
274 TUGboat, Volume 18 (1997), No. 4

Graphics Applications

Creating 3D animations with METAPOST

Denis Roegel

Abstract

METAPOST can be used to create animations. We
show here an example of animation of polyhedra,
introducing the 3d package.

Introduction

METAPOST (Hobby (1992); see also the description
in Goossens et al. (1997)) is a drawing language very
similar to METAFONT, but whose output is Post-
Script. METAPOST is especially suited for geomet-
rical and technical drawings, where a drawing can
naturally be decomposed in several parts, related in
some logical way. Knuth is using METAPOST for the
revisions of and additions to The Art Of Computer
Programming (Knuth, 1997), and it is or will be a
component of every standard TEX distribution.

Unfortunately, METAPOST is still quite bare
and the user is only offered the raw power — a little
bit like the TEX user who only has plain TEX at
his/her disposal. The lack of libraries is certainly
due to the infancy of METAPOST (which came in
the public domain at the beginning of 1995) and
thus to the small number of its users.

In this paper, we present a way to produce
animations using METAPOST. The technique is
quite general and we illustrate it through the 3d
package.

Animations

The World Wide Web has accustomed us to various
animations, especially java animations. Common
components of web pages are animated GIF images.

Producing animations in METAPOST is actu-
ally quite easy. A number of n images will be
computed and their sequence produces the anima-
tion. The animation will be similar to a movie,
with no interaction. More precisely, if an_image(i)
produces a picture parameterized by i, it suffices to
wrap this macro between beginfig and endfig:

def one_image_out(expr i)=
beginfig(<figure number>);
an_image(i);

endfig;
enddef;

and to loop over one_image_out:

for j:=1 upto 100:one_image_out(j);endfor;

Assuming that <figure number> is equal to
the parameter of an_image, the compilation of this
program will produce a hundred files with extensions
.1, .2, . . . , .100. All these files are PostScript files
and all we need to do is to find a way to collate
them in one piece. How to do this depends on the
operating system. On UNIX for instance, one can
use Ghostscript to transform a PostScript file into
ppm and then transform each ppm file into GIF with
ppmtogif. These programs are part of the NETPBM
package (Davidsen, 1993). Finally, a program such
as gifmerge (Müller, 1996) creates an animated
GIF file (GIF89A) out of the hundred individual
simple GIFs. However, various details must be taken
care of. For instance, only a part of Ghostscript’s
output is needed and selection can be made with
pnmcut.

The whole process of creating an animation
out of METAPOST’s outputs can be summed up in
a shell script, similar to the one in figure 1. As
we will see, this script (including the arguments of
awk and pnmcut) can be generated automatically by
METAPOST itself.

Objects in space

Introduction The author applied this idea to the
animation of objects in space. The macros in the
3d.mp package1 provide a basis for the representa-
tion of three-dimensional objects. The basic com-
ponents of the objects are the points or the vectors.
Both are stored as triplets. More precisely, we have
three arrays2 of type numeric:

numeric vect[]x,vect[]y,vect[]z;

Vector i’s components are vect[i]x, vect[i]y
and vect[i]z. It is then straightforward to define
the usual operations on vectors using this conven-
tion. For instance, vector addition is defined as:

def vect_sum(expr k,i,j)=
vect[k]x:=vect[i]x+vect[j]x;
vect[k]y:=vect[i]y+vect[j]y;
vect[k]z:=vect[i]z+vect[j]z;

enddef;

1 On CTAN, under graphics/metapost/macros/3d. The
code is documented with MFT (Knuth, 1989) and illustrated
with METAPOST. This paper describes version 1.0 of the
macros.

2
METAPOST has a few simple types such as numeric,

boolean, string, path, It also has pairs (pair) and
triples (color). We might have cheated and stored points
as colors, but instead, we found it interesting to illustrate a
construction equivalent to Pascal’s records or C’s structures.
In METAPOST, instead of having a list or an array of
structures, we use several lists or arrays, so that a record
is a cross-section over several arrays.

TUGboat, Volume 18 (1997), No. 4 275

#! /bin/sh

/bin/rm -f animpoly.log
for i in ‘ls animpoly.*| grep ’animpoly.[0-9]’‘;do
echo $i
echo ’==============’
shift each picture so that it lies in the page:
awk < $i ’{print} /^%%Page: /{print "172 153 translate\n"}’ > $i.ps
produce ppm format:
gs -sDEVICE=ppmraw -sPAPERSIZE=a4 -dNOPAUSE -r36 -sOutputFile=$i.ppm -q -- $i.ps
/bin/rm -f $i.ps
produce gif:
ppmquant 32 $i.ppm | pnmcut 15 99 141 307 | ppmtogif > ‘expr $i.ppm : ’\(.*\)ppm’‘gif
/bin/rm -f $i.ppm
done
/bin/rm -f animpoly.gif
merge the gif files:
gifmerge -10 -l1000 animpoly.*.gif > animpoly.gif
/bin/rm -f animpoly.*.gif

Figure 1: Script created by METAPOST (with some additional comments)

Often, we need some scratch vectors or vectors
local to a macro. A simple vector allocation mech-
anism solves the problem: we use a stack of vectors
and we reserve and free vectors only on top of the
stack. For instance, the allocation of a vector is
defined by:

def new_vect=incr(last_vect_) enddef;

where last_vect_ is the index of the top of the
stack. Hence, a vector is manipulated by its index
on the stack. Writing v:=new_vect; lets v be the
index of the newly allocated vector.

Freeing a vector is also easy and is only allowed
at the top of the stack:

def free_vect(expr i)=
if i=last_vect_:

last_vect_:=last_vect_-1;
else: errmessage("Vector " &

decimal i & " can’t be freed!");
fi;

enddef;

How these macros are used is made explicit in
the vect_rotate macro which does a rotation of a
vector v around a vector axis by an angle alpha.
This rotation is illustrated in figure 2. ~v is written as
the sum of ~h and ~a where ~h ⊥ ~a. If ~b is −−→axis/‖−−→axis‖,
~c is computed as the vector product of ~b and ~a and
~a is then rotated in a simple way resulting in ~f .

The vectors declared with new_vect are freed
in the inverse order. The vect_rotatemacro makes
use of a few other macros: vect_mod computes the

modulus of a vector; vect_dprod(a,b) is the dot
product of vectors a and b; vect_mult(b,a,x) lets
vector b equal vector a multiplied by the scalar
x; vect_sum and vect_diff compute as their first
argument the sum or the difference of the two other
vectors; vect_prod(c,a,b) lets vector c equal the
vectorial product of vectors a and b. These macros
are described in appendix A.

vardef vect_rotate(expr v,axis,alpha)=
save v_a,v_b,v_c,v_d,v_e,v_f;
v_a:=new_vect;v_b:=new_vect;
v_c:=new_vect;v_d:=new_vect;
v_e:=new_vect;v_f:=new_vect;
v_g:=new_vect;v_h:=new_vect;
vect_mult(v_b,axis,1/vect_mod(axis));
vect_mult(v_h,v_b,vect_dprod(v_b,v));
vect_diff(v_a,v,v_h);
vect_prod(v_c,v_b,v_a);
vect_mult(v_d,v_a,cosd(alpha));
vect_mult(v_e,v_c,sind(alpha));
vect_sum(v_f,v_d,v_e);
vect_sum(v,v_f,v_h);
free_vect(v_h);free_vect(v_g);
free_vect(v_f);free_vect(v_e);
free_vect(v_d);free_vect(v_c);
free_vect(v_b);free_vect(v_a);

enddef;

The 3d package defines other macros in order
to set the observer, to compute a reference matrix,
etc. Provision is given for manipulating objects.

276 TUGboat, Volume 18 (1997), No. 4

−−→
axis

~h

~a

~v

~c

~b
~a

~f

α

Figure 2: Vector rotation

Objects and classes The 3d package understands
a notion of class. A class is a parameterized object.
For instance, we have the class of regular tetrahedra,
the class of regular cubes, etc. Our classes are the
lowest level of abstraction and classes can not be
composed. They can only be instanciated. When we
need a specific tetrahedron, we call a generic func-
tion to create a tetrahedron, but with an identifier
specific to one instance.

A class is a set of vertices in space, together
with a way to draw faces, and therefore edges.
The author’s focus was to manipulate (and later
animate) polyhedra. As an example, the poly.mp
package provides the definition of each of the five
regular convex polyhedra.

Each class consists of two macros: one defines
the points, the other calls the first macro and defines
the faces. Each macro has a parameter which is
a string identifying the particular instance of that
class.

The points of a regular tetrahedron are de-
fined in set_tetrahedron_points, an example
of the general macro name set_〈class〉_points.
Five points are defined, four of them with
set_obj_point, a macro which defines points local
to an object. The first four points are the ver-
tices and the fifth is the center of the tetrahedron.
set_obj_point’s first parameter is the point num-
ber and the other three are the cartesian coordi-
nates. The first three points are in a plane and the
fourth is obtained with the new_face_point macro,
which folds a face (see the description in appendix
A for more details). The new_face_point macro
is used with the angle an which is computed in
advance. Once the four points are set, the object is
normalized, which means that it is centered with re-
spect to the list of vertices given as parameter (here
1,2,3,4) and the last vertex is put on a sphere of
radius 1, centered on the origin. Therefore, point 5
is the center of the tetrahedron, and the tetrahedron
is set symmetrically with respect to the origin.

All five convex regular polyhedra are defined in
this way and may therefore be inscribed in a sphere
of radius 1.

def set_tetrahedron_points(expr inst)=
set_obj_point(1,0,0,0);
set_obj_point(2,1,0,0);
set_obj_point(3,cosd(60),sind(60),0);
sinan=1/sqrt(3);
cosan=sqrt(1-sinan**2);
an=180-2*angle((cosan,sinan));
new_face_point(4,1,2,3,an);
normalize_obj(inst)(1,2,3,4);
set_obj_point(5,0,0,0);

enddef;

The second macro, def_tetrahedron defines
the number of points and faces of the instance, calls
the previous macro and defines the faces with the
macro set_obj_face. The first argument of that
macro is a local face number, the second is a list of
vertices such that the list goes clockwise when the
face is visible. The last argument is the color of the
face in RGB.

vardef def_tetrahedron(expr inst)=
new_obj_points(inst,5);
new_obj_faces(inst,4);
set_tetrahedron_points(inst);
set_obj_face(1,"1,2,4","b4fefe");
set_obj_face(2,"2,3,4","b49bc0");
set_obj_face(3,"1,4,3","b4c8fe");
set_obj_face(4,"1,3,2","b4fe40");

enddef;

The result of the drawing is:

TUGboat, Volume 18 (1997), No. 4 277

A more complex example is the icosahedron
which is defined below.

def set_icosahedron_points(expr inst)=
set_obj_point(1,0,0,0);
set_obj_point(2,1,0,0);
set_obj_point(3,cosd(60),sind(60),0);
cosan=1-8/3*cosd(36)*cosd(36);
sinan=sqrt(1-cosan*cosan);
an=180-angle((cosan,sinan));
new_face_point(4,1,2,3,an);
new_face_point(5,2,3,1,an);
new_face_point(6,3,1,2,an);
new_face_point(7,2,4,3,an);
new_face_point(8,3,5,1,an);
new_face_point(9,1,6,2,an);
new_face_point(10,3,4,7,an);
new_face_point(11,3,7,5,an);
new_face_point(12,1,8,6,an);
% 1 and 10 are opposite vertices
normalize_obj(inst)(1,10);
% center of icosahedron
set_obj_point(13,0,0,0);

enddef;

vardef def_icosahedron(expr inst)=
save cosan,sinan,an;
new_obj_points(inst,13);
new_obj_faces(inst,20);
set_icosahedron_points(inst);
set_obj_face(1,"3,2,1","b40000");
set_obj_face(2,"2,3,4","ff0fa1");
set_obj_face(3,"3,7,4","b49b49");
set_obj_face(4,"3,5,7","b49bc0");
set_obj_face(5,"3,1,5","b4c8fe");
set_obj_face(6,"1,8,5","b4fefe");
set_obj_face(7,"1,6,8","b4fe40");
set_obj_face(8,"1,2,6","45d040");
set_obj_face(9,"2,9,6","45a114");
set_obj_face(10,"2,4,9","45a1d4");
set_obj_face(11,"9,4,10","4569d4");
set_obj_face(12,"4,7,10","112da1");
set_obj_face(13,"7,5,11","b4fefe");
set_obj_face(14,"5,8,11","b49bc0");
set_obj_face(15,"8,6,12","45a114");
set_obj_face(16,"6,9,12","b49b49");
set_obj_face(17,"8,12,11","b40000");
set_obj_face(18,"7,11,10","45a1d4");
set_obj_face(19,"12,10,11","b4c8fe");
set_obj_face(20,"9,10,12","ff0fa1");

enddef;

Since all points of the objects are stored in a
unique global array, they are internally accessed by
the local numbers and an offset defined by the macro
new_obj_points. The icosahedron example shows

a systematic use of the new_face_point macro to
compute a point on an adjacent face. Displaying
such an icosahedron results in the figure 3.

Figure 3: An icosahedron

The other three regular convex polyhedra are:

The dodecahedron code is a bit special, since
the vertices are built using ten additional points
corresponding to face centers. These points are
defined as an array of variables fc1 through fc10
with new_points(fc)(10). free_points(fc)(10)
frees them when they are no longer necessary. An
excerpt of the dodecahedron code is:

def set_dodecahedron_points(expr inst)=
new_points(fc)(10);% face centers
set_point(fc1,0,0,0);
set_obj_point(1,1,0,0);
set_obj_point(2,cosd(72),sind(72),0);
rotate_in_plane(3,fc1,1,2);
...
free_points(fc)(10);

enddef;

Finally, wire drawings can be obtained by set-
ting the boolean filled_faces to false:

278 TUGboat, Volume 18 (1997), No. 4

Animating objects The animation of one or sev-
eral objects involves the object(s) and an observer.
The animation is a set of images and from an image
to the next one, the observer as well as the objects
can move. For instance the macro one_image in
3d.mp is:

def one_image(expr name,i,a,rd,ang)=
beginfig(i);
set_point(Obs,
-rd*cosd(a*ang),-rd*sind(a*ang),1);

Obs_phi:=90;Obs_dist:=2;
% fix point 1 of object |name|
point_of_view_obj(name,1,Obs_phi);
draw_obj(name);
rotate_obj_pv(name,1,vect_I,ang);
% show the rotation point
draw_point(name,1);
draw_axes(red,green,blue);

endfig;
enddef;

The parameters of this macro are a name of an
object (name), an image index (i), and three values
defining the position of the observer. The observer
(Obs is a global point and set with set_point,
not with set_obj_point) follows a circle of radius
rd. The parameter a, which is usually a function
of i, determines the number of rotation steps of
the observer, each step being a rotation of angle
ang. The distance between the observer and the
projection plane is 2 (see figure 4).

The orientation of the observer is defined by
three angles (see figure 5). The Obs_phi angle is
given and the two others are computed with a call to
point_of_view_obj(name,1,Obs_phi) which con-
strains the observer to look towards point 1 of object
name. Therefore, this point will seem fixed on the
animation and draw_point(name,1) draws it later
so that this feature can be observed. There is noth-
ing special about that point, except that it remains

fix when the object is rotated. The object is drawn
with draw_obj(name) and rotate_obj_pv rotates
the object name by ang degrees around an axis going
through point 1 and directed by vector vect_I (~ı).
The reference vectors (~ı, ~ and ~k) are drawn in red,
green and blue with draw_axes.

Finally, a complete animation of an icosahedron
is obtained with

animate_object("icosahedron",1,100,100);

which generates files anim.101, . . . , anim.200 from
the main file anim.mp. The first parameter of
animate_object is the name of the object to an-
imate, the second and third parameters are minimal
and maximal values of the index loop and the fourth
parameter is an offset added to the index loop in
order to get the file extension, which must lie in the
interval 0..4096.

After each image is drawn, the values of the cur-
rent bounding box are used to compute the bound-
ing box of the sequence of images. The internal
values xmin_, ymin_, xmax_ and ymax_ hold the
minimal and maximal values of the coordinates of
the past images’ corners. They are updated just
before each image is shipped out.

Putting the pieces together Once all the views
have been computed, they can be used separately
(see for instance the five views of figure 6) or more
interestingly, they can be merged. This task is
made almost straightforward by METAPOST itself.
Indeed, every time animate_object is used, a shell
script named create_animation.sh is generated,
as a side-effect of a call to show_animation_bbox.
The script is similar to that shown in figure 1.
This script uses the values computed for the global
bounding box of the sequence of images, for these
values are necessary in order to extract the right
parts of the images and get correct alignments; the
parts are extracted with pnmcut.3 If you have the
programs used in this script (Ghostscript, etc.),
you can just run it with sh create_animation.sh
on UNIX. You may need to adapt it to your needs,
and for that purpose, you can modify the macro
write_script in 3d.mp.

Some examples are included in the 3d distri-
bution, and they can be viewed for instance with
netscape or special programs such as xanim.

3 One might think of using Ghostscript for generating an
excerpt of an image, but if Ghostscript is used to generate
the bounding box of an image, it will in general not be
possible to have a good alignment between all images. The
sizes of the excerpts are only known when all images have
been produced.

TUGboat, Volume 18 (1997), No. 4 279

yp

xp
−−→
Obsj

−−→
Obsk

−−→
Obsi

Obs dist

p

m

Obs

projection plane

Figure 4: Projection on the screen

x
u

Obsx

y

Obsy

z

Obsz

v

w

θ

ψ θ

φ

Figure 5: Orientation of the observer

Figure 6: Five views of an animation

280 TUGboat, Volume 18 (1997), No. 4

Future

It is quite easy to improve and extend the 3d macros
but the author decided to go no further for the
moment. Other objects can be implemented easily
and new algorithms can be added. For instance in
order to take light sources or shadows into account,
one can compute the angles under which a face
gets its light, and the angle under which this very
face is seen, in order to decide how much darker
or lighter it must be rendered. Another problem
is to represent overlapping objects correctly. In
the current implementation, each object is drawn
independently from the other objects, so that the
overlapping may be wrong. One solution is to
sort all the faces according to their distance to the
observer and, if two faces can not be ordered, to split
them. Then, the faces can be drawn starting with
the most distant, and ending with the closest one.
Appendix B explains the internal representation of
the objects and shows that this algorithm can be
implemented without much surgery to the present
code.

Acknowledgments

Thanks to John Hobby who always answers all my
queries on the METAFONT mailing list. Thanks to
Alain Filbois who helped me with the shell script
syntax, to Thomas Lambolais and Thomas Genet
who gave some feedback on this work, and to Do-
minique Larchey who pointed out a shortcoming in
the conclusion. Thanks to Denis Barbier who was
one of the first users of these macros and contributed
the animated crayons in the distribution. Thanks to
Bogus law Jackowski who made valuable comments
on some peculiarities of the code. And finally,
special thanks to Ulrik Vieth who not only pushed
me to polish my code and this paper more than I
had first intended, but also made it possible to use
METAPOST under web2c.

References

Davidsen, Bill. “NETPBM”. 1993. Available for
instance at ftp://ftp.wustl.edu/graphics/
graphics/packages/NetPBM.

Goossens, Michel, S. Rahtz, and F. Mittelbach.
The LATEX Graphics Companion. Addison-Wes-
ley, Reading, MA, USA, 1997.

Hobby, John D. “A User’s Manual for MetaPost”.
Technical Report 162, AT&T Bell Laboratories,
Murray Hill, New Jersey, 1992.

Knuth, Donald E. “MFT, version 2.0”. 1989. Stan-
dard TEX distribution.

Knuth, Donald E. The Art of Computer Program-
ming, volumes 1, 2 and 3. Addison-Wesley Pub-
lishing Company, 1997. New editions.

Müller, René K. “GIFMerge, version 1.33”.
1996. Available at http://www.iis.ee.ethz.
ch/~kiwi/GIFMerge/.

Appendix A
Summary of the 3d package

Types The commands in the 3d package take pa-
rameters of several different types. The types are
described here.
• An 〈avn〉 (Absolute Vector Number) is the in-

ternal number identifying a vector in the vect
array (an integer).
• An 〈apn〉 (Absolute Point Number) refers to a

vector in the same way as an 〈avn〉 (an integer).
• A 〈lpn〉 (Local Point Number) is a number iden-

tifying a point within an object (an integer).
Two 〈lpn〉s with the same value can correspond
to different points in different objects.
• An 〈afn〉 (Absolute Face Number) is the internal

number identifying a face.
• A 〈lfn〉 (Local Face Number) is a number iden-

tifying a face within an object (an integer).
As for points, two 〈lfn〉s with the same value
can correspond to different faces in different
objects.
• A 〈cl〉 (Class) is a string representing a class,

for instance "tetrahedron". It may only con-
tain letters and underscores.
• An 〈obj 〉 (Object) is a string representing an

object, that is an instance of a class. Such a
string may only contain letters and underscores.
• A 〈vl〉 (Vertex List) is a list of integers, where

each integer identifies a vertex. For instance,
1,7 is the list of vertices 1 and 7.
• A 〈vsl〉 (Vertex String List) is a string corre-

sponding to a list of integers, where each integer
identifies a vertex. For instance, "1,2,6,5" is
the list of vertices 1, 2, 6 and 5.
• 〈hc〉 (Hex Color) is a string representing a color

with the three RGB components in hexadec-
imal and in the range 0..255. For instance,
"b4fe40".
• 〈col〉 (Color) is a standard METAPOST color (a

triplet of RGB components in the range 0..1),
such as red.
• 〈str〉 (String) is a string.
• 〈pair〉 (Pair) is a pair of numerics.
• 〈num〉 (Numeric) is a number.
• 〈bool〉 (Boolean) is a boolean.

TUGboat, Volume 18 (1997), No. 4 281

Low level vector commands The low level vec-
tor commands define the classical operations in vec-
tor algebra.

• vect_def(〈avn〉,x,y,z): defines vector 〈avn〉
as (x, y, z);
• set_point; synonym of vect_def: a point is

stored in the same array as vectors.
• set_obj_point(〈lpn〉,x,y,z): this defines the

point 〈lpn〉 as (x, y, z);
• vect_def_vect(〈avn〉1,〈avn〉2): vector 〈avn〉1

becomes equal to vector 〈avn〉2;
• vect_sum(〈avn〉1,〈avn〉2,〈avn〉3): the vector
〈avn〉1 becomes the sum of vectors 〈avn〉2 and
〈avn〉3.
• vect_translate(〈avn〉1,〈avn〉2): add vector
〈avn〉2 to vector 〈avn〉1; vector 〈avn〉2 remains
unchanged.
• vect_diff(〈avn〉1,〈avn〉2,〈avn〉3): the vector
〈avn〉1 becomes the difference between vectors
〈avn〉2 and 〈avn〉3.
• vect_dprod(〈avn〉1,〈avn〉2)→ 〈num〉: returns

the dot product of vectors 〈avn〉1 and 〈avn〉2.
• vect_mod(〈avn〉) → 〈num〉: returns the mod-

ulus of vector 〈avn〉.
• vect_prod(〈avn〉1,〈avn〉2,〈avn〉3): the vector
〈avn〉1 becomes the vector product of vectors
〈avn〉2 and 〈avn〉3.
• vect_mult(〈avn〉1,〈avn〉2,〈num〉): 〈avn〉1 be-

comes vector 〈avn〉2 scaled by 〈num〉.
• mid_point(〈avn〉1,〈avn〉2,〈avn〉3): vector (or

point) 〈avn〉1 becomes the mid-point of vectors
(or of the line joining the points) 〈avn〉2 and
〈avn〉3.
• vect_rotate(〈avn〉1,〈avn〉2,a): vector 〈avn〉1

is rotated around vector 〈avn〉2 by the angle a.

Operations on objects Several operations apply
globally on objects:

• assign_obj(〈obj 〉,〈cl〉): create 〈obj 〉 as an
instance of class 〈cl〉.
• reset_obj(〈obj 〉): put 〈obj 〉 back where it was

just after it was initialized.
• put_obj(〈obj 〉,〈avn〉,s,ψ,θ,φ): object 〈obj 〉

is scaled by s, shifted by vector 〈avn〉 and
oriented with the angles ψ, θ, φ, as for the
observer orientation (figure 5).
• rotate_obj_pv(〈obj 〉,〈lpn〉,〈avn〉,a): object
〈obj 〉 is rotated around an axis going through
local point 〈lpn〉 and directed by vector 〈avn〉;
the rotation is by a degrees.

• rotate_obj_abs_pv(〈obj 〉,〈apn〉,〈avn〉,a):
the object 〈obj 〉 is rotated around an axis going
through absolute point 〈apn〉 and directed by
vector 〈avn〉; the rotation is by a degrees.
• rotate_obj_pp(〈obj 〉,〈lpn〉1,〈lpn〉2,a): 〈obj 〉

is rotated around an axis going through local
points 〈lpn〉1 and 〈lpn〉2; the rotation is by a
degrees.
• translate_obj(〈obj 〉,〈avn〉): object 〈obj 〉 is

translated by vector 〈avn〉.
• scale_obj(〈obj 〉,v): object 〈obj 〉 is scaled by v.

Building new points in space Three macros are
especially useful for the definition of regular polyhe-
dra:
• rotate_in_plane(k,o,i,j): get point k from

point j by rotation around point o by an angle
α equal to the angle from i to j; i, j and k are
of type 〈lpn〉, whereas o is of type 〈apn〉.

α
α

o
i

j

k

• new_face_point(c,o,i,j,α): the middle m of
points i and j is such that ̂(−→om,−→mc) = α and
−→mc is −→om rotated around −→ji . c, o, i and j are
of type 〈lpn〉.

α

o

j

i

c

• new_abs_face_point(c,o,i,j,α): similar to
the previous definition, but c and o are of type
〈apn〉.

Drawing points, axes, objects
• draw_point(〈obj 〉,〈lpn〉): draw point 〈lpn〉 in

object 〈obj 〉.
• draw_axes(〈col〉1,〈col〉2,〈col〉3): draw vectors
~ı, ~ and ~k in colors 〈col〉1, 〈col〉2 and 〈col〉3.
• draw_obj(〈obj 〉): draw object 〈obj 〉.

Setting faces
• set_face(〈afn〉,〈vsl〉,〈hc〉): set absolute face
〈afn〉 as delimited by the vertex list 〈vsl〉 (local
point numbers) and colored by color 〈hc〉.
• set_obj_face(〈lfn〉,〈vsl〉,〈hc〉): set local face
〈lfn〉 as delimited by the vertex list 〈vsl〉 (local
point numbers) and colored by color 〈hc〉.

282 TUGboat, Volume 18 (1997), No. 4

View points, distance

• compute_reference(ψ,θ,φ): defines the ori-
entation of the observer by the three angles ψ,
θ and φ. See figure 5.
• point_of_view_obj(〈obj 〉,〈lpn〉,φ): the ori-

entation of the observer is defined as looking
local point 〈lpn〉 of object 〈obj 〉, with an angle
of φ;
• point_of_view_abs(〈apn〉,φ): the observer’s

orientation is defined as looking absolute point
〈apn〉, with an angle of φ;
• obs_distance(v)(〈obj 〉,〈lpn〉): let v equal the

distance between the observer and local point
〈lpn〉 in object 〈obj 〉.

Vector and point allocation

• new_vect→ 〈avn〉: return a new vector;
• new_point: synonym of new_vect;
• new_points(v)(n): defines the absolute points
v1, . . . , vn, using new_point;
• free_vect(〈avn〉): free vector 〈avn〉;
• free_point(〈apn〉): free point 〈apn〉;
• free_points(v)(n): frees the absolute points
v1, . . . , vn, using free_point.

Debugging

• show_vect(〈str〉,〈avn〉): shows vector 〈avn〉,
with string 〈str〉.
• show_point: synonym of show_vect
• show_pair(〈str〉,〈pair〉): this shows a numeric

pair, with string 〈str〉.

Normalization

• normalize_obj(〈obj 〉,〈vl〉): normalize object
〈obj 〉 with respect to the list of vertices 〈vl〉.

Parameters

• Obs_dist → 〈num〉: distance between the ob-
server and the projection plane.
• h_field → 〈num〉: horizontal field of view

(default: 100 degrees)
• v_field → 〈num〉: vertical field of view (de-

fault: 70 degrees)
• Obs_phi → 〈num〉: angle φ for the orientation

of the observer;
• Obs_theta → 〈num〉: angle θ for the orienta-

tion of the observer;
• Obs_psi → 〈num〉: angle ψ for the orientation

of the observer;
• drawing_scale→ 〈num〉: scale factor applied

for drawing;

• filled_faces→ 〈bool〉: if true, the faces are
drawn filled; if false, only the edges are drawn,
and hidden edges are drawn dashed;
• draw_contours→ 〈bool〉: if true, the contours

of the faces are drawn, and the lines have
the thickness contour_width; if false, the
contours are not drawn;
• contour_width → 〈num〉: dimension used for

drawing contours of faces (default: 1pt).

Constants These values represent constant ob-
jects such as reference vectors, and should not be
changed.
• vect_null→ 〈avn〉: internal index for ~0.
• vect_I → 〈avn〉: internal index for ~ı.
• vect_J → 〈avn〉: internal index for ~.
• vect_K → 〈avn〉: internal index for ~k.
• point_null→ 〈apn〉: internal index for ~0.
• Obs→ 〈apn〉: observer’s internal point number.

Defining new object points and faces
• new_obj_points(〈obj 〉,〈num〉): defines points

1 to 〈num〉 in object 〈obj 〉; must be used before
setting the points;
• new_obj_faces(〈obj 〉,〈num〉): defines 〈num〉

faces in object 〈obj 〉; must be used before set-
ting the faces;

Offsets
• pnt(〈lpn〉)→ 〈apn〉: returns the absolute point

number for a given local point index.
• face(〈lfn〉) → 〈afn〉: returns the absolute face

number for a given local face index.

Standard classes Five standard classes are de-
fined in poly.mp: they define the five regular convex
polyhedra. For each class 〈class〉, there are two
macros:
• set_〈class〉_points (e.g. set_cube_points)
• def_〈class〉 (e.g. def_cube)

Each of these macros is defined with a parame-
ter which is the instance name.

Standard animations The 3d package provides
a few standard animations using the convex poly-
hedra. In each of these animations, the observer
follows a circular path pictured in figure 7. Each
standard animation is divided into two macros. The
first, such as animate_object, defines the class(es)
that are used and sets the objects. The second, such
as one_image, sets the observer, draws the object(s)
and moves the object(s) and the observer. The
file animpoly.mp gives examples of the use of the
standard animations.

TUGboat, Volume 18 (1997), No. 4 283

x

y

z

~ı

~

~k

Figure 7: Motion of the observer

Appendix B
Coding an object

In order to extend the 3d package, it is necessary to
understand how the objects are coded. We give here
an overview of this coding, but the reader is advised
to peek in the code to get a better understanding on
how all the functions interact.

First, an object has a name, for instance "box".
The macro box_class (which can be called with
obj_class_("box")) is the string corresponding to
the class of "box", for instance "cube". The variable
cube_point_offsetbox, of type numeric, and ob-
tained with obj_point_offset_("box"), is equal
to the absolute index of the last point of the pre-
vious object. A cube is defined with 8 + 1 points.
Assuming it was defined after an icosahedron (12+1
points) named "ico", cube_point_offsetbox will
be a numeric equal to 13. cube_pointsbox (ob-
tained with obj_points_("box")) is a macro equal
to 9. The variable cube_face_offsetbox, similar
to cube_point_offsetbox, obtained with a call to
obj_face_offset_("box"), equals 20. The macro
cube_facesbox (obtained by obj_faces_("box"))
is equal to 6.

The obj_name macro is extended each time a
new object is defined. To an absolute face number,
it associates an object name. Hence, it is possible
to go through all faces. last_point_offset_ and
last_face_offset_are the absolute numbers of the
last points and faces defined up to now.

def obj_name(expr i)=
if i<1: elseif i<=20:"ico"

elseif i<=26:"box"
fi;

enddef;

pnt(i) gives the absolute vector corresponding
to local point i. ipnt_(i) is the absolute point
number, that is i plus the number of points defined
beforehand in other objects. points_[j] is the
absolute vector corresponding to absolute object
point j. Similarly, face(i) is the absolute face
corresponding to local face i.

The list of vertices of absolute face number i
is face_points_[i]. The color of absolute face
number i is face_color_[i].

When the macros pnt or face are to be used,
the calls define_current_point_offset_("box")
and define_current_face_offset_("box") must
be issued.

� Denis Roegel
CRIN (Centre de Recherche en

Informatique de Nancy)
Bâtiment LORIA
BP 239
54506 Vandœuvre-lès-Nancy
FRANCE
roegel@loria.fr

URL: http://www.loria.fr/

~roegel

