve through the points, then the
result is almost artistic.

38

8.4 Drawing freehand
This idea is shamelessly stolen from the wonderful collection of METAPOST exam-
ples available at http://melusine.eu.org/syracuse/metapost/. But since the
examples there are all in French (including all the names of the custom macros),
perhaps it would be better to say ‘translated’ rather than ‘stolen’; moreover my
implementations are easier to use with plain METAPOST.

def freehand_segment(expr p) =
point 0 of p {direction 0 of p rotated (4+normaldeviate)} ..
point 1 of p {direction 1 of p rotated (4+normaldeviate)}

enddef;
def freehand_path(expr p) =

freehand_segment(subpath(0,1) of p)
for i=1 upto length(p)-1:
& freehand_segment(subpath(i,i+1) of p)

endfor
if cycle p: & cycle fi

enddef;
defaultfont := "eurm10";
color sepia; sepia = (0.44, 0.26, 0.08);
picture marker; marker = image(for s=-1/2, 1/2:

draw (left--right) scaled 2 rotated 60 shifted (s,0);
endfor);
def moved_along expr x of p =

rotated angle direction x of p
shifted point x of p

enddef;
beginfig(1);

pair A, B, C, D;
A = (0,-30); B = (180,0); C = (120,90);
D = (1/2 + 1/40 normaldeviate)[A, B];
path triangle, circumcircle, bisector;
triangle = freehand_path(A--D--B--C--cycle);
bisector = freehand_segment(C--D);
circumcircle = freehand_path(A..B..C..cycle);
draw triangle;
draw bisector;
draw circumcircle withcolor .67 red;
draw marker moved_along 1/2 of triangle withcolor .67 red;
draw marker moved_along 3/2 of triangle withcolor .67 red;
label.lft("A", A);
label.rt ("B", B);
label.top("C", C);
label.bot("D", D);

endfig;

8.4.1 Making curves and straight lines look hand drawn

A

B

C

D

A small amount of random wiggle makes the drawing come out charmingly wonky.
Notice that the freehand_path macro will transform a path whether it is straight
or curved, and open or closed. Notice also that to find D the mid-point of a AB, you
need to find the point along the freehand path; if you simply put 1/2[A,B] there’s
no guarantee that the point would actually be on the free hand path between A and
B. In this case a little extra randomness has been added, and the two segments AD
and DB have been marked with traditional markers to show that they are equal.
The moved_along macro combines shifted and rotating to make the markers fit the
wonky lines properly. The Euler font complements the hand-drawn look; but you
might find that a little of this type of decoration goes a long way.

39

8.4.2 Extending straight lines slightly

This second freehand figure uses a macro to draw a wonky line through two points
with a bit of overlap at each end. The overlap size is given using the suffix syntax.
The lines are drawn in sepia ink to enhance the hand-drawn look. The angle labels
are positioned on invisible arcs between neighbouring wonky lines.

vardef freehand_through@#(expr a, b) =
save t; pair t;
t = @# * unitvector(b - a) rotated (4 + normaldeviate);
a - t .. a {t} .. b {t} .. b + t

enddef;

vardef mid_arc@#(expr p, a, b) =
save c; path c;
c = fullcircle scaled (2*@#) shifted p cutbefore a cutafter b;
point arctime 1/2 arclength c of c of c

enddef;

beginfig(1);
defaultfont := "eurm10"; color sepia; sepia = (0.44, 0.26, 0.08);
pair A, B, C;
A = (0,-30); B = (180,0); C = (120,90);

path a, b, c;
a = freehand_through 7 (A, B);
b = freehand_through 8 (B, C);
c = freehand_through 6 (C, A);

drawoptions(withcolor sepia);
draw a; draw b; draw c;

drawoptions(withcolor .67 blue);
label.bot ("a", point 3/2 of a);
label.rt ("b", point 3/2 of b);
label.ulft("c", point 3/2 of c);

drawoptions(withcolor .5 red);
label(char 11, mid_arc 16 (A, a, c));
label(char 12, mid_arc 14 (B, b, a));
label(char 13, mid_arc 14 (C, c, b));

drawoptions();
endfig;

a

b
c

α

β

γ

The AMS Euler font available to METAPOST as eurm10 is encoded as a subset of
the TEX math italic layout — essentially it has all the Greek letters but none of the
arrows, nor the musical notation.

0

Γ0

ζ16

ψ32

048

∂64

P80

`96

p112

1

∆

η

ω

1

A

Q

a

q

2

Θ

θ

ε

2

B

R

b

r

3

Λ

ι

ϑ

3

C

S

c

s

4

Ξ

κ

$

4

D

T

d

t

5

Π

λ

5

E

U

e

u

6

Σ

µ

6

F

V

f

v

7

Υ

ν

ϕ

7

G

W

g

w

8

Φ

ξ

8

H

X

h

x

9

Ψ

π

9

I

Y

i

y

10

Ω

ρ

.

J

Z

j

z

11

α

σ

,

K

k

ı

12

β

τ

<

L

l



13

γ

υ

/

M

m

℘

14

δ

φ

>

N

n

15

ε

χ

O

o

�

If you can’t get the upper case Γ at char 0, then you might be running an old
out-of-date version of luamplib.

40

8.5 Increasingly random shapes of the same size
If you want a random-looking shape, the general approach is to find a method to
make a path that allows you to inject some random noise at each point of the path.

0 1 2 3 4 5 6 7 8

For these shapes the objective was to make them increasingly random, but to keep
them all the same length. Each time round the outer loop the shape is redeclared

beginfig(1);
numeric desired_length, n, s;
desired_length = 180; n = 30; s = 80;
for r=0 upto 8:
path shape;
shape = for i=1 upto n:
(s + r * normaldeviate, 0) rotated (360/n*i) ..

endfor cycle;

shape := shape scaled (desired_length/arclength shape);

draw shape shifted (r*s, 0) withcolor (r/8)[black,red];
label(decimal r, (r*s, 0));

endfor
endfig;

to clear it, and then redefined by an inline-loop with n steps like this:

shape = for i=1 upto n: (s,0) rotated (360/n*i) .. endfor cycle;

except that some random noise is added to the s at each step: when the noise is zero
(r = 0) you get a circle; as the noise increases the circle is increasingly distorted.

The scaling is done using the arclength operator. This works like length but
instead of telling you the number of points in a path, it returns the actual length
as a dimension. Dividing the desired length by this dimension gives the required
scaling factor for the random shape just defined. Notice that you have to do this in
two steps, and update the shape using :=. This is because you need to have defined
shape before you can refer to it.

41

8.6 Explosions and splashes
Random numbers are also useful to make eye catching banners for posters, presen-
tations, and infographics. Here are two simple example shapes −−−−−−−−−−−−−−→

BOOM! SPLAT!

input colorbrewer-rgb
randomseed:=2128.5073;
beginfig(1);
n = 40; r = 12 ; s = 72;
path explosion; explosion = for i=1 upto n:
(if odd i: - fi r + s + uniformdeviate r) * dir (360/n*i) --

endfor cycle;
path splash; splash = for i=1 upto n:
(if odd i: - fi r + s + uniformdeviate r) * dir (360/n*i) ..

endfor cycle;
picture P[];
P1 = image(
fill explosion withcolor Oranges 7 4;
draw explosion withpen pencircle scaled 2 withcolor Reds 7 7;
label("BOOM!", center explosion) withcolor Reds 7 7;

);
P2 = image(
fill splash withcolor Blues 7 2;
draw splash withpen pencircle scaled 2 withcolor Blues 7 7;
label("SPLAT!", center splash) withcolor Blues 7 7;

);
label.lft(P1, 10 left); label.rt(P2, 10 right);

In this figure n is the number of points in the shape, s is the radius, and r is
the amount of randomness added to or removed from s. In order to get a clear
zig-zag outline, the loop alternately adds or subtracts r; and then adds a random
amount on top to make it look random. Notice that the only difference between
the explosion and splash is that how the connecting lines are constrained to be
straight or allowed to make smooth curves.

The display font used here is Playfair Display Black. If you have it
installed as a system font, you can use fontspec and luamplib with
lualatex as described in §3.2, but if you are still using plain mpost,
then you need to hunt for it in your local psfonts.map. If you run
METAPOST with the -recorder option, it will create a list of all the
files used, with the current job name and an extension of .fls. This file
will include a line which tells you exactly which version of psfonts.map
is being used. The DVIPS documentation explains the format of the
file, but for METAPOST’s purposes the first word of each non-comment
line defines a font name you can try. When you find it you can add
something like this to the top of the example:

defaultfont = "PlayfairDisplay-Black-osf-t1--base";
defaultscale = 3;

42

8.7 Simulating jagged edges or rough surfaces
You can use the idea of adding a little bit of noise to simulate a rough surface. def perpendicular expr t of p =

direction t of p rotated 90 shifted point t of p
enddef;

vardef block(expr wd, dp, theta, r) =
save base, ray, b;
path base, ray[]; numeric b;

base = origin for i=1 upto 31:
-- (i/32 * wd, r * normaldeviate)

endfor -- (wd,0) -- (wd,-dp) -- (0,-dp) -- cycle;

image(
fill base withcolor .8[blue,white];
draw base withcolor .67 blue;

for i = 2 upto 6:
ray[i] = (left--right) scaled 2/3 wd rotated -theta

shifted (i/8 * wd,0);
b := ypart (ray[i] intersectiontimes base);
ray[i] := point 0 of ray[i] -- point b of base -- point 0 of ray[i]

reflectedabout(point b of base, perpendicular b of base);
drawarrow ray[i];

endfor

label("$r=" & decimal r & "$", center base);
)

enddef;
beginfig(0);

draw block(108, 16, 45, 0);
draw block(108, 16, 45, 0.42) shifted 180 right;

endfig;

r = 0 r = 0.42

These diagrams are supposed to represent light rays reflecting from a surface: on
the left the surface is smooth (r = 0) and on the right it’s rough (r = 0.42). The
parameter r is used in the METAPOST program as a scaling factor for the random
noise added to each point along the rough surface; the only difference in the code
to produce the two figures was the value of r.First the base block is created with
some noise on the upper side. Then five rays are created. Applying ypart to the
pair of times returned by intersectiontimes gives us the point of the base where
the incident ray hits it. This point and the perpendicular at that point are then
used to get the angle for the reflected ray. The diagrams are effective because the
rays are reflected at realistic looking angles.

The simple approach to adding noise along a path works well in most cases
provided there’s not too much noise, but it is always possible that you’ll get two
consecutive values at opposite extremes that will show up as an obtrusive jag in
your line. To fix this you can simply run your program again to use a different
random seed value; or you could try using .. instead of -- to connect each point,
but beware that sometimes this can create unexpected loops.

43

8.7.1 Walking along a torn edge

It’s also possible to use a random walk approach so that each random step takes
account of the previous one to avoid any big jumps. Here’s one way to do that.

beginfig(1);
path t; numeric x, y;
x = 0; y=0;
t = (x, -20) -- (x, y) for i=1 upto 288:

-- (incr x, walkr y) endfor -- (x, -20) -- cycle;
fill t withcolor (1, 1, 31/32); draw t withcolor .67 blue;

endfig;

The walkr routine works like the incr and decr commands; it updates the value of
the argument. The idea is that the further away from zero you are, the more likely
is that the next value will take you back towards zero.

vardef walkr suffix $ =
save t; boolean t;
t = uniformdeviate 1 < (2 ** - abs($));
$:= $ if t: + else: - fi signr $; $

enddef;
vardef signr suffix $ =
if $ < 0: - else: + fi uniformdeviate 1

enddef;

You can use this to produce more realistic torn edges. You can also apply this
as a form of jitter to a curved path, by adding a suitably rotated vector to enough
points along the path, as shown in the example on the right.−−−−−−−−−−−−−−−−→

beginfig(1);
path c; c = fullcircle scaled 200;
draw c withcolor .8 white;
y=0; n = 600;
path t; t = for i=0 upto n-1:
point i/n*length(c) of c
+ (0, walkr y) rotated angle direction i/n*length(c) of c
--

endfor cycle;
draw t withcolor .67 red;

endfig;

44

9 Plane geometry
This section deals with drawing geometrical figures that involve lines, angles, poly- Here is the equilateral triangle point macro in action.

beginfig(1);
path c; c = fullcircle scaled 144;
numeric n; n = 11;
for i=0 upto n-1:
pair a,b,p,q;
a = point 8/n * i of c;
b = point 8/n * (i + 1) of c;
p = equilateral_triangle_point(a,b);
q = equilateral_triangle_point(b,a);
draw a -- p -- b withcolor .67 green;
draw a -- q -- b withcolor .67 red;

endfor
draw c withcolor .53 blue;

endfig;

gons, and circles. Plain METAPOST provides very few tools that are explicitly
designed to help draw geometric figures, but it is usually possible to find an elegant
construction using these tools and the relevant primitive commands. It is tempting
to build up your own library of special purpose macros, but experience suggests
that it is often better to adapt a general technique to the task in hand, and to cre-
ate a specific solution to your current problem. One of the main issues is catching
exceptions; since it is hard to write completely general macros, I have tried simply
to present each technique so that you can understand it and adapt it as required.

The classical constructions from Euclid’s Elements are often useful sources of
inspiration for macros, but they do not always point in the right direction. For
example consider the first proposition: given two points find a third point, so that
the three points make an equilateral triangle. Euclid’s construction is to draw an
arc, with radius equal to the length of the segment between the two points, at each
point and find the intersection. This might lead us to a function like this:

vardef equilateral_triangle_point(expr a, b) =
save c; path c; c = fullcircle scaled 2 abs(b-a);
(c shifted a intersectionpoint c shifted b)

enddef;

This works but has a couple of issues. First using intersectionpoint feels a
bit like cheating; secondly, and more seriously, the point returned depends on the
orientation of the points a and b. In some configurations the first intersection found
will be on the left, in others on the right. We could fix this by rotating the circle c
by angle (b-a), but we can do better with a simple rotation of the second point
about the first:

vardef equilateral_triangle_point(expr a, b) =
b rotatedabout(a,60)

enddef;

And if you want to get right back to primitives you could even write that as:
vardef equilateral_triangle_point(expr a, b) =
b shifted -a rotated 60 shifted a

enddef;

45

9.1 Bisecting lines and paths

a

b

1
2 [a, b]

(
− 1

2

)
[a, b]

− 1
2 [a, b]

Probably not what was intended…

3
2 [a, b]

(0, 0)

Dotted lines drawn with: point 0 of p -- point 1/2 length p of p

Lee Sallows’ theorem of median triangles

The best way to bisect a line depends on how you have defined it. If you have
two 〈pair〉s a and b, then the simplest way to find the 〈pair〉 that bisects them is
to write 1/2[a,b]. This mediation mechanism is entirely general, so you can write
1/3[a,b], 1/4[a,b], and so on to define other pairs that are part of the way from
a to b. But the number before the left bracket does not have to be confined to the
range (0, 1). If you write 3/2[a,b] you will get a pair on the extension of the line
from a to b beyond b. To get a pair going the other way you can either reverse a and
b, or use a negative number; but don’t get caught out by the METAPOST precedence
rules: -1/2[a,b] is interpreted as -(1/2[a,b]) and not as (-1/2)[a,b], so either
put in the parentheses or swap the order of the pairs: (3/2)[b,a]. See −−−−−−−→

If you want to work with a 〈path〉 variable, rather than separate 〈pair〉 variables,
you can use the point t of p notation to do mediation along the path. For a
simple straight path p of length 1 then point 1/2 of p will give you the midpoint.
More generally, point 1/2 length p of p will give you the midpoint of a path
of any length. This works fine for simple paths, along which METAPOST’s time
moves evenly, but for more complicated, curved paths you have to use this rather
cumbersome notation:

point arctime 1/2 arclength p of p of p

If your path makes a regular polygon, then you can bisect the shape with the line

point t of p -- point t + 1/2 length p of p

+ If the polygon has an odd number of sides, then 2t must be a whole number.

In a triangle these bisecting lines are called medians. The three medians intersect
at the centroid of the triangle. The centroid is a good place to put a label on a
triangle. You could find it using the macro from 4.3, or with a construction using
whatever on any two medians, but since we know that the centroid divides each
median in the ratio 2 : 1 we can find the centroid of a triangle path p most simply
with:

z0 = 2/3[point 0 of p, point 3/2 of p];

The median lines are the basis for several beautiful theorems about the geometry
of the triangle. The theorem shown here was first published in 2014.

46

9.2 Bisecting angles

vardef euclidean_bisector(expr a,b,c,r) =
save arc,p,q,e;
path arc; pair p,q,e;
arc = fullcircle scaled r shifted b;
p = (a--b) intersectionpoint arc;
q = (b--c) intersectionpoint arc ;
e = equilateral_triangle_point(p,q);
e

enddef;
A

B

C

E

vardef vector_bisector(expr a,b,c,r) =
b + unitvector (a-b) scaled r

+ unitvector (c-b) scaled r
enddef;

A

B

C

E

In an equilateral triangle the medians also bisect the angles at each vertex; this is the
basis of Euclid’s method of bisecting an angle set out in the Second Proposition. You
can do the same in METAPOST, but it might not always be the best way. Whatever
approach you take, an angle is defined by three points; one that defines the corner
and two that define the lines extending from that corner. In this exploration I’ve
used a, b, and c to represent the points, with b being the one in the middle, and at
the corner.

Euclid’s method is to draw an arc centred at the corner, and then construct
an equilateral triangle on the two points where the arc crosses the lines. This is
shown on the right, with a macro that re-uses the equilateral triangle point macro
given above. But if your aim were to find any point on the line bisecting 6 ABC,
then you could simplify this and make it more efficient by using e = 1

2 [p, q] instead
of calling the triangle macro at all. However the macro is still making two calls
to intersectionpoint. If you wanted to eliminate this you could use the useful
plain METAPOST macro unitvector to produce a solution based on adding two
equal length vectors from the corner to the two other points. Another approach
is to exploit another geometric theorem that states that the bisector of an angle
in a triangle divides the opposite side in the ratio of the two other sides. So if
sides AB and BC have lengths p and q then the bisector will be p

p+q = 1
1+q/p from

A to C, and you can express this simply using METAPOST’s mediation syntax:

vardef interior_bisector(expr a,b,c) =
(1/(1+abs(c-b)/abs(a-b)))[a,c]

enddef;
A

B

C

E

47

9.3 Trisections and general sections of angles
There is no classical method to trisect an arbitrary angle, so you need to resort to
measuring and arithmetic in METAPOST. If the angle is a given this is trivial:

0

θ/3

θ/3

θ/3

beginfig(1);
path ray; ray = origin -- 200 right;
numeric theta; theta = 42;
draw ray;
draw ray rotated 1/3 theta withcolor 2/3 red;
draw ray rotated 2/3 theta withcolor 2/3 red;
draw ray rotated theta;
dotlabel.llft("0", origin);
label("$\theta/3$", 72 right rotated 1/6 theta) withcolor 2/3 blue;
label("$\theta/3$", 72 right rotated 3/6 theta) withcolor 2/3 blue;
label("$\theta/3$", 72 right rotated 5/6 theta) withcolor 2/3 blue;

endfig;

But if you have only the coordinates of some points then you need to use the angle
primitive to measure the angle first; angle takes a 〈pair〉 argument and returns a
numeric representing the angle in degrees measured clockwise from the x-axis to
a line through the origin and the point represented by the pair. This definition
means that if you have three points A, B, and C, then you can measure 6 ABC
with angle(C-B)-angle(A-B). Following the usual convention this gives you the
angle at B; if you list the points in clockwise order you will get a positive result. If
you don’t care about the order, you can make this into a more robust macro:

vardef measured_angle(expr P, Q, R) =
(angle (P-Q) - angle (R-Q)) * turningnumber (P--Q--R--cycle) mod 360

enddef;

The primitive turningnumber is explained on p. 111 of The METAFONTbook. It
takes a closed path and returns number of times that you would turn through 360◦ if
you traversed the path. We use this here to negate the measured angle if necessary,
so that you always get the interior angle. The mod 360 on the end ensures that
the result is in the range 0 ≤ θ < 360. Armed with a measured angle, all you then
need is arithmetic. It might be possible to use the solve macro to simulate the

a
a

θ

θ/3

Neusis construction (that allows you to measure a length) illustrated on the right,
but measuring the angles is rather easier.

48

9.4 Intersections

A puzzle square featuring some intersections

1

2

3

4

5

6

7

8

9

The points were defined like this (the order was important).

z1 = (10,10);
z4 = 144 right rotated 12;
z5 = z4 shifted (2, 78);
z7 = z4 reflectedabout(origin, (1,1));

z2 = 1/2 [z5, z7];
z9 = whatever [z1, z4];
z2-z9 = whatever * (z7-z1);
z8 = whatever [z1, z5] = whatever [z2, z4];
z3 = whatever [z2, z9] = whatever [z4, z7];
z6 = whatever [z1, z7] = whatever [z3, z5];

If you have line segments defined by their endpoints, then the canonical way to find
their intersection, is to use the mediation syntax with whatever twice:

z0

z1

z2

z3

z4

beginfig(1);
z1 = (10, 50);
z2 = (80, 190);
z3 = (0, 170);
z4 = (60, 10);

z0 = whatever [z1, z2] = whatever [z3, z4];

draw z1--z2; draw z3--z4;

forsuffixes @=0,1,2,3,4:
dotlabel.rt(TEX("$z_" & decimal @ & "$"), z@)

withcolor 2/3 if @=0: red else: blue fi;
endfor

endfig;

The mediation syntax works even if the intersection point does not actually lie on
either of the two line segments. The intersection will be the point where the two
(infinite) lines through the pairs of points meet. If the two lines are parallel, you’ll
get an ‘inconsistent equation’ error. If you want to capture the calculated values,
then use undefined numeric variables instead of whatever :

z0 = alpha [z1, z2] = beta [z3, z4];

In this example you would find α = 0.286 and β = 0.5. If you are trying to find
where the line through your points intersects a horizontal or vertical, then you only
need one mediation and a simple equation for the relevant x or y coordinate:

z0 = alpha [z1, z2]; x0 = 0; % for example

If you have defined your lines as paths, and especially if they are more compli-
cated than straight lines, you need to use the intersectiontimes primitive or the
intersectionpoint macro, as explained on pp.136–137 of The METAFONTbook.

49

9.4.1 The intersection algorithm

METAPOST inherits a fast algorithm for finding the intersection between two paths
from METAFONT. It is explained rather more succinctly than usual at the end of
Chapter 14 of The METAFONTbook, with more detail given in the web source for
METAFONT. The core algorithm works on paths of length 1. If you have longer
paths, METAPOST works its way along the paths applying the core algorithm to
successive pairs of unit subpaths. It does this is lexicographic order; this means
that, if you have two circles A and B, and you do this:

(t, u) = A intersectiontimes B;

then METAPOST will first look for an intersection between subpath (0, 1) of A and
subpath (0, 1) of B, then subpath (0, 1) of A and subpath (1, 2) of B, and so on,
with B varying faster, until you get to subpath (7, 8) of A and subpath (7, 8) of B.
But you may never get that far, as the process stops as soon as the first intersection
is found. The upshot of this is that the intersection point found will always be as
early as possible on A. Note that after the call above point t of A will be very close
to point u of B, as they both refer to the same intersection point. If you want the
alternative point that is earlier on B, then use ‘B intersectiontimes A’ instead.

The paths are drawn with
arrows to show where

they start & stop.

A

B

A intersectiontimes B

B intersectiontimes AWhen we get down to paths of length 1, the algorithm works something like this:

A

B

1

2
3

4

and so on…

The two paths are represented as rectangles that enclose the end points
and the control points for each path. If these rectangles don’t overlap
then there is certainly no intersection. Otherwise METAPOST bisects
each path and considers four smaller rectangles, in the order (1, 2),
(1, 4), (3, 2), (3, 4) (as shown). In this case it will pick (1, 2), discard
4, and push 3 onto a stack. It carries on doing this, back tracking as
required, until it finds sufficiently small overlapping rectangles. The
two times returned by intersectiontimes are the midpoints of the
subpaths enclosed by these two tiny rectangles, which is why they do
not always refer to exactly the same point.

50

9.4.2 Finding all intersection points

As noted above, the intersectiontimes algorithm will stop at the first intersection
of the two paths, but it is possible that the two paths will intersect again further
along. If you want to find all the intersection points then the simplest technique
is just to unwrap the algorithm slightly, and loop through all the unit subpaths
applying intersectiontimes to each pair. Using an array to hold the points and
a counter, you can get them with something like this:

pair P[], times; numeric n; n = 0;
for i = 1 upto length(A):

for j = 1 upto length(B):
times := subpath (i-1,i) of A intersectiontimes subpath (j-1,j) of B;
if xpart times > -1:

P[incr n] = 1/2[point xpart times of subpath (i-1,i) of A,
point ypart times of subpath (j-1,j) of B];

fi
endfor

endfor

and then use them like this:
for i=1 upto n:

draw fullcircle scaled 4 shifted P[i]; % or whatever
endfor

There are a couple of METAPOST technical points to note. The intersectiontimes
operation returns a pair, which we assign to a pair variable times above; we have
to use := to re-assign it in each loop, and we have to use an explicit pair variable
because you can’t assign to a literal pair; METAPOST will give you an error if you
try (t, u) := A intersectiontimes B;. This may come as a surprise, because
you can legally do (t, u) = A intersectiontimes B, but in a loop this causes
an inconsistent equation error on the second iteration. If you need to avoid the
repeated use of xpart and ypart, one alternative is to do this inside the loop:

...
numeric t, u;
(t, u) = A intersectiontimes B;
...

Now the numerics are reset each time and the equation is not inconsistent.

The technique discussed on the left, works well on paths where the
points on one or both of the paths are close together, so that the unit
subpaths are short; But it is possible to create quite long paths of unit
length and these may intersect each other more than once, like so:

A

B

Here the two paths A and B are Bézier splines of with length=1, so
the normal METAPOST algorithm is only ever going to give you one
of the intersections. In the diagram above, the red circle marks the
point given by A intersectiontimes B. We can try reversing the
first path, and in this case you get the point marked in blue, but what
about the one in the middle?

The most reliable approach is to take a copy of one of the paths,
and snip it off at the intersection and try again until there is nothing
left to snip.

A

B

The three points marked here were captured like this:

pair P[]; numeric n; n=0;
path R; R := A; %take a copy of A
forever:
R := R cutbefore B; % snip where we cross B
exitif length cuttings = 0; % stop if nothing was cut
P[incr n] = point 0 of R; % capture the point
R := subpath (epsilon, infinity) of R; % nudge along

endfor

This technique also works on paths with length greater than one, so
you may prefer it as your general “get all the intersections” approach.
Note that the cutbefore macro is defined using intersectiontimes.

51

9.5 Parallel and orthogonal or whatever
Given five known points — A, B, C, D, and E — METAPOST can find the point
F on the line A . . B, so that E . . F is parallel to C . . D like this:

A

B

C

D

E

F

G

H

F = whatever[A, B]; % F is on the line A..B
E-F = whatever * (C-D) % E..F || C..D

In the second line the expressions E-F and C-D return 〈pair〉 variables and the
equation with whatever says that they must be scalar multiples of each other.
With the first equation, this is enough for METAPOST to work out where F should
go. Note that whatever can take any real value, positive or negative, so it does not
matter whether you put E-F or F-E. Note also that for the same reason, while F
will lie on the line through A and B, it might not lie on the segment from A to B.
But also note that you cannot write the second equation as

E-F * whatever = (C-D); % <--- gives an error

because you can only apply whatever to known quantities.

To define a line perpendicular to C . . D rather than parallel, then you can write:

G = whatever[A, B];
E-G = whatever * (C-D) rotated 90;

and obviously the 90 can be adjusted to whatever angle you please, if you want
something between parallel and orthogonal.
To define the line through E that is perpendicular to A . . B, you should just use
(A − B) instead of (C − D). The diagram shows H, the point on A . . B that is
closest to E; you can (I trust) work out how to define that yourself.
If you just need to compute the perpendicular distance from the point E to a line
A . . B, rather than defining the point H, then you can use Knuth’s ‘slick’ formula:

abs ypart ((E-A) rotated -angle (B-A))

This effectively rotates E about A by the angle of the line, so that the problem is
reduced to measuring the height of a point above the x-axis, which is what ypart
does, of course.

There are some limitations to what you can do with METAPOST’s
linear equations; for one thing you can’t generally say things like
length(C-A) = 72. If you want to find the two points on a line
that are a given distance from an external point, it’s often simpler
to find the intersection points of the line with a suitably scaled and
shifted circle, even if you don’t actually then draw the circle. You
can usually find the other point by reversing the circle.

52

9.6 Drawing circles
The canonical way to draw a circle in plain METAPOST is to use the pre-defined path
fullcircle with a suitable transformation. The path is defined (in plain.mp)

(34, 21)

2 cm

I
II

III

A

B

C

using two METAPOST primitive commands:

path fullcircle; fullcircle = makepath pencircle;

A pencircle is the basic nib that is used to draw lines that digitize neatly; it rep-
resents a true circle of diameter 1, passing through the points (±.5, 0) and (0,±.5).
When processed with makepath it turns into a closed polygonal path with eight
points that closely approximates a circle with diameter 1 bp centred on the point
(0, 0). To use it, you can scale it and shift it. To draw a circle with radius 2 cm at
the point (34, 21) you would do:

draw fullcircle scaled 4cm shifted (34, 21);

Remember to scale before you shift, and that fullcircle has unit diameter, not unit
radius. To draw a circle centred at point A that passes through point B [I] try:

draw fullcircle scaled 2 abs (B-A) shifted A;

There are of course an infinite number of circles that you can draw through two
points, but if the line between the two points is a diameter [II], then you can do:

draw fullcircle scaled abs (B-A) shifted 1/2[A,B];

Finally three points define a unique circle [III]:

vardef circle_through(expr A, B, C) =
save o; pair o;
o = whatever * (A-B) rotated 90 shifted 1/2[A,B]
= whatever * (B-C) rotated 90 shifted 1/2[B,C];

fullcircle scaled 2 abs (A-o) shifted o
enddef;

Plain METAPOST also defines halfcircle and quartercircle, as the appropriate sub-
paths of fullcircle, both starting at point 0 (3 o’clock). Curiously, this differs from
METAFONT where quartercircle is defined first, and the other two composed from
it. The reference point of these two paths is the center of the complete circle of
which they would be part; so if you did “draw quartercircle shifted (34, 21);”, you
would get an quarter-circle arc from (34.5, 21) to (34, 21.5).

53

9.7 Incircle and excircles of a triangle
The incircle of a triangle is the largest circle contained in the triangle. The
centre of the incircle lies at the intersection of the internal angle bisectors. So we
can use ideas from §9.2 and §9.4 to define a macro that returns the required path
given points A, B, and C:

m

t

A

B

C

a

b

vardef incircle(expr A, B, C) =
save a, b, m, t; pair a, b, m, t;
a = A + unitvector (C-A) + unitvector (B-A);
b = B + unitvector (A-B) + unitvector (C-B);
m = whatever[A,a] = whatever [B,b]; t = whatever[A,B];
t-m = whatever * (B-A) rotated 90;
fullcircle scaled 2 abs (t-m) shifted m

enddef;

The excircles of a triangle are the three circles lying outside the triangle
and tangent to one edge and the extensions of the other two. The centres of each
excircle lie at the intersection of one internal angle bisector and the external angle
bisector of one of the other corners. To get the external angle bisector, all you have
to do is reverse the direction of one of the unitvector calls (can you see why?)

m

t
A

B

C

a

b

vardef excircle(expr A, B, C) =
save a, b, m, t; pair a, b, m, t;
a = A + unitvector (C-A) - unitvector (B-A);
b = B + unitvector (A-B) + unitvector (C-B);
m = whatever[A,a] = whatever [B,b]; t = whatever[A,B];
t-m = whatever * (B-A) rotated 90;
fullcircle scaled 2 abs (t-m) shifted m

enddef;

+ To get the other excircles, call the macro with the points in a different order.

54

9.8 Circumcircle of a triangle
The circumcircle of a triangle is the circle through the three corners, so if you
already have the corners of your triangle as separate 〈pair〉 variables, you can use
the circle_through macro from §9.6. Or you can adapt the macro to take a single
triangular path:
vardef circumcircle(expr T) =

save m; pair m;
m = whatever * (point 0 of T - point 1 of T) rotated 90 shifted point 1/2 of T
= whatever * (point 1 of T - point 2 of T) rotated 90 shifted point 3/2 of T;

fullcircle scaled 2 abs (point 0 of T - m) shifted m
enddef;

Note that as the diagram on the right shows, the centre of the circumcircle is the
mintersection of all three of the perpendicular bisectors of sides, but for the purposes

of drawing in METAPOST you only need to find the intersection of two of them.
You could write

m = whatever * (point 0 of T - point 1 of T) rotated 90 shifted point 1/2 of T
= whatever * (point 1 of T - point 2 of T) rotated 90 shifted point 3/2 of T
= whatever * (point 2 of T - point 3 of T) rotated 90 shifted point 5/2 of T;

but this does not add any more information to the equation for m, and METAPOST

will sometimes give you an “inconsistent equation” error if your triangle is long and
thin.

+ The marks that show line segments are equal were created by this macro.
vardef mark_equal(expr a, b, n) =
save m, s; picture m; m = image(

numeric s; 2s = n - 1; for t=-s upto s:
draw (down--up) scaled 2 rotated -13 shifted (t,0)
withpen pencircle scaled 1/4;

endfor
);
draw m rotated angle (b-a) shifted 1/4[a,b];
draw m rotated angle (b-a) shifted 3/4[a,b];

enddef;

Given the triangular 〈path〉 T , the macro was used like this: −→

mark_equal(point 0 of T, point 1 of T, 1);
mark_equal(point 1 of T, point 2 of T, 2);
mark_equal(point 2 of T, point 0 of T, 3);

55

9.9 The nine-point circle of a triangle
The orthocentre of a triangle is the point at the intersection of the three altitudes,
shown as point D below. The point N , half-way from D to the circumcentre M is
the centre of the remarkable nine-point circle which passes through the bases of the
three altitudes and bisects the six line segments AB, AC, AD, BC, BD, and CD.

beginfig(1);
pair A, B, C, D, N, M, p, q, r;
A = origin; B = 343 dir 10; C = 212 dir 70;
% pedal points (not labelled)
p = whatever[B, C]; A - p = whatever * (B-C) rotated 90;
q = whatever[C, A]; B - q = whatever * (C-A) rotated 90;
r = whatever[A, B]; C - r = whatever * (A-B) rotated 90;

D = whatever[A, p] = whatever[B, q];
N = 1/4(A + B + C + D); % remarkably...
M = D rotatedabout(N, 180); % M is also the circumcentre

path circumcircle, nine_point_circle;
nine_point_circle = fullcircle scaled 2 abs(N - 1/2[A, B]) shifted N;
circumcircle = fullcircle scaled 2 abs(M - A) shifted M;

draw nine_point_circle withcolor 3/4 red;
draw circumcircle withcolor 1/2[3/4 blue, white];

drawoptions(dashed evenly scaled 1/4 withcolor 1/2);
draw 1/2[A,B] -- M -- 1/2[B, C];
draw 1/2[C,A] -- M -- D;
draw A -- p;
draw B -- q;
draw C -- r;

% mark the nine points with small circles
drawoptions(withpen pencircle scaled 1/4);
draw fullcircle scaled 2 shifted 1/2[A, B];
draw fullcircle scaled 2 shifted 1/2[A, C];
draw fullcircle scaled 2 shifted 1/2[A, D];
draw fullcircle scaled 2 shifted 1/2[B, C];
draw fullcircle scaled 2 shifted 1/2[B, D];
draw fullcircle scaled 2 shifted 1/2[C, D];
draw fullcircle scaled 2 shifted p;
draw fullcircle scaled 2 shifted q;
draw fullcircle scaled 2 shifted r;

drawoptions();
draw A--B--C--cycle;
dotlabel.llft("A", A);
dotlabel.rt("B", B);
dotlabel.ulft("C", C);
dotlabel.urt("\ D", D);
dotlabel.llft("M", M);
dotlabel.llft("N", N);

endfig;

A

B

C

D

M

N

56

9.10 Lines tangent to a point on a path
METAPOST represents paths internally as a sequence of nodes. Each node consists
of three pairs: the pre-control point, the point itself, and the post-control point.
For a given path p you can extract these points at time t with these operators:

point 0 of p
point 1 of p point 2 of p

precontrol 0 of p

postcontrol 0 of p

precontrol 1 of p

postcontrol 1 of p

precontrol 2 of p

postcontrol 2 of p

pair s;
for t=0 step 1/4 until length p:

s := 16 unitvector(direction t of p);
drawarrow (-s -- s) shifted point t of p);
draw point t of p withpen pencircle scaled 2;

endfor

precontrol t of p
point t of p
postcontrol t of p

Unless you explicitly set them differently, METAPOST’s curve fitting will make these
three points co-linear, so you can draw a tangent at point t with

draw precontrol t of p -- postcontrol t of p;

The length of the tangent line drawn like this depends on the size and shape of
the curve, but it is somewhat arbitrary. So you may prefer to extract a 〈pair〉
representing the tangent at point t with

pair d; d = postcontrol t of p - precontrol t of p;

In fact, this is so useful that plain.mp provides direction as a shorthand:
vardef direction expr t of p = postcontrol t of p - precontrol t of p enddef;

which can save you some typing. But the clever bit is that t does not have to be
a whole number. If you set t = 1

4 (say), METAPOST works out the corresponding
fractional control points, so that you can use direction t of p to get a tangent
at any point.

The vector pairs returned have the right direction, but still have rather arbitrary
magnitudes, so the usual idiom is something like this:

path s; s = origin -- 36 unitvector(direction t of p);
drawarrow s shifted point t of p;

or the snippet shown on the right −→

57

9.11 Lines tangent to a circle
The techniques of the preceding section can be used to add a tangent line to a given
point on a circular path, but not to find the tangent lines from a given point outside
a circle. To do this, you need to adapt the standard geometrical construction: for
a given circle C and a point p, find the midpoint of p and the center of C; draw
a semicircle through p, centred on this midpoint; the tangent point is where the
semicircle intersects C. Given a suitable path C and pair p you can do this: m

o

C

p

t

t′

pair o, m, t, t'; o = center C; m = 1/2[o, p];
t = C intersectionpoint halfcircle zscaled (p-o) shifted m;
t' = C intersectionpoint halfcircle zscaled (o-p) shifted m;

No parentheses are needed around the second path, because intersectionpoint is
defined with secondarydef.

Things are a little more complicated if you want the points as times along the path
C and you care about which tangent point is which. Here is a routine that returns
the tangent points from p as two times a and b on C, with b adjusted so that
b > a in all cases regardless of the relative rotation of C and p. This means that
subpath (a, b) of C is always the “long way round” C, on the opposite side from
p, and subpath (a, b-8) of C is always the shorter segment.

% return a <pair> with the two times on C that
% correspond to the external tangents from p to C
vardef tangent_times(expr C, p) =
save m, o, G, H, a, b;
pair m, o; path G, H; numeric a, b;
o = center C; m = 1/2[o, p];
H = halfcircle zscaled (p-o) shifted m;
G = halfcircle zscaled (o-p) shifted m;
(a, whatever) = C intersectiontimes H;
(b, whatever) = C intersectiontimes G;
(a, b if b < a: + 8 fi)

enddef;

Note the elegant syntax here; if z is a 〈pair〉 then the operation zscaled z is
equivalent to scaled abs z rotated angle z.

Here is the macro in action. Having obtained the two times a and
b from the macro, the dashed line was drawn along a path that was
composed with: p -- subpath (a,b) of C -- cycle

C

p

point a of C

point b of C

58

9.12 Lines tangent to two circles (exterior)
The same tangent_times macro can be reused to find the tangents that touch two
circles, using an approach like this:

A

B

C
t

t

t

u

u

u

r

r

path A, B;
A = fullcircle scaled 144;
B = fullcircle scaled 60 shifted (200, 140);

numeric R, r;
R = abs (point 0 of A - center A);
r = abs (point 0 of B - center B);

path C; numeric t, u;
C = fullcircle scaled (2R-2r) shifted center A;
(t, u) = tangent_times(C, center B);

draw A withpen pencircle scaled 2 withcolor 3/4[blue, white];
draw B withpen pencircle scaled 2 withcolor 3/4[blue, white];

draw subpath (t, u) of A -- subpath (u-8, t) of B -- cycle;

Here A and B are the two circles you want to connect, and A is larger than B.
R is the radius of the larger, r of the smaller. C is an auxiliary circle centred at the
same point as A and scaled so that its radius is R− r. If we then find the tangent
points on C from the center of B, the points we want are the corresponding points
on A and B.

Notice how the times are used with subpath; if a > b, then the path returned
from subpath (a, b) of P is the same as reverse subpath (b, a) of P, which
means that subpath (u,t) of B would give you the wrong side. The remedy is to
subtract 8 from u (or, more generally, to subtract the length of path B). Because
there are 8 points on a fullcircle path, point u and point u− 8 refer to the same
place, but since u− 8 < t, the subpath will run clockwise as required.

+ This all works provided that all three circles A, B, or C have the same rotation.
But this may not always be the case. For example, you might have defined B as

B = fullcircle scaled 60 shifted 240 dir 36;

and then point t of B would not correspond to point t of the auxiliary circle C.

To cope with circles that might not have the same rotation, you
need to adjust the tangent times to take account of the different
relative rotation.

vardef adjust_time(expr tt, AA, BB) =
tt + 1/45 angle (point 0 of AA - center AA)
- 1/45 angle (point 0 of BB - center BB)

enddef;

This macro exploits the relationship between angle and points
around a fullcircle path: 360◦ = 8 points. You can see it in
action on the following page.

59

9.13 Lines tangent to two circles (interior)
To find the interior tangents, you just need to add the smaller radius rather than
subtract it, and add 4 to the times on the smaller circles, so that they are on the
other side:

t

t′

t′′

u

u′

u′′

A

B

C

The complete code for this is shown on the right. It uses the same routines given
above; tangent_times from section 9.11, and adjust_time from section 9.12.

path A, B; % randomly rotated to show off "adjust_time"
A = fullcircle scaled 144 rotated uniformdeviate 360;
B = fullcircle scaled 60 shifted 240 right rotated 36;

numeric R, r;
R = abs (point 0 of A - center A);
r = abs (point 0 of B - center B);

path C;
C = fullcircle scaled (2R+2r) shifted center A; % NB +ve

numeric t, t', t'', u, u', u'';
(t, u) = tangent_times(C, center B);
t' = adjust_time(t, C, A);
u' = adjust_time(u, C, A);
t'' = adjust_time(t + 4, C, B); % Note the plus fours
u'' = adjust_time(u + 4, C, B);

draw A withpen pencircle scaled 2 withcolor 3/4[blue, white];
draw B withpen pencircle scaled 2 withcolor 3/4[blue, white];
draw C withpen pencircle scaled 1 withcolor 3/4[blue, white];

draw subpath (t', u') of A -- subpath (u'', t'') of B -- cycle;
draw center B -- subpath (t, u) of C -- cycle dashed evenly;

draw center B -- point t'' of B dashed withdots scaled 1/2;
draw center B -- point u'' of B dashed withdots scaled 1/2;
draw point t of C -- point t' of A dashed withdots scaled 1/2;
draw point u of C -- point u' of A dashed withdots scaled 1/2;

dotlabel.ulft(btex t etex, point t of C);
dotlabel.lrt (btex t' etex, point t' of A);
dotlabel.lrt (btex t'' etex, point t'' of B);
dotlabel.lrt (btex u etex, point u of C);
dotlabel.ulft(btex u' etex, point u' of A);
dotlabel.ulft(btex u'' etex, point u'' of B);
drawdot center B withpen pencircle scaled dotlabeldiam;

drawoptions(withcolor 1/2[blue, white]);
label.urt(btex A etex, point 1/2(t'+u'- 7.6) of A);
label.rt (btex B etex, point 1/2(t''+u''- 2) of B);
label.urt(btex C etex, point 1/2(t+u-8) of C);

drawoptions();

60

9.14 Axis of similitude

C1

C2

C3

r1
r2

I12

I23

I31

E12

E23

E31

Axis
of

Sim
ilit

ud
e

C1E12

C2E12
=

r1
r2

=
C1I12
C2I12

& cetera …
Given three circles taken in pairs, you can use the techniques of
the preceding sections to find the three points where the common
external tangents intersect (shown here as E12, E31, and E23) and
the three points where the common internal tangents intersect (I12,
I31, and I23). These points have a pleasing collinearity. The line
common to the three E points is known as the Axis of Similitude.

The drawing is left as an exercise for the reader, except to note
that if r1 and r2 are 〈numeric〉 variables representing the radius of
the circles centred at the 〈pair〉 variables C1 and C2, then:

E12 = (r1/(r1 - r2)[C1, C2]; I12 = (r1/(r1 + r2)[C1, C2];

which is a bit quicker than working out all the tangent points. My
version is in the file geometry-axis-of-similitude.mp

61

9.15 Inversion, pole, and polar
Inversion in a circle is a generalization of reflection in a line. It is useful for certain

Q

R

P

O

r
P ′

circle of inversion

polar

pole
r

OP
=

OP ′

r

r2 = OP ×OP ′

constructions in geometry, and easy to implement as a macro METAPOST. For
given circle, and a given point P lying outside the circle, the inverted point P ′ lies
inside the circle at the intersection of the line from P to the centre of the circle,
and the line between the tangent points [§9.11] from P , shown here as Q and R. −→

But OPQ and OQP ′ are similar triangles, so r/OP = OP ′/r and so OP ′ =
r2/OP , and since P ′ must lie on the line through O and P , this is enough to to
find P ′ directly given P , O, and r:

P' = O + unitvector(P-O) scaled (r * r / abs (P-O));

But examining plain.mp shows that unitvector is a macro defined like this:

vardef unitvector primary z = z/abs z enddef;

which suggests this alternative formulation:

P' = O + (P - O) scaled (r / abs (P - O) * r / abs (P - O));

or as a macro, and dividing first to avoid overflow:

vardef invert(expr P, O, r) =
save s; numeric s; s = abs(P - O);
O + (P - O) / s * r / s * r

enddef;

This works well in most cases, but you could consider checking that s is not too
small. If it is more convenient to deal with the 〈path〉 of the circle of inversion
instead of the centre and the radius, you can get the macro to calculate them for
you:

vardef invert(expr P, C) =
save o; pair o; o = 1/2[point 0 of C, point 4 of C];
save r; numeric r; r = abs (point 0 of C - o);
save s; numeric s; s = abs (P - o);
o + (P - o) * r / s * r / s

enddef;

Inversion is reciprocal, so P is the inverse of P ′ above. Points on
the circle of inversion invert to themselves.
For any given line, the pole of the line with respect to a circle, is the
inverse of the point on the line closest to the centre of the circle.
For any given point, the polar of the point with respect to a circle,
is the line through the inverse of the point perpendicular to the
line through the point and the center of the circle of inversion.
The inversion of points on the polar (shown as blue dots) lie on a
circle through O and P ′. The complete circle would be the inversion
of the infinitely extended polar.

62

9.16 Radical axis and radical centre
The radical axis of two circles is the line, orthogonal to the line between the centres
of the two circles which is the locus of points which have equal power with respect
to both circles; that is the points from which the tangents to each circle are of equal
length. A circle centred at any point on the axis, and drawn with radius equal to
the length of the tangent will cut both circles at right angles.

C1

C2

C3

In a system of three circles as shown, the radical centre (radix) is the intersection
of the three mutual radical axes. The tangents from this point to all three circles
have the same length, so a circle with this radius (shown above in red) cuts all three
circles at right angles.

vardef radical_axis(expr ca, cb) =
numeric t, d, ra, rb;
ra = abs(center ca - point 0 of ca);
rb = abs(center cb - point 0 of cb);
d = abs(center cb - center ca);
2t = 1 + (ra+rb) / d * (ra-rb) / d;
(up -- down) scaled 89
rotated angle (center cb - center ca)
shifted t[center ca, center cb]

enddef;
beginfig(1);

z1 = origin; z2 = 233 dir 4; z3 = 209 dir -42;
path c[], a[];
c1 = fullcircle scaled 202 shifted z1;
c2 = fullcircle scaled 106 shifted z2;
c3 = fullcircle scaled 62 shifted z3;
a1 = radical_axis(c1, c2);
a2 = radical_axis(c2, c3);
a3 = radical_axis(c3, c1);

pair radix, t; path orthogonal_circle;
radix = whatever[point 0 of a1, point 1 of a1]

= whatever[point 0 of a2, point 1 of a2];
t = c1 intersectionpoint

halfcircle zscaled (radix-z1) shifted 1/2[radix, z1];
orthogonal_circle = fullcircle
scaled 2 abs (t - radix) shifted radix;

draw z1 -- z2 -- z3 -- cycle withpen pencircle scaled 1/4;
draw a1; draw a2; draw a3;
drawoptions(withcolor 3/4[blue, white]);
draw c1; draw c2; draw c3;
draw z1 -- t dashed evenly;

drawoptions(withcolor 2/3 red);
draw orthogonal_circle;
draw radix -- t dashed evenly;
draw radix withpen pencircle scaled dotlabeldiam;

drawoptions(withcolor 1/4[blue, white]);
draw z1 withpen pencircle scaled dotlabeldiam;
draw z2 withpen pencircle scaled dotlabeldiam;
draw z3 withpen pencircle scaled dotlabeldiam;

label.urt(btex C_1 etex, point 1 of c1);
label.urt(btex C_2 etex, point 1 of c2);
label.rt (btex C_3 etex, point 0 of c3);

endfig;

63

9.17 Circles tangent to other circles

C1 C2

C3

Radical
centre

Pole

Pole

Pole

Axis
of

sim
ilit

ud
e,

as
pola

r

The classical Problem of Apollonius is to find a circle tangent to
three others. All of the approaches are rather involved, but Ger-
gonne’s is probably the simplest to follow in METAPOST.
For three given circles C1, C2, and C3, you first find the external
axis of similitude [§9.14]; then find the poles [§9.15] of this line
with respect to each of the three circles; and thirdly find the radical
centre [§9.16].
The lines from the radical centre through each of the three poles
cut each circle in two places. These six points show the tangent
points for the two tangent circles, and you can draw the circles
using the three point circle technique [§9.6].
The drawing is left as an exercise for the reader, although you can find my
geometry-apollonius.mp in the source for this document. You might
try to make a more robust version or to find all the other tangent circles.

64

9.18 Coordinate geometry examples

pe
rs

pe
ct

rix

perspector

A

B

C

A′

B′
C ′

Desargues’ Theorem

beginfig(1);
pair P, A, B, C, A', B', C', R, S, T;
P = 200 dir 102;
A = 100 dir 159; B = origin; C = 90 dir 42;

A' = 3/8[P, A]; % the factors should not
B' = 1/2[P, B]; % be the same!
C' = 5/8[P, C];

R = whatever [A, B] = whatever [A', B'];
S = whatever [B, C] = whatever [B', C'];
T = whatever [C, A] = whatever [C', A'];

path t[];
t1 = A -- B -- C -- cycle;
t2 = A' -- B' -- C' -- cycle;
fill t1 withcolor 7/8[red, white];
fill t2 withcolor 7/8[blue, white];
draw t1 withcolor 1/2 white;
draw t2 withcolor 1/2 white;

drawoptions(dashed withdots scaled 1/2);
draw P--A;
draw P--B;
draw P--C;

drawoptions(dashed evenly scaled 1/2);
draw B--R--B';
draw C--S--C';
undraw subpath (1/4, 3/4) of (C'--T) withpen

pencircle scaled 5;
draw C--T--C';

drawoptions(withcolor 2/3 red);
draw 9/8[S,R] -- 9/8[R,S];
draw thelabel.bot("perspectrix", origin)
rotated angle (T-R) shifted 1/2[T, R];

dotlabel.urt("perspector", P);
drawoptions();

dotlabel.lft ("A ", A);
dotlabel.llft("B ", B);
dotlabel.lrt ("C ", C);
dotlabel.lft ("A' ", A');
dotlabel.llft("B' ", B');
dotlabel.bot ("C' ", C');
label.rt("\textsc{Desargues' Theorem}", 1/2[P, C'] shifted 10 right);

endfig;

65

The trisectors of each angle
in any given triangle form a
central equilateral triangle.

randomseed := 2485.81543;
vardef measured_angle(expr p, o, q) =

(angle (p-o) - angle (q-o)) mod 360
enddef;
beginfig(1);
picture T;
for i=0 upto 1:
for j=0 upto 1:
clearxy;
T := image(
z1 = (120 + uniformdeviate 21, 0);
z2 = (120 + uniformdeviate 21, 0) rotated 120 rotated 21 normaldeviate;
z3 = (120 + uniformdeviate 21, 0) rotated 240 rotated 21 normaldeviate;
numeric a, b, c;
a = measured_angle(z3, z1, z2);
b = measured_angle(z1, z2, z3);
c = measured_angle(z2, z3, z1);
z4 = whatever [z1, z2 rotatedabout(z1, 1/3 a)]

= whatever [z2, z3 rotatedabout(z2, 2/3 b)];
z5 = whatever [z2, z3 rotatedabout(z2, 1/3 b)]

= whatever [z3, z1 rotatedabout(z3, 2/3 c)];
z6 = whatever [z3, z1 rotatedabout(z3, 1/3 c)]

= whatever [z1, z2 rotatedabout(z1, 2/3 a)];
fill z4--z5--z6--cycle withcolor 3/4[red + 1/2 green, white];
draw z4--z5--z6--cycle;
draw z1 -- z4 -- z2 -- z5 -- z3 -- z6 -- cycle

dashed withdots scaled 1/4;
draw z1 -- z2 -- z3 -- cycle;

);
draw T shifted (200i, 240j);

endfor
endfor
label.rt(btex \vbox{\halign{#\hfil\cr The trisectors of each angle\cr
in any given triangle form a\cr central equilateral triangle.\cr}} etex, (24, 128));
endfig;

66

A

B

C

D

E

F

G

H

I

Napoleon’s Theorem

def equilateral_triangle_point(expr a, b) =
a rotatedabout(b, 60)

enddef;
primarydef o beyond z = z scaled (1+o/abs(z)) enddef;
beginfig(1);
randomseed := 543.01811;

pair A, B, C, D, E, F, G, H, I;
A = 91 dir (0 + 18 normaldeviate);
B = 92 dir (120 + 18 normaldeviate);
C = 93 dir (240 + 18 normaldeviate);

D = equilateral_triangle_point(A, B);
E = equilateral_triangle_point(B, C);
F = equilateral_triangle_point(C, A);

G = 1/3(A + B + D);
H = 1/3(B + C + E);
I = 1/3(C + A + F);

draw A -- B -- C -- cycle withcolor blue;
draw A -- D -- B -- E -- C -- F -- cycle withcolor 3/4;
draw G -- H -- I -- cycle withcolor 2/3 red;

forsuffixes @ = A, B, C, D, E, F, G, H, I:
draw @ withpen pencircle scaled dotlabeldiam;
label("$" & str @ & "$", 10 beyond @);

endfor

label.bot("\textsc{Napoleon's Theorem}",
point 1/2 of bbox currentpicture);

endfig;

67

r1

r2

r3

Q

A

R

B

P

O

beginfig(1);
% define the end points of the three rays
z1 = right scaled 200 rotated 10;
z2 = right scaled 100 rotated 135;
z3 = right scaled 225 rotated -17.5;
% define the other points, relative to Q
pair A, B, P, Q, R;
Q = 0.8125 z3;
A = whatever[origin, z1]; A-Q = whatever * z1 rotated 90;
P = whatever[origin, z2]; P-Q = whatever * z2 rotated 90;
B = whatever[origin, z1]; B-P = whatever * z1 rotated 90;
R = whatever[A,Q]; R-P = whatever * (B-P) rotated 90;
% mark the angles
drawoptions(withcolor .67 blue);
path c; c = fullcircle scaled 30;
draw c rotated angle (Q-P) shifted P cutafter (P--B);
draw c rotated angle (P-Q) shifted Q cutafter (Q--R);
draw c rotated angle P cutafter (origin--z1);
drawoptions();
% draw the rays and A--Q
drawarrow origin -- z1; label(btex r_1 etex, z1 scaled 1.05);
drawarrow origin -- z2; label(btex r_2 etex, z2 scaled 1.08);
drawarrow origin -- z3; label(btex r_3 etex, z3 scaled 1.05);
draw A--Q;
% draw the dashed lines
drawoptions(dashed evenly);
draw B--P--R--Q--P; drawarrow origin -- P scaled 4/3;
drawoptions();
% label the points
dotlabel.urt(btex Q etex, Q);
dotlabel.top(btex A etex, A);
dotlabel.lrt(btex R etex, R) withcolor .67 blue;
dotlabel.top (btex B etex, B);
dotlabel.llft(btex P etex, P);
dotlabel.llft(btex O etex, origin);
endfig;

68

vardef invert(expr P, C) = % invert path P or pair P in circle C
save I, r, s, T; pair I; I = center C; r = abs(point 0 of C-I);
if pair P: s = abs(P-I); I if s > eps: + (P-I) / s * r / s * r fi
elseif path P: T = length P; for t=0 upto T-1:
invert(point t of P, C) .. endfor
if cycle P: cycle else: invert(point T of P, C) fi

fi
enddef;

circle of inversion

A
B

C

One must also recognize that any attempt to illustrate geometry
involves a basic fallacy. For example, a straight line is unbounded

and infinitely thin and smooth, while any illustration is unavoidably
of finite length, of positive thickness, and rough edged.

— Benoit Mandelbrot, The Fractal Geometry of Nature

beginfig(1);
pair A,B,C; A = origin; C = 254 right; B = 7/8[A, C];
path c[];
c1 = fullcircle scaled 2 abs(A-C); % large circle for the inversions
c2 = fullcircle scaled abs(A-C) shifted 1/2[A,C];
c3 = fullcircle scaled abs(A-B) shifted 1/2[A,B];
c4 = fullcircle scaled abs(B-C) shifted 1/2[B,C];
c5 = invert(c4,c1);

drawoptions(withcolor 3/4 white);
draw c4; draw c5;
draw invert(subpath(-3/8, 3/2) of c2, c1); % vertical lines
draw invert(subpath(-3/8, 3/2) of c3, c1);

drawoptions(withcolor 1/2 red);
draw subpath(-1/4,7/8) of c1 withpen pencircle scaled 1/4;
label.lft("\textit{circle of inversion}", point 7/8 of c1);

numeric d; d = abs(point 0 of c5 - point 4 of c5); % diameter of c5
for i=1 upto 48:
path c, c'; c = c5 shifted (0, i*d); c' = invert(c, c1);
draw c' withpen pencircle scaled 1/4 withcolor 2/3 blue;
if i<5:

drawoptions(withcolor 3/4 white);
draw c; draw origin -- center c;
draw center c withpen pencircle scaled dotlabeldiam;
draw center c' withpen pencircle scaled dotlabeldiam;

drawoptions();
fi

endfor

drawoptions(withcolor 2/3 blue);
draw A--C;
draw subpath (0,4) of c2 withpen pencircle scaled 1/4;
draw subpath (0,4) of c3 withpen pencircle scaled 1/4;
draw subpath (0,4) of c4 withpen pencircle scaled 1/4;
dotlabel.lft("A", A); dotlabel.llft("B", B); dotlabel.rt("C", C);

endfig;

69

9.19 Drawing angle marks
Observant readers will have noticed that the occasional angle marks in the
preceding examples are generally drawn using plain METAPOST commands rather
than a macro. This is partly in order to make the examples self-contained and
partly to show what can be done with the default plain METAPOST format.
To mark a right angle at point a on the line a . . b you can do something like this:

draw unitsquare scaled 5 rotated angle (b-a) shifted a;

with a suitable pen and a suitable colour. You could write a macro to do this, but
it hardly seems worth the effort.

For example, this is one way to annotate a right-angle triangle:

pair a, b, c; a = 10 dir 10; b = 160 dir 20;
c - a = whatever * (b - a rotated 90); ypart c = ypart b;
draw unitsquare scaled 5 rotated angle (b-a) shifted a

withcolor 3/4;
draw a--b--c--cycle;

which produces this:

a

b
c

Equipped with the macro shown on the left, you could add this:

draw angle_mark(a, c, b, 16) withcolor 2/3 red;

to get this:

a

b
c

Or, using the fancier macro:

69°

a

b
c

On the other hand, you might want to make a macro for a curved angle mark since,
it is a bit more cumbersome. It is probably simplest make the macro create only
the required path, so you can use it with draw or fill as required. The idea here is
that P , O, and Q are 〈pair〉 variables and r is a 〈numeric〉 representing the desired
radius.

vardef angle_mark(expr P, O, Q, r) =
fullcircle scaled 2r rotated angle (P - O)
shifted O cutafter (O -- Q)

enddef;

Note that (P-O) returns a 〈pair〉, but (O--Q) make a 〈path〉. Less is usually more
in coordinate geometry diagrams, but you could go on to make it much fancier if
you wanted:

vardef fancier_angle_label(expr P, O, Q, r) = image(
save a, t; path a; string t;
a = fullcircle scaled 2r rotated angle (P - O) shifted O cutafter (O -- Q);
fill O -- a -- cycle withcolor 7/8[red, white]; draw a withcolor 2/3 red;
t = decimal (round(angle (Q-O) - angle (P-O)) mod 360) & "°";
label(t, O + r * (unitvector(P-O) + unitvector(Q-O)));

) enddef;

Note that the angle label is calculated automatically. But it is tediously time-
consuming to make this sort of macro completely general and fool-proof, so this
example might not work for all angles.

70

10 The missing trigonometry functions
METAPOST provides only two basic trigonometry functions, sind and cosd. This
lack appears to be a deliberate design; in general it’s much easier to use the rotated
and angle functions than to work out all the sine, cosines and arc-tangents involved
in rotating parts of your picture. But if you really want the ‘missing’ functions they
are not hard to implement.

First you might want versions that accept arguments in radians instead of de-
grees. For this you need to know the value of π, but this is not built into plain
METAPOST. If you are using the default number system then it’s enough to define
it to five decimal digits, but if you are using one of the new number systems you

numeric pi;
% approximate value
pi := 3.14159;
% measure round a circular arc...
pi := 1/4 arclength (quartercircle scaled 16);
% up to 32 digits of precision
pi := 3.1415926535897932384626433832795;
% as many digits as are needed...
vardef getpi =
save lasts, t, s, n, na, d, da;
lasts=0; s=t=3; n=1; na=0; d=0; da=24;
forever:
exitif lasts=s;
lasts := s;
n := n+na; na := na+8;
d := d+da; da := da+32;
t := t*n/d;
s := s+t;

endfor
s

enddef;
pi := getpi;

% conversions
def degrees(expr theta) = theta / pi * 180 enddef;
def radians(expr theta) = theta / 180 * pi enddef;
% trig functions that expect radians
def sin(expr theta) = sind(degrees(theta)) enddef;
def cos(expr theta) = cosd(degrees(theta)) enddef;
% inverse trig functions
def acosd(expr a) = angle (a,1+-+a) enddef;
def asind(expr a) = angle (1+-+a,a) enddef;
def acos(expr a) = radians(acosd(a)) enddef;
def asin(expr a) = radians(asind(a)) enddef;
% tangents
vardef tand(expr theta) = save x,y; (x,y)=dir theta; y/x enddef;
def atand(expr a) = angle (1,a) enddef;

might want more digits of precision. In fact there’s no harm in always defining these
extra digits; even when you are using the default scaled number system, META-
POST will happily read as many extra digits of π as you supply, before it rounds
the value to the nearest multiple of 1

65536 (which turns out to be 3.14159). The
same applies to the double number system, but the binary and decimal number
systems will give you an error if you supply more digits that the default precision.
So in general it’s best to use no more than 32 digits. It’s also possible, but not
really worth the trouble, to define a routine to calculate π to the current precision. ↗

However you define it, once you are armed with a value for π you can then define
functions to convert between degrees and radians, and some more ‘normal’ versions
of sine and cosine.

There’s no built-in arccos or arcsin function but each is very easy to implement
using a combination of the angle function and the Pythagorean difference operator.

METAPOST does have built-in functions for tangents; but they are called angle
and dir and they are designed for pairs. So angle (x, y) = arctan(y/x) while dir 30
gives you the point (x, y) on the unit circle such that tan 30◦ = y/x. You can use
these ideas to define tangent and arctan functions if you really need them, but often
angle and dir are more directly useful for drawing. You should also be aware that
the tand function shown here does not check whether x is close to zero; if this is an
issue, then add something like this at the appropriate point:

if abs(x) < eps : infinity else : y/xfi

71

11 Traditional labels and annotations

This section describes labels and annotations in what can be called the
traditional METAPOST environment, where your figures are compiled
with mpost. The section after this describes labels & annotations in the
newfangled (but better) world of lualatex and the luamplib package.

METAPOST does not draw text directly; but it provides two different mechanisms
to turn some text into a 〈picture〉, which can then be treated like any other; saved as
a variable, drawn directly, or transformed in some way with a scaling, a reflection,
or a rotation. The first mechanism is described below, the second in §11.2.

11.1 Simple strings in PostScript fonts with infont

The first mechanism is the primitive binary operation infont. As explained in
section 8.3 of the METAPOST manual, it takes two strings as arguments: the left
hand argument is the string of text to be printed; the right hand argument is the
name of the font to use; and the result is a picture primary.

To find the name of a suitable font, you have to consult your local
psfonts.map file, and probably the PSNFSS documentation. Here
are a few of the many fonts available on my local TEX installation; the
name to use with infont is in the first column.

pagk8r Avant Garde Hand in glove 42
pbkl8r Bookman Hand in glove 42
pcrr8r Courier Hand in glove 42

phvr8r Helvetica Hand in glove 42
pncr8r New Century Schoolbook Hand in glove 42
pplr8r Palatino Hand in glove 42
ptmr8r Times Hand in glove 42
pzcmi8r Zapf Chancery Hand in glove 42

pzdr Zapf Dingbats abcdef

psyr Symbol αβχδεφ

eurm10 Euler abcdef

The text example in the first line of this table was produced with
draw "Hand in glove 42" infont "pagk8r" shifted (124,144);

Note that in PostScript terms each of these font names refers to a
combination of three files: an encoding that maps the characters you
type to the glyphs in the font; a font metrics file that defines the sizes
of the virtual boxes surrounding these glyphs; and a set of PostScript
routines that actually draw them. In a TEX installation these combi-
nations are defined in a font map file, usually called psfonts.map. If
you run mpost with the -recorder switch it will write an extra log
file (with a .fls extension) that lists the names of all the files used in
a job. The actual font map file in use will be one of these. You can
then browse it to find a definitive list of the font names you can use
with your local METAPOST.

To make a suitable string you can enclose your text in double quotes to make a
string token, or to refer to a 〈string〉 variable, or do one of these:

• Concatenate two other strings with &.

• Use substring (a,b) of s to get a substring of string s.

• Use min(a,b,...) or max(a,b,..) to find the lexicographically smallest (or
largest) string in the list a,b,.... The list must have at least two entries,
and they must all be strings.

• Use char to convert a numeric expression to the corresponding ASCII code;
the numeric expression is rounded to the nearest integer modulo 256.

• Use decimal to get a string representing the value of a numeric expression.

• Apply str to any suffix (and hence to any variable). You get back a string
representation of the suffix or variable name.

• Use readfrom to read one line from a file as a string.

• Use fontpart to extract the name of the font used in a picture created with
infont — the string will be empty if there’s no text element in the picture.

• Use textpart to get the text used in a picture created by infont — the string
will be empty if there’s no text element in the picture.

72

11.1.1 Character sets used by infont to set text

Standard METAPOST is configured to accept as input only space and the usual 94
visible ASCII characters (that is the characters numbered 32 to 126 in the tables
at the right), but you can use any 8-bit characters as the payload of a string.
However, plain METAPOST is set by default to use cmr10, the familiar Computer
Modern typeface developed by Knuth for TEX, and unfortunately, this is encoded
using the TEX text font encoding (also known as ‘OT1’, and as shown in the first
table in Appendix F of the TEXbook). From the point of view of using infont

Font: texnansi-lmr10

0 € ⁄ ˙ ˝ ˛ fl ff fi ffi ffl
16 ı  ` ´ ˇ ˘ ¯ ˚ ¸ ß æ œ ø Æ Œ Ø
32 ! " # $ % & ’ () * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [\] ˆ _
96 ‘ a b c d e f g h i j k l m n o

112 p q r s t u v w x y z { | } ˜ ¨
128 Ł ' ‚ ƒ „ … † ‡ ˆ ‰ Š ‹ Œ Ž ^ −
144 ł ‘ ’ “ ” • – — ˜ ™ š › œ ž ~ Ÿ
160 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯
176 ° ± 2 3 ´ µ ¶ · ¸ 1 º » ¼ ½ ¾ ¿
192 À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
208 Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
224 à á â ã ä å æ ç è é ê ë ì í î ï
240 ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Font: pplr8r

0 ˙ fi fl ⁄ ˝ Ł ł ˛ ˚ ˘ − Ž ž
16 ˇ ı ` '
32 ! " # $ % & ’ () * + , - . /
48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

64 @ A B C D E F G H I J K L M N O
80 P Q R S T U V W X Y Z [\] ^ _
96 ‘ a b c d e f g h i j k l m n o

112 p q r s t u v w x y z { | } ~

128 ‚ ƒ „ … † ‡ ˆ ‰ Š ‹ Œ
144 “ ” • – — ˜ ™ š › œ Ÿ
160 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯
176 ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿

192 À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
208 Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
224 à á â ã ä å æ ç è é ê ë ì í î ï
240 ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

to make simple labels, this means that the characters for space and seven other
characters (< > \ _ { | }) are in the wrong place. You are likely to notice this
first if you try to set a label with two words; the space will come out as a small
diagonal stroke accent that is used in plain TEX to make the characters Ł and ł,
used in Polish and other Slavic languages.

To fix this you should change the default font at the start of your program:

defaultfont := "texnansi-lmr10"; % for Computer Modern Roman

If you want cmss10, use texnansi-lmss10 and so on. The encoding is shown on the
right. The characters printed in black correspond to the widely used ISO Latin 1
encoding. If you want to use one of the standard PostScript fonts listed on the
previous page, then the encoding to use is either 8y to get the same texnansi
arrangement or 8r to get the arrangement shown in the lower table.

Choosing a font with one of these encodings means that if you use Windows code
page 1252 or ISO Latin 1 as the encoding for your text editor, you can create labels
with accented characters using infont and without resorting to btex ... etex.
But if you are using UTF-8 characters (as many of us are now), then you have to
do some extra work to get them printed correctly with infont. A solution is shown
on the next page.

When labelling a drawing, it is always possible to use btex ... etex to produce
your accented characters as discussed in section 11.2 below; but it may be that
you are using METAPOST to represent data and labels supplied from some other
program or a website. In this case it can be useful to be able to work with at least
a subset of UTF-8 input. This is discussed in the next section.

73

11.1.2 Mapping a subset of UTF-8 for infont

UTF-8 is a way of representing 16-bit Unicode characters with sequences of 8-
bit characters. So your UTF-8 aware editor may show you an é but METAPOST,
knowing nothing about UTF-8, will see this as Ã©. But you can write a fairly
simple routine to decode a commonly-used subset of UTF-8. • You can extend this idea to cope with other UTF-8 characters, in-

cluding those that use three bytes. The UTF-8 page on Wikipedia
shows you how it works. Essentially you look at the values of the
next 2 or 3 characters and then pick the appropriate character in
your encoding with char. But your output is still, of course, limited
to the 256 characters in your encoded font.

• If you get tired of typing decode, you could define a short cut with
a shorter name. You could even write it as a primary without
parentheses like this:

def U primary s = if string s: decode(s) fi enddef;

which would let you write:

label.rt(U"café à la crème", (x,y));

• However, there’s no point in making any of this too elaborate. If
you really want proper Unicode support you should use METAPOST

with LuaTEX. (See below in §12).

vardef decode(expr given) =
save a,b,i,s,out; string s, out; numeric a, b, i;
out = ""; i=0;
forever:
i := i+1; s := substring(i-1,i) of given; a := ASCII s;
if a < 128:
elseif a = 194:
i := i+1; s := substring (i-1,i) of given;

elseif a = 195:
i := i+1; s := char (64 + ASCII substring (i-1,i) of given);

else:
s := "?";

fi
out := out & s;
exitif i >= length given;

endfor
out

enddef;

Use it with infont like this: ‘decode("café") infont "ptmr8r"’ to produce a
normal 〈picture〉 that can be passed to draw or saved as usual. The fragment on the left produces:

cafÃ© noir Â£2.50
café noir £2.50

cafÃ© noir Â£2.50
café noir £2.50

The label macro automatically calls infont with the current value
of defaultfont; notice how it also adds labeloffset space.

draw "café noir £2.50" infont "ptmr8r";
draw decode("café noir £2.50") infont "ptmr8r" shifted 12 down;
defaultfont := "pncr8r";
label.rt("café noir £2.50", 24 down);
label.rt(decode("café noir £2.50"), 36 down);

Note that you can’t just use draw with a string variable; you have to use infont to
turn the string into a picture. On the other hand, label calls infont automatically,
but you must explicitly set the default font, preferably to one with an encoding that
is compatible with ISO Latin 1.

74

11.1.3 Typographical minus signs with infont

If you are producing labels for a numeric reference scale, like the axis of a chart, it
is convenient to be able to write a loop like this:

for x=1 upto 3: label.bot(decimal x, (x*cm, 0)); endfor

to produce your labels, however if x is negative this does not come out so well,
because the first character of the string produced by decimal -1 is an ASCII 45,
which is the hyphen character. What we need is the mathematical minus sign
instead; this is what you get with btex -1 etex of course, but that’s harder to
put in a loop with traditional METAPOST. Instead you can do this: -3 -2 -1 0 1 2 3

−3 −2 −1 0 1 2 3
with plain decimal:

with this hack:string minus_sign;
minus_sign := char 143; % if you are using the texnansi encoding
minus_sign := char 12; % if you are using the 8r encoding
for x = -3 upto 3:
label.bot(if x<0: minus_sign & fi decimal abs(x), (x*cm, 0));

endfor

Note that this does not work with the default encoding used in cmr10 because there
is no minus sign available in that font. Plain TeX uses char 0 from cmsy10.

11.1.4 Bounding boxes and clipping with infont

Once the encoding is fixed, the other two parts of a PostScript font are the font
metrics and the programs that draw the actual glyphs. The font metrics define the
width of each character and provide a kerning table to adjust the space between
particular pairs. This means that certain characters will overlap each other or stick

proof proof
out beyond the bounding box of the picture produced by infont. This is not
normally a problem unless the picture happens to be at the edge of your figure. In
the first example observe how the last letter sticks out to the right; in the second
a wider baseline has been added to prevent this. If you want this effect, but you
don’t want to see the baseline, then draw it using the colour background.

11.1.5 But what about the label command?

As a convenience, the plain METAPOST format provides a label macro that auto-
matically turns strings into pictures for you using whatever font name is the current
value of defaultfont and scaled to the current value of defaultscale.

Plain METAPOST defines a label macro (approximately) like this:

def label(expr s, z) =
draw s if string s: infont defaultfont

scaled defaultscale fi shifted z
enddef;

plus some clever code to align the label for you.

75

11.1.6 Bounding boxes and alignment with infont

To allow you to align a text label on a specific point, METAPOST provides five
unary operators to measure the bounding box of a picture; they are shown in red
in the diagram, and you can use them to measure the width, depth, and height of
a textual picture. You can also work out the location of the baseline of the text
or the x-height, provided you know how much your picture has been shifted. The
easiest way to do this is to measure the picture before you shift it. proofcenter

urcornerulcorner

llcorner lrcornerbboxmargin

x-height

origin
picture pp; pp = "proof" infont "pplri8r";

Here the picture pp is created with the origin of the text sitting at coordinates (0, 0);
then you can get the dimensions like this

wd = xpart urcorner pp;
ht = ypart urcorner pp;
dp = ypart lrcorner pp;

In this particular case you will find that you have wd = 20.47292, ht = 7.19798,
and dp = −2.60017. The depth is negative because the descenders on the p and the
f in the chosen font stick down below the base line. The height is greater than the
x-height, because the f also sticks up, so you need to make another measurement:

numeric xheight; xheight = ypart urcorner ("x" infont "pplri8r");

Armed with these measurements you can align your text labels neatly so that they
are all positioned on the base line or vertically centred on the lower case letters
regardless of any ascenders or descenders. To draw your label left-aligned with its
origin at position (x, y) you just need to use: draw pp shifted (x, y). To draw it
right-aligned, you subtract wd from the x-coordinate: draw pp shifted (x−wd, y).
Or to centre it, subtract 1/2wd. To center it vertically on the lowercase letters,
subtract 1/2 xheight from the y-coordinate. You might of course like to wrap these
adjustments up in your own convenient macro to help you maintain consistency in
a diagram with many labels.

Alternatively you can adjust the bounding box of your textual picture and then
use it with label as normal. Assuming wd is set to the width of your picture and
xheight is set correctly for the current font, then

setbounds pp to unitsquare xscaled wd yscaled xheight;

will make the label alignment routines ignore any ascenders or descenders.

Beware that if the resulting label is right at the edge of your drawing
then any parts of the text that stick out of the adjusted bounding box
will be clipped.
See also §13.3 for more on what happens if you rotate the text.

76

11.1.7 Setting Greek letters with infont

μῆνιν ἄειδε θεὰ Πηληϊάδειω ᾿Αχιλῆος

While it’s technically possible to set the whole of Homer’s Iliad using the Greek
fonts available to infont, it’s probably not a great use of time; on the other hand
you might want to label parts of a diagram with Greek letters, and for single Greek
letters infont is more than adequate.

The Greek letters for Computer Modern are in the maths-italic font cmmi10,
which uses the encoding shown on p. 430 of The TEXbook. For historical reasons
there’s no omicron available, so you are supposed to use the o character instead.
Fortunately you are unlikely to need more than the first few, and it’s quite easy to
remember that char 11 = α, char 12 = β, and so on. Producing the upper case
letters is a bit more of a fiddle with this encoding as you need to know which ones
use a Roman letter form; for details examine the program on the right, or check the
table in §8.4.2 that shows Herman Zapf’s elegant Euler font, available as eurm10.
This makes a refreshing change for some diagrams.

beginfig(1);
string ab, AB;
ab = ("" for i=11 upto 23: & char i endfor

& "o" for i=24 upto 33: & char i endfor);
AB = ("AB" & char 0 & char 1 & "EZH" & char 2 & "IK"

& char 3 & "MNO" & char 4 & char 5 & "P"
& char 6 & "T" & char 7 & char 8 & "X"
& char 9 & char 10);

draw ab infont "cmmi10";
draw AB infont "cmmi10" shifted 12 down;
draw ab infont "eurm10" shifted 32 down;
draw AB infont "eurm10" shifted 44 down;

endfig;

αβγδεζηθικλµνoξπρστυφχψω
ABΓ∆EZHΘIKΛMNOΞΠPΣTΥΦXΨΩ

αβγδεζηθικλµνoξπρστυφχψω

ABΓ∆EZHΘIKΛMNOΞΠPΣTΥΦXΨΩ

string ab, AB;
ab = "abgdezhjiklmnoxprstufqyw";
AB = "ABGDEZHJIKLMNOXPRSTUFQYW";

draw ab infont "grmn1000"
αβγδεζηθικλμνοξπρςτυφχψω

ΑΒΓΔΕΖΗΘΙΚΛΜΝΟΞΠΡΣΤΥΦΧΨΩ

draw ab infont "gporsonrg6r"
αβγδεζηθικλμνοξπρστυφχψω

ΑΒΓ∆ΕΖΗΘΙΚΛΜΝΟΞΠΡΣΤΥΦΧΨΩ

draw ab infont "gneohellenicrg6r"
αβγδεζηθικλμνοξπρστυφχψω

ΑΒΓ∆ΕΖΗΘΙΚΛΜΝΟΞΠΡΣΤΥΦΧΨΩ

If you have fonts installed from the Greek Font Society, then you get a wider choice,
and a slightly more modern encoding. All of the plain letters are available in the
normal ASCII positions, so you do not have to muck about with char xx so much.
However in recent versions there is no character you can use as a word space, so if
you want to set Greek text rather than individual letters, see §12.2.

32 ῁ ! ΅ ῭ % ´ () * + , - . /

48 0 1 2 3 4 5 6 7 8 9 : · ῾ ᾿ ;

64 ῟ Α Β ῝ ∆ Ε Φ Γ Η Ι Θ Κ Λ Μ Ν Ο

80 Π Χ Ρ Σ Τ Υ ῞ Ω Ξ Ψ Ζ [῏] ῎ ῍

96 ` α β ς δ ε φ γ η ι θ κ λ μ ν ο

112 π χ ρ σ τ υ ω ξ ψ ζ « ι » ῀ —

128 ὰ ἁ ἀ ἃ ᾲ ᾁ ᾀ ᾃ ά ἅ ἄ ἂ ᾴ ᾅ ᾄ ᾂ

144 ᾶ ἇ ἆ ᾷ ᾇ ᾆ ὴ ἡ ἠ ῂ ᾑ ᾐ

160 ή ἥ ἤ ἣ ῄ ᾕ ᾔ ᾓ ῆ ἧ ἦ ἢ ῇ ᾗ ᾖ ᾒ

176 ὼ ὡ ὠ ὣ ῲ ᾡ ᾠ ᾣ ώ ὥ ὤ ὢ ῴ ᾥ ᾤ ᾢ

192 ῶ ὧ ὦ ῷ ᾧ ᾦ ὶ ἱ ἰ ἳ ὺ ὑ ὐ ὓ

208 ί ἵ ἴ ἲ ύ ὕ ὔ ὒ ῖ ἷ ἶ Ϊ ῦ ὗ ὖ Ϋ

224 ὲ ἑ ἐ ἓ ὸ ὁ ὀ ὃ έ ἕ ἔ ἒ ό ὅ ὄ ὂ

240 ϊ ῒ ΐ ῗ ϋ ῢ ΰ ῧ ᾳ ῃ ῳ ῥ ῤ

77

11.2 Setting text with btex ... etex

As soon as you need anything complicated in a label, like multiple fonts, mul-
tiple lines, or mathematics, you will find it easier to switch from infont to the
btex ... etex mechanism that calls TEX to create your textual picture. In fact
you might prefer to use TEX for all your labels, even simple strings, for the sake of
consistency. The only downside is that this mechanism is a little bit slower.

The btex mechanism produces a textual picture just as infont does with a
height, width, and depth that you can measure, and adjust, as discussed in sec-
tion 11.1.6. And again, just like infont you can either use draw to place the
resulting picture directly, or pass it to the label macro.

What you need to be aware of is that METAPOST places everything you put
between the btex and etex into an \hbox{...} and processes it with plain TEX.
This has several implications: on the positive side you have easy access to italics
and bold letters, mathematical formulae, symbols like α, and anything else
you can normally put in an \hbox{}; but there are some restrictions especially if
you want to do anything more than produce a simple single-line label in the default
Computer Modern type face. The next few sections deal with some of the things
you might want to do.

11.2.1 Producing display maths

One of the obvious restrictions that TEX imposes in restricted horizontal mode
is that you can’t use $$... $$ to produce display maths. This means that the
various mode-sensitive constructs like

∑
and

∫
will come out in their smaller forms.

And your fractions will look like they are 3
4 size. If you want them big, then the

solution is simple: just add \displaystyle at the beginning of your formula −→

...
label(btex $\displaystyle \int_0^t 3x^2\, dx$ etex, (x,y));
...

11.2.2 Getting consistent baselines for your labels

As already discussed §11.1.6, you can fiddle with the bounding box of a text picture
to make the label macro line things up on a common baseline, but there is a much
easier way with btex and etex. Plain TEX provides a \strut command that inserts
an invisible rule that sticks up 8.5pt above the baseline and 3.5pt below. If you put
one of these in each of the your labels, then they will all have the same vertical size
and will all line up neatly: label(btex \strut a etex, origin);

78

11.2.3 Multi-line text labels

Another consequence of the \hbox feature is that there is no automatic text wrap-
ping done for you, but again you can work round this easily because TEX lets you
nest a \vbox inside an \hbox. This gives you proper paragraph-like wrapping but
you will almost certainly need to adjust the line length, justification, and indenta-
tion in order to get a satisfactory result →

...
label(btex \vbox{\hsize 2in\parindent 0pt\raggedright

An extended caption or label that will be set as a
small paragraph with automatic hyphenation and
line-wrapping.

} etex, z0);
...

You may only need the full power of TEX’s paragraph making system occasionally
though: more usually you will just have one or two lines in each label, and you
might be quite happy to control the line breaks manually. In this case it’s helpful
to wrap a little tabular structure around your text. Here’s how to define something
suitable in plain TEX. First you need to define a suitable macro at the start of your
figure

verbatimtex
\def\s#1{\let\\\cr\vbox{\halign{\hfil\strut ##\hfil\cr#1\crcr}}}
etex

then you can write labels like this:

...
label(btex \s{Single line} etex, z1);
label(btex \s{Longer text split\\onto a new line} etex, z2);
...

Notice how you can still use the macro with single lines, you just get a one-line table
as it were. Note also that the definition of \s as given will centre each line of the
text under the one above. If you want them left aligned or right aligned, omit one of
the \hfil commands. The three examples given above are typeset over here −→

An extended caption or label
that will be set as a small
paragraph with automatic
hyphenation and line-wrapping.

Single line

Longer text split
onto a new line

The small red circle show the reference points and the pale blue lines the bounding
boxes of the pictures that METAPOST gets back from TEX.

You can of course achieve the same effects using LATEX tabular structures, but
then you have to use the -tex=latex option to run METAPOST.
Note: In case it’s not obvious, if you want text wrapping or tabular arrangements
as discussed here, you need to use btex ... etex to set your labels. There’s no
text wrapping with infont. On the other hand if all of your labels are done with
infont, but you just want one extra that has two lines, you can split the text into
two separate labels and position them independently.

79

11.2.4 Pins and braces

In some awkward corners, you may find that you just can’t get your label in
the right place with dotlabel even if you adjust labeloffset. In these cases there
are two simple techniques you can use. First, you could separate drawing the dot
from placing the label; given a point P you can try:

P

pole

draw P withpen pencircle scaled dotlabeldiam;
label(btex P etex, P shifted 10 dir 68);

Using dotlabeldiam ensures that your dots match any others done with dotlabel.
Secondly, if that’s not enough, use a temporary pair to create a call out line:

z0 = P + 20 dir -20;
draw z0 -- P
cutafter fullcircle scaled 8 shifted P
withpen pencircle scaled 1/4;

label.rt(btex \textit{pole} etex, z0);

If you want to do this sort of thing often, then it might be worth making a macro;
it is hard to write anything completely general, but see §12.6 for an example.

You might also want to mark a straight line between two points. The simplest
vardef do_brace(expr a, b, offset, r) =

save d, e, m, n, brace, hook; pair e; path brace, hook[];
d = angle(b-a);
e = up scaled offset rotated d shifted r[a,b];
n = 1/2 offset; m = abs(n);
hook1 = origin {0, n} .. (m, n) {1,0};
hook2 = (-m,-n) {1,0} .. {0, n} origin {0,-n} .. (m,-n) {1,0};
hook3 = (-m, n) {1,0} .. {0,-n} origin;
brace = (hook1 rotated d shifted a --

hook2 rotated d shifted e --
hook3 rotated d shifted b) shifted (up scaled n rotated d);

draw brace withpen pencircle yscaled .6 xscaled .1666 rotated d;
point 3 of brace

enddef;

label.lrt("Here", do_brace(z1, z2, -12, 3/4));

Note that, as well as drawing the braces, the macro uses the grouping
provided by vardef to return the mid point so that you can put a
label next to it.

way to do this is just to use drawdblarrow on a copy of your straight path shifted
to one side, like so:

drawdblarrow (z1--z2) shifted (12 up rotated angle (z2-z1));

If you combine this with temporarily setting ahangle:=180, you get the simple
dimension line shown in blue.

z1

z2

Here

The red braces are a more complex variation on this theme −→

80

11.2.5 Dynamic labels

If you are a maven of programming language syntax you may have noticed that
btex ... etex fits into the type system that METAPOST inherits from META-
FONT as a picture and not as a string. Effectively, btex and etex act as a
special pair of quotation marks that create a picture; however the contents are used
verbatim, so that the whole construction is a syntactical atom. This means that
you cannot write this sort of thing:

for i=0 upto 4: % this won't work
label(btex "$p_" & decimal i & "$" etex, (10i,0));

endfor

Given this input METAPOST would attempt to get TEX to typeset
\hbox{"$p_" & decimal i & "$"}

which would probably result in a ‘Misplaced alignment tab character’ error. To get
round this problem, METAPOST provides a general mechanism to write out a string
to a file, and then read the file back in. This is the mechanism used by the TEX()
macro that is provided alongside plain.mp. This allows you to write:

input TEX
...
for i=0 upto 4:
label(TEX("$p_" & decimal i & "$"), (10i,0));

endfor

This works because the TEX macro is expecting a string so the normal string
concatenation rules are applied. The macro wraps the result with btex and etex,
writes them out to a file, and then reads the file in again so that METAPOST gets
the correct contents to pass to TEX.

The only trouble with this is that it makes METAPOST open a file, write to it,
close it, and then read it in again for each label one at a time; this means that
it’s very slow. The example on the right shows how to speed things up, by using
the same file for all the labels and only writing it once. The write command is a
METAPOST primitive, and EOF is defined in plain.mp.

path c; c = fullcircle scaled 100; draw c withcolor .67 red;
for i=0 upto 7:
fill fullcircle scaled 3 shifted point i of c;
z[i] = point i of c scaled 1.15;
write "label(btex $p_" & decimal i & "$ etex,("

& decimal x[i] & "," & decimal y[i]
& "));" to ".mplabels";

endfor
write EOF to ".mplabels";
input ".mplabels";

p0

p1

p2

p3

p4

p5

p6

p7

Note that you can’t use decimal on a 〈pair〉 variable, but you can
save the pair as a z-variable and then use the x and y syntax.
The scaling trick used here only works because c is centred on the
origin. If c were drawn elsewhere, you would have to write:

... point i of c shifted -center c
scaled 1.15
shifted center c ...

81

11.2.6 Matching fonts

Despite the apparent restriction of using plain TEX it is almost always possible to
match the font and format of an enclosing LATEX document. The simplest approach
is to use the plain TEX font mechanism with the names from psfonts.map.

verbatimtex
\font\rm=ptmr8r\rm
etex

Adding this at the top of your METAPOST program will set your text in Times
New Roman, although any maths will still be set using Computer Modern. To fix
this, all you have to do is to redefine all the maths fonts in all sizes you need; this
is not really that hard but it is a fiddle to get all the details right. Fortunately the
wonderful font-change package has done it all for you for a large range of fonts;
with this package installed you can use

verbatimtex
\input font_times
etex

instead, and all of your TEX labels, including bold letters, italics, small caps, and
mathematics will be set in Times New Roman.

Here are some samples of the fonts available in the font-change
package. For full details, and especially details about using AMS
symbols, see the package documentation.

font_times

font_palatino

font_charter

font_utopia

font_cmbright

font_century

font_concrete

font_bookman

font_arev

NB. Learn v = u + at right now!

NB. Learn v = u + at right now!

NB. Learn v = u+ at right now!

NB. Learn v = u + at right now!

NB. Learn v = u + at right now !

NB. Learn v = u + at right now!

NB. Learn v = u + a t right now !

NB. Learn v = u + at right now!

NB. Lern  =  + t right now!

If you still can’t get your labels to match, you can force METAPOST to use LATEX
instead of plain TEX. You need to use the -tex command line switch:

mpost -tex=latex

and also load the packages you need in a verbatimtex block at the top of your file −→

verbatimtex
\documentclass{article}
\usepackage{mathpazo}
\usepackage{xcolor}
\begin{document}
etex

Note that the \documentclass and the \begin{document} lines
are required, but METAPOST is smart enough to add an
\end{document} for you.

Plain mpost needs an old-fashioned .dvi file to work with, so you can only
use an engine that still produces one, like latex or elatex, and not any of the
more modern engines, like pdflatex. Generating the labels takes a little bit longer
because you have to load rather more ‘infrastructure’ for LATEX, and you are limited
to whatever font packages you have that work with the traditional LATEX engine.
For a more modern approach, read on into section 12.

82

11.2.7 Setting verbatim listings

There is a good chance that you will never need to set a verbatim listing in a
METAPOST drawing, but if you do there are a couple of things to think about. The
issue about setting text verbatim with TEX is that turning off the control characters
can be tricky, so if you have text for a label with characters that are special in TEX
like the backslash or the underscore, then the simplest thing to do is to avoid TEX
completely and use infont instead.

1. “TeX “ sets maths like this $e=mcˆ2$

2. \TeX \ sets maths like this $e=mcˆ2$

3. \TeX \ sets maths like this $e=mc^2$

4. \TeX \ sets maths like this $e=mcˆ2$

1. “TeX “ sets maths like this $e=mcˆ2$

2. \TeX \ sets maths like this $e=mcˆ2$

3. \TeX \ sets maths like this $e=mc^2$

4. \TeX \ sets maths like this $e=mcˆ2$

string s; s = "\TeX\ sets maths like this $e=mc^2$";
draw ("1. " & s) infont defaultfont;
draw ("2. " & s) infont "texnansi-lmr10" shifted 20 down;
draw ("3. " & s) infont "cmtt10" shifted 40 down;
draw ("4. " & s) infont "texnansi-lmtt10" shifted 60 down;

But as you can see, (1) this is a bit of a disaster with the default font cmr10 because
it does not have all the glyphs in the usual ASCII positions (as noted above §11.1.1).
The solution is to use the version of the font with the texnansi encoding (2), but
you probably want it in the monofont (3) and as you can see cmtt10 has the “visible
space” character instead of a regular space. If this is not what you want then use
the alternative encoding (4).

If you want more than this, then you really need to use LATEX to process the
label, as discussed in §11.2.6, and load the appropriate preamble. −−−−−−−−−−−−→

prologues := 3; outputtemplate := "%j.eps";
verbatimtex
\documentclass{article}
\usepackage{listings}
\usepackage{xcolor}
\newcommand\mpstyle{\lstset{language=Metapost,
basicstyle=\ttfamily,columns=fullflexible,commentstyle=\color{red},
frame=none,keepspaces=true,showstringspaces=false}}
\lstnewenvironment{code}[1][]{\mpstyle\lstset{#1}}{}
\begin{document}
etex
beginfig(1);
picture P; P = thelabel(btex \vbox{\begin{code}

% special operators
vardef incr suffix $ = $:=$+1; $ enddef;
vardef decr suffix $ = $:=$-1; $ enddef;
def reflectedabout(expr w,z) = % reflects about the line w..z
transformed begingroup transform T_;
w transformed T_ = w;
z transformed T_ = z;
xxpart T_ = -yypart T_;
xypart T_ = yxpart T_; % T_ is a reflection

T_ endgroup enddef;
\end{code}} etex, origin);
fill bbox P withcolor (1,1,31/32); draw P; draw bbox P;
endfig; end.

+ Compile this with mpost -tex=latex and use epstopdf to make a PDF.

% special operators

vardef incr suffix $ = $:=$+1; $ enddef;

vardef decr suffix $ = $:=$-1; $ enddef;

def reflectedabout(expr w,z) = % reflects about the line w..z

transformed begingroup transform T_;

w transformed T_ = w;

z transformed T_ = z;

xxpart T_ = -yypart T_;

xypart T_ = yxpart T_; % T_ is a reflection

T_ endgroup enddef;

83

12 Modern labels, annotations, and other goodies
This section is a re-working of the previous section, that attempts to show how much
nicer it is to work in the new-fangled world of luamplib. If this is all new to you,
you probably should start by doing texdoc luamplib on your system and reading
the documentation provided with the package. In order to use these newfangled
facilities you need to create your METAPOST diagrams inside a TEX-wrapper as
explained above in §3.2.

The first thing to say is that everything in the preceding section will continue to
work more or less the same when you use luamplib with LuaLATEX. It is designed
to be backwards-compatible, so that existing METAPOST programs using infont
and btex ... etex will continue to work without change. The only differences are:
that the TEX() macro is re-implemented with internal library functions so that it
no longer uses temporary files, and is therefore very much faster; and it is easier to
integrate your drawings into LATEX because you no longer need to muck about with
verbatimtex blocks. So the example code shown on the right, will produce this:

\documentclass[border=5mm]{standalone}
\usepackage{fontspec}
\setmainfont{TeX Gyre Pagella} % <-- note chosen font
\usepackage{luamplib}
\begin{document}
\begin{mplibcode}
beginfig(1);

for x = 0 upto 1:
draw (80x,16) -- (80x, -68) withcolor 3/4[red, white];

endfor
for y = 0 upto 3:
draw (0, -20y) -- (160, -20y) withcolor 3/4[red, white];

endfor

string s; s = "Hand gloves";
draw s infont defaultfont shifted (0, 0);
draw s infont "phvr8r" shifted (0, -20);
draw TEX(s) shifted (0, -40);
draw btex Hand gloves etex shifted (0, -60);

dotlabel.urt(s, (80, 0));
dotlabel.urt(s infont "phvr8r", (80, -20));
dotlabel.urt(TEX(s), (80, -40));
dotlabel.urt(btex Hand gloves etex, (80, -60));

endfig;
\end{mplibcode}
\end{document}

Hand gloves

Hand gloves

Hand gloves

Hand gloves

Hand gloves

Hand gloves

Hand gloves

Hand gloves

Note that defaultfont is still cmr10 with the encoding that has the small stroke
(that plain TEX uses for the Ł character) instead of a space, and that you can still
use PostScript fonts like phvr8r. But also notice that the TEX() macro and the
btex ... etex construction have picked up the font set by the LATEX wrapper. As
you can see they produce exactly the same output; TEX() is generally more useful
because you can pass a primary string variable as an argument, which makes it
easier to construct dynamic labels. TEX() also has the synonym textext() for
compatibility with ConTexT. You can use either name, as you prefer.
But this isn’t the clever bit…

84

12.1 The magic of the textextlabel option
The clever bit is that luamplib allows us to turn on the TEX() behaviour by default,
so that you can just use plain strings with the label() macro, and have them
automatically processed through LATEX. All you have to do is add this to the
preamble:

\mplibtextextlabel{enable}

If you add this line to the example from the previous page, you get this output:

\documentclass[border=5mm]{standalone}
\usepackage{fontspec}
\setmainfont{TeX Gyre Pagella}
\usepackage{luamplib}
\mplibtextextlabel{enable} % <--- added option
\begin{document}
\begin{mplibcode}
beginfig(1);

for x = 0 upto 1:
draw (80x,16) -- (80x, -68) withcolor 3/4[red, white];

endfor
for y = 0 upto 3:
draw (0, -20y) -- (160, -20y) withcolor 3/4[red, white];

endfor

string s; s = "Hand gloves";
draw s infont defaultfont shifted (0, 0);
draw s infont "phvr8r" shifted (0, -20);
draw TEX(s) shifted (0, -40);
draw btex Hand gloves etex shifted (0, -60);

dotlabel.urt(s, (80, 0));
dotlabel.urt(s infont "phvr8r", (80, -20));
dotlabel.urt(TEX(s), (80, -40));
dotlabel.urt(btex Hand gloves etex, (80, -60));

endfig;
\end{mplibcode}
\end{document}

? All the examples in the rest of this section ?
assume that you have set \mplibtextextlabel

Hand gloves

Hand gloves

Hand gloves

Hand gloves

Hand gloves

Hand gloves

Hand gloves

Hand gloves

As you can see, they all come out the same. When the magic option is enabled,
luamplib redefines the primitive binary operator infont. Ordinarily, this command
takes two strings (the text you want to show, and the name of the font to use) and
produces a picture object consisting of the text typeset in the given font.

〈string〉 infont 〈string〉 −→ 〈picture〉

With the option enabled, the right hand 〈string〉 argument (which names the font)
is completely ignored, and the left hand 〈string〉 argument (the text to show) is
passed to the TEX() macro. The result is still a 〈picture〉 of course, but instead of
a simple rendering in a single font, the string will have been passed through LATEX,
so it can include maths, bold text, or any arbitrary typesetting constructions.

Note that even with the option enabled, METAPOST will not let you pass a
〈string〉 to draw. You have to put infont "somefont" after the string to get the
magic to work; the nice thing is that the label() macros do this for you.

If you experiment a bit, you will find that even though the font name argument
is completely ignored, you can’t leave it out; you have to give at least an empty
string: draw "my text" infont "". However if you find yourself writing this, you
probably should try draw TEX("my text") instead.

85

12.2 Using Unicode and matching style with OTF fonts
If you read texdoc luamplib carefully, you will see that you can use all these new fa-
cilities with plain LuaTEX, but this chapter is about using them with LuaLATEX, and
in particular it assumes some familiarity with the packages fontspec and unicode-
math that provide complete support for Unicode and OTF fonts; you need this
familiarity in order to use luamplib properly.

café noir £2.50

Nous étions à l’Étude, quand le Proviseur entra, suivi d’un nou-
veau habillé en bourgeois et d’un garçon de classe qui portait un
grand pupitre. Ceux qui dormaient se réveillèrent, et chacun se
leva comme surpris dans son travail.

μῆνιν ἄειδε θεὰ Πηληϊάδεω Ἀχιλῆος
οὐλομένην, ἣ μυρί᾽ Ἀχαιοῖς ἄλγε᾽ ἔθηκε,
πολλὰς δ᾽ ἰφθίμους ψυχὰς Ἄϊδι προΐαψεν
ἡρώων, αὐτοὺς δὲ ἑλώρια τεῦχε κύνεσσιν
οἰωνοῖσί τε πᾶσι, Διὸς δ᾽ ἐτελείετο βουλή,
ἐξ οὗ δὴ τὰ πρῶτα διαστήτην ἐρίσαντε
Ἀτρεΐδης τε ἄναξ ἀνδρῶν καὶ δῖος Ἀχιλλεύς.

You also need an editor that will handle Unicode. METAPOST still restricts you
to using printable ASCII in your source code, but you can put whatever you want
inside a string literal or a btex … etex picture literal. So it becomes very easy to
produce this sort of label:

label("café noir £2.50", origin);

or even whole paragraphs that use Unicode:
label(btex \vbox{\hsize 4in
Nous étions à l'Étude, quand le Proviseur entra, suivi d'un
\textit{nouveau} habillé en bourgeois et d'un garçon de classe
qui portait un grand pupitre. Ceux qui dormaient se réveillèrent,
et chacun se leva comme surpris dans son travail.
\par} etex, 60 down);

But you also need a font that actually supports the Unicode characters you use.
The default Latin Modern font used by LuaLATEX has a good range for English and
most European languages, but is a bit lacking in (say) polytonic Greek. So you will
need to define a suitable font in your preamble, and turn it on in your labels.

\usepackage{fontspec} \newfontface\polytonic{GFS Porson}

then a box like this with proper polytonic Homeric Greek source
label(btex \vbox{\polytonic\halign{#\hfil\cr

...

(polytonic greek source in UTF8 that won't show up in
the Latin Modern Typewriter font being used here)

... \cr}} etex, 120 down);

will produce the first few lines of the Iliad (just in case you wanted them). Essen-
tially if you can produce something in LATEX, you can produce exactly the same in
METAPOST using luamplib.

86

12.3 Multi-line labels
It is a rule of syntax in METAPOST that a string token has to be given all on one
line. So if you have very long labels, or paragraphs of text, then you have to split
them up into separate shorter string tokens:

label("\vbox{\hsize 4in It is a truth universally acknowledged,"
& " that a single man in possession of a good fortune,"
& " must be in want of a wife.\par}", origin);

taking care to include the necessary spaces, which can get fiddly.

It is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife.

It is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife.

A way to get simple
two line labels

But this is where the btex ... etex construction comes into play, even with
luamplib. As we saw in the preceding section the construction fits into the META-
POST syntax scheme as a special pair of quotation marks that produces a 〈picture〉.
Unlike regular string token, a btex ... etex picture token can span several lines
of source code, so you can (more easily) write long TEX labels like this:

label(btex \vbox{\hsize 4in\noindent
\textsc{It is a truth} universally acknowledged,
that a single man in possession of a good fortune,
must be in want of a wife.\par} etex, 128 down);

Thanks to the backward compatibility of the implementation, this works very well
even when you have mplibtextextlabel enabled.

You also have comprehensive access to your LATEX environment, so with luamplib
you can get tables in in METAPOST using environments like tabular:

label(btex \begin{tabular}{c}
A way to get simple\\
two line labels
\end{tabular} etex, 270 down);

But keep in mind that whatever you ask the TEX() macro to typeset is going
into a restricted horizontal mode box; so don’t try to use floating environments like
table or figure. And if you want automatic paragraph wrapping, you will have
to wrap your text in a suitable \vbox, as shown above.

87

12.4 Display maths
Because the TEX() macro typesets everything in restricted horizontal mode, you
cannot use $$.. $$ to create display maths directly. This is not a TEX v LATEX
issue, it is just that for compatibility with plain METAPOST (and common sense),
the designers of luamplib chose to typeset labels into horizontal-mode boxes This
is usually what you want. If you prefer large integral operators (etc) in your labels,
then you should either add \displaystyle at the beginning of your formula −−−→
or wrap the formula in a \vbox with a suitable \hsize. Using \displaystyle is

...
label("$\displaystyle \int_0^t 3x^2\, dx$", z0);
...
label("\vbox{\hsize 2in $$\int_0^t 3x^2\, dx$$}", z1);
...probably simpler.

12.5 Typographical minus signs and other dynamic labels
This is really easy with mplibtextextlabel enabled, because we can assemble a
string on the fly using standard METAPOST syntax:

−4 −3 −2 −1 0 1 2 3 4
draw (left--right) scaled 2in withcolor 2/3 red;
for i=-4 upto 4:
dotlabel.bot("$" & decimal i & "$", (32i, 0));

endfor

The normal operator precedence rules ensure that the string argument to dotlabel
is assembled before it is passed to the TEX() macro. The individual parts of the
string you assemble do not have to be valid bits of TEX in themselves; they only
have to make sense once they are actually passed to the macro. With luamplib
there are no slow external files being used, so the complexities used above [§11.2.5]
to label points around a circle can be simplified without sacrificing speed:

p1

p2
p3

p4

p5

p6
p7

p8

p9

path P; P = for i=0 upto 8: 50 dir 40i -- endfor cycle;
draw P withcolor 2/3 red;
for i=1 upto length P:

draw point i of P withpen pencircle scaled dotlabeldiam;
label("$p_{" & decimal i & "}$", point i of P scaled 1.2);

endfor

Note that you can’t do this string concatenation with btex ... etex; although
these operators might appear to be special quotation marks, they produce 〈picture〉
values, and in this context & only works with 〈string〉 values.

88

12.6 Drawing on an external image
A limitation of plain mpost’s use of TEX is that \special commands are removed
from the .dvi file that is made into a 〈picture〉 variable. So, in particular, you can’t
use \includegraphics in a TEX label. But luamplib removes this limitation, so
you can annotate images using the full array of METAPOST tools, as shown here −→

\documentclass[border=1mm]{standalone}
\usepackage{luamplib}
\usepackage{graphicx}
\usepackage{fontspec}\setmainfont[Scale=0.6]{Helvetica}
\mplibtextextlabel{enable}
\begin{document}
\begin{mplibcode}
beginfig(1);
draw btex \includegraphics[width=5in]{glenshiel.jpg} etex;
% input neo-reference-grid
vardef callout@#(expr t, p, o) =

save T; picture T; T = thelabel.@#(t, p+o);
draw T; drawarrow p+o -- p cutbefore bbox T;

enddef;
ahangle := 20; ahlength := 2;
drawoptions(withpen pencircle scaled 1/4 withcolor 1/2 blue);
callout.top("Sgurr na Ciste Dubhe", (80, 96), (-10, 20));
callout.top("Sgurr nan Spainteach", (100, 91), (6, 12));
label.top("\tiny Cuillin Ridge, Isle of Skye", (140, 81));
label.top("Sgurr na Carnach", (190, 90));
label.top("Sgurr Fhuaran", (282, 94));
label.bot("\textit{Looking west from the summit of Saileag} – 19 April 2005",

point 5/2 of bbox currentpicture shifted 4 down);
endfig;

If you uncomment the % input neo-reference-grid line, so that the code on
← the left is included, you get this automatically-sized grid superimposed:

The grid makes it easier to find the coordinates for your annotations.

Sgurr na Ciste Dubhe

Sgurr nan Spainteach

Cuillin Ridge, Isle of Skye

Sgurr na Carnach
Sgurr Fhuaran

Looking west from the summit of Saileag – 19 April 2005

Here is a general purpose reference grid routine:
begingroup;
save llx, lly, urx, ury, u; u = 10;
(llx, lly) = llcorner currentpicture;
(urx, ury) = urcorner currentpicture;
drawoptions(withpen pencircle scaled 1/4);
for x = ceiling (llx / u) upto floor (urx / u):
draw (x*u, lly) -- (x*u, ury) withcolor if x mod u = 0: red else: 1/2 fi;
endfor
for y = ceiling (lly / u) upto floor (ury / u):
draw (llx, y*u) -- (urx, y*u) withcolor if y mod u = 0: red else: 1/2 fi;
endfor

drawoptions();
endgroup;

89

12.7 Using PDF transparency
Another limitation of the plain mpost compiler is that it does not support any
transparent colours. However, if you use the luamplib package with lualatex you
get access to the PDF 1.4 transparency functions. Currently (2024) there is little
documentation for this support and no ‘official’ macro for it, but you can add your
own like this:

def withalpha expr a =
withprescript "tr_alternative=2"
withprescript "tr_transparency=" & decimal a

enddef;

and then use it like this, adding withalpha after the colour specification:

withalpha 0.125

withalpha 0.25

withalpha 0.375

withalpha 0.5

withalpha 0.625

withalpha 0.75

withalpha 0.875

withalpha 1

path r, g, b;
r = fullcircle scaled 40 shifted 10 up;
g = r rotated 120; b = g rotated 120;

numeric a; a = 0.5;
fill r withcolor 1/2[white, red] withalpha a;
fill g withcolor 1/2[white, green] withalpha a;
fill b withcolor 1/2[white, blue] withalpha a;
draw r withcolor 1/2;
draw g withcolor 1/2;
draw b withcolor 1/2;

The effect of changing the alpha value is shown on the right. The magic vari-
able names tr_transparency and tr_alternative are only understood by the
luamplib code, plain mpost simply ignores them. Note that since these are not
documented anywhere except in the source code, they might change in future. You
can see from the figure that tr_transparency controls the alpha value, but the
other variable is slightly more mysterious — tr_alternative appears to control
the PDF blending mode. A value of 1 seems to apply PDF ‘normal’ mode, which
makes colours completely opaque with when alpha is 1; a value of 2, as used here,
seems to apply PDF ‘multiply’ mode which blends all colours evenly, so that the
order that you fill overlaps does not matter. This mode works well with slightly
lighter colours.

90

Here is a slightly more ambitious example, using the same withalpha macro.

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

R

R

J1

J1

J2

J2

J3

J3

J4

J4

J5

J5

J

J

B1 B1

B2 B2
B3 B3B4 B4B5 B5

B B
def withalpha expr a =

withprescript "tr_alternative=2"
withprescript "tr_transparency=" & decimal a

enddef;
beginfig(1);

numeric u; u = 24; color shade[]; string name[];
shade0 = 1/256(166, 57, 65); name0 = "R"; % rouge
shade1 = 1/256(219, 170, 72); name1 = "J"; % jaune
shade2 = 1/256(36, 54, 84); name2 = "B"; % bleu
path edge[], arc[], ring[];
for r=1 upto 8:
edge[r] = fullcircle rotated 90 scaled (2r * u)
shifted (0, 7u / sqrt 3) rotated 120;

endfor
for i=2 upto 8:
edge[i] := edge[i] cutbefore edge8 rotated 120

cutafter edge8 rotated -120;
endfor
arc0 = point 0 of edge1 for i=2 upto 7: .. point 0 of edge[i] endfor;
arc1 = point 0 of edge1 for i=2 upto 7: .. point infinity of edge[i] endfor;
for i=1 upto 7:
ring[i] = edge[i] -- subpath (i-1, i) of arc1 --
reverse edge[i+1] -- subpath (i, i-1) of arc0 -- cycle;

endfor
for r=0, 1, 2: for i=1 upto 6: % fills first

fill ring[i] rotated 120r withcolor (i/6)[white, shade[r]] withalpha 0.9;
for k=0, 1:
label("$\textsf{" & name[r] & "}" if i<6: & "_" & decimal i fi & "$",

point i-1/2 of arc[k] shifted (-8,-2) rotated 120r);
endfor

endfor endfor
for r=0, 1, 2: % now lines on top
for i=1 upto 7:

draw edge[i] rotated 120r withpen pencircle scaled 1 withcolor 7/8;
endfor
draw arc0 rotated 120r; draw arc1 rotated 120r;

endfor
endfig;

91

13 Working with pictures
METAPOST inherits the mechanism of 〈picture〉 variables directly from METAFONT,
except that the contents of these variables are a bit more complex. The system keeps
track of the active picture in a variable called currentpicture, which can be copied
to your own variables, or manipulated in various useful ways. In METAFONT the
contents of the variable is a pattern of pixels for a font, in METAPOST the contents
are vector graphics commands. This section reviews some of the things you can do
with a 〈picture〉 variable — including putting one in a frame (see §13.11) like so −→

Plain METAPOST provides two built-in 〈picture〉 variables: nullpicture, which is
empty, and currentpicture, which accumulates the results of drawing commands.
When you compile your program, the beginfig macro will set currentpicture to
blank, and the endfig macro will make METAPOST write the accumulated contents
of the picture to an output file, usually as PostScript. You can also do these things
yourself at any point in a program, using these macros from plain.mp:

def clearit = currentpicture := nullpicture enddef;
def shipit = shipout currentpicture enddef;

When you are creating a diagram with several independent elements, it is often
helpful to save the currentpicture in a 〈picture〉 variable and start again. In fact
it is so useful that plain METAPOST includes an image macro that uses the magic
of macro grouping to make the process a bit easier.

vardef image(text t) =
save currentpicture;
picture currentpicture;
currentpicture := nullpicture;
t; currentpicture

enddef;

The general idea is that you declare a variable and then save a drawing into it:

picture P; P = image(...);

and then you have a picture element that can be manipulated or copied as needed.
The rows of decorative beads in the frame on the right were created like this.

92

13.1 Creating and transforming pictures
After you have declared a variable with picture P; you can give it some contents
in a number of ways:

• P = nullpicture; — this makes P empty.

• P = currentpicture; — save a copy of your current picture (if any).

• P = image(... MP tokens ...); — capture some drawing commands.

• P = "string" infont "font-name"; — capture an image of string set in
the given font.

• P = btex ... TeX tokens ... etex; — capture the result of passing some
arbitrary tokens through TEX.

• P = TEX("string"); — capture the result of passing some arbitrary string
of tokens through TEX, using the TEX macro.

You can read more about the details of type setting in §11 and §12, but the point
here is that the results are normal 〈picture〉 variables that you can manipulate and
use like any other. You can apply any of the normal METAPOST transformations
to a picture, so it can be slanted, scaled, rotated, or shifted like any 〈pair〉 or
〈path〉. Each picture has a reference point that is the position of the origin for
pictures created with image or by saving currentpicture directly, and is usually
the bottom left-hand corner of a typeset picture created by TEX. So to add three
copies of P to your current picture, you could do:

for i=1 upto 3: draw P shifted (20i, 0); endfor

and METAPOST will add copies of P with the reference points shifted to (20, 0),
(40, 0), and (60, 0). A selection of other transformations is shown on the right −→

N
W

N
E

SE
SW

N

S

EW

bbox P

N
W

NE

S
E

SW

N

S

E

W

rotated 30

N
W

N
E

SE
SW

N

S

EW

shifted 15 up

N
W

N
E

SE
SW

N

S

EW

scaled 3/4

N
W

N
E

SE
SW

N

S

EW

xscaled 3/4

NW
NE

SE
SW

N

S

EW

yscaled 3/4

N
W

NE

S
E

SW

N

S

EW

slanted 3/4

N
W

NE

S
E

SW

N

S

E

W

zscaled 3/4 dir 21

N
W

N
E

SE
SW

N

S

E W

reflectedabout(up, down)

The reference point for each compass is the small dot in the middle.

If you need to measure the size of your picture, you can get the coordinates of the
corners with the built-in corner commands, and do some arithmetic like this:

(wd, ht) = urcorner P - llcorner P;

You also get ulcorner, lrcorner, and center; plus bbox which returns the rect-
angular path round the four corners, expanded by the current value of bboxmargin.
(See also §13.3).

93

13.2 Clipping and bounding boxes
Once you have got your 〈picture〉 variable, and possibly transformed it, the main
thing you can do with it is to use draw to add it to the current picture. But there
are two other commands that are sometimes helpful that allow you to alter the
apparent size of the picture.

• setbounds 〈picture〉 to 〈path expression〉

• clip 〈picture〉 to 〈path expression〉

Both commands set the boundary of your picture to the arbitrary path expression,
and then the clip command also erases all of the picture that lies outside the
boundary. (Note that this is not the same as setting the bounding box. The
arbitrary path does not have to be a rectangle; after either of these commands the
bounding box will be the rectangle that fits around the arbitrary path).

METAPOST inherits the clip command from PostScript; there is no equivalent
in METAFONT. It can be useful as an alternative to buildcycle, but it is most
commonly used for trimming a repeating pattern to a particular shape. The usual
approach is to define a particular shape, s, then draw your pattern over a large
area that covers the shape, and finally call clip currentpicture to s to trim
the pattern to the shape. This is best done after you define all your shapes, but
before you draw any others or add any labels. The example on the right shows this
approach in action.

You can apply clip to any picture, so you might prefer to capture your pattern
in 〈picture〉 variable with image, apply clip to that, and then draw. This works
nicely if you want to repeat the clipped image.

beginfig(1);
numeric r; r = 42; z1 = 5/4 r * left; z2 = 2r * right;
path c[];
c1 = fullcircle scaled 2 abs z1 shifted z1;
c2 = fullcircle scaled 2 abs z2 shifted z2;
c3 = fullcircle scaled abs(z2-z1) shifted 1/2[z1,z2];
numeric t, u;
(t, whatever) = c2 intersectiontimes c3;
(u, whatever) = c1 intersectiontimes (point t of c2 -- z1);

path s;
s = subpath (0, u) of c1 -- subpath (t, 4) of c2 -- cycle;
numeric gap; gap = 2;
for i=0 upto 2r / gap:
draw (origin--right) scaled 2r rotated 45t shifted (gap*i,0)
withpen pencircle scaled 1/4 withcolor 2/3 blue;

endfor
clip currentpicture to s;

draw c1; draw c2;
draw z1 -- z2 -- point t of c2 -- cycle;

endfig;

You can also use this technique to fill with a gradient: just reduce the gap be-
tween each line and use the index variable to blend between two colours. Something
like withcolor (i/r)[blue, white] in the example shown.

+ Why would you ever want to use setbounds? Mainly to help with aligning type
set labels, as discussed in §11.1.6, or if you want to make boundaries of different
picture elements consistent in order to line them up more easily. Or perhaps to set
a margin for the whole image by using something like this just before the endfig.

setbounds currentpicture to bbox currentpicture;

This has the effect of adding a bboxmargin wide strip all round.

94

13.3 Bounding boxes of transformed pictures
When you rotate a text label, or otherwise transform a picture, the corner-points
also change, but not quite in the way you might think. It turns out that the bbox
is always a rectangle aligned to the edges of your page. Effectively, the corners are
determined after any transformation, and the center is strictly the intersection of
the lines between opposite corners.

plain
llcorner lrcorner

urcornerulcorner

rota
ted

llcorner lrcorner

urcornerulcorner

You will notice this if you use the technique given on p. 29 of the METAPOST

manual to draw a label on a coloured (or erased) background; if you have rotated
the label, the bbox may be larger than you want. One solution is to define your
label untransformed and then apply the transformation twice: first when you fill
the bounding box and again when you draw the label, for example:

picture p; p = thelabel.top("Correctly", origin);
unfill bbox p rotated 30 shifted z0;
draw p rotated 30 shifted z0;

13.4 Using pictures to assemble a complex diagram
If you have a diagram with several independent parts, like the comparison above
then there is a useful general technique: declare a subscripted 〈picture〉 variable,
and then use image to draw each part separately. The advantage of this is that
you do not have to worry about where the origin is, which often makes a drawing
simpler (for example because you can use rotated rather than rotatedaround).
Once you have created all the parts you can then add them to the final image using
draw as shown on the right −→

The illustration above was drawn using this general sub-picture
technique, approximately like this:

picture P[];
P1 = image(

% first drawing...
);
P2 = image(

% second drawing...
);
draw P1 shifted 100 up; draw P2 shifted 100 down;

Sometimes it is more convenient to use label to place the pictures, taking
advantage of the automatic alignment provided. Note also that, unless you have
explicitly or implicitly filled them with the background colour, the blank parts of
each picture are really transparent so you can overlap them when appropriate.

95

13.5 Adding a caption to the current picture
When you have finished a complicated picture, you may want to add a caption or
some other label which would look neat if it were exactly centred at the bottom
of the everything else. You could keep track of exactly how wide and deep you
have made the picture to do this, but there is an easier way, that will adjust itself
automatically if you change the contents of the picture later.

beginfig(1);
% ... complete drawing that needs a caption ...
label.bot("This picture needs a label at the bottom",

point 1/2 of bbox currentpicture);
endfig;

Through the automatic alignment routines in label, this will produce a label neatly
centred at the bottom. If it is too close you can either set a larger bboxmargin or
use something like:

label.bot("This picture needs a label at the bottom",
point 1/2 of bbox currentpicture shifted 42 down);

Note that in both cases the addition of the label will move the corner points of the
picture, so that the bounding box will have been expanded to include the new label.
You can use this feature to add a series of centered labels. But if this is not what
you want, perhaps because you want to add two labels side by side at bottom, then
you can “freeze” the current bounding box like this:

picture bb; bb = bbox currentpicture;
label.bot("Left label", point 1/4 of bb);
label.bot("Right label", point 3/4 of bb);

The path returned by bbox has four points starting at the lower left and proceeding
clockwise like a unitsquare. So point 1/2 of bbox currentpicture is half way
between lower left and lower right, while point 5/2 of bbox currentpicture is
half-way from upper right to upper left.

Note that the path is defined even if the current picture is empty. If you call
bbox currentpicture at the start of a picture you will get a square path centered
on the origin and scaled to 2 bboxmargin.

Here is an example.

x2 + y2 = 1

A B

C
(
cos 2θ, sin 2θ

)

DO
θ 2θ

x

y

2 c
os
θ

2
sin

θ

4ACD ∼ 4ABC

CD
/
AC = BC

/
AB

sin 2θ
/
2 cos θ = 2 sin θ

/
2

sin 2θ = 2 sin θ cos θ

AD
/
AC = AC

/
AB(

1 + cos 2θ
)/

2 cos θ = 2 cos θ
/
2

cos 2θ = 2 cos2 θ − 1

The labels at the bottom were added like this:
label.bot("$\triangle ACD \sim \triangle ABC$",

point 1/2 of bbox currentpicture shifted 24 down);

path bb; bb = bbox currentpicture shifted 12 down;
label.bot(btex \vbox{....} etex, point 1/4 of bb);
label.bot(btex \vbox{....} etex, point 3/4 of bb);

The second call to bbox currentpicture gets the bounding box
that includes the first centered label.

96

13.6 Drawing pictures with various colours and pens
Consider the 〈picture〉 with different colours and pens in the example here −→ numeric s; s = 21;

path alpha;
alpha = ((-2s, s) {right}
.. halfcircle rotated -90 scaled 2s shifted (2s, 0)
.. {left} (-2s, -s)) shifted (s*left);

vardef overdraw(expr a, b, r, P, shade) =
linecap := butt;
undraw subpath (a+r, b-r) of P withpen pencircle scaled 2;
draw subpath (a, b) of P withcolor shade;

enddef;

picture cb; cb = image(
draw alpha withcolor 2/3 red;
undraw alpha rotated 180 withpen pencircle scaled 2;
draw alpha rotated 180 withcolor 2/3 blue;
overdraw(0.21, 0.36, 0.02, alpha, 2/3 red);
overdraw(0.67, 0.86, 0.02, alpha, 2/3 red);
overdraw(3.4, 4.3, 0.1, alpha, 2/3 red);
overdraw(5.4, 5.6, 0.02, alpha, 2/3 red);
overdraw(5.4, 5.6, 0.02, alpha rotated 180, 2/3 blue);

);

• Example 1 shows that by default draw uses the colours and
pens defined in the picture

• Examples 2, 3, and 4 show what happens if you change the
pen, or the colour, or both.

• Example 5 shows you how to make a pretzel in METAPOST.

• Example 6 shows you the slightly tricky syntax to extract the
paths, pens, and colours from the 〈picture〉 and adjust them
as needed.

With this captured in a 〈picture〉 variable, you can draw it with different colours
and pens to obtain a variety of effects:

draw cb;1

draw cb withpen pencircle scaled 4;2

draw cb withcolor 1/2;3

draw cb withpen pencircle scaled 4 withcolor 1/2;4

for i=8 step -1/2 until 1/2:
draw cb withpen pencircle scaled i

withcolor sqrt(i/8)[white, pretzel];
endfor

5

for e within cb:
draw pathpart e withpen penpart e scaled 4

withcolor 7/8[colorpart e, background];
endfor

6

The picture is supposed to represent a fancy knot (a “Carrick bend”), and to show
the red and blue strands crossing each other. The overdraw macro tries to do this
by using undraw with a thick pen, then drawing the upper strand on top.

97

13.7 Simulating transparency with pictures
Filling with transparent colour can sometimes be a very effective graphic technique,
but plain METAPOST provides no colour model that directly supports transparency
for any output format. If you are using mpost, you will have to resort to layering
and managing the colour blending yourself. This section presents an example of the
basic technique, that could be adapted to more general purpose macros as required.

+ But, the technique is quite laborious so you might prefer to switch to luamplib
which provides support for the PDF transparency model, as discussed in §12.7. AA

Omitting the simple grid, this drawing was produced like this:
% Large A
label.urt("A" infont defaultfont scaled 8, origin) withcolor 1/4 green;
% the "transparent" box
path shape; shape = (superellipse(right, up, left, down, 0.81))

shifted 1/2 right scaled 30 rotated 30;
alpha = 5/8; % alpha: 0=invisible, 1=opaque
color filler; filler = .95[red,white];
picture bg; bg = currentpicture; % capture the current drawing
picture fg; fg = image(

for e within bg: % redraw everything with blended color
draw e withcolor alpha[colorpart e, filler];

endfor
draw shape withpen pencircle scaled 2 withcolor 3/4;
draw subpath (2.718, 3.1415) of shape % add decoration

shifted - center shape scaled 7/8 shifted + center shape
withpen pencircle scaled 2 withcolor white;

);
clip fg to shape; % finally clip the fg drawing
fill shape withcolor filler; % fill the shape
draw fg; % and put the fg back on top
draw shape withcolor 3/4 blue;

The two useful tools in the plain METAPOST kit bag are:

• The ability to loop through all the elements of a picture

• The ability to blend colours using the mediation syntax

The example drawing on the right consists of a regular grid and a text picture, with
a bubble drawn over the top. The bubble can be made to look transparent like this:

1. Define the shape that you want to be transparent, decide on how opaque you
want it, and the colour to use.

2. Capture the current drawing in a 〈picture〉 variable.

3. Loop over all the elements in that picture, redrawing each one with a blended
color, and capture all this in another 〈picture〉.

4. Add some decoration; here there is an internal margin, and a hint of a reflec-
tion line to make it look shiny.

5. Clip the new blended-colour picture to the shape.

6. Fill the shape with the filler colour.

7. Draw the blended-colour parts on top.

8. Finally, add a neat edge (if needed).

As you may appreciate, with this approach, you need to do the transparent parts
after you have drawn everything else in your drawing.

98

13.8 Adding a background and other post-processing
The 〈picture〉 capture technique provides a simple way to add a background or do
other post-processing on your drawing. The advantage is that you do not have to
work out the size of your drawing before you start.

Start

Here is an example that adds
graph paper behind a drawing.
The first three lines make the
example drawing, the final
input adds the graph paper.

path C; C = fullcircle scaled 125 shifted 20 up rotated 16;
for t=0, 1, 4: draw center C -- point t of C withcolor 2/3 blue; endfor
draw C withcolor 3/4 red; dotlabel.urt("Start", point 0 of C);
input pics-graph-paper-inch

This is pics-graph-paper-inch.mp:
input automatic-grid
begingroup; save P; picture P; P = currentpicture; clearit;
draw grid(P, 9) withpen pencircle scaled 4/16 withcolor 1/16(12,12,14);
draw grid(P,36) withpen pencircle scaled 5/16 withcolor 1/16(10,10,13);
draw grid(P,72) withpen pencircle scaled 6/16 withcolor 1/16(8, 8,12);
draw P; endgroup;

And this is automatic-grid.mp

vardef grid(expr p, grid_unit) =
save llx, lly, urx, ury;
(llx, lly) = llcorner p - (bboxmargin, bboxmargin);
(urx, ury) = urcorner p + (bboxmargin, bboxmargin);
image(
for x = 1 + floor(llx / grid_unit) upto floor(urx / grid_unit):
draw (x * grid_unit, lly) -- (x * grid_unit, ury);

endfor
for y = 1 + floor(lly / grid_unit) upto floor(ury / grid_unit):
draw (llx, y * grid_unit) -- (urx, y * grid_unit);

endfor
if (llx < 0) and (lly < 0) and (urx > 0) and (ury > 0):
draw fullcircle scaled 3; % show origin if in range

fi
)

enddef;

You could add a subtle off-white background fill like this:
picture P; P = currentpicture; fill bbox P withcolor (1,1,31/32); draw P;

Or you can be more ambitious, as shown in the example on the right −−−−−−−−−→
In general, you draw any background you want, like this:

picture P; P = currentpicture; clearit;
% do complex background drawing...
clip currentpicture to bbox P; draw P;

Or you can do things like make automatic adjustments to the scale. If you wanted
to be sure that your drawing was not more than 5 inches wide, you could try this
just before the endfig:

numeric wd; wd = xpart (urcorner currentpicture
- llcorner currentpicture);

if wd > 360: currentpicture := currentpicture scaled (360/wd); fi

If you wanted to apply one of these changes to all the figures in your mpost input
file then you can use the hook provided by plain METAPOST:

extra_endfig := "picture P; P = currentpicture; clearit;" &
"fill bbox P withcolor (1,1,31/32); draw P;";

The definition of endfig, includes the line scantokens extra_endfig; so that any
contents of the string variable extra_endfig are automatically processed before the
figure is produced. If you are using luamplib then you can use the alternative hook
that it provides so that you do not even have to type endfig:

\everyendmplib{picture P; P = currentpicture;
fill bbox P withcolor (1,1,31/32); draw P; endfig;}

99

13.9 Adding a ruler
If you wish to check the dimensions of your drawing, it can be useful to add a
temporary ruler that shows you the dimensions of the bounding box like this:

0

1

2

3

4

5

0 1 2 3 4 5 6

The red rulers were added by putting input ruler-cm at the end of the figure.

Here is the implementation of ruler.mp:

% add a ruler along the left hand and lower edges
% of the bounding box of the currentpicture
path B, p; pair o; B = bbox currentpicture;
for s=-1, 1:
p := subpath (0, s) of B;
a := arclength p;
o := if s < 0: left else: down fi;
for i=0 upto 3:
exitif not known u[i];
for j=0 upto floor(a/u[i]):
pair t; t = point arctime j*u[i] of p of p;
draw (origin -- (7 - 2i) * o) shifted t;
if i=0: label(decimal j, t shifted 12 o); fi

endfor
endfor
draw p;

endfor

The inner loop draws successively shorter lines at each of the minor
units, and numbers at the major units.

Note that this macro designed to be used a temporary input
added at the bottom of a drawing to see how big it is. You would
not usually leave it in place in a final drawing. This is why none of
the variable names is protected. To make the macros more robust
you could enclose them with begingroup and endgroup, and save
the names, and clear drawoptions.

They are drawn round the bounding box, set here with the default margin of 2 bp.
The ruler-cm.mp file looks like this:

numeric u[]; u0 = 1 cm; u1 = 5 mm; u2 = 1 mm;
drawoptions(withcolor 0.54 red);
input ruler

and there is a companion ruler-inch.mp file that looks like this:

numeric u[]; u0 = 72; u1 = 18; u2 = 6;
drawoptions(withcolor 0.67 blue);
input ruler

The idea is that you set a subscripted variable u[] to a number of unit sizes where
you want markers and then call input ruler.

100

13.10 Adding a border
In most documents the drawings look just fine without any decoration, but
sometimes you might want to add emphasis or pick out part of a drawing. The
examples here can be applied to currentpicture or any other 〈picture〉 variable.

Don’t take this one too seriously…
def twisted expr t of p =
rotated angle direction arctime t of p of p

shifted point arctime t of p of p
enddef;
vardef rope expr c =
save s, w, hemp, n, a, b, A;
color hemp; hemp = 1/256 (192, 149, 82);
w = -1; n = -1; A = arclength c; s = A/floor(A/2);
path a[];
for t=0 step s until A + 1: a[incr n] =

(0,+w) twisted t-3/2s of c .. (0,+w) twisted t-1/2s of c ..
(0,-w) twisted t+1/2s of c .. (0,-w) twisted t+3/2s of c;

endfor
image(for i=1 upto n:

path b; b = buildcycle(a[i-1], reverse a[i]);
fill b withcolor 1/2[white, hemp];
draw b withpen pencircle scaled 1/8;

endfor)
enddef;

bboxmargin := 16;
draw rope with_rounded_corners bbox currentpicture;

bboxmargin := 16;
picture P; P = currentpicture;
fill bbox P shifted (3,-3) withcolor 3/4;
unfill bbox P; draw bbox P; draw P;

vardef with_rounded_corners expr p =
for i=1 upto length p:

subpath (i-15/16, i-1/16) of p ..
endfor cycle

enddef;

bboxmargin := 16;
draw with_rounded_corners bbox currentpicture

dashed evenly scaled 1/2;

101

13.11 Adding a frame
As promised at the start of this section, here is the code for the picture frame drawn
round Raphael’s young man.

input picture_frame
beginfig(1);

picture F;
F = thelabel(TEX("\includegraphics[width=200pt]{youth.jpg}"), origin);
draw F; draw frame F;

endfig;

All the heavy lifting is done by frame macro defined in picture_frame.mp −→

vardef frame expr P =
save base, side, f, t, u, xx;
picture base, side; path f; numeric t, u, xx;
t = arclength subpath (0,1) of bbox P;
u = arclength subpath (1,2) of bbox P;
xx = max(t, u) + 2 pf_width;
f = unitsquare xscaled xx yscaled pf_width;
% convenience / nonce function
vardef paint_strip(expr y, wd, shade) =
draw subpath (0, 1) of f
shifted (0, if y < 0: pf_width + fi y)
withpen pencircle scaled wd
withcolor shade

enddef;
base = image(
fill f withcolor gold; % background colour
paint_strip(2, 3, 5/4 grey); % grey strips
paint_strip(3.5, 1/4, grey);
paint_strip(5, 1/4, 1/2[gold, dark]);
paint_strip(-6.5, 1/4, 1/2[gold, dark]);
paint_strip(-6, 1/4, 1/2[gold, dark]);
paint_strip(-2, 2, 5/4 grey);
% spatter with random spots
for i=0 upto 4 * arclength(subpath (0,1) of f):
fill fullcircle scaled uniformdeviate 3/4

shifted (uniformdeviate xx, uniformdeviate pf_width)
withcolor dark;

endfor
% decorative balls
for x = 2 step 3 until xx:
draw ball shifted (x, 2);

endfor
);
% make two trapezium shapes
side = base;
clip side to (pf_width, 0) -- (pf_width + u, 0)
-- (2 pf_width + u, pf_width) -- (0, pf_width) -- cycle;

clip base to (pf_width, 0) -- (pf_width + t, 0)
-- (2 pf_width + t, pf_width) -- (0, pf_width) -- cycle;

% arrange the pieces into a square
image(
draw base rotated 180 shifted point 1 of bbox P shifted (+pf_width, 0);
draw base rotated 0 shifted point 3 of bbox P shifted (-pf_width, 0);
draw side rotated 90 shifted point 0 of bbox P shifted (0, -pf_width);
draw side rotated 270 shifted point 2 of bbox P shifted (0, +pf_width);

)
enddef;

This macro also needs some colours:
color gold, dark, grey;
gold = 1/256(243, 197, 127);
dark = 1/256(144, 87, 50);
grey = 1/256(156, 147, 138);

a picture of a small silvery-gold ball:
picture ball; ball = image(for i=0 upto 16:

fill interpath(i/16,
fullcircle scaled 10,
fullcircle scaled 3 shifted (-2, 2)

) withcolor (i/16)[gold, 15/16 white];
endfor) scaled 1/4;

and an internal variable that defines the width of the frame:
newinternal pf_width; pf_width := 21;

The macro takes a path or picture P as an argument, and makes a thin rectangle f
that is scaled to the desired width and the longer of the two sides of the bounding
box. This thin rectangle is then decorated with background colour, strips of colour
to suggest depth, a random spatter-pattern, and a row of little balls. The macro
then makes two trapezium shaped copies of the decorated rectangle, pieces them
together around P , and returns the result as a 〈picture〉.

102

14 Drawing and decorating lines
This section is all about making marks along a 〈path〉 using draw and a number
of other more sophisticated techniques.

14.1 Choosing a pen
METAPOST inherits a rather complicated system of pens from METAFONT. As
explained in The METAFONTbook, the original intention of this system was to
improve the digitisation of font characters so that low-resolution raster versions
would look aesthetically pleasing. This is not really a problem for graphics that
you might produce with METAPOST, and so for most purposes you can stick to
the default circular pen, and not worry about using pensquare, penrazor, and
penspeck, nor creating your own 〈pen〉 variables. On the other hand, you probably
will need to change the size and shape of the pen occasionally, and it is good to
understand the mechanisms available.

The default, built-in, pen is pencircle – at the start of every job this pen is
scaled to 0.5bp and saved as currentpen and defaultpen. Every time you use
draw, METAPOST automatically adds withpen currentpen unless you have added
your own withpen.

draw origin -- 20 right; % uses "currentpen"
draw (0,10) -- (20,10) withpen pencircle scaled 2; % thick pen

If you get tired of typing withpen, you can change pens with the pickup macro;
essentially this just updates the value of currentpen.

draw origin -- 42 right; % uses "currentpen"
pickup pencircle scaled 2; % use a thick pen
draw (0,-24) -- (42,-24);
draw (0,-36) -- (42,-36);
pickup defaultpen; % change back to default

If you are using a fat pen and you don’t like the big rounded ends, then you can
use cutdraw or set linecap := butt; — see §14.8 for more.

Here is an example that makes use of a circular pen transformed to a thin
ellipse.

\documentclass[border=5mm]{standalone}
\usepackage{luamplib}
\newcommand\fleuron{\begin{mplibcode}
beginfig(1);

-z1 = z4 = 7 dir 8;
y2 - y1 = y4 - y3 = 3(y4 - y1);
z2 - z1 = z4 - z3 = whatever * dir 50;
draw z1 .. controls z2 and z3 .. z4
withpen pencircle xscaled 1.2 yscaled 0.2 rotated 50;

currentpicture := currentpicture rotated - angle z4;
endfig;
\end{mplibcode}}
\begin{document}
Here is a \fleuron\ mark.
\end{document}

This example shows how to use an elliptical pen to draw a little twiddle
mark — and incidentally how to define a LaTEX command that draws a
METAPOST figure — that comes out looking like this: . The idea is
that you could use it as a decoration.

A typographical ornament

With a little work, you could also use it as a fancy rule between sections.

The important parts are that pencircle is scaled to be wider than it is
tall, and then rotated so that it is at the correct angle at the start and
at the end of the path. Think of it as a calligraphic nib. For another
example, look at §11.2.4, which uses a similar pen to draw the braces for
the dimension label.

103

14.2 Multiple lines
The pens available in METAPOST are all simple convex polygons without holes,
so if you want to draw double or triple lines, you have to draw the individual parts
of the marks you want along the path.

The simplest approach is to draw the path with a thicker pen, then draw over
it with a thinner pen using the background colour, like this:

path a; a = origin -- (48, 3) -- (96, -3) -- 144 right;
draw a withpen pencircle scaled 3/2;
draw a withpen pencircle scaled 1/2 withcolor background;

which produces this: Notice that the lines have
been drawn with the default rounded ends. If you don’t want this then use cutdraw
for the background lines (or set linecap := butt), so that you get ends that look
open, like this: For triple lines, you will need to
draw three times: first broad, then medium with the background colour, then thin
in the middle; and so on.

Beware that you will need to be careful if the line needs to have an arrowhead or
to touch another object. Beware also that drawing with the background colour does
not erase anything, it just draws over the path with an opaque line that happens to
be the same colour as the background, so you will not see anything that happens
to lie under the line even if you want to.

If you want to draw real separate parallel lines, then the simplest approach is
just to shift the path sideways using something like this:

path p; p = origin -- 100 dir 30; draw p;
draw p shifted 4 unitvector(direction 1/2 of p rotated 90);

If your path is a regular cycle, like a circle or a polygon, then another approach is
to draw a scaled copy.

path p; p = fullcircle scaled 100 shifted 42(normaldeviate, normaldeviate);
draw p; draw p shifted -center p scaled 0.98 shifted center p;

but if your path is more complex, then you need something like the macro shown
at the right. The piano-shaped path p is drawn in black; the outer blue path was
drawn with draw beside(p, 2) and the red one with draw beside(p, -2).

vardef extended(expr p) =
-42 unitvector(direction 0 of p) shifted point 0 of p .. p ..
+42 unitvector(direction 1 of p) shifted point 1 of p

enddef;

vardef chopper expr t of p =
(up--down) scaled 42
rotated 1/2(angle direction t-eps of p + angle direction t+eps of p)
shifted point t of p

enddef;

vardef beside(expr p, d) =
save n, a, b, aa, bb; numeric n; n = length p;
pair a, b, aa, bb; path _part[];
for i = 1 upto n:
aa := postcontrol i-1 of p - point i-1 of p;
bb := point i of p - precontrol i of p;
a := unitvector(aa) rotated -90 scaled d;
b := unitvector(bb) rotated -90 scaled d;
_part[i] = extended(
point i-1 of p shifted a {aa} .. point i of p shifted b {bb}

) cutbefore chopper i-1 of p cutafter chopper i of p;
endfor
_part[1] for i=2 upto n: .. _part[i] endfor if cycle p: .. cycle fi

enddef;

104

Making tubes

Drawing with multiple lines can also produce a three-dimensional effect for knot
diagrams (provided that you don’t think of toothpaste).

This tube-like effect can be created with a loop like this:
path a; a = origin .. (72, 10) .. (144, -10) .. (216, 0);
for i=4 step -1/8 until 1/2:

draw a withpen pencircle scaled i withcolor (i*i/16)[white, 1/2 blue];
endfor

The idea is to draw a path repeatedly with lines that get thinner and use a lighter
shade Notice the colour fades from white to dark blue using the mediation syntax.
You might like to experiment with linear or quadratic transitions until you get a
gradient that you like. In the loop above as i varies from 4 down to 1

2 , the mediation
fraction varies from 1 down to 1

64 , like this:

i : 4.00 3.75 3.50 3.25 3.00 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50
i2/16 : 1.00 0.88 0.77 0.66 0.56 0.47 0.39 0.32 0.25 0.19 0.14 0.10 0.06 0.04 0.02

which makes the gradient steeper nearer the edges. If you don’t want the rounded
ends, then you should use cutdraw instead of draw.

14.3 Showing crossings
In general it is a good idea to avoid line crossings completely, but occasionally you
may end up with a diagram where at least one line has to cross another. The simple
way to deal with this is to use the technique shown in §19; capture the line to be
drawn in a 〈path〉 variable, and then do

cutdraw line withpen pencircle scaled 4 withcolor background; draw line;

so that you erase behind the line before you draw it. Alternatively you could use
the ideas in §9.4.2 to find all the intersections between two paths and mark them
appropriately. But the marks might not improve legibility; compare these two −→

1

2

3

4 5

6

7

Do you think it looks better with crossings?

1

2

3

4 5

6

7

105

14.4 Using dash patterns with extra precision
As you may know, plain METAPOST provides two built-in dash patterns, so that
you can draw a path dashed withdots or dashed evenly.

The blue circles on the left were drawn with dashed evenly, and the uneven
gaps are noticeable at the “three o’clock” positions where the paths begin
and end. As you can see the default dash spacing looks fine at some sizes but
bad on others. On the right you can see the same circular paths coloured
red, and drawn with dashed exactly(arclength c, 6).

Other paths may require a bit more ingenuity and thought. Because the
square paths have four equal sides, they work better with a target dash
length that is a multiple of 4. Here the blue squares on the left use the
default dashed evenly, and the red squares on the right were done with:

dashed (exactly(arclength s, 8) shifted 6 right)

The right shift made the corners look better.

The keyword dashed gives you access to the PostScript setdash command,
whose argument is a special 〈picture〉 defined with the METAPOST dashpattern
function. If you look in plain.mp you will find these declarations:

picture evenly,withdots;
evenly = dashpattern(on 3 off 3); % dashed evenly
withdots = dashpattern(off 2.5 on 0 off 2.5); % dashed withdots

The detailed syntax is explained in §9.4 of the METAPOST manual, but essentially
withdots creates a unit 5 points long with a dot in the middle, and evenly creates
a unit 6 points long with the dashes 3pt long (plus the round bit at the end of each
dash, unless you have changed linecap) and gaps 3pt long (minus any round bits).

You might be tempted to get creative with this and make complex dot-dot-dash
patterns, but they rarely look very good and they may puzzle your readers. Scaling
the two default patterns is probably all you ever need; so if you want a denser dotted
line try dashed withdots scaled 1/2, or to get very long dashes you could use
dashed evenly scaled 4.

But you may also notice that the dash patterns (particularly the longer ones) do
not always fit your paths exactly – this is especially noticeable with closed paths,
where you may end up with one unsightly long dash or a very short gap at the point
where the path begins and ends.

There is a simple solution: adjust the length of the dash pattern so that an
integer number of dash units exactly fit your path.

vardef exactly(expr a, u) =
save m; numeric m; 2m = (a-u) / round(a/u);
dashpattern(on m off m)

enddef;

Here a is supposed to be the arclength of your path, and u the desired unit size,
so you can use it like this:

path c; c = fullcircle scaled 200;
draw c dashed exactly(arclength c, 6);

to get a close approximation to dashed evenly that exactly fits the path.

106

14.5 Decorating a path
A little decoration generally goes a long way, so you may want to restrain
your creativity before you apply too many of the ideas from this page. There are
two basic techniques shown here: creative use of dash patterns; and drawing shapes
along the path.

plain

with a dash pattern

with a sharp dash pattern

as a railway line

as a plainer railway line

fading away

fading and diminishing

with a fancy pattern

as a twisted pair

pens-strokes.mp

With a curved path S, the first “with a dash pattern” was drawn like this:
draw S dashed dashpattern(on 4 off 2 on 1 off 2 on 1 off 2);

Notice that the default rounded pen makes dots and dashes with rounded ends.
The second line “with a sharp dash pattern” uses cutdraw to change the line ends.

cutdraw S dashed dashpattern(on 4 off 1 on 1 off 1 on 1 off 1);

The “railway line” uses a combination of three drawing operations:
cutdraw S withpen pencircle scaled 2;
undraw S withpen pencircle scaled 5/4;
cutdraw S dashed evenly scaled 2 shifted right withpen pencircle scaled 5/4;

The “plainer railway line” was done like this:
draw S;
for a = 2 step 6 until arclength S:
numeric t; t = arctime a of S;
draw (down--up) rotated angle direction t of S shifted point t of S;

endfor

Note that it’s essential to use arctime and arclength in order to get the markers
evenly spaced. But you don’t need to worry about the rotation in order to get the
“fading away” effect:

numeric A; A = arclength S;
for a = 0 step 1/8 until A:
draw point arctime a of S of S withcolor (a / A);

endfor

The remaining three are just fancy variations on the same theme. You might like
to try to re-create them as an exercise, or you can look in the source file.

107

14.6 Morphing a path
A more flexible, but more complicated, decoration technique is to use a macro to
morph your path before you actually draw it. This is how the venerable feynmp
package marks photons and gluons etc in Feynman diagrams. Since feynmp is a
standard part of the base METAPOST distribution you can use these macros in
normal drawings; so to draw a zigzag line you can do:

input feynmp
path S; S = (left {dir 30} .. right {dir 30}) scaled 100;
draw zigzag S;

The package also provides curly, and wiggly, as shown at the right, and defines a

curly

zigzag

wiggly

The un-morphed paths are drawn faintly in colour behind the morphed paths.
The macros work on open or closed paths, provided there are no sharp corners.

Hmmm...

number of parameters to control the sizes of the shapes:

• curly_len sets the wave length of the loops, default 8.5
• wiggly_len ditto for waves, default 11.34
• zigzag_len ditto for zigs, default 5.67
• wiggly_slope steepness of waves, default 60°
• zigzag_width, amplitude of zigs, default 4

You might like to try your hand at defining your own. Here is one that does a
vaguely hellenic meander pattern, adapted to cope with curved paths.

meander

vardef meander expr p =
save a, u, v, d, dy; numeric a, u, v, d; pair dy;
d = 4 xpart urcorner makepath currentpen;
a = arclength p; v = round(a/8d); u = a if v > 1: / v fi;
if not cycle p: point 0 of p -- fi for t = 0 step u until a-4eps:
hide(dy := d*unitvector(direction arctime t+1/2u of p of p rotated 90))
subpath(arctime t of p, arctime t+u-2d of p) of p shifted 3dy
--
subpath(arctime t+u-2d of p, arctime t+1/2 u of p) of p shifted -dy
--
subpath(arctime t+1/2u of p, arctime t+2d of p) of p shifted dy
--
subpath(arctime t+2d of p, arctime t+u of p) of p shifted -3dy
--

endfor if cycle p: cycle else: point infinity of p fi
enddef;

108

14.7 Arrow styles
Plain METAPOST provides just two commands for drawing arrows: drawarrow and
drawdblarrow. The default arrows are shown at 1 in the drawing on the right.→

drawarrow drawdblarrow

1

2

mp1

mp2

mp3

cm1

cm2

There are two parameters that you can set to control the shape. The length of
the arrow head is defined by ahlength which is set to 4pt, and the angle is defined
by ahangle which starts at 45°. In some diagrams your arrows may look more
elegant if they are a bit longer and slightly sharper. The arrows shown at 2 were
created by setting ahangle := 20; and ahlength := 6; (note that you need to
use the assignment operator to update them).

If your diagram needs a wider range of arrow head styles, perhaps because you
are drawing UML, then you can use the mparrows package from CTAN. If you have
a complete TEX distribution installed, you can just put input mparrows near the
top of your program, and then use the setarrows macro to change the arrow style.
In the drawing on the right

• mp1 shows the result of setarrows(open),

• mp2 shows setarrows(defaultunfilled), and

• mp3 shows setarrows(barbed).

The package uses the same length and angle parameters as the default arrows. It
also provides an extra parameter called barbedarrowindent to control the shape
of the barbed arrows. For full details try: texdoc mparrows

If you would rather have arrows in your drawings that match the various arrows
provided by the Computer Modern font, then you can use the cmarrows package
from CTAN. You can include this package by adding input cmarrows near the
top of your program. It is slightly more complicated to control, but the details are
explained in the manual. At cm1 you can see the result of

setup_cmarrows(macro_name="drawarrow"; arrow_name="texarrow"; ...);
setup_cmarrows(macro_name="drawdblarrow"; arrow_name="twowayarrow"; ...);

Here I have chosen to override the built-in command, but you can assign a different
macro name if you prefer. The arrow names used at cm2 were lefthalfarrow and
paralleloppositelefthalfarrows.

109

14.8 Line caps and line joins
The PostScript language defines parameters that affect how the ends of each line
are drawn and how lines are joined together. Plain METAPOST provides access to
these parameters through internal variables called linecap and linejoin; it sets
both of them to the value rounded at the start of each job. linecap

butt

linejoin
mitered

linecap
butt

linejoin
rounded

linecap
butt

linejoin
beveled

linecap
rounded

linejoin
mitered

linecap
rounded

linejoin
rounded

default

linecap
rounded

linejoin
beveled

linecap
squared

linejoin
mitered

linecap
squared

linejoin
rounded

linecap
squared

linejoin
beveled

The figure on the right shows the effect of the different settings, using an exag-
gerated line width of 2 points (instead of the usual 0.5 points). Some observations
to note:

• When linecap = squared then drawdot makes diamond-shaped dots, even
when you are drawing with the default circular pen.

• When linecap = butt then drawdot produces invisible dots. They still count
towards the bounding box of the picture but there’s no mark on the page.

• When linecap = squared then drawarrow produces some unpleasant results;
even when linejoin = mitered, you can still see small jaggies on the slopes
of the arrows.

• The arrows are nice and sharp when linejoin = mitered, but they over
shoot the mark slightly.

• If you zoom in, you can see the effect of linejoin on the corners in the centre
as well as on the arrow heads, but you might not notice the difference when
the picture is printed unless you have a very high resolution printer.

• This drawing was done with pencircle scaled 2, so that the dots would be
easy to see. This does make the arrows drawn with the default line modes
(rounded caps and rounded joins) looks a bit fat; they look better with the
usual pencircle scaled .5, Like this:

There is one more PostScript parameter affecting line joins. METAPOST makes
it available as miterlimit and it affects how much a mitered join is allowed to stick
out at each corner. Plain METAPOST sets miterlimit = 10; which works well
for most drawings. If you set miterlimit := 0; then the mitered line join mode
becomes more or less the same as the beveled mode.

110

14.9 Line caps and line joins with square pens
The parameters explained in the previous section were designed (or at least
named) for use with the default pen pencircle. You will get some rather odd

pencircle

linecap
rounded

rounded
linejoin

rounded

beveled

rounded

mitered

butt

rounded

butt

beveled

butt

mitered

squared

rounded

squared

beveled

squared

mitered

pensquare

linecap
rounded

rounded
linejoin

rounded

beveled

rounded

mitered

butt

rounded

butt

beveled

butt

mitered

squared

rounded

squared

beveled

squared

mitered

shapes if you use them with any other pen, such as pensquare, especially if you use
a large pen. In the drawings on the right, the thin red lines are drawn with each
pen scaled to 0.5bp (the default size), and the large grey and blue areas show what
would be draw with the same pens scaled to 16 bp, so that you can see the artefacts
more clearly. From these drawings you can see:

• The default setting linecap := rounded actually seems to mean “draw a dot
with the current pen at each end of the path”, so with pensquare you get a
square dot on the end and it’s not rounded at all.

• With linecap := butt, METAPOST appears to draw the terminal dots using
half of the current pen. With the square pen, this has the unfortunate effect
of cutting the pen at 45°, so that the end of the lines appear bevelled rather
than squared off. Notice also that the cut is correctly rotated with the circular
pen, but remains at 45° with the square pen.

• You get a similar effect with linecap := squared. METAPOST uses the same
cut “across” the pen, but pushes it out so that it just touches the far edge of
the pen-sized dot that would be drawn with linecap := rounded.

You can also see from the drawings that the effect of the linejoin setting, which
is admittedly pretty subtle with a circular pen, is null with the square pen. And
that the single point dots disappear unless you have linecap := rounded.

If you need to use a large square pen, then you can mitigate some of the artefacts
if you rotate the pen by 45°. Using pensquare rotated 45 corrects most of the
faults, except that linecap := rounded will give you lines with pointed ends, and
that the squared off ends of the lines with the other settings may not be exactly
orthogonal to the direction of the path at each end.

111

15 Plotting functions
A selection of graphs of mathematical functions is presented in this section, taken
from real examples collected over several years. For data visualizations, see §18. As
ever in this document, the focus is on plain METAPOST; the plain format provides
no built-in facilities for graphs so you have to do everything from scratch; but on the
other hand there are no new macros or commands to learn, you get full control of
what goes on the page, and you will not spend hours scratching your head wondering
how to adjust the axis labels.

15.1 Making axes
You can start by drawing a simple set of axes.

x

y

path xx, yy;
xx = (left -- right) scaled 130;
yy = (down -- up) scaled 80;
drawarrow xx; label.rt(TEX("x"), point 1 of xx);
drawarrow yy; label.top(TEX("y"), point 1 of yy);

Here the axes are scaled arbitrarily to 130 pt and 80 pt, but you will probably find
it useful to set consistent units, and express sizes in terms of them. Purely from
habit, I use u for the horizontal unit and v for the vertical unit. This makes it more
convenient when you want to add a grid and/or a number scale.

−1 1 2 3 4

−1

1

2

3

x

y

numeric u, v; u = 40; v = 29; path xx, yy;
xx = (3/2 left -- 5 right) scaled u;
yy = (3/2 down -- 4 up) scaled v;
for x=-1, 1, 2, 3, 4:

draw yy shifted (x * u, 0) withcolor 7/8; % grid
draw (down--up) shifted (x * u, 0); % ticks
label(TEX("$" & decimal x & "$"), (x * u, -8));

endfor
for y=-1, 1, 2, 3:

draw xx shifted (0, y * v) withcolor 7/8; % grid
draw (left--right) shifted (0, y * v); % ticks
label(TEX("$" & decimal y & "$"), (-10, y * v));

endfor
drawarrow xx; label.rt(TEX("x"), point 1 of xx);
drawarrow yy; label.top(TEX("y"), point 1 of yy);

112

15.2 Drawing linear functions
For simple linear graphs, you just need to define two points and draw a line
between them; it is tempting to try to make some generalized macro to do this, but
it is hard to make something completely general, so for most graphs it is easier just
to specify two points and use draw; often it is handy to making your line longer
than you need, then trim it using cutbefore and/or cutafter so that it fits neatly.

beginfig(1); % Using \mplibtextextlabel{enable} ...
numeric u, m, m', b, b';
u = 1.44cm;
b = 3.6u; b' = b + 1/2 u;
m = -1; m' = 3/4 m;

path xx, yy;
xx = (left -- 5 right) scaled u;
yy = xx rotated 90;

numeric minx, maxx; path ff, gg;
minx = xpart point 1/16 of xx;
maxx = xpart point 15/16 of xx;
ff = (minx, minx * m + b) -- (maxx, maxx * m + b);
gg = (minx, minx * m' + b') -- (maxx, maxx * m' + b');

z0 = point 0.4 of ff;
z1 = point 0.54 of ff;
z1 0 = whatever [point 0 of gg, point 1 of gg]; x1 0 = x0;
z1 1 = whatever [point 0 of gg, point 1 of gg]; x1 1 = x1;

forsuffixes @=0, 1:
draw (x@, 0) -- z@ -- (0, y@) dashed evenly scaled 3/4;
draw z@ -- z1 @ -- (0, y1 @) dashed withdots scaled 1/2;
label.bot("$x_{" & decimal @ & "}$", (x@, 0));
label.lft("$y_{" & decimal @ & "}$", (0, y@));
label.lft("$y'_{" & decimal @ & "}$", (0, y1 @));

endfor

draw ff withcolor 2/3 red;
draw gg withcolor 3/4 blue;
drawarrow xx; drawarrow yy;

label.rt("x", point 1 of xx);
label.top("y", point 1 of yy);

dotlabel.urt("b", (0, b));
dotlabel.urt("b'", (0, b'));

draw thelabel("slope: $m=" & decimal m & "$", 7 up)
rotated angle (1, m) shifted point 2/3 of ff;

draw thelabel("slope: $m'=" & decimal m' & "$", 7 up)
rotated angle (1, m') shifted point 2/3 of gg;

endfig;

x0

y0

y′0

x1

y1

y′1

x

y

b

b′

slope:
m
=
−
1

slope: m ′
= −0.75

But in this example it was easier to calculate them using y = mx + b. Note also
that spaces are allowed in suffixes, which makes the loop a bit simpler.

113

In this second example of a drawing with linear functions, the emphasis of the
diagram was on the angles at the x-axis made by the two lines, so the lines were
defined using rotated, shifted, and cutbefore instead.

x

y

ψ θ

T L N M

H

P

Q

The lines are both trimmed to a convenient path (boundary) when they are drawn.
beginfig(1);

numeric u; u = 1cm;
path xx; xx = (2 left -- 10 right) scaled u;
path yy; yy = (down -- 7 up) scaled u;

numeric theta, psi; psi = 28; theta = 50;
pair P, Q, H, N, M, T, L; P = (4, 3) scaled u;

…continued

path ell, tee, arc;
ell = (left--right) scaled 10u rotated theta shifted P cutbefore xx;
tee = (left--right) scaled 10u rotated psi shifted P cutbefore xx;
arc = subpath (1.6, 3.2) of halfcircle rotated -180 shifted 1/2 up

scaled 10u shifted P rotatedabout(P, psi);

Q = ell intersectionpoint subpath (1.5, 3) of arc;
H = P + whatever * dir psi;
xpart H = xpart Q = xpart M; ypart M = ypart N = 0;
xpart N = xpart P;
L = point 0 of ell;
T = point 0 of tee;

% now we can get with the drawing
draw arc withcolor 1/2 red;
draw P--N dashed withdots scaled 1/2;
draw Q--M dashed withdots scaled 1/2;
drawarrow xx; label.rt("x", point 1 of xx);
drawarrow yy; label.top("y", point 1 of yy);
drawoptions(withcolor 2/3 blue);
draw fullcircle scaled 32 shifted T cutafter tee;
draw fullcircle scaled 28 shifted L cutafter ell;
label("ψ", 24 right rotated 1/2 psi shifted T);
label("θ", 20 right rotated 1/2 theta shifted L);

drawoptions();

% draw the lines trimmed neatly
path invisible_boundary;
z1 = point .95 of xx;
z2 = point .95 of yy;
invisible_boundary = z1--(x1,y2)--z2;
draw ell cutafter invisible_boundary;
draw tee cutafter invisible_boundary;

% and finally label the points.
forsuffixes @ = T, L, N, M: label.bot("$" & str @ & "$", @); endfor
forsuffixes @ = H, P, Q: dotlabel.lrt("$" & str @ & "$", @); endfor

endfig;

114

15.3 Making curves for functions with a loop
To plot a function you can construct a suitable path using an in-line for loop
like this:

vardef f(expr x) = x ** 2 enddef;
path ff;
ff = (for x = minx step s until maxx - s:

(x, f(x)) ..
endfor (maxx, f(maxx))) xscaled u yscaled v;

provided you have first defined variables minx and maxx to represent the domain
of x, and worked out appropriate values for horizontal and vertical units, u, and v
so that the range of f(x) fits neatly on your graph.

The loop above also uses a variable s to control the number of points used to
define the path. The figures on the right show that over the domain −3 to 3 a step

x2

Step: 1
2

x3

Step: 1
2

x4

Step: 1
2

x5

Step: 1
2

x6

Step: 1
2

x7

Step: 1
2

1 2

x2

Step: 1
4

x3

Step: 1
4

x4

Step: 1
4

x5

Step: 1
4

x6

Step: 1
4

x7

Step: 1
4

1 2

x2

Step: 1
8

x3

Step: 1
8

x4

Step: 1
8

x5

Step: 1
8

x6

Step: 1
8

x7

Step: 1
8

1 2

of 1
2 gives enough points for METAPOST’s Bezier curve fitting routines to draw the

functions x2 and x3 accurately, but that you need a step size of 1
8 , and hence four

times as many points, for x6 and x7. On modern machines it does not really hurt
to calculate dozens of points, but a step size that generates 1000s of points will be
slow to compile.

There are two other techniques to improve the shape of the curve produced by these
loops: you can increase the tension between each point by using ... or -- instead
of .. in the loop; and if you know how to differentiate your function, you can add
a direction at each step using the {〈pair〉} syntax:

vardef f(expr x) = x ** 2 enddef;
vardef fp(expr x) = 2x enddef; % NB "fp" because "f'" is illegal
path ff;
ff = (for x = minx step s until maxx - s:

(x, f(x)){1, fp(x)} ..
endfor (maxx, f(maxx))) xscaled u yscaled v;

+ However in general it is simpler just to increase the number of samples by making
a smaller step size.

115

15.4 Making curves for functions from path pieces
In some situations, you might find it easier to stitch together various 〈path〉
pieces to make your curve. This can be especially elegant if there is a symmetry in
the path. For example:

y = 1/x

x

y

path ff, negative_ff;

ff = (1,1) for x = 3/2 step 1/2 until 6: ... (x, 1/x) endfor;
ff := reverse ff reflectedabout(origin, dir 45) & ff;
ff := ff scaled 24;
negative_ff = ff reflectedabout(origin, dir -45);

draw ff withcolor 2/3 red;
draw negative_ff withcolor 2/3 red;

(Omitting code for the axes, the grid, and the dots at each point of the paths).

• Notice that you can update the path using the assignment operator “:=”.

• You need to reverse the reflected portion so that the two ends coincide.

• The two path segments are spliced together with &. You could use a path join
like .. instead, but then the joined path would have an extra point at (1,1).

• Notice also how the vertical part has the same equal spacing of points as the
more horizontal part.

Reflection of a function in the line at 45° gives the inverse of the function, which
is especially useful for y = 1/x, but it applies to functions generally. So if you
want to plot y =

√
x it may be easier to define a path for y = x2 and then reflect

it. This is particularly useful if you want to plot, say, y = 3
√
x, over a domain

that includes negative numbers, because METAPOST will not calculate reciprocal
powers of negative numbers. The curve in this chart was created by reflecting the

y = 3
√
x

x

y

line y = x3.

116

15.4.1 Exponential and logarithm functions by reflection

A further example of creating paths by transformation.
ex

ln(x)

1/x

x

y

e

e

1

1

If you prefer more ‘normal’ functions, you can define:
vardef exp(expr x) = mexp(256x) enddef;
vardef log(expr x) = 1/256 mlog(x) enddef;

beginfig(1);
numeric u, minx, s, maxx;
u = 42; minx = -3; s = 1/4; maxx = 1/256 mlog(4.5);
path xx; xx = (-3u, 0) -- (5u, 0);
path yy; yy = xx rotated 90;
path ee, ll, nn;
ee = (for x = minx step s until maxx - s:
(x, mexp(256x)){1, mexp(256x)} ...

endfor (maxx, mexp(256 maxx)){1, mexp(256 maxx)}) scaled u;
ll = ee reflectedabout(origin, dir 45);
nn = (for x=1 step s until 4-s: (x, 1/x) ... endfor (4, 1/4)) scaled u;
nn := reverse nn reflectedabout(origin, dir 45) & nn;
drawoptions(withcolor 7/8);
draw unitsquare xscaled mexp(256) scaled u;
draw unitsquare yscaled mexp(256) scaled u;

drawoptions(withcolor 3/4);
forsuffixes $ = ee, ll:

path T$; T$ = (left--right) scaled 2u rotated 45
shifted directionpoint dir 45 of $;

draw T$;
endfor
draw interpath(1/2, T.ee, T.ll) dashed evenly;

drawoptions(withcolor 2/3 blue);
draw ee; label.top("e^x", point infinity of ee);

drawoptions(withcolor 2/3 red);
draw ll; label.top("$\ln(x)$", point infinity of ll);

drawoptions();
draw nn; label.urt("$1/x$", point 0 of nn);
drawarrow xx; label.rt("x", point 1 of xx);
drawarrow yy; label.top("y", point 1 of yy);
dotlabel.lft("e", (0, mexp(256) * u));
dotlabel.bot("e", (mexp(256) * u, 0));
dotlabel.ulft("1", (0, u));
dotlabel.lrt("1", (u, 0));

endfig;

117

15.5 Functions using trigonometric functions
As noted in §10, METAPOST’s built-in trigonometric functions work in degrees,
this example shows how you might use them in a graph.

beginfig(1);
numeric u, pi; u = 50; pi = 3.141592653589793;

path xx, yy;
xx = (3.5 left -- 3.6 right) scaled u;
yy = (1.1 down -- 1.2 up) scaled u;

path ss;
ss = origin for t=1 upto 360: -- (t, sind(t)) endfor;
ss := ss shifted 360 left & ss;
ss := ss xscaled (pi/180) scaled u;

drawoptions(dashed withdots scaled 1/4);
draw ((1/4 pi, 0) .. (1/4 pi, sind(45))) scaled u;
draw ((1/2 pi, 0) .. (1/2 pi, sind(90))) scaled u;
draw ((3/4 pi, 0) .. (3/4 pi, sind(135))) scaled u;
drawoptions();

draw ss
cutbefore yy shifted point 0 of xx
cutafter yy shifted point 1 of xx
withcolor 3/4 blue;

draw ss shifted (-1/2 pi * u ,0)
cutbefore yy shifted point 0 of xx
cutafter yy shifted point 1 of xx
withcolor 2/3 red;

drawarrow xx; label.rt(TEX("t"), point 1 of xx);
drawarrow yy; label.top(TEX("$u(t)$"), point 1 of yy);

for i=-4, -3, -2, -1, 1, 2, 3, 4:
draw (down--up) scaled 2 shifted (pi * i/4 * u, 0);
label.bot(pi_quarters(i), (pi * i/4 * u, -2));

endfor
endfig;

t

u(t)

−π − 3
4π − 1

2π − 1
4π

1
4π

1
2π

3
4π

π

For this diagram, the sine wave path (ss, shown in blue) needs to have two
complete cycles, so it is constructed in stages. First the section from the origin to
2π is created in a loop; with 360 steps, you can use -- and still get a smooth path.
Secondly the cycle is duplicated by splicing itself to a shifted copy. Thirdly it is
x-scaled to radians, and then scaled in both directions to the chosen unit size, and
drawn chopped off to the width of the x-axis. The cosine path is the same path,
shifted 1

2π left, drawn in red, and chopped off to fit the same width. The fancy
fraction labels were produced with this subroutine:

vardef pi_quarters(expr n) =
save s, f, q; string s, f; numeric q;
s = if n < 0: "-" else: "" fi; q = abs(n);
if q mod 4 = 0: f = if q > 4: decimal 1/4 q else: "" fi;
elseif q mod 2 = 0: f = "\frac{" & decimal 1/2 q & "}{2}";
else: f = "\frac{" & decimal q & "}{4}";
fi TEX("$\scriptstyle" & s & f & "\pi$")

enddef;

118

15.6 Manipulating functions
This second example with trigonometric functions shows one way to add two
functions, by combining the METAPOST paths themselves.

numeric u, pi; u = 50; pi = 3.141592653589793;

path xx, yy;
xx = (3.5 left -- 4 right) scaled u;
yy = (1.2 down -- 1.3 up) scaled u;

path ss, tt, uu;
ss = origin for x=1 upto 360: -- (x, sind(x)) endfor;
tt = origin for x=1 upto 360: -- (x, 1/2 sind(3x)) endfor;
uu = origin for x=1 upto 360:

-- (x, ypart point x of ss + ypart point x of tt)
endfor;

forsuffixes $=ss, tt, uu:
$:= $ shifted 360 left & $;
$:= $ xscaled (pi/180) scaled u;
$:= $ cutbefore yy shifted point 0 of xx

cutafter yy shifted point 1 of xx;
endfor

drawoptions(withcolor 3/4 blue);
draw ss; label.top("$f(x)=\sin(x)$", point 290 of ss);

drawoptions(withcolor 2/3 red);
draw tt; label.bot("$g(x)=\frac12 \sin(3x)$", point 295 of tt);

drawoptions(withcolor 1/4 green);
draw uu; label.urt("$f(x) + g(x)$", point 350 of uu);

drawoptions();

drawarrow xx; label.rt("x", point 1 of xx);
drawarrow yy; label.top("y", point 1 of yy);

for i=-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7:
draw (down--up) scaled 2 shifted (pi * i/6 * u, 0);
label.bot(pi_sixths(i), (pi * i/6 * u, -2));

endfor

f(x) = sin(x)

g(x) = 1
2 sin(3x)

f(x) + g(x)

x

y

−π − 5
6π − 2

3π − 1
2π − 1

3π − 1
6π

1
6π

1
3π

1
2π

2
3π

5
6π

π 7
6π

Notice how the same extension, scaling, and trimming operations can be applied
to all three paths using a forsuffixes loop. Note that you can use any regular
variable name for the loop index; you don’t have to use $, but like @ it is a valid
variable name in METAPOST, and it looks a bit like a placeholder marker in other
languages.

Note that you need to start with the first point of the path outside the loop so
that you don’t end up with a dangling -- path connector. Using origin is just a
short cut for writing (0, sind(0)). If you were plotting a different function this
would not work. For example, (0, cosd(0)) is (0,1).

+ The missing pi_sixths macro is left as an exercise for the reader. Hint: you can
adapt the pi_quarters on the previous page, allowing for halves, thirds, and sixths
instead of halves and quarters.

119

15.7 Focus on a specific region of a function
This visual proof required a large y-axis scale. The axes are separated to show

2 3 4

0.32

0.35

0.38

e

1/e

π

lnπ/π

y =
lnx

x

x

y

… hence eπ > πe.
the discontinuity in scales, and that the origin is not on the chart.
numeric minx, maxx, s, u, v;
minx = 13/8; s = 1/16; maxx = 19/4; u = 89; v = 3072;

def f(expr x) = 1/256 mlog(x) / x enddef;

path ff, xx, yy;
ff = for x=minx step s until maxx-s: (x, f(x)) .. endfor (maxx, f(maxx));
ff := ff xscaled u yscaled v;
xx = origin -- right scaled (maxx-minx) scaled u;
yy = origin -- up scaled 0.09v;
xx := xx shifted point 0 of ff shifted 20 down;
yy := yy shifted point 0 of ff shifted 20 left;

numeric pi, e, fpi, fe;
pi = 3.141592653589793 u; fpi = f(3.141592653589793) * v;
e = 2.718281828459045 u; fe = f(2.718281828459045) * v;
path ee, pp;
ee = (e, ypart point 0 of xx) -- (e, fe) -- (xpart point 0 of yy, fe);
pp = (pi, ypart point 0 of xx) -- (pi, fpi) -- (xpart point 0 of yy, fpi);
draw ee dashed withdots scaled 1/4 withcolor 2/3 red;
draw pp dashed withdots scaled 1/2 withcolor 2/3 red;
draw ff withcolor 3/4 blue;
drawarrow xx;
drawarrow yy;

for x=2 upto 4:
draw (down--up) scaled 2 shifted (x * u, ypart point 0 of xx);
label.bot("$" & decimal x & "$", (x * u, ypart point 0 of xx - 2));

endfor
for y=.31, .32, .33, .34, .35, .36, .37, .38:

draw (left--right) scaled 2 shifted (xpart point 0 of yy, y*v);
endfor
for y=.32, .35, .38:

label.lft("$" & decimal y & "$", (xpart point 0 of yy-2, y*v));
endfor

…continued

drawoptions(withcolor 1/2 red);
label.bot("e", point 0 of ee shifted 4 down);
label.lft("$1/e$", point 2 of ee shifted 2 left);

label.bot("π", point 0 of pp shifted 4 down);
label.lft("$\ln\pi/\pi$", point 2 of pp shifted 2 left);

drawoptions(withcolor 2/3 blue);
label.urt("$\displaystyle y={\ln x\over x}$", point 42 of ff);

drawoptions();
label.rt("x", point 1 of xx);
label.top("y", point 1 of yy);
label("\dots\ hence\enspace $e^\pi > \pi^e$.", (4u, 0.38v));

120

15.8 Approximate function diagrams
Sometimes you may need to plot a function that does not have a simple mathemati-
cal definition. You can a METAPOST〈path〉 to make a likely looking approximation.

Strain hardening Necking

Run

Rise

Yield strength

Ultimate strength

Fracture

Strain, ε

Stress, σ

Young’s modulus = Slope =
Rise
Run

beginfig(1);
z1 = 377 right; z2 = 233 up;
path ff; ff = origin .. (72, 144){1,2} .. (84, 144) ..

(96, 144){1,1} .. (220, 220){right} .. (370, 160){2,-1.3};

for t=2, 4, 4.9:
draw point t of ff -- (xpart point t of ff, y2 + 6) d

ashed evenly scaled 1/2;
endfor
label.top("Strain hardening",

(1/2 (xpart point 2 of ff + xpart point 4 of ff), y2));
label.top("Necking",

(1/2 (xpart point 4 of ff + xpart point 4.9 of ff), y2));

path rr;
rr = point 0.4 of ff -- (xpart point 0.8 of ff, ypart point 0.4 of ff) -- point 0.8 of ff;
draw rr; label.bot("Run", point 1/2 of rr); label.rt("Rise", point 3/2 of rr);

vardef pin_label@#(expr p, a, b)=
draw a -- b cutbefore fullcircle scaled 8 shifted a withpen pencircle scaled 1/4 withcolor 1/2 white;
label@#(p, b);

enddef;
pin_label.lrt("Yield strength", point 1.2 of ff, point 2 of ff + (8, -18));
pin_label.bot("Ultimate strength", point 4 of ff, point 4 of ff + (4, -24));
pin_label.bot("Fracture", point 5 of ff, point 5 of ff + (-8, -18));

draw ff withpen pencircle scaled 1 withcolor 2/3 blue;
clip currentpicture to unitsquare scaled 400; % clip thick pen at origin

drawdblarrow z1 -- origin -- z2;
label.ulft("Strain, ϵ", z1);
label.urt("Stress, σ", z2);

label("$\displaystyle\hbox{Young's modulus} = \hbox{Slope} = {\hbox{Rise}\over\hbox{Run}}$", 1/2 z1 shifted 36 up) withcolor 2/3 blue;
endfig;

121

15.8.1 Taming Bezier paths with controls

It takes some practice to translate a sketch of a curve into a smooth path. Plain
METAPOST inherits from METAFONT a useful flex macro, that takes a list of 〈pair〉s
(any number of them) and produces a pleasing path through them. As Knuth says
in the The METAFONTbook: “The idea is to specify two endpoints, z1 and zn,
together with one or more intermediate points where the path is traveling in the
same direction as the straight line from z1 to zn; these intermediate points are
easy to see on a typical curve, so they are natural candidates for key points.” For
example:

draw flex(z1,z2,z3) & flex(z3,z4,z5)
flex(z5,z6,z7) & flex(z7,z8,z9,z1) & cycle;

(with appropriate definitions of the points), produces this:

Another approach is just to define the end-points and some control points, and
then define a path that is shaped by the control points but does not actually go
through them. Consider this program:

z1

z2

z3

vardef pulse(expr w, h, d) =
clearxy; % protect (x,y) values
x0 = 0; x1 = 1/4w; x2 = 1/2w; x3 = 3/4w; x4 = w;
y0 = 0; y1 = 0; y2 = h; y3 = d; y4 = d;
z0 .. 1/2[z0, z1] .. controls z1

.. 1/2[z1, z2] .. controls z2

.. 1/2[z2, z3] .. controls z3

.. 1/2[z3, z4] .. z4
enddef;
path p; p = pulse(300, 100, -40); draw p withcolor 1/2 blue;

This produces the smooth blue line shown on the right. A second copy of the line
is shown below, decorated with the three control points z1, z2, and z3 in red, and
showing the six points of the path as small black circles. You can tweak this curve
by adjusting the controls left or right, or changing the mediation parameters so that
the points on the path are closer to one control point than the other.

122

15.9 Parametric plots
If you want to plot one function against another, then you can make each
coordinate a function of an independent variable. All functions can be converted,
trivially, to this form:

vardef f(expr x) = x enddef;
vardef g(expr x) = sind(x) enddef; % or whatever function ...
path ff; ff = for t = mint step s until maxt - s:

(f(t), g(t)) ..
endfor (f(maxt), g(maxt));

But you can make more complicated curves, for example curves that can have more
than one value for y for a given x, if you change f(x) and g(x) appropriately. The
first example shows the lemniscate of Bernoulli and was drawn like this:

x

y

F1 F2

beginfig(1);
numeric a, c; c = 100; a = sqrt(2) * c;
vardef f(expr x) = a * cosd(x) / (1 + sind(x) ** 2) enddef;
vardef g(expr x) = f(x) * sind(x) enddef;
numeric mint, maxt, s; mint = 0; s = 30; maxt = 360;
path p; p = for t = mint step s until maxt - s:
(f(t), g(t)) ...

endfor cycle;
draw p withcolor 3/4 blue;
path xx; xx = (left -- right) scaled 150;
path yy; yy = (down -- up) scaled 55;
drawarrow xx; label.rt("x", point 1 of xx);
drawarrow yy; label.top("y", point 1 of yy);
dotlabel.bot("F_1", c * left);
dotlabel.bot("F_2", c * right);

endfig;

Although sometimes, especially when you know the domain is 0° to 360° and that
the path is cyclic, it is simpler to write the two expressions directly in the loop: x

y

path p;
p = for t = 0 upto 360: (144 cosd(3t), 89 sind(2t)) ... endfor cycle;
draw p withcolor 2/3 red;

which produces this Lissajous curve −→

123

Parametric plots with polar coordinates: Maurer roses
Instead of defining separate functions for the x and y coordinates in a parametric
plot, it is sometimes convenient to use METAPOST’s polar coordinate notation
(discussed in §6.1). The family of “rose” plots, based on r = cos(nθ), is easy to do
in this way. Here is a Maurer rose, based on r = cos(2θ) and connecting every 29th
point on the curve.

x

y

beginfig(1);
path r, k;
r = for t = 1 upto 360: cosd 2t * dir t .. endfor cycle;
r := r scaled 150;
k = for t = 1 upto 360: point 29t of r -- endfor cycle;

draw k dashed withdots scaled 1/8
withpen pencircle scaled 1/4
withcolor 1/2[blue, white];

draw r withcolor 2/3 red;

path xx, yy; % you might nor need the axes...
xx = (left -- right) scaled 160;
yy = (down -- up) scaled 160;
drawarrow xx; label.rt("x", point 1 of xx);
drawarrow yy; label.top("y", point 1 of yy);

endfig;

Different values of the parameters in r and k give an endless variety of patterns. But
note that if you put anything higher than point 91t of r in k, you will need to use
-numbersystem=double to avoid arithmetic overflow (because 360 × 92 > 32768).
You get prettier curves if the parameter in k is a prime number.

124

16 Drawing plane curves
Plane curves offer a rich … field of study which may be approached from a quite
elementary level. Anyone who can draw a circle with a given centre and a given
radius can draw a cardioid or a limaçon. Anyone who can use a set square can

draw a parabola or a strophoid — A Book of Curves, E. H. Lockwood

16.1 Parabola
The simplest way to get a parabola curve is to plot y = x2 over −1 ≤ x ≤ 1
and then transform as required (see next page), but it can be illuminating to follow
more traditional constructions, such as that shown on the right.

A S

The idea here is that you put the right angle
of your set square on the vertical axis with the
short side touching S, and then draw the long
side. If you do this in enough places, the edges
form a parabola. In the METAPOST code here,
the intersection of each ray with the one before
is captured as variable t and then added one
at a time to the 〈path〉 parabola, (using a neat
trick at the beginning).

beginfig(1);
pair A, S; A = origin; S = 66 right;
path parabola, last;
for q = -144 step 8 until 144:
pair Q; Q = q * up; path ray;
ray = Q -- Q + 300 unitvector(S - Q) rotated if q < 0: - fi 90;
draw S -- ray withcolor 7/8;
if known last:
pair t; t = whatever[point 0 of ray, point 1 of ray]

= whatever[point 0 of last, point 1 of last];
parabola := if known parabola: parabola .. fi t;

fi
last := ray;

endfor
draw parabola withcolor 3/4[red, white];
for t=0 upto length parabola:
draw point t of parabola withpen pencircle scaled 3/2 withcolor red;

endfor
draw (up--down) scaled 300;
dotlabel.lft("A", A); dotlabel.rt("S", S);

endfig;

125

Parabola from directrix and focus

The classical definition of the parabola is the locus of points that are equidis-
tant from a given line (the directrix, shown as A . . B on the right) to a given focus
point (shown as S). Each point on the parabola path is related to each point on

S

A

B

point i of p

q
n o

m

t[A,B]

curves-parabola-directrix

the directrix, and you can construct an equilateral parallelogram at each point as
shown. This leads to a macro that generates a parabola given two 〈pair〉 variables
to define the directrix and another to define the focus:

vardef parabola(expr A, B, S) =
save m, q, n, parabola;
pair n; % the point on A--B nearest to S
n = whatever[A, B];
n - S = whatever * (A-B) rotated 90;
path parabola;
for t=0 step 1/64 until 1:
pair m, q;
m = 1/2[S, t[A, B]];
q = whatever[S, n]; q - m = whatever * (S - m) rotated 90;
parabola := if known parabola: parabola -- fi
q reflectedabout(S, m);

endfor
parabola

enddef;

Parabola from y = x2 and dy/dx = 2x

Alternatively you could define a “unit parabola” like this:

path ff; ff = (-1, 1){1, -2} .. (-1/2, 1/4){1, -1} ..
(0, 0){right} .. (1/2, 1/4){1, 1} .. (1, 1){1, 2};

and then — using the points defined above, where o is the mid-point of n . . S —
scale it and place it like this:

draw ff scaled 4 abs(S-o) rotated angle (B-A) shifted o;

126

16.2 Hyperbola
The traditional construction for the hyperbola is identical to the construction
for the parabola given above, except that the base line is a circle rather than a
straight line. As a result, the shape of the curve changes depending on the radius of

SA
O

curves-hyperbola-construction

the base circle, unlike the parabola. The curve is bounded by the two asymptotes,
which are the lines from the centre of the circle O through the tangent points from
the focus S. When the ratio of OS/OA =

√
2, the asymptotes are at right angles.

You can also draw the hyperbola as the function y = 1/x (as shown in §15.4),
which can be transformed to any desired shape. The untransformed function is
shown on the bottom left, with the focus S at the point (

√
2,
√
2). If the desired

angle between the asymptotes is 2α, the transformation can be created like this:

numeric alpha; alpha = 34; transform t;
origin transformed t = origin;
right transformed t = dir -alpha;
up transformed t = dir alpha;

This can be applied to the hyperbola curve itself and to the axes. But the focus
will remain at the same distance from the origin, as shown below right.

S

S

127

16.3 Ellipse
You can draw an ellipse in METAPOST by scaling the standard fullcircle
path by a different amount in each direction. By convention, the y-axis is the minor
axis of an ellipse. The ellipse shown on the right, was defined like this:

a

b

ae

T

F1

F2

curves-ellipse.mp

path ellipse;
ellipse = fullcircle scaled 300 yscaled 5/8 rotated 13;

Then the lengths of the semi-major axes, a and b, were extracted like this:

numeric a, b;
2a = abs (point 4 of ellipse - point 0 of ellipse);
2b = abs (point 6 of ellipse - point 2 of ellipse);

If you already had a and b, then you could use them directly to scale your ellipse;
the following snippet would produce the same elliptical path:

numeric a, b; a = 160; b = 100; path ellipse;
ellipse = fullcircle xscaled 2a yscaled 2b rotated 13;

The “eccentricity”, e, of the ellipse is the ratio between the distance from the centre
to each focus and the semi-major axis, a. By definition, the distance from F1 to T
to F2 is constant as T moves round the ellipse and is equal to 2a. Hence when T
lies on the minor axis, you have TF1 = a, and so a2 = b2+a2e2, and e2 = 1−b2/a2:

numeric e; e = 1 +-+ b/a; % Pythagorean difference

The focus points can then be found like this:

z0 = 1/2[point 0 of ellipse, point 4 of ellipse];
z1 = e[z0, point 0 of ellipse];
z2 = e[z0, point 4 of ellipse];

Note that in the example above the ellipse is centred at the origin, because the
fullcircle path was only scaled and rotated, not shifted. But the method shown
will find the centre of any ellipse no matter where you have placed it.

+ If you already have the two focus points, then the distance between them will be
2ae, so if you also have a or e you can calculate b and hence draw your ellipse
appropriately scaled, rotated, and shifted.

The tangent and the normal at T above were added like this:

numeric t; t = 1.732;
drawoptions(withcolor 1/2);
draw (left--right) scaled 34
rotated angle direction t of ellipse
shifted point t of ellipse;

draw (1/2 down--up) scaled 34
rotated angle direction t of ellipse
shifted point t of ellipse;

128

Tangent from external point to ellipse

F1

F2

A

P

Q

T

T ′

curves-ellipse-tangents.mp

To find the tangent points from an external point A to an ellipse, the classical
construction is to draw an arc centred at A through one focus point, then draw a
second arc centred at the other focus with radius 2a. The intersection points, P and
Q, of these two arcs are the images of the first focus point in the required tangents
(because F2TF1 = 2a by definition, and F2P = 2a by construction), and so the
tangent points T and T ′ are the intersections of F2P and F2Q with the ellipse.

There is no such direct construction for the nearest point on an ellipse to a given
point, but you can use the macro solve to find it numerically. The blue arrow shows
the shortest distance from A to the ellipse.

path ellipse; ellipse = fullcircle scaled 300 yscaled 5/8 rotated 8;
2a = abs (point 0 of ellipse - point 4 of ellipse);
2b = abs (point 2 of ellipse - point 6 of ellipse);
e = 1 +-+ b/a;

pair F[], A;
F1 = (1/2-e/2)[point 0 of ellipse, point 4 of ellipse];
F2 = (1/2+e/2)[point 0 of ellipse, point 4 of ellipse];
A = 240 dir 25;

path pp; pp = fullcircle scaled 2 abs (F1-A) shifted A;
path qq; qq = fullcircle scaled 4a shifted F2;
pair P, Q, T, T';
z1 = pp intersectiontimes qq; P = point x1 of pp;
z2 = reverse pp intersectiontimes qq; Q = point -x2 of pp;
z3 = ellipse intersectiontimes (F2 -- P); T = point x3 of ellipse;
z4 = ellipse intersectiontimes (F2 -- Q); T' = point x4 of ellipse;

vardef f(expr x) =
angle (A-point x of ellipse) + 90 > angle direction x of ellipse

enddef;
drawarrow A -- point solve f(0, x3) of ellipse withcolor 2/3 blue;

draw subpath (x1 - 1/2, 17/2 - x2) of pp dashed withdots scaled 1/2;
draw subpath (y2 - 33/4, y1 + 1/4) of qq dashed withdots scaled 1/2;
draw T -- F1 -- P -- F2 -- Q -- F1 -- T' withcolor 1/2;
draw P -- A -- Q withcolor 1/2;
draw T -- A -- T' withcolor 2/3 red;
draw ellipse;

def dotlabelx(expr t, z, o) =
draw z withpen pencircle scaled dotlabeldiam; label(t, z + o);

enddef;
dotlabelx("F_1", F1, 10 dir 241);
dotlabelx("F_2", F2, 8 dir 260);
dotlabelx("A", A, 8 dir 30);
dotlabelx("P", P, 10 dir 94); dotlabelx("Q", Q, 10 dir 300);
dotlabelx("T", T, 10 dir 120); dotlabelx("T'", T', 10 dir -45);

129

16.4 Cardioid
To draw a cardioid by hand, you can draw a base circle, mark a fixed point
A on it, and then draw a circle centred at any point Q on the circle that passes
through point A. If you then repeat this for many different positions of Q, the
cardioid is the curve that encloses all the circles. But for METAPOST, you want

A

Q

only a single point P from the circumference of each circle; this turns out to be the
image of A reflected in the tangent at each point Q, like so:

A

P

Q

With a small step size s and a rotated circle base, this suggests:
pair A; A = point 0 of base;
path cardioid; cardioid = for t = 0 step s until length base:

A reflectedabout(precontrol t of base, postcontrol t of base) ..
endfor cycle;

You can also show that AP = 2a(1 + cos θ), where a is the radius of the base circle
and θ is the angle that AP makes with the diameter through A, so you might use:

cardioid = for t=0 upto 360: 2a * (1+cosd(t)) * dir t .. endfor cycle;

130

16.5 Limaçon
The limaçon can be seen as a generalization of the cardioid, obtained by moving
point A off the base circle. Here A has been moved to the left, but each P on

A

Q

P

the curve is still A reflected in the tangent at each Q. The “hole” gets larger as
A moves away from the base circle; when A touches the base the hole disappears
and the curve becomes the cardioid, as before. Following this ruler-and-compasses
approach, the red limaçon path in the figure here was generated from the base circle
shown in blue.

pair A; A = 2[center base, point 0 of base];
path limacon; limacon = for t = 0 step s until length base:
A reflectedabout(precontrol t of base, postcontrol t of base) ..

endfor cycle;

Or if you prefer a more trigonometrical approach:
limacon = for t=0 upto 359: 2a*(1+2cosd(t))*dir t .. endfor cycle;

Here 2a is the diameter of the blue base circle. Note that if you use sind
instead of cosd you get the same curve rotated 90◦.

An alternative approach (due to Albrecht Dürer) is shown below. In this
diagram, the base circle is divided into
12 parts like a clock face. At 1 o’clock,
you draw a line segment of a given length
parallel to the radius to 2 o’clock; at 2
you draw the same length segment paral-
lel to 4 o’clock, and so on. The limaçon
is the curve through the far ends of each
segment (plus any intermediate points re-
quired). This approach of doubling the
angles makes it more obvious that the li-
maçon goes round twice, as it were. The
path was generated like this:

limacon = for t=0 upto length base-1:
42 dir angle point 2t of base shifted point t of base ..

endfor cycle;

131

16.6 Astroid
Readers of a certain age may recall threading strings between pegs on a board
to make the astroid. It is the envelope of a line of a given length drawn from x-axis
to y-axis at all possible points. In METAPOST the simplest way to draw the astroid
curve (and the “strings”) is to use a base circle and the points A and B at the ends
of each line that have the x part and y part of each point T round the base circle.

x

y

SO

B

A

P

M

N

T

θ

2θ

4θ

Then the point P on A . . B that is closest to T will lie on the astroid, so you can
make the path with:

path astroid; astroid = for t=0 step 1/16 until 8:
hide(pair a, b, p;

a = (xpart point t of base, 0); b = (0, ypart point t of base);
p = whatever[a,b]; p - point t of base = whatever * (a-b) rotated 90;

) p -- endfor cycle;

Note that you need to use “--” so that the cusps stay neatly pointed.

+ The geometry of the subtended angles shows that the length of the arc
T . . S equals the length of the arc from T . . P on the quarter-sized circle
through T and M . So the astroid is also the path of a point on the smaller
circle rolling around the inside of the base circle.

132

Astroid and cousins

The geometry of the astroid also allows us to define a simple parametric equation
for the point P .

x

y

SO

B

A

P

M

N

T

θ

2θ

4θ

If the distance OT = a, then OA = BT = a cos θ. But then BP = BT cos θ =
a cos2 θ, and the x-coordinate of P = BP cos θ = a cos3 θ. By a similar argument
the y-coordinate is a sin3 θ, so the parametric equations for P = (x, y):

x = a cos3 θ and y = a sin3 θ

This is used to make this rather psychedelic family of astroid cousins −→

input colorbrewer-rgb
for n=1 upto 7:
path p; p = (right for t=6 step 6 until 90:
.. (cosd(t) ** n, sind(t) ** n)

endfor) scaled 144;
p := for i=0 upto 3: p rotated 90i & endfor cycle;
fill p withcolor Blues[9][n]; draw p;

endfor

133

16.7 Cycloid
Cycloids are the curves made by points on the circumference of a rolling wheel.
In the first diagram the cycloid is drawn in red and the corresponding rolling wheel
in blue. The main idea in this diagram is to make the whole drawing depend on
just a few parameters; here there are two: the radius r and the amount of rotation
θ. If we make r bigger, the drawing will be scaled up; if we change θ, the wheel will
appear to have rolled along.

x

y

θ

2πrrθx

y
r

(πr, 2r)

x = r(θ − sin θ)
y = r(1− cos θ)

• The path of the cycloid is defined using an inline for loop, using a neat trick
to avoid a leading -- in the path. The strange numbers here are because we
are going from a rotation of −80° to +440°; 360° corresponds to one hop of
the cycloid.

• The axes are done in the usual way, except that we use xpart and the
point .. of .. notation to make the x-axis neatly line up with the ends
of the cycloid path.

• To label points with dots but no text it’s convenient just to draw the point with
pencircle scaled dotlabeldiam; this internal parameter is the current size
to be used for the dots in dotlabel.

beginfig(1);
numeric pi, r, theta; pi = 3.141592653589793; r = 42; theta = 81;
path cycloid;
for t=-80 step 5 until 440:

cycloid := if known cycloid: cycloid -- fi
(0, -r) rotated -t shifted (t/180*pi*r, r);

endfor;
path wheel;
z1 = (theta/180*pi*r, r);
wheel = reverse fullcircle scaled 2r rotated -(90 + theta) shifted z1;
z2 = point 0 of wheel;
path a[]; u = 1/16; % u = a little shortening
a1 = subpath -(theta/45-u,u) of wheel shifted -z1 scaled 5/8 shifted z1;
a2 = subpath (.3, 1.4) of wheel shifted -z1 scaled 1.08 shifted z1;
a3 = a2 rotatedabout(z1, 170);
path xx, yy;
xx = (xpart point 0 of cycloid, 0) -- (xpart point infinity of cycloid,0);
yy = (down -- 5 up) scaled 1/2 r;

ahangle := 30;
drawarrow xx withcolor 1/2; label.rt (btex x etex, point 1 of xx);
drawarrow yy withcolor 1/2; label.top(btex y etex, point 1 of yy);

draw cycloid withcolor .67 red;
draw wheel withcolor .67 blue;
drawarrow a1; drawarrow a2; drawarrow a3;
draw (0,y2) -- z2 -- (x2,0) dashed withdots scaled 1/4;
draw z2 -- z1 -- (x1,0);
draw z1 withpen pencircle scaled dotlabeldiam;
draw z2 withpen pencircle scaled dotlabeldiam;

label(btex θ etex, z1 + 3/4r * dir (270 - 1/2 theta));
label.bot(btex $\mathstrut 2\pi r$ etex, (2pi*r,0));
label.bot(btex $\mathstrut r\theta$ etex, (x1,0));
label.bot(btex $\mathstrut x$ etex, (x2,0));
label.lft(btex y etex, (0,y2));
label.top(btex r etex, 1/2[z1, z2]);
dotlabel.top(btex $(\pi r,2r)$ etex, (pi*r,2r));
label.rt(btex $\vcenter{\halign{&$#$\hfil\cr

x=r(\theta-\sin\theta)\cr
y=r(1-\cos\theta)\cr}}$ etex, (pi*r,r));

endfig;

134

The cycloid compared to other curves

You can’t easily draw a cycloid through two arbitrary points, but taking the
equations for x and y from the previous page, we can use solve to find a value a for
θ > 0 where θ− sin θ = 1− cos θ, and then you have two points for θ = 0 and θ = a
which are at each end of a quarter circle, and it’s easy to draw other curves through
them. The cycloid is drawn here inverted, to make the brachistochrone (the curve

beginfig(1);
path Y, L, C, P, S;

% solve parameters for cycloid
vardef u(expr x) = x - sind(57.295779513 x) enddef;
vardef v(expr x) = 1 - cosd(57.295779513 x) enddef;
vardef f(expr t) = u(t) < v(t) enddef;
tolerance := epsilon; a = solve f(2,3);
s = 1/64 a;
Y = (origin for t = s step s until a+eps:
-- (u(t), -v(t)) % negative v(t) so curve is inverted

endfor) scaled 160;
z0 = point 0 of Y;
z1 = point infinity of Y;

% define the four other paths
L = z0 -- z1;
C = quartercircle rotated 180 scaled 2x1 shifted (x1, y0);
P = z0{1,-2} ... (1/2[x1, x0], 1/4[y1, y0]){1,-1} ... z1 {1, 0};
S = z0{1,-6} ... (1/2[x1, x0], 1/64[y1, y0]){1, -6/32} ... z1 {1, 0};

draw z0 -- (x0,y1) -- z1 withcolor 3/4;
drawoptions(withcolor 2/3 red);
draw L; dotlabel.urt("Line", point 1/4 of L);

drawoptions(withcolor 1/2 green);
draw C; dotlabel.urt("Circle", point 1 of C);

drawoptions(withcolor 1/4[red, green]);
draw P; dotlabel.urt("Parabola", point 1/2 of P);

drawoptions(withcolor 3/4[red, green]);
draw S; dotlabel.llft("Sixth degree", point 3/4 of S);

drawoptions(withcolor 1/2 blue);
draw Y; dotlabel.urt("Cycloid", point 50 of Y);

drawoptions();

dotlabel.urt("A", z0);
dotlabel.urt("B", z1);

endfig;

joining two points such that a body travelling along it under gravity takes a shorter
time than is possible along any other curve between the points).

Line

Circle

Parabola

Sixth degree

Cycloid

A

B

135

16.8 Spirals
D’Arcy Thompson tells us, in On Growth and Form, that the spiral of Archimedes
“may be roughly illustrated by the way a sailor coils a rope upon the deck; as the
rope is of uniform thickness, so in the whole spiral coil is each whorl of the same
breadth as that which precedes and as that which follows it”. In mathematical
terms the radius of the spiral is proportional to the angle turned, so that r = aθ.
This is very simple to program in METAPOST.

numeric a; a = 1/8; path S;
S = origin for t=1 upto 360: .. a * t * dir t endfor;

except that you are unlikely to need one point for every degree of turn in your
spiral, so you are more likely to code:

S = origin for t=1 upto 360: .. a * t * dir 8t endfor;

which spreads the points out and gives you eight full turns, or perhaps

S = origin for t=1 upto 90: .. 1/12 t * dir 16t endfor;

which would give you four complete turns with a tighter spacing. The rope was drawn (quite slowly) with the rope macro from §13.10.

The next simplest is the logarithmic spiral where you have r = aθ. This is also
very simple to program in METAPOST, provided you are careful about the scaling.
For the spiral shown on the right, the complete program was:

numeric a; a = 2.6; path S;
S = right for t=1 upto 360: .. a ** (t/64) * dir 4t endfor;
drawarrow S;

Note that a was carefully chosen to get a curve that would fit the page, and that
t has been divided by 64 to bring it into a suitable range to work with the default
number system.

136

Logarithmic spiral and the golden rectangle

The logarithmic spiral is connected to growth in nature. If you start with
a small square and keep adding squares scaled to the longer side of the resulting
rectangle, you get the golden rectangle and the logarithmic spiral emerges from it.

8
13

21

34

55

89

144

beginfig(1);
drawoptions(withpen pencircle scaled 1/4 withcolor 1/4);
path s[]; s0 = unitsquare;
fill s0 withcolor 1/2[2/3 blue, white]; draw s0;
numeric a, b, t, n; a = 1; b = 1; n = 11;
for i = 1 upto n:
t := b; b := b + a; a := t; % Fibonacci sequence
s[i] = unitsquare scaled a;
s[i] := s[i] shifted (point i of s[i-1] - point i-1 of s[i]);
fill s[i] withcolor (1/2 + i/32)[2/3 blue, white];
draw s[i];

endfor
% cross hairs
for i = n-1 upto n:
draw point i-2 of s[i-2] -- point i of s[i];

endfor
drawoptions();
% Draw the spiral as a red arrow
drawarrow origin for i=0 upto n: .. point i of s[i] endfor
withcolor 2/3 red;

% show the Fibonacci sizes for the larger boxes
for i = 5 upto n:
label(TEX(decimal arclength subpath (0, 1) of s[i])
scaled 0.8 rotated angle point n of s[n], center s[i]);

endfor
% Rotate the whole picture to show off the spiral
currentpicture := currentpicture rotated - angle point n of s[n];

endfig;

• You can’t assign to a pair literal in METAPOST, so you cannot write
(a,b) := (b,a+b); use a temporary numeric instead.

• The uses of point with the square paths s[] exploit the fact the the
unitsquare path is cyclic, so point 4 is the same as point 0, and so on.

• Note also the rotation of the labels, so that they are horizontal when the
whole picture is rotated at the end to show the spiral better.

137

Logarithmic spiral and similar triangles

This drawing starts with a large triangle and transforms it to make smaller similar
copies. The spiral is drawn through the apex of successive transformed triangles.

a

b

x

beginfig(1);
path t[], base; pair apex;
base = (left--right) scaled 100;
apex = whatever * dir +72 shifted point 0 of base

= whatever * dir -72 shifted point 1 of base;
t0 = (base -- apex -- cycle);
transform S;
r = arclength subpath (0, 1) of t0 / arclength subpath (2, 3) of t0;
point 0 of t0 transformed S = (r*r)[point 0 of t0, point 2 of t0];
point 1 of t0 transformed S = point 0 of t0;
point 2 of t0 transformed S = point 1 of t0;
n = 16;
for i=1 upto n:
t[i] = t[i-1] transformed S;
draw subpath (2,3) of t[i] withpen pencircle scaled 1/4;

endfor
drawoptions(withpen pencircle scaled 1/8 withcolor blue);
draw point 0 of t0 -- point 3/2 of t0;
draw point 0 of t1 -- point 3/2 of t1;

drawoptions();
draw t0;
drawarrow point 2 of t[n] for i=n-1 downto 0:
.. point 2 of t[i] endfor withcolor 2/3 red;

z0 = whatever[point 0 of t0, point 3/2 of t0]
= whatever[point 0 of t1, point 3/2 of t1];

numeric a; a = angle (point 2 of t0 - z0);
label.lft(TEX("a") rotated a, point 5/2 of t0);
label.bot(TEX("b") rotated a, point 1/2 of t0);
label.rt(TEX("x") rotated a, point 1/2 of t1);
currentpicture := currentpicture rotated -a;

endfig;

The 〈transform〉 S is defined implicitly. It is sufficient to give equations
for three non-collinear points, and METAPOST will work out the rest.
In order to do this, you need to know the ratio of x/a, but by definition
a/b = b/x, so x = b2/a, hence x/a = (b/a)2. The code shown sets
r = b/a, and then uses r2 as the required fraction along a.

+ This construction also works for other triangles, but it looks more elegant
with an isosceles with base angles of 72◦ as shown.

138

17 Eggs
Drawing hens’ eggs excites a curious fascination in some people. This section
shows some possible ways to make eggs with METAPOST. The first few compass-
and-ruler constructions are taken from Robert Dixon’s Mathographics. They all
follow the same basic idea of constructing the egg-shaped path from a series of
circular arcs.

In these METAPOST implementations each egg path has 8 points
starting with point 0 at “3 o’clock” like fullcircle.

17.1 Euclidean egg
The first is made of four circular arcs, defined here as parts of circles a, b, c, & d.

1

2

3

4

5

6

7

8

• eggs-common.mp defines the colours, and the numbered_points
routine that is used to show the points of the egg path.

• Note that it is not necessary that the parts of the arcs touch; in
fact it is better to join them with the .. connector in case the
ends are not close enough for you to use &.

• The rigmarole with saving the current picture, is to show a copy
of the egg path with and without the construction lines.

input eggs-common
path a, b, c, d, egg; numeric r; r = 100;
a = fullcircle scaled 2r;
b = fullcircle scaled 4r shifted point 4 of a;
c = fullcircle scaled 4r shifted point 0 of a;
d = fullcircle scaled 2 abs (point 2 of a - point 1 of b)

shifted point 2 of a;
egg = subpath (0, 1) of b .. point 2 of d ..

subpath (3, 4) of c .. subpath (5, 7) of a .. cycle;

beginfig(1);
fill egg withpen pencircle scaled 2 withcolor eggshell;
picture plain_egg; plain_egg = currentpicture;
drawoptions(withpen pencircle scaled 1/4 withcolor dark_eggshell);
draw a; draw d;

drawoptions(withpen pencircle scaled 1/4 withcolor 1/2);
draw point 1 of egg -- point 4 of egg --

point 0 of egg -- point 3 of egg;
draw egg;

drawoptions(withpen pencircle scaled 2 withcolor 7/16);
draw center a; draw center d;
draw numbered_points(egg);

drawoptions();
draw plain_egg shifted 240 right;

endfig;

139

17.2 Pythagorean egg
The centres of the arcs are determined by the 3-4-5 triangle at the origin.

3

4
5

1
2

3

4

5

6

7

8

numeric r, a, b, t; a = 60; b = 45; r = a ++ b;
pair p, q; p = -q = (b, 0);
path base, cap, egg;
base = subpath (4, 8) of fullcircle scaled 2(2r-b);
cap = subpath (0, 4) of fullcircle scaled 2r shifted (0, a)

cutbefore ((b, 0) -- (b, 2r))
cutafter ((-b, 0) -- (-b, 2r));

egg = point 4 of base {up} .. cap .. {down} base & cycle;
% more naturally "base {up} .. cap .. {down} & cycle"
% but then point 0 would not be at 3 o'clock

Note that you can use . . to create reasonably large circular arcs. The parts of the
drawing for filling the egg, and showing the construction are similar to the first
example.

17.3 A taller Pythagorean egg
A slightly different approach using a

√
3-
√
4-
√
7 triangle.

√
3

√
4

√
7

1
2

3

4

5

6

7

8

path base, cup, cap, egg;
base = fullcircle scaled 180;
z1 = point -2/3 of base;
z2 = point 2/3 of base;
z3 = point 10/3 of base;
z4 = point 14/3 of base;
z5 = 1/2[z2, z3]; z6 = 1/2[z4, z1];
numeric a, b;
a = abs(z3-z1) - abs(z4-z6);
b = abs(z3-z1) - abs(z4-z5);
cup = subpath (4, 8) of fullcircle scaled 2a shifted z6;
cap = fullcircle scaled 2b shifted z5

cutbefore (z5 -- 2[z4, z5]) cutafter (z5 -- 2[z1, z5]);
egg = point 4 of cup {up} .. cap .. {down} cup & cycle;

140

17.4 Golden section egg
Another alternative construction, for Callicrates.

m
n n′

1
2

3

4

5

6

7

8

path base, aa, bb; pair m, n, n';
base = fullcircle scaled 200; m = 1/2 point 0 of base;
aa = halfcircle scaled 2 abs (point 2 of base - m)

shifted m cutbefore (origin -- 1000 up);
n = point infinity of aa; n' = n reflectedabout(up, down);
bb = subpath (0, 2) of base shifted n cutafter (origin -- 1000 up);
path dome, cap, cup, egg;
dome = fullcircle

scaled 2 (abs(n - point 0 of base) - abs(n - point 0 of bb))
shifted point length bb of bb;

cap = dome
cutbefore (point 4 of bb -- 2[n, point 4 of bb])
cutafter (point 4 of bb -- 2[n', point 4 of bb]);

cup = subpath (4, 8) of base;
egg = point 4 of cup {up} .. cap .. {down} cup & cycle;

17.5 Four point egg
So far all the eggs have been drawn with semi-circular big end, but this can be
improved. To get a smoother curve, you can use four different sized arcs with four
different centres of rotation to make up each side of the egg.

1

2

3

4

5

6

7

8

path egg, a, b, c, d;
a = fullcircle scaled 80;
b = a scaled 2 shifted point 6 of a;
c = halfcircle

scaled 2 (abs(point 0 of a - point 5 of b) - abs(point 0 of a));
d = fullcircle

scaled 2 abs(point 2 of a - point 2 of c) shifted point 2 of c;
egg = point 0 of c {up} .. subpath (1,3) of d .. {down} point 4 of c

.. subpath (5, 7) of b .. cycle;

141

17.6 Five point egg
The next level of sophistication is to use five different arcs, but this is more complex
and you lose the points at exactly E, N, W, and S.

1

2

3

4

5

6

7

8

12

3

4

5 6

7

8

+ Instead of defining and joining circular arcs, this construction defines
the points for the egg and the desired directions at each point; all the
work of making the circular arcs is left to the . . connector. The six
symmetrically-arranged rings r1 to r6 are used to define eight centres of
rotation o1 to o8 which are either points on the rings or intersections
of lines between them. Then eight directions u1 to u8 are defined
at right angles to lines between pairs of centre points. Finally the
handy directionpoint macro is used to find the points where the
relevant circle is moving in that direction. To make the egg, these
points are joined up with . . constrained by the matching direction to
make circular arcs.

←− Like so.

numeric a; a = 56;
path r[]; % the rings
r1 = fullcircle scaled 2a shifted (0, -3/2 a);
r2 = fullcircle scaled 2a shifted (0, -1/2 a);
r3 = fullcircle scaled 2a shifted (0, +1/2 a);
r4 = fullcircle scaled 2a shifted (0, +3/2 a);
r5 = r2 rotatedabout(point 2 of r2, -60);
r6 = r2 rotatedabout(point 2 of r2, +60);
pair o[]; % the centres of rotation for each arc
o1 = point 6 of r5;
o2 = point 2 of r3;
o3 = point 6 of r6;
o4 = whatever[o3, point 2+4/3 of r2] = whatever[o2, point 2-4/3 of r1];
o8 = whatever[o1, point 2-4/3 of r2] = whatever[o2, point 2+4/3 of r1];
o6 = 1/2[point 2-4/3 of r1, point 2+4/3 of r1];
o5 = whatever[o6, point 2-4/3 of r3] = whatever[o4, point 2+4/3 of r1];
o7 = whatever[o6, point 2+4/3 of r3] = whatever[o8, point 2-4/3 of r1];
pair u[], t[]; % directions and points for the egg
u0 = (o8 - o1) rotated 90; t0 = directionpoint u0 of r6;
u1 = (o2 - o1) rotated 90; t1 = directionpoint u1 of r4;
u2 = (o2 - o3) rotated 90; t2 = directionpoint u2 of r4;
u3 = (o4 - o3) rotated 90; t3 = directionpoint u3 of r5;
u4 = (o5 - o4) rotated 90;
u5 = (o6 - o5) rotated 90;
u6 = (o6 - o7) rotated 90;
u7 = (o7 - o8) rotated 90;
t4 = directionpoint u4 of fullcircle scaled 2 abs (t3 - o4) shifted o4;
t5 = directionpoint u5 of fullcircle scaled 2 abs (t4 - o5) shifted o5;
t6 = directionpoint u6 of fullcircle scaled 2 abs (t5 - o6) shifted o6;
t7 = directionpoint u7 of fullcircle scaled 2 abs (t6 - o7) shifted o7;

path egg; egg = for i=0 upto 7: t[i] {u[i]} .. endfor cycle;

142

17.7 A superellipse egg
All this construction is a good exercise in ingenuity, but if you just want a simple
quick egg path, then the superellipse macro gives you a METAPOST-specific
option. All you need is this:

1

2

3

4

5

6

7

8

path egg;
egg = (superellipse(right, 1.6 up, left, 1.2 down, 0.69));
egg := egg scaled 100;

[This space intentionally left blank]

17.8 The perfect egg
The last word in egg curve perfection is the algebraic solution provided by the
TDCC Laboratory in Japan [https://nyjp07.com/index_E.html].

path egg;
egg = for t=-180 step 15 until 180 - eps:

(0.78 cosd(1/4 t) * sind(t), -cosd(t)) ..
endfor cycle;

egg := egg scaled 128;

Note that, unlike all the others, this path has 24 points and the path starts at the
top. You can draw it starting at 3 o’clock, and with only 8 points but the egg is
slightly less perfect. Just replace the loop above with:

egg = for t=90, 135, 180, -135, -90, -45, 0, 45:
(0.78 cosd(1/4 t) * sind(t), -cosd(t)) ..

endfor cycle;

143

17.9 Egg kitsch
If you want eggs that look solid, then you can use interpath:
path egg, spot;
egg = (for t=-180 step 15 until 180 - eps:

(0.78 cosd(1/4 t) * sind(t), -cosd(t)) ..
endfor cycle) scaled 100;
spot = fullcircle scaled 4 shifted 3/4 point 3 of egg;
vardef fade_filled(expr egg, spot, dark, light, n) = image(

for i = 0 upto n:
fill interpath(i/n, egg, spot) withcolor ((i/n)**1/3)[dark,light];

endfor)
enddef;
beginfig(1);

color a; a = 1/256(150, 100, 60);
color b; b = 1/256(256, 220, 180);
draw fade_filled(egg, spot, a, b, 256) rotated -30;

endfig;

This works nicely with any of the egg paths defined in this section.

And finally, if all that has made you feel peckish, then how about these?
path yolk, base;
color cooked_egg_yolk; cooked_egg_yolk = 1/256(216, 136, 49);
color cooked_egg_white; cooked_egg_white = 1/256(235, 237, 233);
vardef fried_egg(expr r) = image(

save base, yolk; path base, yolk;
yolk = for i=0 upto 17: (r + 1/8 normaldeviate) * dir 20i .. endfor cycle;
base = (for i=0 upto 17: (2r + 1/8r * normaldeviate) * dir 20i .. endfor cycle)

shifted (uniformdeviate r/2, uniformdeviate r/2);
fill base withcolor cooked_egg_white;
fill yolk withcolor cooked_egg_yolk;
fill subpath (6.7, 9.6) of yolk scaled 0.8 --

subpath (9.6, 6.7) of yolk scaled 0.66 -- cycle
withcolor 1/2[cooked_egg_yolk, white]

) enddef;
for i=0 upto 1: draw fried_egg(40) shifted 120 dir 120i; endfor

144

18 Data visualizations
Graphs and other displays that show data, rather than a mathematical func-
tion, are presented in this section, with a focus on illustrations for books and tech-
nical papers. Most of the examples here follow those developed in Edward Tufte’s
books on graphics.

• The Visual Display of Quantitative Information

• Visual Explanations

• Beautiful Evidence

• … and others, at https://edwardtufte.com

Most of the drawings in this section have a pale manila background, which was
added using the technique from §13.8. At the beginning, the background colour is
changed like this:

background := (1, 1, 31/32); % change at start so "unfill" works

Then at the end of the figure, the background is applied like this:

picture p; p = currentpicture; clearit;
bboxmargin := 12; unfill bbox p; draw p;

But there are lots of figures in this section, so this “wrapping” is actually applied
using the begin- and end-figure “hooks”. If you examine the source code, you will
see that each figure inputs a file called tufte-manila-paper which contains this:

extra_beginfig := "background := (1,1,31/32);";
extra_endfig := "picture p; p = currentpicture; clearit;"

& "bboxmargin := 12; unfill bbox p; draw p;";

The beginfig and endfig macros provided by plain METAPOST automatically
apply anything that is set in the two extra strings.

145

18.1 Simple time lines

18

1978

19

1979

20

1980

22

1981

24

1982

26

1983

27

1984

27.5

1985

13.7 mpg, average
for all cars on
road, 1978

19.5 mpg, expected
average for all cars
on road, 1985

required fuel economy standards:
new cars built from 1978 to 1985

• The complete LuaTEX document shows the use of fontspec to
get the Palatino-like font, used in E. Tufte’s books.

• The data is stored as 〈pair〉 values in a 〈path〉 variable. This
only works if both data values are numeric. If the values are
larger than 4096 you either need to scale them or use the double
number system.

• Notice how the horizontal unit u is set by measuring the width
of a label using the technique discussed in §11.1.6. And that you
have to shift the data path left before applying the x-scaling to
avoid overflow.

\documentclass{standalone}
\usepackage{luamplib}
\mplibtextextlabel{enable}
\usepackage{fontspec}
\setmainfont[Numbers=OldStyle]{TeX Gyre Pagella}
\begin{document}
\begin{mplibcode}
input tufte-manila-paper
beginfig(1);
path data, p; numeric n, u, v;
data = (1978, 18) -- (1979, 19) -- (1980, 20) -- (1981, 22) --

(1982, 24) -- (1983, 26) -- (1984, 27) -- (1985, 27.5);
u = xpart urcorner textext("1980\quad"); v = 7;
p = data shifted -(1978, 0) xscaled u yscaled v;

draw p;
for i=0 upto length p:

z[i] = point i of p;
undraw z[i] withpen pencircle scaled 2 dotlabeldiam;
dotlabel.top("\strut" & decimal ypart point i of data, z[i]);
label("\strut" & decimal xpart point i of data, (x[i], 12));
draw (x[i], 0) -- (x[i], 4);

endfor
draw (x0, 20) -- z0; draw (x7, 20) -- z7; draw (x0, 0) -- (x7, 0);

dotlabel.rt(btex \vbox to 6pt{\halign{\small #\hss\cr
13.7 mpg, average\cr for all cars on\cr road, 1978\cr
}\vss} etex, (x0, 13.7v));

dotlabel.lft(btex \vbox to 6pt{\halign{\small #\hss\cr
19.5 mpg, expected\cr average for all cars\cr on road, 1985\cr
}\vss} etex, (x7, 19.5v));

label.top(btex \vbox{\halign{\hss\textsc{#}\hss\cr
required fuel economy standards:\cr
new cars built from 1978 to 1985\cr}} etex,
point 5/2 of bbox currentpicture shifted 13 up);

endfig;
\end{mplibcode}
\end{document}

146

18.2 Time line with minimal annotation

$300

$320

$340

$360

$380

$400
5%

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

Per capita
budget expenditure
in constant dollars

• This one has an even sparser frame, and dispenses with the labels
on each data point.

• It is suggested that you resist the temptation to make very many
special macros to do charts like this; the ideas here are mainly to
show that METAPOST makes a good environment for following
Tufte’s advice about charts: to maximize data ink and minimize
chart junk; albeit at the cost of some pains-taking.

beginfig(1);
path data; numeric n;
data = (1967, 311) -- (1968, 332) -- (1969, 372) -- (1970, 385)

-- (1971, 385) -- (1972, 393) -- (1973, 387) -- (1974, 381)
-- (1975, 387) -- (1976, 400) -- (1977, 380);

n = length data;
numeric u, v; path p; % make data --> p
u = xpart urcorner textext("1980\kern 0.75em"); v = 1.414;
p = data shifted -(xpart point 0 of data, 300) xscaled u yscaled v;
for i=0 upto n: z[i] = point i of p; endfor
for d = 300 step 20 until 400: % y-axis
numeric y; y = (d - 300) * v; draw (-8, y) -- (-12, y);
label.lft("\strut\scriptsize\$\,\small" & decimal d, (-12, y));

endfor
path a, b, c; % annotating lines
a = (x3, y[n-1]) -- (x[n] + 8, y[n-1]);
b = (x3, y[n]) -- (x[n] + 8, y[n]);
c = (x[n] + 21, y[n]) -- (x[n] + 21, y[n-1]);
drawoptions(withpen pencircle scaled 1/4);
draw a dashed evenly scaled 1/4;
draw b dashed evenly scaled 1/4;
draw c;
for i=0,1: draw (left--right) scaled 2 shifted point i of c; endfor
label("\small 5\%", point 1/2 of c shifted 12 right);

drawoptions();
draw p; % the data points
for i = 0 upto n:
undraw z[i] withpen pencircle scaled 2 dotlabeldiam;
draw z[i] withpen pencircle scaled dotlabeldiam;
draw (x[i], -8) -- (x[i], -12);
label("\strut\small" & decimal xpart point i of data, (x[i], -20));

endfor
label.urt(btex \vbox{\halign{\small #\hfill\cr Per capita\cr
budget expenditure\cr in constant dollars\cr}} etex, (x0,y[n-1]+10v));

endfig;

147

18.3 Time line with more complex dates
If the dates in your time line are more granular, then you need a better way to deal
with them. This chart below shows the £/€ exchange rate by month. The dates on
the horizontal axis were transformed from calendar dates to a serial number using
the routine shown on the right, which allows you to do this:

dotlabel.bot("Brexit vote", (base(2016, 6, 24) * u, 78 v));

for suitable values of u and v.

vardef base(expr Y, M, d) =
save m, y;
if M < 3: m = M + 9; y = Y - 1;
else: m = M - 3; y = Y; fi
365/1024 y + (floor(y/4) - floor(y/100) + floor(y/400)
+ floor((2+3m)/5) + 30m + d - 307) / 1024

enddef;

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

0.60

0.70

0.80

0.90

1.00 1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

£/€ €/£Monthly average exchange rates Euro v. Sterling

Creation

9/11
US / UK

invade Iraq

Lehmans
collapse

Brexit
vote

UK leaves
EU

WHO declares
pandemic

Ukraine
invaded

tufte-currency.mp

148

18.4 Daily events with annotation
This chart is adapted from Edward Tufte’s Visual explanations, p.33; it presents
the data from John Snow’s table of daily deaths in the London cholera epidemic of
1854 in a simple bar chart form, with annotation pointing out that the epidemic
was already declining when the supposedly decisive intervention of removing the
handle from the water pump at the centre of the outbreak was made.

numeric i, deaths[], ymax, dmax; i = 0; dmax = 0;
for n = 1,

0, 2, 0, 0, 2, 0, 0,
1, 0, 1, 2, 3,70,127,
76,71,45,37,32,30,24,
18,15, 6,13, 6, 8, 6,
5, 2, 3, 0, 0, 2, 3,
0, 0, 2, 0, 2, 1, 0:

deaths[incr i] = n; if n > dmax: dmax := n; fi
endfor
numeric ymax; ymax = 20 * ceiling (dmax / 20);
numeric days, day_number[]; days = 0;
for n = 19,

20,21,22,23,24,25,26,
27,28,29,30,31, 1, 2,
3, 4, 5, 6, 7, 8, 9,

10,11,12,13,14,15,16,
17,18,19,20,21,22,23,
24,25,26,27,28,29,30:

day_number[incr days] = n;
endfor
numeric u, v; days * u = 5in = ymax * 2v;
path xx; xx = origin -- (days * u, 0); draw xx;
path yy; yy = origin -- (0, dmax * v); draw yy;
for x = 1 upto days:

cutdraw (x * u, 0) -- (x * u, deaths[x] * v)
withpen pencircle scaled 2 withcolor 5/8[2/3 red, white];

draw (origin -- 2 down) shifted (x * u, 0);
if x mod 7 = 2: label.bot("\small" & decimal day_number[x], (x*u, -2)); fi
if x = 1: label.lrt("\small August", (x * u + 1, -12));
elseif x = 15: label.lrt("\small September", (x * u + 1/2 u, -12));
fi

endfor
for y = 10 step 10 until ymax:

draw (origin -- 2 left) shifted (0, y * v);
undraw xx shifted (0, y * v) withpen pencircle scaled 1/2;
if y mod 20 = 0: label.lft(decimal y, (-2, y * v)); fi

endfor

+ The code for the annotation and the title was omitted to save space.
See the source file for details.

August
20 27

September
3 10 17 24

20

40

60

80

100

120

140 Deaths from
cholera, each
day during
the epidemic

Handle removed from
the Broad Street pump,
Friday 8 September 1854

tufte-snow.mp

The data for the chart was edited directly into the METAPOST source, using a text
editor to copy the data from the source table, and format them into lists so that
you can use loops to capture the values in two parallel indexed numeric variables
deaths[] and day_number[]. It is useful to be able to group the data visually into
weeks to reduce the chance of errors, but there is no other significance.

Note that the bars are drawn with a wide pen and cutdraw in order to get nice
square ends on the bars; then undraw is used to make implicit grid lines.

149

18.5 Scatter plot with annotations and simple jitter
This chart is from Tufte’s analysis of the Challenger space shuttle disaster. His
objective here was to show all the available data relating launch temperature and
damage to the booster rockets, and to point out that the forecast for 28 January
1986 was very much colder than any other launch.

numeric r; r = 1/5; % adjustment of the marks where required...
path damage; damage = origin .. (53, 11) .. (57, 4) .. (58, 4) ..

(63, 2)..
(66, 0)..
(67, 0 + 2r) .. % because the data set is quite small
(67, 0) .. % the simplest way to show multiple points
(67, 0 - 2r) .. % at the same (x, y) location is to add
(68, 0).. % this little vertical shift by hand
(69, 0)..
(70, 4 + r).. % the data is captured in a path, but only the
(70, 4 - r).. % points are drawn, not the lines between them
(70, 0 + r)..
(70, 0 - r)..
(72, 0)..
% and so on

The data was again edited directly into the METAPOST source, but this time
captured as a 〈path〉 variable. One advantage of this is that it allows you to process
all the values in parallel using scaled or shifted on the whole path.
numeric u, v; u = 10.8; 5u = 4v;
damage := damage xscaled u yscaled v;

The individual points are accessed using the point n of p syntax:
for i = 1 upto length damage:

draw point i of damage withpen pencircle scaled (3/2r * v) withcolor 2/3 red;
endfor

0 0

4 4

8 8

12 12

25° 30° 35° 40° 45° 50° 55° 60° 65° 70° 75° 80° 85°

SRM 15

SRM 22

26°–29° range of forecast temperatures
(as of 27 January 1986) for the launch
of space shuttle Challenger on 28 January

O-ring damage index,
for each launch

tufte-srm-damage.mp

150

19 Commutative diagrams
If you want lots of complex bells and whistles on your commutative diagrams,
then you probably want to use specialist tools like tikz-cd or xypic, but if your
needs are simpler, plain METAPOST is more than capable, and if you are already
using it for other illustrations, there is one less thing to learn.

Here are two examples to illustrate some general techniques. They may be
familiar to readers of the manuals for the tools referred to above.

E

M N

U V

EV

f∗E

f∗EV
U

X ×Z Y X

Y Z

p

q

g

f

x

y

(x,y)

The complete code used to generate the right-hand picture is shown on the right.→

beginfig(1);
picture U, XY, X, Y, Z;
z1 = -z2 = (-61, 42);
U = thelabel("U", z1);
XY = thelabel("$X\times_ZY$", origin);
X = thelabel("X", (x2, 0));
Y = thelabel("Y", (0, y2));
Z = thelabel("Z", z2);

forsuffixes @=U, XY, X, Y, Z: draw @; endfor

ahangle := 20;
vardef connect@#(expr s, a, b) =
curved_connect@#(s, a, b, center b - center a)

enddef;
vardef curved_connect@#(expr s, a, b, d) =
save line, mark; path line; picture mark;
line = center a {d} .. center b;
interim bboxmargin := 4;
drawarrow line cutbefore bbox a cutafter bbox b;
mark = thelabel@#("$\scriptstyle " & s & "$",

point 1/2 of line);
interim bboxmargin := 1;
unfill bbox mark; draw mark;

enddef;

connect.bot("p", XY, X);
connect.rt ("q", XY, Y);
connect.top("g", Y, Z);
connect.lft("f", X, Z);
curved_connect.urt("x", U, X, right);
curved_connect.llft("y", U, Y, dir -80);

drawoptions(dashed withdots scaled 1/2);
connect("(x,y)", U, XY);
drawoptions();

endfig;

This example assumes you are using mplibtextextlabel – §12.1

The approach taken for both examples is first to define the node labels as pictures
placed as needed, and then write a special-purpose connect macro to make consis-
tent arrows between the nodes, using center, bbox, cutbefore, and cutafter as
appropriate.

The X ×Z Y example needs two variations. The curved_connect macro takes
a string for the label, the two nodes to be connected, and the initial direction
for the curved path to connect them. You can’t have optional macro arguments
in METAPOST but you can call macros from inside another macro, so a second
simpler macro connect is defined to do straight connections. To avoid repetition,
this macro simply calls curved_connect with the required direction from a to b.

For the f∗E example, connect is simpler, because all the arrows are straight
and there are no labels, but needs to allow for arrows crossing:

vardef connect(expr a, b) =
save line; path line; interim bboxmargin := 3;
line = center a .. center b cutbefore bbox a cutafter bbox b;
cutdraw line withpen pencircle scaled 4 withcolor background;
drawarrow line

enddef;

151

20 Recursion and iteration

This chapter is not a tutorial on recursion or iteration per se, but rather
more of an exploration of the METAPOST techniques you can use to create some
particular types of drawing such as trees, plane-filling curves, fractals, and some
types of tiling pattern [§22].

Even so, it is perhaps useful to review some of the basic programming ideas involved.
Consider for example the greatest common divisor algorithm presented in §4.6.

vardef gcd(expr a, b) = if b = 0: a else: gcd(b, a mod b) fi enddef;

The reason this works is that we know (mathematically) that 0 ≤ a mod b < b,
and therefore that the arguments to the recursive call must get smaller each time
and eventually we must get to b = 0 when the answer will be a. This is the basic
recursive approach: ensure at least one argument gets smaller each time and stop
when you get to a given limit. The examples in this chapter use one of two simple
approaches:

• Explicitly pass a level argument that is decremented on each recursive call,
and stop the recursion when the level gets to zero

• Pass a 〈path〉 or two 〈pair〉 arguments, and stop the recursion when the path
is too short or the pairs are too close together.

If you find recursion confusing, you can nearly always use an iterative approach
instead. For example, you can implement the gcd function like this:

vardef gcd(expr A, B) = save r, a, b; numeric a, b, r; a := A; b := B;
forever:
r := a mod b; exitif r = 0;
a := b; b := r;

endfor b
enddef;

Notice that you have to use assignment in the loop to update the variables, and
that you cannot assign to the arguments of a macro. Notice also that this version
requires both arguments to be positive integers. You need to use your judgement
to decide which is the better approach for a given problem.

152

20.1 The Koch curve
The Swedish mathematician Helge von Koch originally devised the Koch curve Level 01/300

Level 14/400.00348

Level 216/533.34247

Level 364/711.12955

Level 4256/948.18158

rec-koch-steps.mp

as an example of a non-differentiable curve that could be constructed with elemen-
tary geometry. It makes a good introduction to recursive paths with METAPOST.
The construction is recursive: each straight line segment in the path is replaced
with four copies of itself, scaled down 1

3 and arranged as shown at Level 1 −−−−−→
At each level of the construction, the number of points in the path increases four-fold
and the arclength of the path gets 4

3 longer.

vardef koch(expr level, a, b) =
if level = 0:
a -- b

else:
save p, q, r; pair p, q, r;
p = 1/3[a,b]; r = 2/3[a,b]; q = r rotatedabout(p, 60);
koch(level-1, a, p) &
koch(level-1, p, q) &
koch(level-1, q, r) &
koch(level-1, r, b)

fi
enddef;

The five levels were drawing using this function in a loop like this:

for n=0 upto 4:
draw koch(n, origin, 300 right) shifted (0, -100n)

endfor

The annotations in the middle show the length of the path and the arclength.
The curve will always fit in the same bounding box but in theory it can become
infinitely long. In practice it looks much the same past level 6, and you will start
running into METAPOST limitations. The length of a path is not limited by the
default scaled number system, but the numbers actually returned by length and
arclength may not be reliable for very long paths. Also the call stack may get
very large and the single-threaded processing time can get very slow, and when the
length of each segment shrinks to the size of your pen, you will start losing detail.

153

20.2 Sierpinski’s gaskets
The second example of recursive construction also dates from the early 20th
century, but unlike the infinite length of von Koch’s curve, the area of Sierpinski’s
gasket tends to zero. In the original specification, you are supposed to remove the
central quarter of each triangle, but this program does it the other way round and
delays drawing the triangles until they are small enough.

vardef gasket(expr t, s, limit) =
if length (point 1 of t - point 0 of t) < limit:
fill t;

else:
save little_t; path little_t; little_t = t scaled s;
for i=1 upto length t:
gasket(little_t shifted (point i of t - point i of little_t), s, limit);

endfor
fi

enddef;

Note the useful idiom shifted (point i of t - point i of little_t) – this
neatly tucks a copy of the small triangle into the appropriate corner of the big
triangle. You can make this even simpler by coding the scaling parameter s and
limit as constants in the recursive routine, so that you do not have to pass them
down each time. The triangular gasket was generated using the macro like this:

beginfig(1);
path T; T = for i = 1 upto 3: 220 up rotated (120i) -- endfor cycle;
gasket(T, 1/2, 20);

endfig;

You can generalize this idea, for example by making the path T into a pentagon
with scaling factor s = (3−

√
5)/2, or a hexagon with s = 1/3, and so on:

rec-sierpinski-garlands.mp

154

20.3 The Heighway dragon
The Heighway dragon curve dates from the 1960s, and is created in a similar
way to the Koch curve: each straight line segment is recursively replaced with two
copies of itself scaled down and arranged as shown.

The dragon curve at level 15

… and at level 10 with rounded corners

Note that every other segment is flipped left and right. At each stage, the number
of points increases two-fold and the path gets

√
2 times longer. Here is a recursive

routine to generate the curve as a single path.
numeric r, theta; r = sqrt 1/2; theta = 45;
vardef dragon(expr level, a, b) =

if level > 0:
save p; pair p;
p = r[a, b] rotatedabout(a, theta);
dragon(level - 1, a, p) & reverse dragon(level - 1, b, p)

else:
a .. b

fi
enddef;

The blue dragon was created with: draw dragon(15, origin, 240 right) ↗
After the fourth level the corners of the curve start to touch each other, but

they never cross. You can see this if you draw the curve with rounded corners.
vardef rounded_corners expr p =

save r, n; numeric r, n; r = 1/3; n = length p;
subpath (0, 1-r) of p
for t=1 upto n-1:
.. subpath (t+r, t+1-r) of p

endfor .. subpath (n-r, n) of p
enddef;

The red dragon was: draw rounded_corners dragon(10, origin, 240 right) −→

+ The length of the dragon path at level n is 2n, so if you want to do arithmetic with the
path length you need to use a big number system when n > 11.

155

20.4 Iterative dragons
The dragon curve can also be created with iteration instead of recursion. An-
other way of viewing the stages of developing the curve is that at each stage the
whole curve is replaced by two copies of itself arranged as shown:

We can do this in two steps in a loop, like this:
path p; p = origin -- dir 30;
numeric n;
for i=1 upto 12:

n := length p;
p := p rotated 45;
p := p & reverse p rotatedabout(point n of p, 90);

endfor
draw p scaled (384 / xpart (urcorner p - llcorner p)) withcolor (.2,.2,.7);

In this approach, instead of scaling down each time, the curve is just allowed to
grow

√
2-times bigger in each loop, then scaled to the desired width (384 pt) when

it is complete. The 12 stages in the loop produce the rotated blue dragon as shown. ↗

With a small adaptation, you can also use this to explore variations.
path p; p = origin -- dir 30;
numeric n, r; r = 3;
for i=1 upto 12:

n := length p;
p := p rotated (45 - r);
p := p & reverse p rotatedabout(point n of p, 90 + 2r);

endfor
draw p scaled (384 / xpart (urcorner p - llcorner p)) withcolor .54 red;

The extra parameter r is used to open up the folds, making it more “organic”.

156

20.5 The golden dragon
You can explore variations with the recursive approach by altering the scaling
and rotation. Here r = 1/φ1/φ ' 0.74274 and θ ' 32.893° in the initial triangle.

r r2

1
θ

Because the initial triangle shape is shorter on one side, it
is better to adapt the dragon routine to measure the gap
between points instead of using a fixed level parameter:

vardef dragon(expr a, b) =
if abs(a-b) > 1.618:

save p; pair p;
p = r[a, b] rotatedabout(a, theta);
dragon(a, p) & reverse dragon(b, p)

else:
a .. b

fi
enddef;

157

20.6 The Peano-Gosper curve, or flow-snake
The Peano-Gosper curve is a space-filling curve. It is constructed in the same
way as the dragons, but the generating shape has seven sections instead of two, and
they are cunningly arranged to fill the space. The arrows indicate the reversals so

(0, 0) (1, 0)

that the scaled-down copies fill the larger part of the hexagons that contain them. →

This fourth-level curve is the boundary between the filled and unfilled branches.

Given the snake path scaled to unit length as shown above in red,
the flow-snake on the left was created with

vardef rattle(expr level, a, b) =
if level > 0:
save s; path s; s = snake zscaled (b-a) shifted a;
reverse rattle(level - 1, point 1 of s, a) &

rattle(level - 1, point 1 of s, point 2 of s) &
rattle(level - 1, point 2 of s, point 3 of s) &
rattle(level - 1, point 3 of s, point 4 of s) &

reverse rattle(level - 1, point 5 of s, point 4 of s) &
reverse rattle(level - 1, point 6 of s, point 5 of s) &

rattle(level - 1, point 6 of s, b)
else:
a -- b

fi
enddef;
beginfig(1);

pair a, b; path s;
a = 124 left; b = 124 right; s = rattle(4, a, b);
fill s -- b + (40, 0) -- b + (40, 224)

-- a - (40, -224) -- a - (40,0) -- cycle
withcolor 3/4[1/4 blue, white];

endfig;

158

20.7 Fractal trees
You can make a tree with a vertical line segment, a scaling factor 0 < r < 1,
and an angle 0° < θ < 180°. Start with the vertical line as the trunk, then make
the first branch by scaling the trunk by r, rotating it +θ, and moving it to the top
of the trunk; make the second in the same way but rotate it by −θ. Then repeat
using each branch as a new trunk. And stop after enough levels.

r = 0.58, θ = 60

r = 0.75, θ = 14

This can be implemented easily in METAPOST, but requires a slightly different
technique. There is no simple way to represent the tree as a single 〈path〉 because
a path cannot have branches, so you need to draw each segment separately instead
of trying to join them up. Compare this to the rattle routine on the page before.

vardef make_tree(expr level, bar) =
draw bar;
if level > 0:
for t=-theta, theta:
make_tree(level - 1, bar shifted - point 0 of bar

scaled r rotated t shifted point 1 of bar
);

endfor
fi

enddef;

To combine several such trees in a drawing either move the initial bar path, or
capture the tree as a 〈picture〉 using image(make_tree(...)), like so:

picture T[]; numeric r, theta;
r := 0.58; theta := 60; T1 = image(
make_tree(3, origin -- 100 up);

);
r := 0.75; theta := 14; T2 = image(
make_tree(10, origin -- 100 up);

);
draw T1 shifted 32 up;
draw T2 shifted 128 right;

Notice that r and θ are treated as global constants. You could pass them to the
make_tree routine instead. Notice also that the smaller tree only has three levels,
but the larger one has 10.

159

More fractal vegetation

If you are more interested in the visual aspect of your tree than the mathe-
matical, you can tweak the make_tree routine a bit.
vardef make_tree(expr bar) =

save a; numeric a; a = abs(point 1 of bar - point 0 of bar);
cutdraw bar withpen pencircle scaled 1.2(1/8 a) withcolor background;
cutdraw bar withpen pencircle scaled (1/8 a) withcolor 1/256(148,98,58);
if a > leaf:
save s; pair s;
s = 1/32 a * r * unitvector(direction 1 of bar) rotated 90;
make_tree(

bar shifted - point 0 of bar
shifted s scaled r rotated theta
shifted point 1 of bar

);
make_tree(

bar shifted - point 0 of bar
shifted -s scaled r rotated -theta
shifted point 1 of bar

);
else:
draw point 1 of bar withpen pencircle scaled 2 withcolor 2/3 green;

fi
enddef;
beginfig(1);

numeric leaf, r, theta;
leaf = 3; r = 0.71; theta = 14;
make_tree(origin -- 100 up);

endfig;

• The recursion is controlled by measuring the length of the branches instead
of using a level parameter.

• Each branch is drawn with a pen scaled to 1
8 of its length using cutdraw, and

outlined so you can see the crossings.

• Each branch is moved slightly left or right with s to make the joins neater.

• Tiny green leaves are added on the ends of each branch.

160

Randomized recursive plants

rec-general-tree-deviate.mp

To get plants that look more natural you can introduce some random
factors. Strictly these are not fractal because they are not self-similar. The only
change from the previous make_tree was to replace scaled r rotated theta with

scaled (r + 1/16 normaldeviate) rotated (theta + 8 normaldeviate)

The bush is similar, except that it splits into four branches at each step instead of
two and only the lengths are randomized. The colouring was a happy accident.

input colorbrewer-rgb
vardef bush(expr start, aim, level, limit) =
save s, target; pair target; numeric s; s = level / limit;
for a = -32, -8, 8, 16:
target := aim scaled ((64 + 32 normaldeviate) * s) rotated a shifted start;
draw start -- target withpen pencircle scaled s withcolor BrBG[limit][limit-level];
if level > 1: bush(target, aim rotated a, level - 1, limit); fi

endfor
enddef;
beginfig(1); bush(origin, dir 80, 6, 8); endfig;

161

21 Periodic tilings
In mathematical terms, a “tiling” is a countable set of tiles that cover the plane
without gaps or overlaps.1 A periodic tiling is one that consists of a unit shape
or pattern that is repeated by translation in two dimensions. This section loosely

For notes on drawing aperiodic tilings, see below in §22

follows that idea, and presents some ideas and general techniques for creating tilings
and other patterns or textures. —— You can make an effective grid by drawing
repeated lines and then clipping to the size you want:

for i = -10 upto 10:
draw (left--right) scaled 200 shifted (0, 20i);
draw (down--up) scaled 200 shifted (20i, 0);

endfor
path c; c = fullcircle scaled 180; clip currentpicture to c; draw c;

but this is a bit limited. If you want to produce more interesting periodic tilings,
you need to define a unit shape or picture, and a pair of vectors to repeat it.

path unit; pair u, v; color a, b;
unit = unitsquare scaled 24;
u = point 1 of unit - point 0 of unit;
v = point 3 of unit - point 0 of unit;
a = 3/4[red, white]; b = 3/4[blue, white];
for i=-5 upto 5:
for j=-5 upto 5:
fill unit shifted (i*u + j*v)
withcolor if odd (i+j): a else: b fi;

draw subpath (-1,1) of unit shifted (i*u + j*v);
endfor

endfor
path c; c = fullcircle scaled 180; clip currentpicture to c; draw c;

In tilings with more complex shapes you may find that using fill and draw in the
same loop causes uneven lines because the fill overlaps part of the line. In these
cases it is a good idea to duplicate the loops; use the first set for filling, the second
for drawing.

1Adapted from Tilings and Patterns, Branko Grünbaum & G. C. Shephard, Freeman, 1987

162

21.1 Tiling with regular polygons
After tiling with squares, the next two simplest tilings use triangles and
hexagons (made using the routines from §4.3). The basic loop is the same as the
previous page except that the vectors u and v are now at 60° to each other (as
shown in blue and red in the examples to the right). All of these examples were
drawn with the same basic loop as before:

for i = -n upto n:
for j = -n upto n:
draw P shifted (i * u + j * v);

endfor
endfor;

In the first row, P was set to a simple polygon path:

triangle = for i=0 upto 2: (0, 16) rotated 120i -- endfor cycle;
hexagon = for i=0 upto 5: (0, 16) rotated 60i -- endfor cycle;

The vectors u (in red) and v (in blue) were defined as (for both tilings):

u = point 0 of triangle - point 1 of triangle;
v = u rotated -60;

To make the coloured versions, P was defined as an appropriate 〈picture〉. For the
triangular tiling, it looked like this: so that the tiling actually filled the plane.
In the hexagonal tiling there are no gaps to fill, but in order to get a non-adjacent
colouring, the unit picture was defined as three shifted copies of the hexagon each
filled with a different color. The unit vectors were therefore scaled by

√
3 and

rotated by 30° (as shown).
The bottom row the unit pictures were replaced with drawings that connect the

centre of each shape to the midpoint of each side (in red), like this:

This has the effect of connecting the centres of adjacent shapes in the tiling, which
reveals that each tiling is the dual of the other.

163

21.2 Separating filling and drawing
Repeating a unit image can sometimes cause unwanted overlaps, so as noted
above, the solution is to make a filler unit and a drawing unit and do the filling first
and the drawing second. In this example the drawing unit (the octagon) is simple
so you can just draw that path instead of making another 〈picture〉 for it.

input colorbrewer-rgb
path o, r[];
o = (for i=0 upto 7: 21 dir 45i -- endfor cycle) rotated -90/4;
pair t; t = whatever[point 0 of o, point 1 of o]
= whatever[point 2 of o, point 3 of o];
r1 = subpath (1,2) of o -- t -- cycle;
r2 = r1 rotated 90;
r3 = r2 rotated 90;
r4 = r3 rotated 90;
picture filler; filler = image(
filldraw r1 withcolor Reds 8 3;
filldraw r2 withcolor Blues 8 3;
filldraw r3 withcolor Reds 8 3;
filldraw r4 withcolor Blues 8 3;
filldraw o withcolor Purples 8 2;

);
pair u, v;
u = point 0 of o - point 5 of o; v = u rotated 90;
beginfig(1);
numeric n; n = 5;
for i=-n upto n: for j=-n upto n:
draw filler rotated ((i+j) mod 2 * 90) shifted (i*u + j*v);

endfor endfor
for i=-n upto n: for j=-n upto n:
draw o shifted (i*u + j*v);

endfor endfor
endfig;

Rotating every other filler allows you to get the alternate colours in the squares.
Using filldraw ensures that there are no gaps between adjacent segments. The filler picture

(unrotated)
The octagon path o

164

21.3 Tilings with more complex patterns
The next example also uses the square lattice, but the unit is more complicated,

The arrangement of polygons in the units was carefully
chosen to give the tiling neat edges.

color_unit grid_unit

so the drawing needs two 〈picture〉 variables, one for the colour fill and a second for
the grid.

input colorbrewer-rgb
path s[], t[];
s1 = unitsquare scaled 21 rotated 15; s2 = s1 rotated 150;
t1 = subpath (4, 3) of s1 -- point 1 of s2 -- cycle;
t2 = t1 reflectedabout(point 1 of t1, point 2 of t1);
t3 = t1 rotated 150; t4 = t1 rotated 210;
picture color_unit, grid_unit;
color_unit = image(
fill s1 withcolor Oranges 8 1;
fill s2 withcolor Oranges 8 2;
fill t1 withcolor Blues 8 1;
fill t2 withcolor Blues 8 2;
fill t3 withcolor Blues 8 3;
fill t4 withcolor Blues 8 4;

);
grid_unit = image(
draw s1; draw s2;
draw t2; draw t3; draw t4;

);
pair u, v;
u = point 1 of s1 - point 1 of s2;
v = u rotated 90;
numeric n; n = 3;
forsuffixes $=color_unit, grid_unit:
for i=-n upto n:
for j=-n upto n:
draw $ shifted (i * u + j * v);

endfor
endfor

endfor

165

21.4 Showing the dual tiling
These tilings can be classified by the configuration of the polygons that meet
at each vertex. This one is (34, 6) because each vertex has four triangles and one
hexagon. It exists in two enantiomorph forms. The unit pictures look like this:

+ To reveal the dual of the tiling, you can draw
a line from the centroid of each polygon to the
midpoint of each edge.

They are drawn like this, where h is the hexagon, t1 . . . t6 are the blue triangles
surrounding it, and t7 & t8 are the two “connecting” triangles, which swap sides to
make the enantiomorphs.

unit[k] = image(
for i=1 upto 6:
fill t[i] withcolor Blues 8 if odd i: 2 else: 3 fi;

endfor
for i=7 upto 8:
fill t[i] withcolor Oranges 8 if odd i: 3 else: 2 fi;

endfor
fill h withcolor Oranges 8 1;
forsuffixes $=h, t1, t2, t3, t4, t5, t6, t7, t8:
draw $ withpen pencircle scaled 1/4 withcolor 1/2;
for i=1 upto length $:
draw centroid($) -- point i - 1/2 of $ withcolor Reds 7 6;

endfor
endfor

);

The centroid() routine is from §4.3 and the colours are from §7.4. This tiling is
generated using the loop-with-triangular-grid-vectors from §21.1.

166

21.5 Tiling with a dynamic unit
In order to reveal patterns in a tiling, you might want to vary the colours or
line styles used in each repeated drawing unit. In this case, you can write a macro
that takes a parameter and returns a picture to draw.

The vectors are chosen so that the dodecagons overlap
to make the required triangles, squares, and hexagons.

def withalpha expr a = % <-- this requires "luamplib"
withprescript "tr_alternative=2"
withprescript "tr_transparency=" & decimal a

enddef;
input colorbrewer-rgb
path d; d = for i=1 upto 12: 18 dir (15+30i) -- endfor cycle;

color shade[];
shade0 = Oranges 8 4; shade1 = Blues 8 4;
shade2 = Greens 8 4; shade3 = Reds 8 4;

vardef unit(expr n) = image(
fill d withalpha 0.9 withcolor shade[n mod 4];
draw d;

) enddef;
pair u, v;
u = point 0 of d - point 3 of d;
v = u rotated 60;
numeric n; n = 6;
for i=-n upto n:

for j=-n upto n:
draw unit(3i-7j) shifted ((i-floor(j/2)) * u + j * v);

endfor
endfor
clip currentpicture to unitsquare shifted -(1/2, 1/2) scaled 42n;

Instead of defining six triangles, six squares, and a hexagon, you can just define
the dodecagon and overlap each one. Using a macro to create the unit, allows you
to choose a different colour for each filler. Using the transparency support from
luamplib automatically mixes the colours for the overlaps. But the edges don’t
look so good, so you need to clip the whole picture to a neat square.

167

21.6 Colouring with a set number of colours
This “attractive and ingenious” pattern of squares is given in Grünbaum
& Shephard, chapter 8, and is shown here coloured with three colours so that no
two squares with the same colour touch each other.

input colorbrewer-rgb
beginfig(1);
numeric r, s; s = 9; r = 2s * (sind(75)-sind(45));
path a; a = unitsquare rotated -45 scaled s shifted (r, 0);
picture unit; unit = image(
for t=0 upto 5:
fill a rotated 60t withcolor Spectral[6][t mod 3 + 3];
draw a rotated 60t;

endfor
);
pair u, v;
u = (2s * sind(75), 0); u := u + u rotated 60; u := u rotated 60;
v = u rotated 60;
numeric n; n = 5;
for i = -n upto n:
for j = -n upto n:
draw unit shifted (i*u + j*v - floor(j/2)*u);

endfor
endfor

endfig;

The points of interest here are

• The use of the sind function to position the square in the unit so that it
makes the six-pointed star when rotated.

• The expression “t mod 3 + 3” which cycles through 3, 4, and 5 for different
values of t.

Many different colourings are possible but you might need to make a more complex
unit drawing for some of them.

168

22 Aperiodic tilings
Mathematical research in the 1960s and 1970s established that it is also pos-
sible to tile an infinite plane with polygons that do not have any periodic repeating
pattern. There are various mathematical approaches to creating these tilings; this
section explores substitution tilings, which lend themselves to recursive program-
ming. The rules for a substitution define a dissection for each shape that makes up
the tiling.

The idea is to define a recursive macro for each shape in the tiling, with param-
eters for the recursion level and points that define the shape. If level = 0, draw or
decorate that particular shape, otherwise work out the points for the dissection and
call the appropriate macros for each shape with level − 1. Here is an example:

The wide macro dissects a wide triangle into 2 wides, and 1 tall.

The tall macro dissects a tall triangle into 3 wide ones

Note that only part of the perimeter of each triangle is drawn, to give
the illusion that the completed tiling is made up of identical rhombs.

vardef tall(expr level, a, b, c) =
if level = 0:
fill a--b--c--cycle withcolor 3/4[blue, white];
draw a--c--b;

else:
save m; pair m; m = 1/3 (a + b + c); % the centroid
wide(level - 1, a, b, m);
wide(level - 1, b, c, m);
wide(level - 1, c, a, m);

fi
enddef;
vardef wide(expr level, a, b, c) =
if level = 0:
fill a--b--c--cycle withcolor 7/8[blue, white];
draw a--c--b;

else:
save p, q; pair p, q; p = 1/3[a,b]; q = 1/3[b,a];
wide(level - 1, c, a, p);
tall(level - 1, p, q, c);
wide(level - 1, b, c, q);

fi
enddef;

These procedures are illustrated on the right. The completed tiling was drawn with
tall(6, 173 dir 210, 173 dir 330, 173 dir 90).

169

22.1 Pinwheel tiling
The second aperiodic tiling example is the so-called pinwheel tiling, devised
in 1994 by Charles Radin, based on this dissection by John Conway.

a b

c

d

e

f g

Starting with a triangle of this shape, the tiling recursively divides into five smaller
copies of itself. The colouring is passed down each level but only used on the lowest.

input colorbrewer-rgb
vardef pinwheel(expr level, a, b, c, s) =

if level = 0:
fill a--b--c--cycle withcolor s;
draw a--b--c--cycle;

else:
save d, e, f, g; pair d, e, f, g;
d = 1/2[a,b]; e = 1/5[c,b]; f = 1/2[a,e]; g = 1/2[b,e];
pinwheel(level - 1, f, d, e, Blues 9 2);
pinwheel(level - 1, f, d, a, Blues 9 3);
pinwheel(level - 1, e, a, c, Blues 9 4);
pinwheel(level - 1, g, e, d, Blues 9 5);
pinwheel(level - 1, g, b, d, Blues 9 6);

fi
enddef;
beginfig(1);

pair a, b, c; a = origin; b = 460 right; c = 1/2 b rotated 90;
drawoptions(withpen pencircle scaled 1/8 withcolor white);
pinwheel(5, a, b, c, "");

drawoptions();
draw currentpicture rotatedabout(1/2[b,c], 180);
currentpicture := currentpicture rotated 90;

endfig;

+ To make the dissection work, it is important to pass the three 〈pair〉 arguments in
the right order. Note also the manipulation of currentpicture at the end.

170

22.2 Ammann A5 tiling
Of the various sets of aperiodic tiles discovered by Robert Ammann in 1977,
the best known and probably most attractive is the set known as A5. The recursive
substitutions for the tiling are usually given as follows,

a b a b

with the square shapes overlapping the edges of the parent shapes. This can be
implemented with two co-operating recursive macros −−−−−−−−−−−−−−−−−−−−−−→

This needs the withalpha macro given in §12.7.

path r, s;
r = origin -- (1/2, 1/2-sqrt(1/2)) -- right -- (1/2, sqrt(1/2)-1/2) -- cycle;
s = origin -- (1/2, -1/2) -- right -- (1/2, 1/2) -- cycle;
numeric p, q;
p = sqrt(2) - 1; q = 1 - sqrt(1/2);
vardef rhomb(expr level, a, b) =

save R; path R; R = r zscaled (b-a) shifted a;
if level = 0:
fill subpath (0, 2) of R -- cycle withalpha 0.9 withcolor Blues 9 3;
fill subpath (2, 4) of R -- cycle withalpha 0.9 withcolor Blues 9 4;
draw R withcolor 1/2;

else:
rhomb(level-1, a, p[a,b]);
rhomb(level-1, b, p[b,a]);
rhomb(level-1, point 1 of R, point 3 of R);
square(level-1, point 1 of R, point +p of R);
square(level-1, point 3 of R, point -p of R);
square(level-1, point 1 of R, point 2-p of R);
square(level-1, point 3 of R, point 2+p of R);

fi
enddef;
vardef square(expr level, a, b) =

save S; path S; S = s zscaled (b-a) shifted a;
if level = 0:
fill subpath (0, 2) of S -- cycle withalpha 0.9 withcolor Oranges 8 3;
fill subpath (2, 4) of S -- cycle withalpha 0.9 withcolor Oranges 8 2;
draw S withcolor 1/2;

else:
rhomb(level-1, a, q[point 1 of S, point 3 of S]);
rhomb(level-1, a, q[point 3 of S, point 1 of S]);
rhomb(level-1, point 1 of S, q[b,a]);
rhomb(level-1, point 3 of S, q[b,a]);
square(level-1, q[b,a], q[a,b]);
square(level-1, point 1 of S, point +p of S);
square(level-1, point 3 of S, point -p of S);
square(level-1, b, point +1+p of S);
square(level-1, b, point -1-p of S);

fi
enddef;

The overlaps mean that much of the tiling is overlaid by other expansions which
makes the resulting PDF rather large, and that you need to clip the final picture
to the original shape. The uneven texture is apparent if you colour the tiles with
transparent colours (although this is not unattractive):

171

22.3 Ammann A5 tiling improved
With some extra thought, you can devise a substitution pattern that avoids
the overlaps and makes a smaller tiling. The idea is to split the square in half, and
make a macro that can do the top half or the bottom half as required.

a b a b

This requires an extra parameter for the new half_square macro to tell it which
half to do, and two triangular paths for the upper and lower halves. Note that the
second of these paths is reversed, which simplifies the macro.

path r, s;
r = origin -- (1/2, 1/2-sqrt(1/2)) -- right -- (1/2, sqrt(1/2)-1/2) -- cycle;
s = origin -- (1/2, -1/2) -- right -- (1/2, 1/2) -- cycle;
numeric p, q;
p = sqrt(2) - 1; q = 1 - sqrt(1/2);

path t[];
t0 = origin -- right -- point 3 of s -- cycle;
t1 = origin -- right -- point 1 of s -- cycle;
vardef bounded_rhomb(expr level, a, b) =

save R; path R; R = r zscaled (b-a) shifted a;
if level = 0:
fill subpath (0, 2) of R -- cycle withcolor Blues 9 4;
fill subpath (2, 4) of R -- cycle withcolor Blues 9 5;
draw R withcolor 1/2;

else:
bounded_rhomb(level-1, a, p[a,b]);
bounded_rhomb(level-1, b, p[b,a]);
bounded_rhomb(level-1, point 1 of R, point 3 of R);
half_square(level-1, point 1 of R, point +p of R, 1);
half_square(level-1, point 3 of R, point -p of R, 0);
half_square(level-1, point 3 of R, point 2+p of R, 1);
half_square(level-1, point 1 of R, point 2-p of R, 0);

fi
enddef;
vardef half_square(expr level, a, b, side) =

save T; path T; T = t[side] zscaled (b-a) shifted a;
if level = 0:
fill T withalpha 0.9 withcolor Oranges[8][3+side];
draw subpath (1, 3) of T withcolor 1/2;

else:
bounded_rhomb(level-1, point 0 of T, p[point 1/2 of T, point 2 of T]);
bounded_rhomb(level-1, point 2 of T, point sqrt(1/2) of T);
half_square(level-1, point 1 of T, point 2-p of T, side);
half_square(level-1, point 2 of T, point 3-p of T, side);
half_square(level-1, point 1-q of T, point q of T, 1-side);

fi
enddef;

Now there is no overlapping of any of the tiles and the tiling does not overflow
outside the original shape, and the colouring is uniform.

In general, aperiodic tilings work best if you can find a set of recursive substitutions
that are bounded within each parent shape.

+ Notice also the useful idiom zscaled (b-a) shifted a used with a “unit” shape.

172

22.4 Penrose P2 tiling
The same techniques are useful for generating the well-known aperiodic tilings
discovered in the 1970s by the British polymath Sir Roger Penrose. This P2 tiling
is also known as the “kite and dart” tiling. The expansion rules used here are

input colorbrewer-rgb

numeric phi; phi = 0.61803398875;

path wide[], tall[];
wide0 = origin -- right -- phi * dir 36 -- cycle;
wide1 = origin -- right -- phi * dir -36 -- cycle;
tall0 = origin -- right -- (1+phi) * dir 72 -- cycle;
tall1 = origin -- right -- (1+phi) * dir -72 -- cycle;

vardef half_dart(expr level, a, b, side) =
save T; path T; T = wide[side] zscaled (b-a) shifted a;
if level = 0:
fill T withcolor Purples[9][3+side];
draw subpath (0, 2) of T;

else:
half_dart(level - 1, point 1 of T, point 2 of T, side);
half_kite(level - 1, point 2 of T, point phi of T, 1-side);

fi
enddef;

vardef half_kite(expr level, a, b, side) =
save T; path T; T = tall[side] zscaled (b-a) shifted a;
if level = 0:
fill T withcolor Blues[9][2+side];
draw subpath (0, 2) of T;

else:
half_dart(level - 1, point 2 of T, point 2+phi of T, side);
half_kite(level - 1, point 2+phi of T, point 0 of T, side);
half_kite(level - 1, point 2+phi of T, point 1+phi of T, 1-side);

fi
enddef;

beginfig(1);
numeric wd; wd = 5in;
drawoptions(withpen pencircle scaled 1/8);
half_dart(9, 1.375 wd * left, 1.375 wd * right, 0);

drawoptions();
clip currentpicture to unitsquare shifted 1/2 left scaled wd yscaled phi;

endfig;

those documented by Simon Tatham.

Kite Dart

a
b

a
b a

b

a

b

Each of the shapes is split into two opposite triangles and the expansion rules applied
separately. Only part of the edge of each triangle is drawn, so that the proper shapes
appear in the final result. The patch below was clipped to a rectangle.

173

22.5 Penrose P3 tiling
The final example is Penrose’s P3 tiling, composed of thick and thin rhombus
shapes. There is no new METAPOST technique, but it is perhaps of mathematical
interest that the code for P3 is so similar to P2 on the previous page.

input colorbrewer-rgb

numeric phi; phi = 0.61803398875;

path wide[], tall[];
wide0 = origin -- right -- phi * dir 36 -- cycle;
wide1 = origin -- right -- phi * dir -36 -- cycle;
tall0 = origin -- right -- (1+phi) * dir 72 -- cycle;
tall1 = origin -- right -- (1+phi) * dir -72 -- cycle;

vardef half_thick(expr level, a, b, side) =
save T; path T; T = wide[side] zscaled (b-a) shifted a;
if level = 0:
fill T withcolor Purples[9][1+side];
draw subpath (1, 3) of T;

else:
half_thick(level - 1, point phi of T, point 0 of T, 1-side);
half_thick(level - 1, point 1 of T, point 2 of T, side);
half_thin(level - 1, point 2 of T, point -phi of T, side);

fi
enddef;

vardef half_thin(expr level, a, b, side) =
save T; path T; T = tall[side] zscaled (b-a) shifted a;
if level = 0:
fill T withcolor Blues[9][2+side];
draw subpath (1, 3) of T;

else:
half_thick(level - 1, point 0 of T, point 2 of T, 1-side);
half_thin(level - 1, point 1 of T, point 2-phi of T, side);

fi
enddef;

beginfig(1);
numeric wd; wd = 5in;
drawoptions(withpen pencircle scaled 1/8);
half_thick(8, 1.375 wd * left, 1.375 wd * right, 0);

drawoptions();
clip currentpicture to unitsquare shifted 1/2 left scaled wd yscaled phi;

endfig;

Thin

a

b

0

a

b

1

Thick

a

b

0

a

b

1

Each of the shapes is again split into two opposite triangles and the expansion rules
applied separately, and only part of the edge of each triangle is drawn, so that the
proper shapes appear in the final result.

174

Contents
1 Start here 1

2 Some features of the syntax 2

3 Workflow 3
3.1 Stand alone graphics with plain METAPOST 3
3.2 Stand alone graphics with LuaLATEX 4
3.3 Integrated graphics with LuaLATEX 4

4 Making and using paths 5
4.1 Predefined closed paths . 6
4.2 Points on the standard closed paths 7
4.3 Regular polygons of a given radius 8
4.4 Regular polygons of a given side length 9
4.5 Curved polygons . 10
4.6 A triangle of Schläfli polygons . 11
4.7 Building cycles from parts of other paths 12
4.8 The implementation of buildcycle 13
4.9 Strange behaviour of buildcycle with two closed paths 14
4.10 Find the overlap of two closed paths 15

5 Numbers 16
5.1 Numeric constants . 17
5.2 Units of measure . 18
5.3 Integer arithmetic, clocks, and rounding 19
5.4 Integer powers . 20

6 Pairs, triples, and other tuples 21
6.1 Pairs and coordinates . 22
6.2 Pairs as complex numbers . 23

6.2.1 Extra operators for complex arithmetic 24
6.2.2 Using complex numbers to draw fractals 25

175

7 Colours 26
7.1 CMYK colours . 27
7.2 HSV colours . 28
7.3 Grey scale . 30
7.4 Colorbrewer palettes . 32

8 Random numbers 33
8.1 Random numbers from other distributions 34
8.2 Random walks . 35

8.2.1 Random walks with different constraints 36
8.3 Brownian motion . 37
8.4 Drawing freehand . 38

8.4.1 Making curves and straight lines look hand drawn 38
8.4.2 Extending straight lines slightly 39

8.5 Increasingly random shapes of the same size 40
8.6 Explosions and splashes . 41
8.7 Simulating jagged edges or rough surfaces 42

8.7.1 Walking along a torn edge . 43

9 Plane geometry 44
9.1 Bisecting lines and paths . 45
9.2 Bisecting angles . 46
9.3 Trisections and general sections of angles 47
9.4 Intersections . 48

9.4.1 The intersection algorithm . 49
9.4.2 Finding all intersection points 50

9.5 Parallel and orthogonal or whatever 51
9.6 Drawing circles . 52
9.7 Incircle and excircles of a triangle . 53
9.8 Circumcircle of a triangle . 54
9.9 The nine-point circle of a triangle . 55
9.10 Lines tangent to a point on a path 56
9.11 Lines tangent to a circle . 57
9.12 Lines tangent to two circles (exterior) 58
9.13 Lines tangent to two circles (interior) 59
9.14 Axis of similitude . 60

176

9.15 Inversion, pole, and polar . 61
9.16 Radical axis and radical centre . 62
9.17 Circles tangent to other circles . 63
9.18 Coordinate geometry examples . 64
9.19 Drawing angle marks . 69

10 The missing trigonometry functions 70

11 Traditional labels and annotations 71
11.1 Simple strings in PostScript fonts with infont 71

11.1.1 Character sets used by infont to set text 72
11.1.2 Mapping a subset of UTF-8 for infont 73
11.1.3 Typographical minus signs with infont 74
11.1.4 Bounding boxes and clipping with infont 74
11.1.5 But what about the label command? 74
11.1.6 Bounding boxes and alignment with infont 75
11.1.7 Setting Greek letters with infont 76

11.2 Setting text with btex ... etex . 77
11.2.1 Producing display maths . 77
11.2.2 Getting consistent baselines for your labels 77
11.2.3 Multi-line text labels . 78
11.2.4 Pins and braces . 79
11.2.5 Dynamic labels . 80
11.2.6 Matching fonts . 81
11.2.7 Setting verbatim listings . 82

12 Modern labels, annotations, and other goodies 83
12.1 The magic of the textextlabel option 84
12.2 Using Unicode and matching style with OTF fonts 85
12.3 Multi-line labels . 86
12.4 Display maths . 87
12.5 Typographical minus signs and other dynamic labels 87
12.6 Drawing on an external image . 88
12.7 Using PDF transparency . 89

177

13 Working with pictures 91
13.1 Creating and transforming pictures 92
13.2 Clipping and bounding boxes . 93
13.3 Bounding boxes of transformed pictures 94
13.4 Using pictures to assemble a complex diagram 94
13.5 Adding a caption to the current picture 95
13.6 Drawing pictures with various colours and pens 96
13.7 Simulating transparency with pictures 97
13.8 Adding a background and other post-processing 98
13.9 Adding a ruler . 99
13.10Adding a border . 100
13.11Adding a frame . 101

14 Drawing and decorating lines 102
14.1 Choosing a pen . 102
14.2 Multiple lines . 103
14.3 Showing crossings . 104
14.4 Using dash patterns with extra precision 105
14.5 Decorating a path . 106
14.6 Morphing a path . 107
14.7 Arrow styles . 108
14.8 Line caps and line joins . 109
14.9 Line caps and line joins with square pens 110

15 Plotting functions 111
15.1 Making axes . 111
15.2 Drawing linear functions . 112
15.3 Making curves for functions with a loop 114
15.4 Making curves for functions from path pieces 115

15.4.1 Exponential and logarithm functions by reflection 116
15.5 Functions using trigonometric functions 117
15.6 Manipulating functions . 118
15.7 Focus on a specific region of a function 119
15.8 Approximate function diagrams . 120

15.8.1 Taming Bezier paths with controls 121
15.9 Parametric plots . 122

178

16 Drawing plane curves 124
16.1 Parabola . 124
16.2 Hyperbola . 126
16.3 Ellipse . 127
16.4 Cardioid . 129
16.5 Limaçon . 130
16.6 Astroid . 131
16.7 Cycloid . 133
16.8 Spirals . 135

17 Eggs 138
17.1 Euclidean egg . 138
17.2 Pythagorean egg . 139
17.3 A taller Pythagorean egg . 139
17.4 Golden section egg . 140
17.5 Four point egg . 140
17.6 Five point egg . 141
17.7 A superellipse egg . 142
17.8 The perfect egg . 142
17.9 Egg kitsch . 143

18 Data visualizations 144
18.1 Simple time lines . 145
18.2 Time line with minimal annotation 146
18.3 Time line with more complex dates 147
18.4 Daily events with annotation . 148
18.5 Scatter plot with annotations and simple jitter 149

19 Commutative diagrams 150

20 Recursion and iteration 151
20.1 The Koch curve . 152
20.2 Sierpinski’s gaskets . 153
20.3 The Heighway dragon . 154
20.4 Iterative dragons . 155
20.5 The golden dragon . 156

179

20.6 The Peano-Gosper curve, or flow-snake 157
20.7 Fractal trees . 158

21 Periodic tilings 161
21.1 Tiling with regular polygons . 162
21.2 Separating filling and drawing . 163
21.3 Tilings with more complex patterns 164
21.4 Showing the dual tiling . 165
21.5 Tiling with a dynamic unit . 166
21.6 Colouring with a set number of colours 167

22 Aperiodic tilings 168
22.1 Pinwheel tiling . 169
22.2 Ammann A5 tiling . 170
22.3 Ammann A5 tiling improved . 171
22.4 Penrose P2 tiling . 172
22.5 Penrose P3 tiling . 173

