
Macros to Compute Splines∗

Dan Luecking

2005/02/05

A cubic spline through a set of points is a curve obtained by joining each point
to the next with a cubic parametrized curve, where adjoining cubics must have
matching first and second derivative at their common point.

It is possible for metapost to compute the necessary controls. Unfortunately,
the controls are not uniquely determined unless the curve is required to be closed.
For open curves, there is need for two additional equations at the end points. A
‘relaxed spline’ is produced if we require that the second derivative is (0, 0) at
those points. For a closed curve, the equality of the first and second derivatives at
the common beginning/ending point gives the needed additional equations.

Note that this equates time derivatives, so this works best when points are
relatively evenly spaced and so the speed is relatively uniform. If points are differ-
ently spaced then the relatively slower speed between closely spaced points allows
sharper turns without large second derivatives. Curves produced tend to have a
more natural look, and relaxed splines are most suitable for smoothing data that
is obtained by taking observations at evenly spaced times. Still, the technique
is somewhat unstable when points are closely spaced, for example when a small
change in the position of one point can produce a large change in its direction
when viewed from another point.

Start with version control information.
1 〈∗package〉
2 if known splines_fileversion: endinput fi;

3 string splines_fileversion;

4 splines_fileversion := "2006/09/25, v0.2a";

5 message "Loading splines.mp " & splines_fileversion;

6

Now for a command that takes a variable name (suffix arr) and copies a listlist_to_array

of pairs to arr1, arr2, etc.. The suffix must be declared by the calling program
so that arr is numeric but arr[] are pairs, for example by “save arr; pair
arr[];”.
7 def list_to_array (suffix arr) (text list) =

8 arr := 0;

9 for _itm = list :

10 arr[incr arr] := _itm;

11 endfor

∗This file has version number v0.2, last revised 2005/02/05.

1

12 enddef;

13

In this command we generate the equations common to all cubic splines: thecompute_spline

equality of derivatives at all interior points. This command accepts three suffixes:
points, pr, and po which should represent previously declared arrays of pairs.
points is the array of points to be connected, and must be known. Arrays pr and
po must be unknown and will hold the computed control points. See the code of
mkrelaxedspline for an example of how this was arranged for the variables rs_pr
and rs_po.

Contrary to the previous (unreleased) version, compute_spline takes a boolean
argument and appends the same equations at the first (= last) point.

The first of these macros appends the necessary additional equations to get zeromkrelaxedspline

second derivatives at the ends. The second simply calls compute_spline with themkclosedspline

boolean set to true. Both return the computed path. In theory the knowledgeable
user can call compute_spline (false), append a choice of equations for the ends,
and then call mksplinepath (false).

This version accepts a list of pairs and produces a spline through them. Itdospline

simply stores the list in an array and calls the appropriate version that operates
on an array.
14 def compute_spline (expr closed) (suffix points, pr, po) =

15 % interior equations:

16 for j= 2 upto points - 1 :

17 % equate first derivatives:

18 po[j] + pr[j] = 2 points[j];

19 % and second derivatives:

20 pr[j+1] + 2 pr[j] = 2 po[j] + po[j-1];

21 endfor

22 % for a closed curve, the first and last are also interior:

23 if closed:

24 po 1 + pr 1 = 2 points 1;

25 po[points] + pr[points] = 2 points[points];

26 pr 2 + 2 pr 1 = 2 po 1 + po[points];

27 pr 1 + 2 pr[points] = 2 po[points] + po[points-1];

28 fi

29 enddef;

30

31 vardef mksplinepath (expr closed) (suffix points, pr, po) =

32 points1..controls po1 and

33 for j = 2 upto points if not closed: -1 fi:

34 pr[j]..points[j]..controls po[j] and

35 endfor

36 if closed: pr 1..cycle else: pr[points]..points[points] fi

37 enddef;

38

39 vardef mkrelaxedspline (suffix pnts) =

40 save rs_pr, rs_po;

41 pair rs_po[], rs_pr[];

42 % Equate second derivative to zero at both end points

2

43 rs_pr 2 + pnts 1 = 2 rs_po 1 ;

44 pnts[pnts] + rs_po[pnts-1] = 2 rs_pr[pnts];

45 compute_spline (false) (pnts, rs_pr, rs_po);

46 mksplinepath (false) (pnts, rs_pr, rs_po)

47 enddef;

48

49 vardef mkclosedspline (suffix pnts) =

50 save cs_pr, cs_po;

51 pair cs_pr[], cs_po[];

52 compute_spline (true) (pnts, cs_pr, cs_po);

53 mksplinepath (true) (pnts, cs_pr, cs_po)

54 enddef;

55

56 vardef dospline (expr closed) (text the_list) =

57 save _sp; pair _sp[];

58 list_to_array (_sp) (the_list);

59 if closed :

60 mkclosedspline (_sp)

61 else:

62 mkrelaxedspline (_sp)

63 fi

64 enddef;

65

The above computations produce a 2-dimensional spline. A 1-dimensional cubic
spline would be a function f(t) with numeric values rather than pair values. Such
are often used to interpolate functions. That is, given pairs (xj , yj), and assuming
they lie on the graph of some function (generally unknown), fill in the graph with
y = f(x) where f is a cubic function of x in each interval xj < x < xj+1, making
sure that the resulting graph is as smooth as possible at the points xj .

The requirements on our 2-dimensional path are the following:

1. The jth link should connect (xj , yj) to (xj+1, yj+1).
2. The x-part of that link should increase linearly from xj to xj+1 as t goes from

0 to 1.
3. The y-part should be a cubic y = f(x).
4. The x-derivatives df/dx and d2f/dx2 should match at the connecting points.

Two necessary equations for converting between x and t coordinates are:

x = xj + t∆xj (1)

(where ∆xj = xj+1 − xj) and

df

dt
=

dx

dt

df

dx
= (xj+1 − xj)

df

dx
. (2)

Thus we want to choose controls so that (1) is maintained and so that x-derivatives
match. It turns out that this requires controls at

(xj , yj)− (∆xj−1, sj∆xj−1)/3
(xj , yj) + (∆xj , sj∆xj)/3 (3)

3

where sj is the slope (derivative) at xj . These control points will produce matching
slopes regardless of the values chosen for the sj . To get matching second derivatives
we need the same conditions as in parametric splines. But those equations simplify
to the form:

sj+1dxj − 2sj(dxj + dxj−1) + sj−1dxj−1 = 3yj+1 − 3yj−1.

As with 2-D splines there can be almost any equations at the end points. For a
relaxed spline we equate the second derivatives to 0. To get a periodic function,
we equate the slope and second derivative at beginning to those at the end. This
makes it possible to put a shifted copy of the graph with starting point at the end
of the original and have the same smoothness at that connection as at the other
points.

This issues the equation for the slopes (array sl of unknown numerics). Thecompute_fcnspline

array points contains the (x, y) values and dx is a temporary numeric array which
will be overwritten if known.

This simply assembles the path from the information computed by the abovemkfcnsplinepath

equations (and the extra equations given in the calling command).
This sets up arrays for the dx and sl parameters of compute_fcnspline, emitmkrelaxedfcnspline

the necessary endpoint equations (zero second derivatives) and calls the previous
two routines.

This does the same as the previous command, but the endpoint equations makemkperiodicfcnspline

the first and second derivatives at the start equal to those at the end.
Finally, this command copies a list of pairs into an array and calls the appro-fcnspline

priate command to process them.
66 def compute_fcnspline (suffix points, dx, sl) =

67 % Get delta_x:

68 for j = 1 upto points - 1: dx[j] := xpart (points[j+1]-points[j]);

69 endfor

70 for j=2 upto points - 1:

71 sl[j + 1] * dx[j] + 2sl[j]*(dx[j] + dx[j-1]) + sl[j-1]*dx[j-1]

72 = 3*ypart(points[j+1] - points[j-1]);

73 endfor

74 enddef;

75

76 vardef mkfcnsplinepath (suffix points, dx, sl) =

77 points1..controls (points1 + (1, sl1)*dx1/3) and

78 for j = 2 upto points - 1:

79 (points[j] - (1, sl[j])*dx[j-1]/3) ..points[j]..

80 controls (points[j] + (1,sl[j])*dx[j]/3) and

81 endfor

82 (points[points] - (1,sl[points])*dx[points-1]/3)..points[points]

83 enddef;

84

85 vardef mkperiodicfcnspline (suffix pnts) =

86 save _sl, _dx; numeric _dx[], _sl[];

87 compute_fcnspline (pnts, _dx, _sl);

88 % periodicity equations:

4

89 _sl 1 = _sl[pnts];

90 _sl 2 * _dx 1 + 2 _sl 1 * _dx 1 + 2 _sl[pnts] * _dx[pnts-1]

91 + _sl[pnts-1] * _dx[pnts-1]

92 = 3 * ypart(pnts[2] - pnts[pnts-1]);

93 mkfcnsplinepath (pnts, _dx, _sl)

94 enddef;

95

96 vardef mkrelaxedfcnspline (suffix pnts) =

97 save _sl, _dx; numeric _dx[], _sl[];

98 compute_fcnspline (pnts, _dx, _sl);

99 % relaxation equations.

100 _sl 2 * _dx 1 + 2 _sl1 * _dx 1 = 3 * ypart(pnts2 - pnts1);

101 _sl[pnts-1] * _dx[pnts-1] + 2 _sl[pnts] * _dx[pnts-1]

102 = 3 * ypart(pnts[pnts] - pnts[pnts-1]);

103 mkfcnsplinepath (pnts, _dx, _sl)

104 enddef;

105

106 vardef fcnspline (expr periodic) (text the_list) =

107 save _fs; pair _fs[];

108 list_to_array (_fs) (the_list);

109 if periodic:

110 mkperiodicfcnspline (_fs)

111 else:

112 mkrelaxedfcnspline (_fs)

113 fi

114 enddef;

115

116 〈/package〉

5

Index

Numbers refer to the page where the corresponding entry is described.

C
compute_fcnspline . . 4
compute_spline 2

D
dospline 2

F

fcnspline 4

L

list_to_array 1

M
mkclosedspline 2
mkfcnsplinepath 4
mkperiodicfcnspline . 4
mkrelaxedfcnspline . . 4
mkrelaxedspline 2

6

