
1 Introduction

matlab.mp is a MetaPost package for plotting out 2-D data. This is a common
task for any scientists or engineers. The most frequently used tool for doing
such tasks are probably Gnuplot and Matlab. But I have not been very satisfied
with the plotting quality of either. Gnuplot is fast, versatile, and you can choose
between several line styles/widths, but the available line styles are largely hard-
coded into Gnuplot, and not very beautiful. Matlab generates better plots, but
one particular problem with Matlab made me decided to create something that
suits me needs: if you need to plot a thick dotted line in Matlab, the seperation
distance between dots along the line stays constant, so the line looks like a
“railroad track”, instead of a dotted line.

Another choice for plotting data is the mpgraph MetaPost package. The
“weakness” of this package is that its default style does not look like Matlab

(because I am accustomed to Matlab style). Plus, the usage of mpgraph is
not as easy as Matlab. Then I decided to integrate the rich plotting ability of
mpgraph with the ease of use of Matlab.

2 Quick Usage

The process of plotting a data plot consists of roughly 3 steps: (1) read in
the data from a data source file. (2) plotting out the data, possibly specifying
desired line styles. (3) plotting “decorations”, i.e. legends, axis labels, grids,
etc. Since we use mpgraph package, steps (2) and (3) should appear within the
begingraph/endgraph construct.

Here is a sample file simple.mp that uses of matlab.mp:

input matlab.mp

prologues:=0;

beginfig(1)

%begin a matlab data plot

begingrf(5in ,4in);

% read in column 1 of data file " sample_data"

% and store it as the 0th "data vector " in our repository

rdata("sample_data" , 1);

% read in column 2 of data file " sample_data"

% and store it as the 1st "data vector " in our repository

rdata("sample_data" , 2);

% plot out data , using vector 0 as X values , and vector 1 as Y values

% well , we have to make sure that the two vectors have the same

% lengths

mtplot("0 1");

ylabel("sample Y label α");

xlabel("sample X label {\bf Bold} and {\it italic } ");

% do the post -processing

finishgrf;

1

legend (3, 3, "\bf column 1 and 2 of sample_file");

endfig;

end

sample data is a text file containing columns of numbers. Both files can be
found in the examples directory of the package. That directory also contains a
Makefile to generate the resulting simple.1 eps file.

3 More Details

Now we show in more detail how to draw a data plot. First we call draw

begingrf(width,height), just as when using mpgrah. In fact, begingrf just
calls begingraph, and set a few default style parameters. Then we read in data
from external data files by rdata("file name", column index). So each call
of rdata only reads in one column of data, which is stored into an internal vector,
indexed from 0 upwards.

Then we actually plot out the data by calling mtplot("X Y"). The
parameters to this macro are all put into the same string, so the implementation
can be easier. Parameters are seperated by space in the string. There are two
required parameters: the column index of the data vector to be used as X
coordinates, and that for Y. The remaining parameters are used to specify line
styles. We have 4 categories of line styles: widths, color, marker shape, and
line pattern (dotted, dashed, etc). Widths are specified by ”linewidthn”, where
n is a number giving the linewidth in pt. Color specification is ”cx”, where x
is ”k|r|g|b|y|o|p” for black, red, green, blue, yellow, orange, and purple,
respectively. Marker shape is ”mx”, where x is o|x|*|d|s for circle, cross,
star, diamond, and square. Line patterns are ”solid, dash, dot, dashdot,

dddash” (for dot dot dash) and ”dddot” (for dash dash dot). If you do not
specify line styles, each newly plotted line is automatically assigned a new style.

Finally we can plot out the legends, by calling legend. The first parameter
gives X position, 1,2,3 corresponds to left, center, and right. Similarly, 1,2,3 for
the second parameter corresponds to bottom, middle, and top. Axis labels are
printed out by xlabel(s), ylabel(x), where s is just a string. Since we use
the latexmp package for strings, you can use any valid latex constructs for the
legends and labels.

2

� � ��� ��� ���
�

�

���

���

���

� � ��� ��� ���
�

�

���

���

���

���
	��� ���� ���
�

Bold

�
���
italic

��
��
� �
�� �
� �
� α

column 1 and 2 of sample file

Figure 1: simple graph

� !"� !� #��
�

!��

!�

#��

� !"� !� #��
�

!��

!�

#��

$�%'& %)(+* ,.-/%10�%�* 2�3 &4* %1* 5�67%1-�8�9 : $�%'& %

;< =
>;< =
>

α ≥ β BoldFaceitalic

?A@CB�D7EGFIH�JGJGJGJ
K�L M�NOK�L M�N

you can have multiple legends ! :)

?A@CB'D�E"FCH�JGJGJGJ
K�L M�NOKPL M�N

Figure 2: Full feature graph

3

