Safe Haskell | None |
---|---|
Language | Haskell2010 |
GhcPlugins
Description
This module is not used by GHC itself. Rather, it exports all of the functions and types you are likely to need when writing a plugin for GHC. So authors of plugins can probably get away simply with saying "import GhcPlugins".
Particularly interesting modules for plugin writers include CoreSyn and CoreMonad.
Synopsis
- module Plugins
- module RdrName
- data OccName
- type FastStringEnv a = UniqFM a
- emptyFsEnv :: FastStringEnv a
- extendFsEnv :: FastStringEnv a -> FastString -> a -> FastStringEnv a
- lookupFsEnv :: FastStringEnv a -> FastString -> Maybe a
- mkFsEnv :: [(FastString, a)] -> FastStringEnv a
- type TidyOccEnv = UniqFM Int
- type OccSet = UniqSet OccName
- data OccEnv a
- class HasOccName name where
- data NameSpace
- tcName :: NameSpace
- clsName :: NameSpace
- tcClsName :: NameSpace
- dataName :: NameSpace
- srcDataName :: NameSpace
- tvName :: NameSpace
- isDataConNameSpace :: NameSpace -> Bool
- isTcClsNameSpace :: NameSpace -> Bool
- isTvNameSpace :: NameSpace -> Bool
- isVarNameSpace :: NameSpace -> Bool
- isValNameSpace :: NameSpace -> Bool
- pprNameSpace :: NameSpace -> SDoc
- pprNonVarNameSpace :: NameSpace -> SDoc
- pprNameSpaceBrief :: NameSpace -> SDoc
- pprOccName :: OccName -> SDoc
- mkOccName :: NameSpace -> String -> OccName
- mkOccNameFS :: NameSpace -> FastString -> OccName
- mkVarOcc :: String -> OccName
- mkVarOccFS :: FastString -> OccName
- mkDataOcc :: String -> OccName
- mkDataOccFS :: FastString -> OccName
- mkTyVarOcc :: String -> OccName
- mkTyVarOccFS :: FastString -> OccName
- mkTcOcc :: String -> OccName
- mkTcOccFS :: FastString -> OccName
- mkClsOcc :: String -> OccName
- mkClsOccFS :: FastString -> OccName
- demoteOccName :: OccName -> Maybe OccName
- nameSpacesRelated :: NameSpace -> NameSpace -> Bool
- emptyOccEnv :: OccEnv a
- unitOccEnv :: OccName -> a -> OccEnv a
- extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a
- extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a
- lookupOccEnv :: OccEnv a -> OccName -> Maybe a
- mkOccEnv :: [(OccName, a)] -> OccEnv a
- elemOccEnv :: OccName -> OccEnv a -> Bool
- foldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b
- occEnvElts :: OccEnv a -> [a]
- plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a
- plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a
- extendOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccName -> a -> OccEnv a
- extendOccEnv_Acc :: (a -> b -> b) -> (a -> b) -> OccEnv b -> OccName -> a -> OccEnv b
- mapOccEnv :: (a -> b) -> OccEnv a -> OccEnv b
- mkOccEnv_C :: (a -> a -> a) -> [(OccName, a)] -> OccEnv a
- delFromOccEnv :: OccEnv a -> OccName -> OccEnv a
- delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a
- filterOccEnv :: (elt -> Bool) -> OccEnv elt -> OccEnv elt
- alterOccEnv :: (Maybe elt -> Maybe elt) -> OccEnv elt -> OccName -> OccEnv elt
- pprOccEnv :: (a -> SDoc) -> OccEnv a -> SDoc
- emptyOccSet :: OccSet
- unitOccSet :: OccName -> OccSet
- mkOccSet :: [OccName] -> OccSet
- extendOccSet :: OccSet -> OccName -> OccSet
- extendOccSetList :: OccSet -> [OccName] -> OccSet
- unionOccSets :: OccSet -> OccSet -> OccSet
- unionManyOccSets :: [OccSet] -> OccSet
- minusOccSet :: OccSet -> OccSet -> OccSet
- elemOccSet :: OccName -> OccSet -> Bool
- isEmptyOccSet :: OccSet -> Bool
- intersectOccSet :: OccSet -> OccSet -> OccSet
- intersectsOccSet :: OccSet -> OccSet -> Bool
- filterOccSet :: (OccName -> Bool) -> OccSet -> OccSet
- occNameString :: OccName -> String
- setOccNameSpace :: NameSpace -> OccName -> OccName
- isVarOcc :: OccName -> Bool
- isTvOcc :: OccName -> Bool
- isTcOcc :: OccName -> Bool
- isValOcc :: OccName -> Bool
- isDataOcc :: OccName -> Bool
- isDataSymOcc :: OccName -> Bool
- isSymOcc :: OccName -> Bool
- parenSymOcc :: OccName -> SDoc -> SDoc
- startsWithUnderscore :: OccName -> Bool
- isDerivedOccName :: OccName -> Bool
- isDefaultMethodOcc :: OccName -> Bool
- isTypeableBindOcc :: OccName -> Bool
- mkDataConWrapperOcc :: OccName -> OccName
- mkWorkerOcc :: OccName -> OccName
- mkMatcherOcc :: OccName -> OccName
- mkBuilderOcc :: OccName -> OccName
- mkDefaultMethodOcc :: OccName -> OccName
- mkClassOpAuxOcc :: OccName -> OccName
- mkDictOcc :: OccName -> OccName
- mkIPOcc :: OccName -> OccName
- mkSpecOcc :: OccName -> OccName
- mkForeignExportOcc :: OccName -> OccName
- mkRepEqOcc :: OccName -> OccName
- mkClassDataConOcc :: OccName -> OccName
- mkNewTyCoOcc :: OccName -> OccName
- mkInstTyCoOcc :: OccName -> OccName
- mkEqPredCoOcc :: OccName -> OccName
- mkCon2TagOcc :: OccName -> OccName
- mkTag2ConOcc :: OccName -> OccName
- mkMaxTagOcc :: OccName -> OccName
- mkTyConRepOcc :: OccName -> OccName
- mkGenR :: OccName -> OccName
- mkGen1R :: OccName -> OccName
- mkRecFldSelOcc :: String -> OccName
- mkDataConWorkerOcc :: OccName -> OccName
- mkSuperDictAuxOcc :: Int -> OccName -> OccName
- mkSuperDictSelOcc :: Int -> OccName -> OccName
- mkLocalOcc :: Unique -> OccName -> OccName
- mkInstTyTcOcc :: String -> OccSet -> OccName
- mkDFunOcc :: String -> Bool -> OccSet -> OccName
- mkDataTOcc :: OccName -> OccSet -> OccName
- mkDataCOcc :: OccName -> OccSet -> OccName
- mkMethodOcc :: OccName -> OccName
- emptyTidyOccEnv :: TidyOccEnv
- initTidyOccEnv :: [OccName] -> TidyOccEnv
- avoidClashesOccEnv :: TidyOccEnv -> [OccName] -> TidyOccEnv
- tidyOccName :: TidyOccEnv -> OccName -> (TidyOccEnv, OccName)
- data Name
- data OccName
- type FastStringEnv a = UniqFM a
- emptyFsEnv :: FastStringEnv a
- extendFsEnv :: FastStringEnv a -> FastString -> a -> FastStringEnv a
- lookupFsEnv :: FastStringEnv a -> FastString -> Maybe a
- mkFsEnv :: [(FastString, a)] -> FastStringEnv a
- type TidyOccEnv = UniqFM Int
- type OccSet = UniqSet OccName
- data OccEnv a
- class HasOccName name where
- data NameSpace
- tcName :: NameSpace
- clsName :: NameSpace
- tcClsName :: NameSpace
- dataName :: NameSpace
- srcDataName :: NameSpace
- tvName :: NameSpace
- isDataConNameSpace :: NameSpace -> Bool
- isTcClsNameSpace :: NameSpace -> Bool
- isTvNameSpace :: NameSpace -> Bool
- isVarNameSpace :: NameSpace -> Bool
- isValNameSpace :: NameSpace -> Bool
- pprNameSpace :: NameSpace -> SDoc
- pprNonVarNameSpace :: NameSpace -> SDoc
- pprNameSpaceBrief :: NameSpace -> SDoc
- pprOccName :: OccName -> SDoc
- mkOccName :: NameSpace -> String -> OccName
- mkOccNameFS :: NameSpace -> FastString -> OccName
- mkVarOcc :: String -> OccName
- mkVarOccFS :: FastString -> OccName
- mkDataOcc :: String -> OccName
- mkDataOccFS :: FastString -> OccName
- mkTyVarOcc :: String -> OccName
- mkTyVarOccFS :: FastString -> OccName
- mkTcOcc :: String -> OccName
- mkTcOccFS :: FastString -> OccName
- mkClsOcc :: String -> OccName
- mkClsOccFS :: FastString -> OccName
- demoteOccName :: OccName -> Maybe OccName
- nameSpacesRelated :: NameSpace -> NameSpace -> Bool
- emptyOccEnv :: OccEnv a
- unitOccEnv :: OccName -> a -> OccEnv a
- extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a
- extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a
- lookupOccEnv :: OccEnv a -> OccName -> Maybe a
- mkOccEnv :: [(OccName, a)] -> OccEnv a
- elemOccEnv :: OccName -> OccEnv a -> Bool
- foldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b
- occEnvElts :: OccEnv a -> [a]
- plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a
- plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a
- extendOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccName -> a -> OccEnv a
- extendOccEnv_Acc :: (a -> b -> b) -> (a -> b) -> OccEnv b -> OccName -> a -> OccEnv b
- mapOccEnv :: (a -> b) -> OccEnv a -> OccEnv b
- mkOccEnv_C :: (a -> a -> a) -> [(OccName, a)] -> OccEnv a
- delFromOccEnv :: OccEnv a -> OccName -> OccEnv a
- delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a
- filterOccEnv :: (elt -> Bool) -> OccEnv elt -> OccEnv elt
- alterOccEnv :: (Maybe elt -> Maybe elt) -> OccEnv elt -> OccName -> OccEnv elt
- pprOccEnv :: (a -> SDoc) -> OccEnv a -> SDoc
- emptyOccSet :: OccSet
- unitOccSet :: OccName -> OccSet
- mkOccSet :: [OccName] -> OccSet
- extendOccSet :: OccSet -> OccName -> OccSet
- extendOccSetList :: OccSet -> [OccName] -> OccSet
- unionOccSets :: OccSet -> OccSet -> OccSet
- unionManyOccSets :: [OccSet] -> OccSet
- minusOccSet :: OccSet -> OccSet -> OccSet
- elemOccSet :: OccName -> OccSet -> Bool
- isEmptyOccSet :: OccSet -> Bool
- intersectOccSet :: OccSet -> OccSet -> OccSet
- intersectsOccSet :: OccSet -> OccSet -> Bool
- filterOccSet :: (OccName -> Bool) -> OccSet -> OccSet
- occNameString :: OccName -> String
- setOccNameSpace :: NameSpace -> OccName -> OccName
- isVarOcc :: OccName -> Bool
- isTvOcc :: OccName -> Bool
- isTcOcc :: OccName -> Bool
- isValOcc :: OccName -> Bool
- isDataOcc :: OccName -> Bool
- isDataSymOcc :: OccName -> Bool
- isSymOcc :: OccName -> Bool
- parenSymOcc :: OccName -> SDoc -> SDoc
- startsWithUnderscore :: OccName -> Bool
- isDerivedOccName :: OccName -> Bool
- isDefaultMethodOcc :: OccName -> Bool
- isTypeableBindOcc :: OccName -> Bool
- mkDataConWrapperOcc :: OccName -> OccName
- mkWorkerOcc :: OccName -> OccName
- mkMatcherOcc :: OccName -> OccName
- mkBuilderOcc :: OccName -> OccName
- mkDefaultMethodOcc :: OccName -> OccName
- mkClassOpAuxOcc :: OccName -> OccName
- mkDictOcc :: OccName -> OccName
- mkIPOcc :: OccName -> OccName
- mkSpecOcc :: OccName -> OccName
- mkForeignExportOcc :: OccName -> OccName
- mkRepEqOcc :: OccName -> OccName
- mkClassDataConOcc :: OccName -> OccName
- mkNewTyCoOcc :: OccName -> OccName
- mkInstTyCoOcc :: OccName -> OccName
- mkEqPredCoOcc :: OccName -> OccName
- mkCon2TagOcc :: OccName -> OccName
- mkTag2ConOcc :: OccName -> OccName
- mkMaxTagOcc :: OccName -> OccName
- mkTyConRepOcc :: OccName -> OccName
- mkGenR :: OccName -> OccName
- mkGen1R :: OccName -> OccName
- mkRecFldSelOcc :: String -> OccName
- mkDataConWorkerOcc :: OccName -> OccName
- mkSuperDictAuxOcc :: Int -> OccName -> OccName
- mkSuperDictSelOcc :: Int -> OccName -> OccName
- mkLocalOcc :: Unique -> OccName -> OccName
- mkInstTyTcOcc :: String -> OccSet -> OccName
- mkDFunOcc :: String -> Bool -> OccSet -> OccName
- mkDataTOcc :: OccName -> OccSet -> OccName
- mkDataCOcc :: OccName -> OccSet -> OccName
- mkMethodOcc :: OccName -> OccName
- emptyTidyOccEnv :: TidyOccEnv
- initTidyOccEnv :: [OccName] -> TidyOccEnv
- avoidClashesOccEnv :: TidyOccEnv -> [OccName] -> TidyOccEnv
- tidyOccName :: TidyOccEnv -> OccName -> (TidyOccEnv, OccName)
- class NamedThing a where
- getOccName :: a -> OccName
- getName :: a -> Name
- data BuiltInSyntax
- nameUnique :: Name -> Unique
- nameOccName :: Name -> OccName
- nameSrcLoc :: Name -> SrcLoc
- nameSrcSpan :: Name -> SrcSpan
- isWiredInName :: Name -> Bool
- wiredInNameTyThing_maybe :: Name -> Maybe TyThing
- isBuiltInSyntax :: Name -> Bool
- isExternalName :: Name -> Bool
- isInternalName :: Name -> Bool
- isHoleName :: Name -> Bool
- nameModule :: HasDebugCallStack => Name -> Module
- nameModule_maybe :: Name -> Maybe Module
- nameIsLocalOrFrom :: Module -> Name -> Bool
- nameIsHomePackage :: Module -> Name -> Bool
- nameIsHomePackageImport :: Module -> Name -> Bool
- nameIsFromExternalPackage :: UnitId -> Name -> Bool
- isTyVarName :: Name -> Bool
- isTyConName :: Name -> Bool
- isDataConName :: Name -> Bool
- isValName :: Name -> Bool
- isVarName :: Name -> Bool
- isSystemName :: Name -> Bool
- mkInternalName :: Unique -> OccName -> SrcSpan -> Name
- mkClonedInternalName :: Unique -> Name -> Name
- mkDerivedInternalName :: (OccName -> OccName) -> Unique -> Name -> Name
- mkExternalName :: Unique -> Module -> OccName -> SrcSpan -> Name
- mkWiredInName :: Module -> OccName -> Unique -> TyThing -> BuiltInSyntax -> Name
- mkSystemName :: Unique -> OccName -> Name
- mkSystemNameAt :: Unique -> OccName -> SrcSpan -> Name
- mkSystemVarName :: Unique -> FastString -> Name
- mkSysTvName :: Unique -> FastString -> Name
- mkFCallName :: Unique -> String -> Name
- setNameUnique :: Name -> Unique -> Name
- setNameLoc :: Name -> SrcSpan -> Name
- tidyNameOcc :: Name -> OccName -> Name
- localiseName :: Name -> Name
- stableNameCmp :: Name -> Name -> Ordering
- pprNameUnqualified :: Name -> SDoc
- pprModulePrefix :: PprStyle -> Module -> OccName -> SDoc
- pprDefinedAt :: Name -> SDoc
- pprNameDefnLoc :: Name -> SDoc
- nameStableString :: Name -> String
- getSrcLoc :: NamedThing a => a -> SrcLoc
- getSrcSpan :: NamedThing a => a -> SrcSpan
- getOccString :: NamedThing a => a -> String
- getOccFS :: NamedThing a => a -> FastString
- pprInfixName :: (Outputable a, NamedThing a) => a -> SDoc
- pprPrefixName :: NamedThing a => a -> SDoc
- module Var
- data Var
- type OutId = Id
- type OutVar = Var
- type InId = Id
- type InVar = Var
- type JoinId = Id
- type DictId = EvId
- type Id = Var
- idInfo :: HasDebugCallStack => Id -> IdInfo
- idDetails :: Id -> IdDetails
- globaliseId :: Id -> Id
- isId :: Var -> Bool
- isLocalId :: Var -> Bool
- isGlobalId :: Var -> Bool
- isExportedId :: Var -> Bool
- idName :: Id -> Name
- idUnique :: Id -> Unique
- idType :: Id -> Kind
- setIdName :: Id -> Name -> Id
- setIdUnique :: Id -> Unique -> Id
- setIdType :: Id -> Type -> Id
- localiseId :: Id -> Id
- setIdInfo :: Id -> IdInfo -> Id
- modifyIdInfo :: HasDebugCallStack => (IdInfo -> IdInfo) -> Id -> Id
- maybeModifyIdInfo :: Maybe IdInfo -> Id -> Id
- mkGlobalId :: IdDetails -> Name -> Type -> IdInfo -> Id
- mkVanillaGlobal :: Name -> Type -> Id
- mkVanillaGlobalWithInfo :: Name -> Type -> IdInfo -> Id
- mkLocalId :: Name -> Type -> Id
- mkLocalCoVar :: Name -> Type -> CoVar
- mkLocalIdOrCoVar :: Name -> Type -> Id
- mkLocalIdOrCoVarWithInfo :: Name -> Type -> IdInfo -> Id
- mkLocalIdWithInfo :: Name -> Type -> IdInfo -> Id
- mkExportedLocalId :: IdDetails -> Name -> Type -> Id
- mkExportedVanillaId :: Name -> Type -> Id
- mkSysLocal :: FastString -> Unique -> Type -> Id
- mkSysLocalOrCoVar :: FastString -> Unique -> Type -> Id
- mkSysLocalM :: MonadUnique m => FastString -> Type -> m Id
- mkSysLocalOrCoVarM :: MonadUnique m => FastString -> Type -> m Id
- mkUserLocal :: OccName -> Unique -> Type -> SrcSpan -> Id
- mkUserLocalOrCoVar :: OccName -> Unique -> Type -> SrcSpan -> Id
- mkWorkerId :: Unique -> Id -> Type -> Id
- mkTemplateLocal :: Int -> Type -> Id
- mkTemplateLocals :: [Type] -> [Id]
- mkTemplateLocalsNum :: Int -> [Type] -> [Id]
- recordSelectorTyCon :: Id -> RecSelParent
- isRecordSelector :: Id -> Bool
- isDataConRecordSelector :: Id -> Bool
- isPatSynRecordSelector :: Id -> Bool
- isNaughtyRecordSelector :: Id -> Bool
- isClassOpId_maybe :: Id -> Maybe Class
- isPrimOpId :: Id -> Bool
- isDFunId :: Id -> Bool
- isPrimOpId_maybe :: Id -> Maybe PrimOp
- isFCallId :: Id -> Bool
- isFCallId_maybe :: Id -> Maybe ForeignCall
- isDataConWorkId :: Id -> Bool
- isDataConWorkId_maybe :: Id -> Maybe DataCon
- isDataConId_maybe :: Id -> Maybe DataCon
- isJoinId :: Var -> Bool
- isJoinId_maybe :: Var -> Maybe JoinArity
- idDataCon :: Id -> DataCon
- hasNoBinding :: Id -> Bool
- isImplicitId :: Id -> Bool
- idIsFrom :: Module -> Id -> Bool
- isDeadBinder :: Id -> Bool
- isEvVar :: Var -> Bool
- isDictId :: Id -> Bool
- idJoinArity :: JoinId -> JoinArity
- asJoinId :: Id -> JoinArity -> JoinId
- zapJoinId :: Id -> Id
- asJoinId_maybe :: Id -> Maybe JoinArity -> Id
- idArity :: Id -> Arity
- setIdArity :: Id -> Arity -> Id
- idCallArity :: Id -> Arity
- setIdCallArity :: Id -> Arity -> Id
- idFunRepArity :: Id -> RepArity
- isBottomingId :: Var -> Bool
- idStrictness :: Id -> StrictSig
- setIdStrictness :: Id -> StrictSig -> Id
- zapIdStrictness :: Id -> Id
- isStrictId :: Id -> Bool
- idUnfolding :: Id -> Unfolding
- realIdUnfolding :: Id -> Unfolding
- setIdUnfolding :: Id -> Unfolding -> Id
- idDemandInfo :: Id -> Demand
- setIdDemandInfo :: Id -> Demand -> Id
- setCaseBndrEvald :: StrictnessMark -> Id -> Id
- idSpecialisation :: Id -> RuleInfo
- idCoreRules :: Id -> [CoreRule]
- idHasRules :: Id -> Bool
- setIdSpecialisation :: Id -> RuleInfo -> Id
- idCafInfo :: Id -> CafInfo
- setIdCafInfo :: Id -> CafInfo -> Id
- idOccInfo :: Id -> OccInfo
- setIdOccInfo :: Id -> OccInfo -> Id
- zapIdOccInfo :: Id -> Id
- idInlinePragma :: Id -> InlinePragma
- setInlinePragma :: Id -> InlinePragma -> Id
- modifyInlinePragma :: Id -> (InlinePragma -> InlinePragma) -> Id
- idInlineActivation :: Id -> Activation
- setInlineActivation :: Id -> Activation -> Id
- idRuleMatchInfo :: Id -> RuleMatchInfo
- isConLikeId :: Id -> Bool
- idOneShotInfo :: Id -> OneShotInfo
- idStateHackOneShotInfo :: Id -> OneShotInfo
- isOneShotBndr :: Var -> Bool
- stateHackOneShot :: OneShotInfo
- typeOneShot :: Type -> OneShotInfo
- isStateHackType :: Type -> Bool
- isProbablyOneShotLambda :: Id -> Bool
- setOneShotLambda :: Id -> Id
- clearOneShotLambda :: Id -> Id
- setIdOneShotInfo :: Id -> OneShotInfo -> Id
- updOneShotInfo :: Id -> OneShotInfo -> Id
- zapLamIdInfo :: Id -> Id
- zapFragileIdInfo :: Id -> Id
- zapIdDemandInfo :: Id -> Id
- zapIdUsageInfo :: Id -> Id
- zapIdUsageEnvInfo :: Id -> Id
- zapIdUsedOnceInfo :: Id -> Id
- zapIdTailCallInfo :: Id -> Id
- zapStableUnfolding :: Id -> Id
- transferPolyIdInfo :: Id -> [Var] -> Id -> Id
- isNeverLevPolyId :: Id -> Bool
- module IdInfo
- module CoreMonad
- module CoreSyn
- module Literal
- module DataCon
- module CoreUtils
- module MkCore
- module CoreFVs
- data InScopeSet
- type TvSubstEnv = TyVarEnv Type
- extendTCvSubst :: TCvSubst -> TyCoVar -> Type -> TCvSubst
- type IdSubstEnv = IdEnv CoreExpr
- data Subst = Subst InScopeSet IdSubstEnv TvSubstEnv CvSubstEnv
- isEmptySubst :: Subst -> Bool
- emptySubst :: Subst
- mkEmptySubst :: InScopeSet -> Subst
- mkSubst :: InScopeSet -> TvSubstEnv -> CvSubstEnv -> IdSubstEnv -> Subst
- substInScope :: Subst -> InScopeSet
- zapSubstEnv :: Subst -> Subst
- extendIdSubst :: Subst -> Id -> CoreExpr -> Subst
- extendIdSubstList :: Subst -> [(Id, CoreExpr)] -> Subst
- extendTvSubst :: Subst -> TyVar -> Type -> Subst
- extendTvSubstList :: Subst -> [(TyVar, Type)] -> Subst
- extendSubst :: Subst -> Var -> CoreArg -> Subst
- extendSubstWithVar :: Subst -> Var -> Var -> Subst
- extendSubstList :: Subst -> [(Var, CoreArg)] -> Subst
- lookupIdSubst :: SDoc -> Subst -> Id -> CoreExpr
- lookupTCvSubst :: Subst -> TyVar -> Type
- delBndr :: Subst -> Var -> Subst
- delBndrs :: Subst -> [Var] -> Subst
- mkOpenSubst :: InScopeSet -> [(Var, CoreArg)] -> Subst
- isInScope :: Var -> Subst -> Bool
- addInScopeSet :: Subst -> VarSet -> Subst
- extendInScope :: Subst -> Var -> Subst
- extendInScopeList :: Subst -> [Var] -> Subst
- extendInScopeIds :: Subst -> [Id] -> Subst
- setInScope :: Subst -> InScopeSet -> Subst
- substExprSC :: SDoc -> Subst -> CoreExpr -> CoreExpr
- substExpr :: SDoc -> Subst -> CoreExpr -> CoreExpr
- substBindSC :: Subst -> CoreBind -> (Subst, CoreBind)
- substBind :: Subst -> CoreBind -> (Subst, CoreBind)
- deShadowBinds :: CoreProgram -> CoreProgram
- substBndr :: Subst -> Var -> (Subst, Var)
- substBndrs :: Subst -> [Var] -> (Subst, [Var])
- substRecBndrs :: Subst -> [Id] -> (Subst, [Id])
- cloneIdBndr :: Subst -> UniqSupply -> Id -> (Subst, Id)
- cloneIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id])
- cloneBndrs :: Subst -> UniqSupply -> [Var] -> (Subst, [Var])
- cloneBndr :: Subst -> Unique -> Var -> (Subst, Var)
- cloneRecIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id])
- substTy :: Subst -> Type -> Type
- getTCvSubst :: Subst -> TCvSubst
- substCo :: Subst -> Coercion -> Coercion
- substIdInfo :: Subst -> Id -> IdInfo -> Maybe IdInfo
- substUnfoldingSC :: Subst -> Unfolding -> Unfolding
- substUnfolding :: Subst -> Unfolding -> Unfolding
- substIdOcc :: Subst -> Id -> Id
- substSpec :: Subst -> Id -> RuleInfo -> RuleInfo
- substRulesForImportedIds :: Subst -> [CoreRule] -> [CoreRule]
- substDVarSet :: Subst -> DVarSet -> DVarSet
- substTickish :: Subst -> Tickish Id -> Tickish Id
- module Rules
- module Annotations
- module DynFlags
- module Packages
- module Module
- type ThetaType = [PredType]
- type Kind = Type
- type PredType = Type
- data TyBinder
- data TCvSubst = TCvSubst InScopeSet TvSubstEnv CvSubstEnv
- data TyThing
- data Type
- isRuntimeRepTy :: Type -> Bool
- pprType :: Type -> SDoc
- pprKind :: Kind -> SDoc
- newtype PprPrec = PprPrec Int
- topPrec :: PprPrec
- sigPrec :: PprPrec
- funPrec :: PprPrec
- opPrec :: PprPrec
- appPrec :: PprPrec
- maybeParen :: PprPrec -> PprPrec -> SDoc -> SDoc
- type TyVarBinder = TyVarBndr TyVar ArgFlag
- data ArgFlag
- data Var
- type TyCoVar = Id
- type TyVar = Var
- isVisibleArgFlag :: ArgFlag -> Bool
- isInvisibleArgFlag :: ArgFlag -> Bool
- sameVis :: ArgFlag -> ArgFlag -> Bool
- binderVar :: TyVarBndr tv argf -> tv
- binderVars :: [TyVarBndr tv argf] -> [tv]
- binderArgFlag :: TyVarBndr tv argf -> argf
- binderKind :: TyVarBndr TyVar argf -> Kind
- mkTyVarBinder :: ArgFlag -> Var -> TyVarBinder
- mkTyVarBinders :: ArgFlag -> [TyVar] -> [TyVarBinder]
- tyVarKind :: TyVar -> Kind
- isTyVar :: Var -> Bool
- liftedTypeKind :: Kind
- splitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type])
- toposortTyVars :: [TyCoVar] -> [TyCoVar]
- tyCoVarsOfTypeWellScoped :: Type -> [TyVar]
- tyCoVarsOfTypesWellScoped :: [Type] -> [TyVar]
- tcView :: Type -> Maybe Type
- coreView :: Type -> Maybe Type
- eqType :: Type -> Type -> Bool
- piResultTy :: HasDebugCallStack => Type -> Type -> Type
- mkCastTy :: Type -> Coercion -> Type
- mkAppTy :: Type -> Type -> Type
- isCoercionTy :: Type -> Bool
- isPredTy :: Type -> Bool
- type TvSubstEnv = TyVarEnv Type
- type KnotTied ty = ty
- type KindOrType = Type
- pprShortTyThing :: TyThing -> SDoc
- pprTyThingCategory :: TyThing -> SDoc
- isInvisibleBinder :: TyBinder -> Bool
- isVisibleBinder :: TyBinder -> Bool
- mkTyVarTy :: TyVar -> Type
- mkTyVarTys :: [TyVar] -> [Type]
- mkFunTy :: Type -> Type -> Type
- mkFunTys :: [Type] -> Type -> Type
- mkForAllTy :: TyVar -> ArgFlag -> Type -> Type
- mkForAllTys :: [TyVarBinder] -> Type -> Type
- mkPiTy :: TyBinder -> Type -> Type
- mkPiTys :: [TyBinder] -> Type -> Type
- isCoercionType :: Type -> Bool
- mkTyConTy :: TyCon -> Type
- isRuntimeRepVar :: TyVar -> Bool
- tyCoVarsOfType :: Type -> TyCoVarSet
- tyCoVarsOfTypeDSet :: Type -> DTyCoVarSet
- tyCoFVsOfType :: Type -> FV
- tyCoFVsBndr :: TyVarBinder -> FV -> FV
- tyCoVarsOfTypes :: [Type] -> TyCoVarSet
- coVarsOfType :: Type -> CoVarSet
- coVarsOfTypes :: [Type] -> TyCoVarSet
- closeOverKinds :: TyVarSet -> TyVarSet
- closeOverKindsList :: [TyVar] -> [TyVar]
- noFreeVarsOfType :: Type -> Bool
- emptyTvSubstEnv :: TvSubstEnv
- composeTCvSubstEnv :: InScopeSet -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv)
- composeTCvSubst :: TCvSubst -> TCvSubst -> TCvSubst
- emptyTCvSubst :: TCvSubst
- mkEmptyTCvSubst :: InScopeSet -> TCvSubst
- isEmptyTCvSubst :: TCvSubst -> Bool
- mkTCvSubst :: InScopeSet -> (TvSubstEnv, CvSubstEnv) -> TCvSubst
- getTvSubstEnv :: TCvSubst -> TvSubstEnv
- getTCvInScope :: TCvSubst -> InScopeSet
- getTCvSubstRangeFVs :: TCvSubst -> VarSet
- notElemTCvSubst :: Var -> TCvSubst -> Bool
- setTvSubstEnv :: TCvSubst -> TvSubstEnv -> TCvSubst
- zapTCvSubst :: TCvSubst -> TCvSubst
- extendTCvInScope :: TCvSubst -> Var -> TCvSubst
- extendTCvInScopeList :: TCvSubst -> [Var] -> TCvSubst
- extendTCvInScopeSet :: TCvSubst -> VarSet -> TCvSubst
- extendTCvSubst :: TCvSubst -> TyCoVar -> Type -> TCvSubst
- extendTvSubstBinderAndInScope :: TCvSubst -> TyBinder -> Type -> TCvSubst
- extendTvSubstWithClone :: TCvSubst -> TyVar -> TyVar -> TCvSubst
- extendCvSubst :: TCvSubst -> CoVar -> Coercion -> TCvSubst
- extendTvSubstAndInScope :: TCvSubst -> TyVar -> Type -> TCvSubst
- unionTCvSubst :: TCvSubst -> TCvSubst -> TCvSubst
- zipTvSubst :: [TyVar] -> [Type] -> TCvSubst
- mkTvSubstPrs :: [(TyVar, Type)] -> TCvSubst
- zipTyEnv :: [TyVar] -> [Type] -> TvSubstEnv
- zipCoEnv :: [CoVar] -> [Coercion] -> CvSubstEnv
- substTyWith :: HasCallStack => [TyVar] -> [Type] -> Type -> Type
- substTyWithUnchecked :: [TyVar] -> [Type] -> Type -> Type
- substCoWithUnchecked :: [TyVar] -> [Type] -> Coercion -> Coercion
- substTysWith :: [TyVar] -> [Type] -> [Type] -> [Type]
- substTyAddInScope :: TCvSubst -> Type -> Type
- substTyUnchecked :: TCvSubst -> Type -> Type
- substTys :: HasCallStack => TCvSubst -> [Type] -> [Type]
- substTysUnchecked :: TCvSubst -> [Type] -> [Type]
- substTheta :: HasCallStack => TCvSubst -> ThetaType -> ThetaType
- substThetaUnchecked :: TCvSubst -> ThetaType -> ThetaType
- substTyVar :: TCvSubst -> TyVar -> Type
- substTyVars :: TCvSubst -> [TyVar] -> [Type]
- lookupTyVar :: TCvSubst -> TyVar -> Maybe Type
- substCoUnchecked :: TCvSubst -> Coercion -> Coercion
- substTyVarBndr :: HasCallStack => TCvSubst -> TyVar -> (TCvSubst, TyVar)
- substTyVarBndrs :: HasCallStack => TCvSubst -> [TyVar] -> (TCvSubst, [TyVar])
- cloneTyVarBndr :: TCvSubst -> TyVar -> Unique -> (TCvSubst, TyVar)
- cloneTyVarBndrs :: TCvSubst -> [TyVar] -> UniqSupply -> (TCvSubst, [TyVar])
- pprParendType :: Type -> SDoc
- pprPrecType :: PprPrec -> Type -> SDoc
- pprParendKind :: Kind -> SDoc
- pprClassPred :: Class -> [Type] -> SDoc
- pprTheta :: ThetaType -> SDoc
- pprThetaArrowTy :: ThetaType -> SDoc
- pprSigmaType :: Type -> SDoc
- pprForAll :: [TyVarBinder] -> SDoc
- pprUserForAll :: [TyVarBinder] -> SDoc
- pprTvBndrs :: [TyVarBinder] -> SDoc
- pprTvBndr :: TyVarBinder -> SDoc
- pprTyVars :: [TyVar] -> SDoc
- pprTyVar :: TyVar -> SDoc
- pprTypeApp :: TyCon -> [Type] -> SDoc
- ppSuggestExplicitKinds :: SDoc
- tidyTyCoVarBndrs :: TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar])
- tidyTyCoVarBndr :: TidyEnv -> TyCoVar -> (TidyEnv, TyCoVar)
- tidyTyVarBinder :: TidyEnv -> TyVarBndr TyVar vis -> (TidyEnv, TyVarBndr TyVar vis)
- tidyTyVarBinders :: TidyEnv -> [TyVarBndr TyVar vis] -> (TidyEnv, [TyVarBndr TyVar vis])
- tidyFreeTyCoVars :: TidyEnv -> [TyCoVar] -> TidyEnv
- tidyOpenTyCoVars :: TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar])
- tidyOpenTyCoVar :: TidyEnv -> TyCoVar -> (TidyEnv, TyCoVar)
- tidyTyVarOcc :: TidyEnv -> TyVar -> TyVar
- tidyTypes :: TidyEnv -> [Type] -> [Type]
- tidyType :: TidyEnv -> Type -> Type
- tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type])
- tidyOpenType :: TidyEnv -> Type -> (TidyEnv, Type)
- tidyTopType :: Type -> Type
- tidyOpenKind :: TidyEnv -> Kind -> (TidyEnv, Kind)
- tidyKind :: TidyEnv -> Kind -> Kind
- typeSize :: Type -> Int
- funTyCon :: TyCon
- data PredTree
- data EqRel
- data TyCoMapper env m = TyCoMapper {}
- expandTypeSynonyms :: Type -> Type
- mapType :: Monad m => TyCoMapper env m -> env -> Type -> m Type
- mapCoercion :: Monad m => TyCoMapper env m -> env -> Coercion -> m Coercion
- getTyVar :: String -> Type -> TyVar
- isTyVarTy :: Type -> Bool
- getTyVar_maybe :: Type -> Maybe TyVar
- getCastedTyVar_maybe :: Type -> Maybe (TyVar, CoercionN)
- repGetTyVar_maybe :: Type -> Maybe TyVar
- mkAppTys :: Type -> [Type] -> Type
- splitAppTy_maybe :: Type -> Maybe (Type, Type)
- repSplitAppTy_maybe :: HasDebugCallStack => Type -> Maybe (Type, Type)
- tcRepSplitAppTy_maybe :: Type -> Maybe (Type, Type)
- tcRepSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type])
- splitAppTy :: Type -> (Type, Type)
- splitAppTys :: Type -> (Type, [Type])
- repSplitAppTys :: HasDebugCallStack => Type -> (Type, [Type])
- mkNumLitTy :: Integer -> Type
- isNumLitTy :: Type -> Maybe Integer
- mkStrLitTy :: FastString -> Type
- isStrLitTy :: Type -> Maybe FastString
- userTypeError_maybe :: Type -> Maybe Type
- pprUserTypeErrorTy :: Type -> SDoc
- isFunTy :: Type -> Bool
- splitFunTy :: Type -> (Type, Type)
- splitFunTy_maybe :: Type -> Maybe (Type, Type)
- splitFunTys :: Type -> ([Type], Type)
- funResultTy :: Type -> Type
- funArgTy :: Type -> Type
- piResultTys :: HasDebugCallStack => Type -> [Type] -> Type
- applyTysX :: [TyVar] -> Type -> [Type] -> Type
- mkTyConApp :: TyCon -> [Type] -> Type
- tyConAppTyConPicky_maybe :: Type -> Maybe TyCon
- tyConAppTyCon_maybe :: Type -> Maybe TyCon
- tyConAppTyCon :: Type -> TyCon
- tyConAppArgs_maybe :: Type -> Maybe [Type]
- tyConAppArgs :: Type -> [Type]
- tyConAppArgN :: Int -> Type -> Type
- splitTyConApp :: Type -> (TyCon, [Type])
- repSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type])
- splitListTyConApp_maybe :: Type -> Maybe Type
- nextRole :: Type -> Role
- newTyConInstRhs :: TyCon -> [Type] -> Type
- splitCastTy_maybe :: Type -> Maybe (Type, Coercion)
- tyConBindersTyBinders :: [TyConBinder] -> [TyBinder]
- mkCoercionTy :: Coercion -> Type
- isCoercionTy_maybe :: Type -> Maybe Coercion
- stripCoercionTy :: Type -> Coercion
- mkInvForAllTy :: TyVar -> Type -> Type
- mkInvForAllTys :: [TyVar] -> Type -> Type
- mkSpecForAllTys :: [TyVar] -> Type -> Type
- mkVisForAllTys :: [TyVar] -> Type -> Type
- mkLamType :: Var -> Type -> Type
- mkLamTypes :: [Var] -> Type -> Type
- mkTyConBindersPreferAnon :: [TyVar] -> Type -> [TyConBinder]
- splitForAllTys :: Type -> ([TyVar], Type)
- splitForAllTyVarBndrs :: Type -> ([TyVarBinder], Type)
- isForAllTy :: Type -> Bool
- isPiTy :: Type -> Bool
- splitForAllTy :: Type -> (TyVar, Type)
- dropForAlls :: Type -> Type
- splitForAllTy_maybe :: Type -> Maybe (TyVar, Type)
- splitPiTy_maybe :: Type -> Maybe (TyBinder, Type)
- splitPiTy :: Type -> (TyBinder, Type)
- splitPiTys :: Type -> ([TyBinder], Type)
- splitPiTysInvisible :: Type -> ([TyBinder], Type)
- filterOutInvisibleTypes :: TyCon -> [Type] -> [Type]
- partitionInvisibles :: TyCon -> (a -> Type) -> [a] -> ([a], [a])
- isTauTy :: Type -> Bool
- mkAnonBinder :: Type -> TyBinder
- isAnonTyBinder :: TyBinder -> Bool
- isNamedTyBinder :: TyBinder -> Bool
- tyBinderVar_maybe :: TyBinder -> Maybe TyVar
- tyBinderType :: TyBinder -> Type
- binderRelevantType_maybe :: TyBinder -> Maybe Type
- caseBinder :: TyBinder -> (TyVarBinder -> a) -> (Type -> a) -> a
- tcSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type])
- tcIsConstraintKind :: Kind -> Bool
- tcIsLiftedTypeKind :: Kind -> Bool
- tcReturnsConstraintKind :: Kind -> Bool
- isClassPred :: PredType -> Bool
- isEqPred :: PredType -> Bool
- isNomEqPred :: PredType -> Bool
- isIPPred :: PredType -> Bool
- isIPTyCon :: TyCon -> Bool
- isIPClass :: Class -> Bool
- isCTupleClass :: Class -> Bool
- isIPPred_maybe :: Type -> Maybe (FastString, Type)
- mkPrimEqPredRole :: Role -> Type -> Type -> PredType
- mkPrimEqPred :: Type -> Type -> Type
- mkHeteroPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
- mkHeteroReprPrimEqPred :: Kind -> Kind -> Type -> Type -> Type
- splitCoercionType_maybe :: Type -> Maybe (Type, Type)
- mkReprPrimEqPred :: Type -> Type -> Type
- equalityTyCon :: Role -> TyCon
- mkClassPred :: Class -> [Type] -> PredType
- isDictTy :: Type -> Bool
- isDictLikeTy :: Type -> Bool
- eqRelRole :: EqRel -> Role
- classifyPredType :: PredType -> PredTree
- getClassPredTys :: HasDebugCallStack => PredType -> (Class, [Type])
- getClassPredTys_maybe :: PredType -> Maybe (Class, [Type])
- getEqPredTys :: PredType -> (Type, Type)
- getEqPredTys_maybe :: PredType -> Maybe (Role, Type, Type)
- getEqPredRole :: PredType -> Role
- predTypeEqRel :: PredType -> EqRel
- dVarSetElemsWellScoped :: DVarSet -> [Var]
- mkFamilyTyConApp :: TyCon -> [Type] -> Type
- coAxNthLHS :: CoAxiom br -> Int -> Type
- pprSourceTyCon :: TyCon -> SDoc
- isFamFreeTy :: Type -> Bool
- isLiftedType_maybe :: HasDebugCallStack => Type -> Maybe Bool
- isUnliftedType :: HasDebugCallStack => Type -> Bool
- isRuntimeRepKindedTy :: Type -> Bool
- dropRuntimeRepArgs :: [Type] -> [Type]
- getRuntimeRep_maybe :: HasDebugCallStack => Type -> Maybe Type
- getRuntimeRep :: HasDebugCallStack => Type -> Type
- getRuntimeRepFromKind :: HasDebugCallStack => Type -> Type
- getRuntimeRepFromKind_maybe :: HasDebugCallStack => Type -> Maybe Type
- isUnboxedTupleType :: Type -> Bool
- isUnboxedSumType :: Type -> Bool
- isAlgType :: Type -> Bool
- isDataFamilyAppType :: Type -> Bool
- isStrictType :: HasDebugCallStack => Type -> Bool
- isPrimitiveType :: Type -> Bool
- isValidJoinPointType :: JoinArity -> Type -> Bool
- seqType :: Type -> ()
- seqTypes :: [Type] -> ()
- eqTypeX :: RnEnv2 -> Type -> Type -> Bool
- eqTypes :: [Type] -> [Type] -> Bool
- eqVarBndrs :: RnEnv2 -> [Var] -> [Var] -> Maybe RnEnv2
- nonDetCmpType :: Type -> Type -> Ordering
- nonDetCmpTypes :: [Type] -> [Type] -> Ordering
- nonDetCmpTypeX :: RnEnv2 -> Type -> Type -> Ordering
- nonDetCmpTypesX :: RnEnv2 -> [Type] -> [Type] -> Ordering
- nonDetCmpTc :: TyCon -> TyCon -> Ordering
- typeKind :: HasDebugCallStack => Type -> Kind
- isTypeLevPoly :: Type -> Bool
- resultIsLevPoly :: Type -> Bool
- occCheckExpand :: [Var] -> Type -> Maybe Type
- tyConsOfType :: Type -> UniqSet TyCon
- synTyConResKind :: TyCon -> Kind
- splitVisVarsOfType :: Type -> Pair TyCoVarSet
- splitVisVarsOfTypes :: [Type] -> Pair TyCoVarSet
- modifyJoinResTy :: Int -> (Type -> Type) -> Type -> Type
- setJoinResTy :: Int -> Type -> Type -> Type
- pprWithTYPE :: Type -> SDoc
- module TyCon
- data UnivCoProvenance
- data Coercion
- data LeftOrRight
- pickLR :: LeftOrRight -> (a, a) -> a
- data Var
- type TyCoVar = Id
- type CoVar = Id
- mkCoVar :: Name -> Type -> CoVar
- isCoVar :: Var -> Bool
- data Role
- data LiftingContext = LC TCvSubst LiftCoEnv
- coercionType :: Coercion -> Type
- coercionKind :: Coercion -> Pair Type
- seqCo :: Coercion -> ()
- liftCoSubst :: HasDebugCallStack => Role -> LiftingContext -> Type -> Coercion
- mkCoercionType :: Role -> Type -> Type -> Type
- coVarRole :: CoVar -> Role
- coVarKindsTypesRole :: HasDebugCallStack => CoVar -> (Kind, Kind, Type, Type, Role)
- decomposePiCos :: HasDebugCallStack => CoercionN -> Pair Type -> [Type] -> ([CoercionN], CoercionN)
- isReflexiveCo :: Coercion -> Bool
- isReflCo :: Coercion -> Bool
- mkAxiomRuleCo :: CoAxiomRule -> [Coercion] -> Coercion
- mkProofIrrelCo :: Role -> Coercion -> Coercion -> Coercion -> Coercion
- mkSubCo :: Coercion -> Coercion
- mkKindCo :: Coercion -> Coercion
- mkCoherenceCo :: Coercion -> Coercion -> Coercion
- mkInstCo :: Coercion -> Coercion -> Coercion
- mkLRCo :: LeftOrRight -> Coercion -> Coercion
- mkNthCo :: HasDebugCallStack => Role -> Int -> Coercion -> Coercion
- mkTransCo :: Coercion -> Coercion -> Coercion
- mkSymCo :: Coercion -> Coercion
- mkUnivCo :: UnivCoProvenance -> Role -> Type -> Type -> Coercion
- mkUnsafeCo :: Role -> Type -> Type -> Coercion
- mkPhantomCo :: Coercion -> Type -> Type -> Coercion
- mkAxiomInstCo :: CoAxiom Branched -> BranchIndex -> [Coercion] -> Coercion
- mkCoVarCo :: CoVar -> Coercion
- mkFunCo :: Role -> Coercion -> Coercion -> Coercion
- mkForAllCo :: TyVar -> Coercion -> Coercion -> Coercion
- mkAppCo :: Coercion -> Coercion -> Coercion
- mkTyConAppCo :: HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
- mkReflCo :: Role -> Type -> Coercion
- type CvSubstEnv = CoVarEnv Coercion
- data CoercionHole = CoercionHole {}
- type MCoercionR = MCoercion
- data MCoercion
- type CoercionP = Coercion
- type CoercionR = Coercion
- type CoercionN = Coercion
- coHoleCoVar :: CoercionHole -> CoVar
- setCoHoleCoVar :: CoercionHole -> CoVar -> CoercionHole
- tyCoVarsOfCo :: Coercion -> TyCoVarSet
- tyCoVarsOfCoDSet :: Coercion -> DTyCoVarSet
- tyCoFVsOfCo :: Coercion -> FV
- tyCoVarsOfCos :: [Coercion] -> TyCoVarSet
- tyCoFVsOfCos :: [Coercion] -> FV
- coVarsOfCo :: Coercion -> CoVarSet
- emptyCvSubstEnv :: CvSubstEnv
- getCvSubstEnv :: TCvSubst -> CvSubstEnv
- extendTvSubstAndInScope :: TCvSubst -> TyVar -> Type -> TCvSubst
- substCoWith :: HasCallStack => [TyVar] -> [Type] -> Coercion -> Coercion
- substCos :: HasCallStack => TCvSubst -> [Coercion] -> [Coercion]
- substCoVar :: TCvSubst -> CoVar -> Coercion
- substCoVars :: TCvSubst -> [CoVar] -> [Coercion]
- lookupCoVar :: TCvSubst -> Var -> Maybe Coercion
- substCoVarBndr :: TCvSubst -> CoVar -> (TCvSubst, CoVar)
- pprCo :: Coercion -> SDoc
- pprParendCo :: Coercion -> SDoc
- tidyCo :: TidyEnv -> Coercion -> Coercion
- tidyCos :: TidyEnv -> [Coercion] -> [Coercion]
- coercionSize :: Coercion -> Int
- type LiftCoEnv = VarEnv Coercion
- data NormaliseStepResult ev
- = NS_Done
- | NS_Abort
- | NS_Step RecTcChecker Type ev
- type NormaliseStepper ev = RecTcChecker -> TyCon -> [Type] -> NormaliseStepResult ev
- coVarName :: CoVar -> Name
- setCoVarUnique :: CoVar -> Unique -> CoVar
- setCoVarName :: CoVar -> Name -> CoVar
- pprCoAxiom :: CoAxiom br -> SDoc
- pprCoAxBranch :: CoAxiom br -> CoAxBranch -> SDoc
- pprCoAxBranchHdr :: CoAxiom br -> BranchIndex -> SDoc
- decomposeCo :: Arity -> Coercion -> [Role] -> [Coercion]
- decomposeFunCo :: HasDebugCallStack => Role -> Coercion -> (Coercion, Coercion)
- getCoVar_maybe :: Coercion -> Maybe CoVar
- splitTyConAppCo_maybe :: Coercion -> Maybe (TyCon, [Coercion])
- splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
- splitFunCo_maybe :: Coercion -> Maybe (Coercion, Coercion)
- splitForAllCo_maybe :: Coercion -> Maybe (TyVar, Coercion, Coercion)
- coVarTypes :: HasDebugCallStack => CoVar -> Pair Type
- coVarKind :: CoVar -> Type
- mkHeteroCoercionType :: Role -> Kind -> Kind -> Type -> Type -> Type
- isReflCoVar_maybe :: Var -> Maybe Coercion
- isReflCo_maybe :: Coercion -> Maybe (Type, Role)
- isReflexiveCo_maybe :: Coercion -> Maybe (Type, Role)
- mkRepReflCo :: Type -> Coercion
- mkNomReflCo :: Type -> Coercion
- mkAppCos :: Coercion -> [Coercion] -> Coercion
- mkTransAppCo :: Role -> Coercion -> Type -> Type -> Role -> Coercion -> Type -> Type -> Role -> Coercion
- mkForAllCos :: [(TyVar, Coercion)] -> Coercion -> Coercion
- mkHomoForAllCos :: [TyVar] -> Coercion -> Coercion
- mkHomoForAllCos_NoRefl :: [TyVar] -> Coercion -> Coercion
- mkCoVarCos :: [CoVar] -> [Coercion]
- isCoVar_maybe :: Coercion -> Maybe CoVar
- mkAxInstCo :: Role -> CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Coercion
- mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched -> [Type] -> [Coercion] -> Coercion
- mkAxInstRHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
- mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
- mkAxInstLHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type
- mkUnbranchedAxInstLHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type
- mkHoleCo :: CoercionHole -> Coercion
- nthCoRole :: Int -> Coercion -> Role
- mkCoherenceRightCo :: Coercion -> Coercion -> Coercion
- mkCoherenceLeftCo :: Coercion -> Coercion -> Coercion
- downgradeRole :: Role -> Role -> Coercion -> Coercion
- maybeSubCo :: EqRel -> Coercion -> Coercion
- setNominalRole_maybe :: Role -> Coercion -> Maybe Coercion
- tyConRolesX :: Role -> TyCon -> [Role]
- tyConRolesRepresentational :: TyCon -> [Role]
- nthRole :: Role -> TyCon -> Int -> Role
- ltRole :: Role -> Role -> Bool
- promoteCoercion :: Coercion -> CoercionN
- castCoercionKind :: Coercion -> Coercion -> Coercion -> Coercion
- mkPiCos :: Role -> [Var] -> Coercion -> Coercion
- mkPiCo :: Role -> Var -> Coercion -> Coercion
- mkCoCast :: Coercion -> CoercionR -> Coercion
- instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion)
- mapStepResult :: (ev1 -> ev2) -> NormaliseStepResult ev1 -> NormaliseStepResult ev2
- composeSteppers :: NormaliseStepper ev -> NormaliseStepper ev -> NormaliseStepper ev
- unwrapNewTypeStepper :: NormaliseStepper Coercion
- topNormaliseTypeX :: NormaliseStepper ev -> (ev -> ev -> ev) -> Type -> Maybe (ev, Type)
- topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type)
- eqCoercion :: Coercion -> Coercion -> Bool
- eqCoercionX :: RnEnv2 -> Coercion -> Coercion -> Bool
- liftCoSubstWithEx :: Role -> [TyVar] -> [Coercion] -> [TyVar] -> [Type] -> (Type -> Coercion, [Type])
- liftCoSubstWith :: Role -> [TyCoVar] -> [Coercion] -> Type -> Coercion
- emptyLiftingContext :: InScopeSet -> LiftingContext
- mkSubstLiftingContext :: TCvSubst -> LiftingContext
- extendLiftingContext :: LiftingContext -> TyVar -> Coercion -> LiftingContext
- extendLiftingContextAndInScope :: LiftingContext -> TyVar -> Coercion -> LiftingContext
- zapLiftingContext :: LiftingContext -> LiftingContext
- substForAllCoBndrUsingLC :: Bool -> (Coercion -> Coercion) -> LiftingContext -> TyVar -> Coercion -> (LiftingContext, TyVar, Coercion)
- liftCoSubstTyVar :: LiftingContext -> Role -> TyVar -> Maybe Coercion
- liftCoSubstVarBndrUsing :: (LiftingContext -> Type -> (Coercion, a)) -> LiftingContext -> TyVar -> (LiftingContext, TyVar, Coercion, a)
- isMappedByLC :: TyCoVar -> LiftingContext -> Bool
- substLeftCo :: LiftingContext -> Coercion -> Coercion
- substRightCo :: LiftingContext -> Coercion -> Coercion
- swapLiftCoEnv :: LiftCoEnv -> LiftCoEnv
- lcSubstLeft :: LiftingContext -> TCvSubst
- lcSubstRight :: LiftingContext -> TCvSubst
- liftEnvSubstLeft :: TCvSubst -> LiftCoEnv -> TCvSubst
- liftEnvSubstRight :: TCvSubst -> LiftCoEnv -> TCvSubst
- lcTCvSubst :: LiftingContext -> TCvSubst
- lcInScopeSet :: LiftingContext -> InScopeSet
- coercionKinds :: [Coercion] -> Pair [Type]
- coercionKindRole :: Coercion -> (Pair Type, Role)
- coercionRole :: Coercion -> Role
- buildCoercion :: Type -> Type -> CoercionN
- module TysWiredIn
- module HscTypes
- data SpliceExplicitFlag
- data IntWithInf
- data FractionalLit = FL {}
- data IntegralLit = IL {}
- data InlineSpec
- data InlinePragma = InlinePragma {}
- data RuleMatchInfo
- data Activation
- data CompilerPhase
- type PhaseNum = Int
- data SourceText
- data SuccessFlag
- data DefMethSpec ty
- data TailCallInfo
- type OneBranch = Bool
- type InsideLam = Bool
- type InterestingCxt = Bool
- data OccInfo
- = ManyOccs {
- occ_tail :: !TailCallInfo
- | IAmDead
- | OneOcc { }
- | IAmALoopBreaker {
- occ_rules_only :: !RulesOnly
- occ_tail :: !TailCallInfo
- = ManyOccs {
- data EP a = EP {}
- data TupleSort
- newtype PprPrec = PprPrec Int
- data OverlapMode
- data OverlapFlag = OverlapFlag {}
- data Origin
- data RecFlag
- data Boxity
- data TopLevelFlag
- data LexicalFixity
- data FixityDirection
- data Fixity = Fixity SourceText Int FixityDirection
- type RuleName = FastString
- data WarningTxt
- data StringLiteral = StringLiteral {
- sl_st :: SourceText
- sl_fs :: FastString
- data FunctionOrData
- = IsFunction
- | IsData
- data SwapFlag
- data OneShotInfo
- type Alignment = Int
- type ConTagZ = Int
- type ConTag = Int
- type JoinArity = Int
- type RepArity = Int
- type Arity = Int
- data LeftOrRight
- pickLR :: LeftOrRight -> (a, a) -> a
- fIRST_TAG :: ConTag
- noOneShotInfo :: OneShotInfo
- isOneShotInfo :: OneShotInfo -> Bool
- hasNoOneShotInfo :: OneShotInfo -> Bool
- worstOneShot :: OneShotInfo -> OneShotInfo -> OneShotInfo
- bestOneShot :: OneShotInfo -> OneShotInfo -> OneShotInfo
- flipSwap :: SwapFlag -> SwapFlag
- isSwapped :: SwapFlag -> Bool
- unSwap :: SwapFlag -> (a -> a -> b) -> a -> a -> b
- bumpVersion :: Version -> Version
- initialVersion :: Version
- pprWarningTxtForMsg :: WarningTxt -> SDoc
- pprRuleName :: RuleName -> SDoc
- maxPrecedence :: Int
- minPrecedence :: Int
- defaultFixity :: Fixity
- negateFixity :: Fixity
- funTyFixity :: Fixity
- compareFixity :: Fixity -> Fixity -> (Bool, Bool)
- isNotTopLevel :: TopLevelFlag -> Bool
- isTopLevel :: TopLevelFlag -> Bool
- isBoxed :: Boxity -> Bool
- isRec :: RecFlag -> Bool
- isNonRec :: RecFlag -> Bool
- boolToRecFlag :: Bool -> RecFlag
- isGenerated :: Origin -> Bool
- setOverlapModeMaybe :: OverlapFlag -> Maybe OverlapMode -> OverlapFlag
- hasIncoherentFlag :: OverlapMode -> Bool
- hasOverlappableFlag :: OverlapMode -> Bool
- hasOverlappingFlag :: OverlapMode -> Bool
- topPrec :: PprPrec
- sigPrec :: PprPrec
- funPrec :: PprPrec
- opPrec :: PprPrec
- appPrec :: PprPrec
- maybeParen :: PprPrec -> PprPrec -> SDoc -> SDoc
- tupleSortBoxity :: TupleSort -> Boxity
- boxityTupleSort :: Boxity -> TupleSort
- tupleParens :: TupleSort -> SDoc -> SDoc
- sumParens :: SDoc -> SDoc
- pprAlternative :: (a -> SDoc) -> a -> ConTag -> Arity -> SDoc
- noOccInfo :: OccInfo
- isManyOccs :: OccInfo -> Bool
- seqOccInfo :: OccInfo -> ()
- insideLam :: InsideLam
- notInsideLam :: InsideLam
- oneBranch :: OneBranch
- notOneBranch :: OneBranch
- tailCallInfo :: OccInfo -> TailCallInfo
- zapOccTailCallInfo :: OccInfo -> OccInfo
- isAlwaysTailCalled :: OccInfo -> Bool
- strongLoopBreaker :: OccInfo
- weakLoopBreaker :: OccInfo
- isWeakLoopBreaker :: OccInfo -> Bool
- isStrongLoopBreaker :: OccInfo -> Bool
- isDeadOcc :: OccInfo -> Bool
- isOneOcc :: OccInfo -> Bool
- zapFragileOcc :: OccInfo -> OccInfo
- successIf :: Bool -> SuccessFlag
- succeeded :: SuccessFlag -> Bool
- failed :: SuccessFlag -> Bool
- pprWithSourceText :: SourceText -> SDoc -> SDoc
- isConLike :: RuleMatchInfo -> Bool
- isFunLike :: RuleMatchInfo -> Bool
- noUserInlineSpec :: InlineSpec -> Bool
- defaultInlinePragma :: InlinePragma
- alwaysInlinePragma :: InlinePragma
- neverInlinePragma :: InlinePragma
- inlinePragmaSpec :: InlinePragma -> InlineSpec
- dfunInlinePragma :: InlinePragma
- isDefaultInlinePragma :: InlinePragma -> Bool
- isInlinePragma :: InlinePragma -> Bool
- isInlinablePragma :: InlinePragma -> Bool
- isAnyInlinePragma :: InlinePragma -> Bool
- inlinePragmaSat :: InlinePragma -> Maybe Arity
- inlinePragmaActivation :: InlinePragma -> Activation
- inlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo
- setInlinePragmaActivation :: InlinePragma -> Activation -> InlinePragma
- setInlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo -> InlinePragma
- pprInline :: InlinePragma -> SDoc
- pprInlineDebug :: InlinePragma -> SDoc
- isActive :: CompilerPhase -> Activation -> Bool
- isActiveIn :: PhaseNum -> Activation -> Bool
- competesWith :: Activation -> Activation -> Bool
- isNeverActive :: Activation -> Bool
- isAlwaysActive :: Activation -> Bool
- isEarlyActive :: Activation -> Bool
- mkIntegralLit :: Integral a => a -> IntegralLit
- negateIntegralLit :: IntegralLit -> IntegralLit
- mkFractionalLit :: Real a => a -> FractionalLit
- negateFractionalLit :: FractionalLit -> FractionalLit
- integralFractionalLit :: Bool -> Integer -> FractionalLit
- infinity :: IntWithInf
- intGtLimit :: Int -> IntWithInf -> Bool
- treatZeroAsInf :: Int -> IntWithInf
- mkIntWithInf :: Int -> IntWithInf
- module VarSet
- module VarEnv
- module NameSet
- module NameEnv
- module UniqSet
- module UniqFM
- module FiniteMap
- module Util
- module GHC.Serialized
- module SrcLoc
- module Outputable
- module UniqSupply
- class Uniquable a where
- data Unique
- module FastString
Documentation
module Plugins
module RdrName
Occurrence Name
In this context that means: "classified (i.e. as a type name, value name, etc) but not qualified and not yet resolved"
Instances
Eq OccName # | |
Data OccName # | |
Defined in OccName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName Source # toConstr :: OccName -> Constr Source # dataTypeOf :: OccName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) Source # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # | |
Ord OccName # | |
NFData OccName # | |
OutputableBndr OccName # | |
Defined in OccName Methods pprBndr :: BindingSite -> OccName -> SDoc # pprPrefixOcc :: OccName -> SDoc # pprInfixOcc :: OccName -> SDoc # bndrIsJoin_maybe :: OccName -> Maybe Int # | |
Outputable OccName # | |
Uniquable OccName # | |
Binary OccName # | |
HasOccName OccName # | |
type FastStringEnv a = UniqFM a #
A non-deterministic set of FastStrings. See Note [Deterministic UniqFM] in UniqDFM for explanation why it's not deterministic and why it matters. Use DFastStringEnv if the set eventually gets converted into a list or folded over in a way where the order changes the generated code.
emptyFsEnv :: FastStringEnv a #
extendFsEnv :: FastStringEnv a -> FastString -> a -> FastStringEnv a #
lookupFsEnv :: FastStringEnv a -> FastString -> Maybe a #
mkFsEnv :: [(FastString, a)] -> FastStringEnv a #
type TidyOccEnv = UniqFM Int #
Instances
Data a => Data (OccEnv a) # | |
Defined in OccName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccEnv a -> c (OccEnv a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (OccEnv a) Source # toConstr :: OccEnv a -> Constr Source # dataTypeOf :: OccEnv a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (OccEnv a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (OccEnv a)) Source # gmapT :: (forall b. Data b => b -> b) -> OccEnv a -> OccEnv a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccEnv a -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccEnv a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OccEnv a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccEnv a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) Source # | |
Outputable a => Outputable (OccEnv a) # | |
class HasOccName name where #
Other names in the compiler add additional information to an OccName. This class provides a consistent way to access the underlying OccName.
Instances
HasOccName Name # | |
HasOccName OccName # | |
HasOccName GlobalRdrElt # | |
Defined in TcHoleErrors Methods occName :: GlobalRdrElt -> OccName # | |
HasOccName RdrName # | |
HasOccName Var # | |
HasOccName IfaceConDecl # | |
Defined in IfaceSyn Methods occName :: IfaceConDecl -> OccName # | |
HasOccName IfaceClassOp # | |
Defined in IfaceSyn Methods occName :: IfaceClassOp -> OccName # | |
HasOccName IfaceDecl # | |
HasOccName TcBinder # | |
HasOccName name => HasOccName (IEWrappedName name) # | |
Defined in HsImpExp Methods occName :: IEWrappedName name -> OccName # | |
(HasOccName a, HasOccName b) => HasOccName (Either a b) # | |
Defined in TcHoleErrors |
Instances
Eq NameSpace # | |
Ord NameSpace # | |
Binary NameSpace # | |
isDataConNameSpace :: NameSpace -> Bool #
isTcClsNameSpace :: NameSpace -> Bool #
isTvNameSpace :: NameSpace -> Bool #
isVarNameSpace :: NameSpace -> Bool #
isValNameSpace :: NameSpace -> Bool #
pprNameSpace :: NameSpace -> SDoc #
pprNonVarNameSpace :: NameSpace -> SDoc #
pprNameSpaceBrief :: NameSpace -> SDoc #
pprOccName :: OccName -> SDoc #
mkOccNameFS :: NameSpace -> FastString -> OccName #
mkVarOccFS :: FastString -> OccName #
mkDataOccFS :: FastString -> OccName #
mkTyVarOcc :: String -> OccName #
mkTyVarOccFS :: FastString -> OccName #
mkTcOccFS :: FastString -> OccName #
mkClsOccFS :: FastString -> OccName #
demoteOccName :: OccName -> Maybe OccName #
nameSpacesRelated :: NameSpace -> NameSpace -> Bool #
emptyOccEnv :: OccEnv a #
unitOccEnv :: OccName -> a -> OccEnv a #
extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a #
extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a #
lookupOccEnv :: OccEnv a -> OccName -> Maybe a #
elemOccEnv :: OccName -> OccEnv a -> Bool #
foldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b #
occEnvElts :: OccEnv a -> [a] #
plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a #
plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a #
extendOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccName -> a -> OccEnv a #
extendOccEnv_Acc :: (a -> b -> b) -> (a -> b) -> OccEnv b -> OccName -> a -> OccEnv b #
mkOccEnv_C :: (a -> a -> a) -> [(OccName, a)] -> OccEnv a #
delFromOccEnv :: OccEnv a -> OccName -> OccEnv a #
delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a #
filterOccEnv :: (elt -> Bool) -> OccEnv elt -> OccEnv elt #
emptyOccSet :: OccSet #
unitOccSet :: OccName -> OccSet #
extendOccSet :: OccSet -> OccName -> OccSet #
extendOccSetList :: OccSet -> [OccName] -> OccSet #
unionOccSets :: OccSet -> OccSet -> OccSet #
unionManyOccSets :: [OccSet] -> OccSet #
minusOccSet :: OccSet -> OccSet -> OccSet #
elemOccSet :: OccName -> OccSet -> Bool #
isEmptyOccSet :: OccSet -> Bool #
intersectOccSet :: OccSet -> OccSet -> OccSet #
intersectsOccSet :: OccSet -> OccSet -> Bool #
occNameString :: OccName -> String #
setOccNameSpace :: NameSpace -> OccName -> OccName #
Value OccNames
s are those that are either in
the variable or data constructor namespaces
isDataSymOcc :: OccName -> Bool #
Test if the OccName
is a data constructor that starts with
a symbol (e.g. :
, or []
)
Test if the OccName
is that for any operator (whether
it is a data constructor or variable or whatever)
parenSymOcc :: OccName -> SDoc -> SDoc #
Wrap parens around an operator
startsWithUnderscore :: OccName -> Bool #
Haskell 98 encourages compilers to suppress warnings about unsed
names in a pattern if they start with _
: this implements that test
isDerivedOccName :: OccName -> Bool #
Test for definitions internally generated by GHC. This predicte is used to suppress printing of internal definitions in some debug prints
isDefaultMethodOcc :: OccName -> Bool #
isTypeableBindOcc :: OccName -> Bool #
Is an OccName
one of a Typeable TyCon
or Module
binding?
This is needed as these bindings are renamed differently.
See Note [Grand plan for Typeable] in TcTypeable.
mkDataConWrapperOcc :: OccName -> OccName #
mkWorkerOcc :: OccName -> OccName #
mkMatcherOcc :: OccName -> OccName #
mkBuilderOcc :: OccName -> OccName #
mkDefaultMethodOcc :: OccName -> OccName #
mkClassOpAuxOcc :: OccName -> OccName #
mkForeignExportOcc :: OccName -> OccName #
mkRepEqOcc :: OccName -> OccName #
mkClassDataConOcc :: OccName -> OccName #
mkNewTyCoOcc :: OccName -> OccName #
mkInstTyCoOcc :: OccName -> OccName #
mkEqPredCoOcc :: OccName -> OccName #
mkCon2TagOcc :: OccName -> OccName #
mkTag2ConOcc :: OccName -> OccName #
mkMaxTagOcc :: OccName -> OccName #
mkTyConRepOcc :: OccName -> OccName #
mkRecFldSelOcc :: String -> OccName #
mkDataConWorkerOcc :: OccName -> OccName #
mkSuperDictAuxOcc :: Int -> OccName -> OccName #
Derive a name for the representation type constructor of a
data
/newtype
instance.
mkMethodOcc :: OccName -> OccName #
initTidyOccEnv :: [OccName] -> TidyOccEnv #
avoidClashesOccEnv :: TidyOccEnv -> [OccName] -> TidyOccEnv #
tidyOccName :: TidyOccEnv -> OccName -> (TidyOccEnv, OccName) #
A unique, unambiguous name for something, containing information about where that thing originated.
Instances
Eq Name # | |
Data Name # | |
Defined in Name Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name Source # toConstr :: Name -> Constr Source # dataTypeOf :: Name -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) Source # gmapT :: (forall b. Data b => b -> b) -> Name -> Name Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name Source # | |
Ord Name # | Caution: This instance is implemented via See |
NFData Name # | |
OutputableBndr Name # | |
Defined in Name Methods pprBndr :: BindingSite -> Name -> SDoc # pprPrefixOcc :: Name -> SDoc # pprInfixOcc :: Name -> SDoc # bndrIsJoin_maybe :: Name -> Maybe Int # | |
Outputable Name # | |
Uniquable Name # | |
Binary Name # | Assumes that the |
HasOccName Name # | |
NamedThing Name # | |
Occurrence Name
In this context that means: "classified (i.e. as a type name, value name, etc) but not qualified and not yet resolved"
Instances
Eq OccName # | |
Data OccName # | |
Defined in OccName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName Source # toConstr :: OccName -> Constr Source # dataTypeOf :: OccName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) Source # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # | |
Ord OccName # | |
NFData OccName # | |
OutputableBndr OccName # | |
Defined in OccName Methods pprBndr :: BindingSite -> OccName -> SDoc # pprPrefixOcc :: OccName -> SDoc # pprInfixOcc :: OccName -> SDoc # bndrIsJoin_maybe :: OccName -> Maybe Int # | |
Outputable OccName # | |
Uniquable OccName # | |
Binary OccName # | |
HasOccName OccName # | |
type FastStringEnv a = UniqFM a #
A non-deterministic set of FastStrings. See Note [Deterministic UniqFM] in UniqDFM for explanation why it's not deterministic and why it matters. Use DFastStringEnv if the set eventually gets converted into a list or folded over in a way where the order changes the generated code.
emptyFsEnv :: FastStringEnv a #
extendFsEnv :: FastStringEnv a -> FastString -> a -> FastStringEnv a #
lookupFsEnv :: FastStringEnv a -> FastString -> Maybe a #
mkFsEnv :: [(FastString, a)] -> FastStringEnv a #
type TidyOccEnv = UniqFM Int #
Instances
Data a => Data (OccEnv a) # | |
Defined in OccName Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccEnv a -> c (OccEnv a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (OccEnv a) Source # toConstr :: OccEnv a -> Constr Source # dataTypeOf :: OccEnv a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (OccEnv a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (OccEnv a)) Source # gmapT :: (forall b. Data b => b -> b) -> OccEnv a -> OccEnv a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccEnv a -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccEnv a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OccEnv a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccEnv a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccEnv a -> m (OccEnv a) Source # | |
Outputable a => Outputable (OccEnv a) # | |
class HasOccName name where #
Other names in the compiler add additional information to an OccName. This class provides a consistent way to access the underlying OccName.
Instances
HasOccName Name # | |
HasOccName OccName # | |
HasOccName GlobalRdrElt # | |
Defined in TcHoleErrors Methods occName :: GlobalRdrElt -> OccName # | |
HasOccName RdrName # | |
HasOccName Var # | |
HasOccName IfaceConDecl # | |
Defined in IfaceSyn Methods occName :: IfaceConDecl -> OccName # | |
HasOccName IfaceClassOp # | |
Defined in IfaceSyn Methods occName :: IfaceClassOp -> OccName # | |
HasOccName IfaceDecl # | |
HasOccName TcBinder # | |
HasOccName name => HasOccName (IEWrappedName name) # | |
Defined in HsImpExp Methods occName :: IEWrappedName name -> OccName # | |
(HasOccName a, HasOccName b) => HasOccName (Either a b) # | |
Defined in TcHoleErrors |
Instances
Eq NameSpace # | |
Ord NameSpace # | |
Binary NameSpace # | |
isDataConNameSpace :: NameSpace -> Bool #
isTcClsNameSpace :: NameSpace -> Bool #
isTvNameSpace :: NameSpace -> Bool #
isVarNameSpace :: NameSpace -> Bool #
isValNameSpace :: NameSpace -> Bool #
pprNameSpace :: NameSpace -> SDoc #
pprNonVarNameSpace :: NameSpace -> SDoc #
pprNameSpaceBrief :: NameSpace -> SDoc #
pprOccName :: OccName -> SDoc #
mkOccNameFS :: NameSpace -> FastString -> OccName #
mkVarOccFS :: FastString -> OccName #
mkDataOccFS :: FastString -> OccName #
mkTyVarOcc :: String -> OccName #
mkTyVarOccFS :: FastString -> OccName #
mkTcOccFS :: FastString -> OccName #
mkClsOccFS :: FastString -> OccName #
demoteOccName :: OccName -> Maybe OccName #
nameSpacesRelated :: NameSpace -> NameSpace -> Bool #
emptyOccEnv :: OccEnv a #
unitOccEnv :: OccName -> a -> OccEnv a #
extendOccEnv :: OccEnv a -> OccName -> a -> OccEnv a #
extendOccEnvList :: OccEnv a -> [(OccName, a)] -> OccEnv a #
lookupOccEnv :: OccEnv a -> OccName -> Maybe a #
elemOccEnv :: OccName -> OccEnv a -> Bool #
foldOccEnv :: (a -> b -> b) -> b -> OccEnv a -> b #
occEnvElts :: OccEnv a -> [a] #
plusOccEnv :: OccEnv a -> OccEnv a -> OccEnv a #
plusOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccEnv a -> OccEnv a #
extendOccEnv_C :: (a -> a -> a) -> OccEnv a -> OccName -> a -> OccEnv a #
extendOccEnv_Acc :: (a -> b -> b) -> (a -> b) -> OccEnv b -> OccName -> a -> OccEnv b #
mkOccEnv_C :: (a -> a -> a) -> [(OccName, a)] -> OccEnv a #
delFromOccEnv :: OccEnv a -> OccName -> OccEnv a #
delListFromOccEnv :: OccEnv a -> [OccName] -> OccEnv a #
filterOccEnv :: (elt -> Bool) -> OccEnv elt -> OccEnv elt #
emptyOccSet :: OccSet #
unitOccSet :: OccName -> OccSet #
extendOccSet :: OccSet -> OccName -> OccSet #
extendOccSetList :: OccSet -> [OccName] -> OccSet #
unionOccSets :: OccSet -> OccSet -> OccSet #
unionManyOccSets :: [OccSet] -> OccSet #
minusOccSet :: OccSet -> OccSet -> OccSet #
elemOccSet :: OccName -> OccSet -> Bool #
isEmptyOccSet :: OccSet -> Bool #
intersectOccSet :: OccSet -> OccSet -> OccSet #
intersectsOccSet :: OccSet -> OccSet -> Bool #
occNameString :: OccName -> String #
setOccNameSpace :: NameSpace -> OccName -> OccName #
Value OccNames
s are those that are either in
the variable or data constructor namespaces
isDataSymOcc :: OccName -> Bool #
Test if the OccName
is a data constructor that starts with
a symbol (e.g. :
, or []
)
Test if the OccName
is that for any operator (whether
it is a data constructor or variable or whatever)
parenSymOcc :: OccName -> SDoc -> SDoc #
Wrap parens around an operator
startsWithUnderscore :: OccName -> Bool #
Haskell 98 encourages compilers to suppress warnings about unsed
names in a pattern if they start with _
: this implements that test
isDerivedOccName :: OccName -> Bool #
Test for definitions internally generated by GHC. This predicte is used to suppress printing of internal definitions in some debug prints
isDefaultMethodOcc :: OccName -> Bool #
isTypeableBindOcc :: OccName -> Bool #
Is an OccName
one of a Typeable TyCon
or Module
binding?
This is needed as these bindings are renamed differently.
See Note [Grand plan for Typeable] in TcTypeable.
mkDataConWrapperOcc :: OccName -> OccName #
mkWorkerOcc :: OccName -> OccName #
mkMatcherOcc :: OccName -> OccName #
mkBuilderOcc :: OccName -> OccName #
mkDefaultMethodOcc :: OccName -> OccName #
mkClassOpAuxOcc :: OccName -> OccName #
mkForeignExportOcc :: OccName -> OccName #
mkRepEqOcc :: OccName -> OccName #
mkClassDataConOcc :: OccName -> OccName #
mkNewTyCoOcc :: OccName -> OccName #
mkInstTyCoOcc :: OccName -> OccName #
mkEqPredCoOcc :: OccName -> OccName #
mkCon2TagOcc :: OccName -> OccName #
mkTag2ConOcc :: OccName -> OccName #
mkMaxTagOcc :: OccName -> OccName #
mkTyConRepOcc :: OccName -> OccName #
mkRecFldSelOcc :: String -> OccName #
mkDataConWorkerOcc :: OccName -> OccName #
mkSuperDictAuxOcc :: Int -> OccName -> OccName #
Derive a name for the representation type constructor of a
data
/newtype
instance.
mkMethodOcc :: OccName -> OccName #
initTidyOccEnv :: [OccName] -> TidyOccEnv #
avoidClashesOccEnv :: TidyOccEnv -> [OccName] -> TidyOccEnv #
tidyOccName :: TidyOccEnv -> OccName -> (TidyOccEnv, OccName) #
class NamedThing a where #
A class allowing convenient access to the Name
of various datatypes
Minimal complete definition
Instances
NamedThing Name # | |
NamedThing TyCon # | |
NamedThing TyThing # | |
NamedThing Var # | |
NamedThing PatSyn # | |
NamedThing DataCon # | |
NamedThing ConLike # | |
NamedThing Class # | |
NamedThing IfaceConDecl # | |
Defined in IfaceSyn | |
NamedThing IfaceClassOp # | |
Defined in IfaceSyn | |
NamedThing IfaceDecl # | |
NamedThing FamInst # | |
Defined in FamInstEnv | |
NamedThing ClsInst # | |
NamedThing (CoAxiom br) # | |
NamedThing e => NamedThing (GenLocated l e) # | |
Defined in Name |
data BuiltInSyntax #
BuiltInSyntax is for things like (:)
, []
and tuples,
which have special syntactic forms. They aren't in scope
as such.
Constructors
BuiltInSyntax | |
UserSyntax |
nameUnique :: Name -> Unique #
nameOccName :: Name -> OccName #
nameSrcLoc :: Name -> SrcLoc #
nameSrcSpan :: Name -> SrcSpan #
isWiredInName :: Name -> Bool #
isBuiltInSyntax :: Name -> Bool #
isExternalName :: Name -> Bool #
isInternalName :: Name -> Bool #
isHoleName :: Name -> Bool #
nameModule :: HasDebugCallStack => Name -> Module #
nameModule_maybe :: Name -> Maybe Module #
nameIsLocalOrFrom :: Module -> Name -> Bool #
Returns True if the name is
(a) Internal
(b) External but from the specified module
(c) External but from the interactive
package
The key idea is that False means: the entity is defined in some other module you can find the details (type, fixity, instances) in some interface file those details will be stored in the EPT or HPT
True means: the entity is defined in this module or earlier in the GHCi session you can find details (type, fixity, instances) in the TcGblEnv or TcLclEnv
The isInteractiveModule part is because successive interactions of a GHCi session
each give rise to a fresh module (Ghci1, Ghci2, etc), but they all come
from the magic interactive
package; and all the details are kept in the
TcLclEnv, TcGblEnv, NOT in the HPT or EPT.
See Note [The interactive package] in HscTypes
nameIsHomePackage :: Module -> Name -> Bool #
nameIsHomePackageImport :: Module -> Name -> Bool #
nameIsFromExternalPackage :: UnitId -> Name -> Bool #
Returns True if the Name comes from some other package: neither this package nor the interactive package.
isTyVarName :: Name -> Bool #
isTyConName :: Name -> Bool #
isDataConName :: Name -> Bool #
isSystemName :: Name -> Bool #
mkClonedInternalName :: Unique -> Name -> Name #
mkExternalName :: Unique -> Module -> OccName -> SrcSpan -> Name #
Create a name which definitely originates in the given module
mkWiredInName :: Module -> OccName -> Unique -> TyThing -> BuiltInSyntax -> Name #
Create a name which is actually defined by the compiler itself
mkSystemName :: Unique -> OccName -> Name #
Create a name brought into being by the compiler
mkSystemVarName :: Unique -> FastString -> Name #
mkSysTvName :: Unique -> FastString -> Name #
mkFCallName :: Unique -> String -> Name #
Make a name for a foreign call
setNameUnique :: Name -> Unique -> Name #
setNameLoc :: Name -> SrcSpan -> Name #
tidyNameOcc :: Name -> OccName -> Name #
localiseName :: Name -> Name #
Make the Name
into an internal name, regardless of what it was to begin with
stableNameCmp :: Name -> Name -> Ordering #
Compare Names lexicographically This only works for Names that originate in the source code or have been tidied.
pprNameUnqualified :: Name -> SDoc #
Print the string of Name unqualifiedly directly.
pprDefinedAt :: Name -> SDoc #
pprNameDefnLoc :: Name -> SDoc #
nameStableString :: Name -> String #
Get a string representation of a Name
that's unique and stable
across recompilations. Used for deterministic generation of binds for
derived instances.
eg. "$aeson_70dylHtv1FFGeai1IoxcQr$Data.Aeson.Types.Internal$String"
getSrcLoc :: NamedThing a => a -> SrcLoc #
getSrcSpan :: NamedThing a => a -> SrcSpan #
getOccString :: NamedThing a => a -> String #
getOccFS :: NamedThing a => a -> FastString #
pprInfixName :: (Outputable a, NamedThing a) => a -> SDoc #
pprPrefixName :: NamedThing a => a -> SDoc #
module Var
Variable
Essentially a typed Name
, that may also contain some additional information
about the Var
and it's use sites.
Instances
Eq Var # | |
Data Var # | |
Defined in Var Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var Source # toConstr :: Var -> Constr Source # dataTypeOf :: Var -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) Source # gmapT :: (forall b. Data b => b -> b) -> Var -> Var Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var Source # | |
Ord Var # | |
OutputableBndr Var # | |
Defined in PprCore Methods pprBndr :: BindingSite -> Var -> SDoc # pprPrefixOcc :: Var -> SDoc # pprInfixOcc :: Var -> SDoc # bndrIsJoin_maybe :: Var -> Maybe Int # | |
Outputable Var # | |
Uniquable Var # | |
HasOccName Var # | |
NamedThing Var # | |
idInfo :: HasDebugCallStack => Id -> IdInfo #
globaliseId :: Id -> Id #
If it's a local, make it global
isGlobalId :: Var -> Bool #
isExportedId :: Var -> Bool #
isExportedIdVar
means "don't throw this away"
setIdUnique :: Id -> Unique -> Id #
localiseId :: Id -> Id #
modifyIdInfo :: HasDebugCallStack => (IdInfo -> IdInfo) -> Id -> Id #
mkLocalCoVar :: Name -> Type -> CoVar #
Make a local CoVar
mkLocalIdOrCoVar :: Name -> Type -> Id #
Like mkLocalId
, but checks the type to see if it should make a covar
mkLocalIdOrCoVarWithInfo :: Name -> Type -> IdInfo -> Id #
Make a local id, with the IdDetails set to CoVarId if the type indicates so.
mkExportedLocalId :: IdDetails -> Name -> Type -> Id #
Create a local Id
that is marked as exported.
This prevents things attached to it from being removed as dead code.
See Note [Exported LocalIds]
mkExportedVanillaId :: Name -> Type -> Id #
mkSysLocal :: FastString -> Unique -> Type -> Id #
mkSysLocalOrCoVar :: FastString -> Unique -> Type -> Id #
Like mkSysLocal
, but checks to see if we have a covar type
mkSysLocalM :: MonadUnique m => FastString -> Type -> m Id #
mkSysLocalOrCoVarM :: MonadUnique m => FastString -> Type -> m Id #
mkUserLocalOrCoVar :: OccName -> Unique -> Type -> SrcSpan -> Id #
Like mkUserLocal
, but checks if we have a coercion type
mkWorkerId :: Unique -> Id -> Type -> Id #
Workers get local names. CoreTidy will externalise these if necessary
mkTemplateLocal :: Int -> Type -> Id #
Create a template local: a family of system local Id
s in bijection with Int
s, typically used in unfoldings
mkTemplateLocals :: [Type] -> [Id] #
Create a template local for a series of types
mkTemplateLocalsNum :: Int -> [Type] -> [Id] #
Create a template local for a series of type, but start from a specified template local
recordSelectorTyCon :: Id -> RecSelParent #
isRecordSelector :: Id -> Bool #
isDataConRecordSelector :: Id -> Bool #
isPatSynRecordSelector :: Id -> Bool #
isNaughtyRecordSelector :: Id -> Bool #
isClassOpId_maybe :: Id -> Maybe Class #
isPrimOpId :: Id -> Bool #
isPrimOpId_maybe :: Id -> Maybe PrimOp #
isFCallId_maybe :: Id -> Maybe ForeignCall #
isDataConWorkId :: Id -> Bool #
isDataConWorkId_maybe :: Id -> Maybe DataCon #
isDataConId_maybe :: Id -> Maybe DataCon #
isJoinId_maybe :: Var -> Maybe JoinArity #
Get from either the worker or the wrapper Id
to the DataCon
. Currently used only in the desugarer.
INVARIANT: idDataCon (dataConWrapId d) = d
: remember, dataConWrapId
can return either the wrapper or the worker
hasNoBinding :: Id -> Bool #
Returns True
of an Id
which may not have a
binding, even though it is defined in this module.
isImplicitId :: Id -> Bool #
isImplicitId
tells whether an Id
s info is implied by other
declarations, so we don't need to put its signature in an interface
file, even if it's mentioned in some other interface unfolding.
isDeadBinder :: Id -> Bool #
idJoinArity :: JoinId -> JoinArity #
setIdArity :: Id -> Arity -> Id infixl 1 #
idCallArity :: Id -> Arity #
setIdCallArity :: Id -> Arity -> Id infixl 1 #
idFunRepArity :: Id -> RepArity #
isBottomingId :: Var -> Bool #
Returns true if an application to n args would diverge
idStrictness :: Id -> StrictSig #
setIdStrictness :: Id -> StrictSig -> Id infixl 1 #
zapIdStrictness :: Id -> Id #
isStrictId :: Id -> Bool #
This predicate says whether the Id
has a strict demand placed on it or
has a type such that it can always be evaluated strictly (i.e an
unlifted type, as of GHC 7.6). We need to
check separately whether the Id
has a so-called "strict type" because if
the demand for the given id
hasn't been computed yet but id
has a strict
type, we still want isStrictId id
to be True
.
idUnfolding :: Id -> Unfolding #
realIdUnfolding :: Id -> Unfolding #
setIdUnfolding :: Id -> Unfolding -> Id infixl 1 #
idDemandInfo :: Id -> Demand #
setIdDemandInfo :: Id -> Demand -> Id infixl 1 #
setCaseBndrEvald :: StrictnessMark -> Id -> Id #
idSpecialisation :: Id -> RuleInfo #
idCoreRules :: Id -> [CoreRule] #
idHasRules :: Id -> Bool #
setIdSpecialisation :: Id -> RuleInfo -> Id infixl 1 #
setIdCafInfo :: Id -> CafInfo -> Id #
setIdOccInfo :: Id -> OccInfo -> Id infixl 1 #
zapIdOccInfo :: Id -> Id #
idInlinePragma :: Id -> InlinePragma #
setInlinePragma :: Id -> InlinePragma -> Id infixl 1 #
modifyInlinePragma :: Id -> (InlinePragma -> InlinePragma) -> Id #
idInlineActivation :: Id -> Activation #
setInlineActivation :: Id -> Activation -> Id infixl 1 #
idRuleMatchInfo :: Id -> RuleMatchInfo #
isConLikeId :: Id -> Bool #
idOneShotInfo :: Id -> OneShotInfo #
idStateHackOneShotInfo :: Id -> OneShotInfo #
Like idOneShotInfo
, but taking the Horrible State Hack in to account
See Note [The state-transformer hack] in CoreArity
isOneShotBndr :: Var -> Bool #
Returns whether the lambda associated with the Id
is certainly applied at most once
This one is the "business end", called externally.
It works on type variables as well as Ids, returning True
Its main purpose is to encapsulate the Horrible State Hack
See Note [The state-transformer hack] in CoreArity
stateHackOneShot :: OneShotInfo #
Should we apply the state hack to values of this Type
?
typeOneShot :: Type -> OneShotInfo #
isStateHackType :: Type -> Bool #
isProbablyOneShotLambda :: Id -> Bool #
setOneShotLambda :: Id -> Id #
clearOneShotLambda :: Id -> Id #
setIdOneShotInfo :: Id -> OneShotInfo -> Id infixl 1 #
updOneShotInfo :: Id -> OneShotInfo -> Id #
zapLamIdInfo :: Id -> Id #
zapFragileIdInfo :: Id -> Id #
zapIdDemandInfo :: Id -> Id #
zapIdUsageInfo :: Id -> Id #
zapIdUsageEnvInfo :: Id -> Id #
zapIdUsedOnceInfo :: Id -> Id #
zapIdTailCallInfo :: Id -> Id #
zapStableUnfolding :: Id -> Id #
isNeverLevPolyId :: Id -> Bool #
module IdInfo
module CoreMonad
module CoreSyn
module Literal
module DataCon
module CoreUtils
module MkCore
module CoreFVs
data InScopeSet #
A set of variables that are in scope at some point "Secrets of the Glasgow Haskell Compiler inliner" Section 3.2 provides the motivation for this abstraction.
Instances
Outputable InScopeSet # | |
Defined in VarEnv |
type IdSubstEnv = IdEnv CoreExpr #
An environment for substituting for Id
s
A substitution environment, containing Id
, TyVar
, and CoVar
substitutions.
Some invariants apply to how you use the substitution:
- Note [The substitution invariant] in TyCoRep
- Note [Substitutions apply only once] in TyCoRep
Constructors
Subst InScopeSet IdSubstEnv TvSubstEnv CvSubstEnv |
isEmptySubst :: Subst -> Bool #
emptySubst :: Subst #
mkEmptySubst :: InScopeSet -> Subst #
mkSubst :: InScopeSet -> TvSubstEnv -> CvSubstEnv -> IdSubstEnv -> Subst #
substInScope :: Subst -> InScopeSet #
Find the in-scope set: see TyCORep Note [The substitution invariant]
zapSubstEnv :: Subst -> Subst #
extendIdSubstList :: Subst -> [(Id, CoreExpr)] -> Subst #
Adds multiple Id
substitutions to the Subst
: see also extendIdSubst
extendTvSubstList :: Subst -> [(TyVar, Type)] -> Subst #
Adds multiple TyVar
substitutions to the Subst
: see also extendTvSubst
extendSubst :: Subst -> Var -> CoreArg -> Subst #
Add a substitution appropriate to the thing being substituted
(whether an expression, type, or coercion). See also
extendIdSubst
, extendTvSubst
, extendCvSubst
extendSubstList :: Subst -> [(Var, CoreArg)] -> Subst #
Add a substitution as appropriate to each of the terms being
substituted (whether expressions, types, or coercions). See also
extendSubst
.
mkOpenSubst :: InScopeSet -> [(Var, CoreArg)] -> Subst #
Simultaneously substitute for a bunch of variables No left-right shadowing ie the substitution for (x y. e) a1 a2 so neither x nor y scope over a1 a2
addInScopeSet :: Subst -> VarSet -> Subst #
Add the Expr
to the in-scope set, but do not remove
any existing substitutions for it
extendInScope :: Subst -> Var -> Subst #
Add the Expr
to the in-scope set: as a side effect,
and remove any existing substitutions for it
extendInScopeList :: Subst -> [Var] -> Subst #
Add the Expr
s to the in-scope set: see also extendInScope
extendInScopeIds :: Subst -> [Id] -> Subst #
Optimized version of extendInScopeList
that can be used if you are certain
all the things being added are Id
s and hence none are TyVar
s or CoVar
s
setInScope :: Subst -> InScopeSet -> Subst #
substExprSC :: SDoc -> Subst -> CoreExpr -> CoreExpr #
Apply a substitution to an entire CoreExpr
. Remember, you may only
apply the substitution once:
see Note [Substitutions apply only once] in TyCoRep
Do *not* attempt to short-cut in the case of an empty substitution! See Note [Extending the Subst]
deShadowBinds :: CoreProgram -> CoreProgram #
De-shadowing the program is sometimes a useful pre-pass. It can be done simply by running over the bindings with an empty substitution, because substitution returns a result that has no-shadowing guaranteed.
(Actually, within a single type there might still be shadowing, because
substTy
is a no-op for the empty substitution, but that's probably OK.)
- Aug 09
- This function is not used in GHC at the moment, but seems so short and simple that I'm going to leave it here
cloneIdBndr :: Subst -> UniqSupply -> Id -> (Subst, Id) #
cloneIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id]) #
Applies cloneIdBndr
to a number of Id
s, accumulating a final
substitution from left to right
cloneBndrs :: Subst -> UniqSupply -> [Var] -> (Subst, [Var]) #
cloneRecIdBndrs :: Subst -> UniqSupply -> [Id] -> (Subst, [Id]) #
Clone a mutually recursive group of Id
s
getTCvSubst :: Subst -> TCvSubst #
substIdOcc :: Subst -> Id -> Id #
substRulesForImportedIds :: Subst -> [CoreRule] -> [CoreRule] #
substDVarSet :: Subst -> DVarSet -> DVarSet #
module Rules
module Annotations
module DynFlags
module Packages
module Module
A type of the form p
of kind Constraint
represents a value whose type is
the Haskell predicate p
, where a predicate is what occurs before
the =>
in a Haskell type.
We use PredType
as documentation to mark those types that we guarantee to have
this kind.
It can be expanded into its representation, but:
- The type checker must treat it as opaque
- The rest of the compiler treats it as transparent
Consider these examples:
f :: (Eq a) => a -> Int g :: (?x :: Int -> Int) => a -> Int h :: (r\l) => {r} => {l::Int | r}
Here the Eq a
and ?x :: Int -> Int
and rl
are all called "predicates"
A TyBinder
represents an argument to a function. TyBinders can be dependent
(Named
) or nondependent (Anon
). They may also be visible or not.
See Note [TyBinders]
Instances
Data TyBinder # | |
Defined in TyCoRep Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyBinder -> c TyBinder Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyBinder Source # toConstr :: TyBinder -> Constr Source # dataTypeOf :: TyBinder -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyBinder) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyBinder) Source # gmapT :: (forall b. Data b => b -> b) -> TyBinder -> TyBinder Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyBinder -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyBinder -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TyBinder -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyBinder -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyBinder -> m TyBinder Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyBinder -> m TyBinder Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyBinder -> m TyBinder Source # | |
Outputable TyBinder # | |
Type & coercion substitution
The following invariants must hold of a TCvSubst
:
- The in-scope set is needed only to guide the generation of fresh uniques
- In particular, the kind of the type variables in the in-scope set is not relevant
- The substitution is only applied ONCE! This is because in general such application will not reach a fixed point.
Constructors
TCvSubst InScopeSet TvSubstEnv CvSubstEnv |
Instances
Data Type # | |
Defined in TyCoRep Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type Source # toConstr :: Type -> Constr Source # dataTypeOf :: Type -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) Source # gmapT :: (forall b. Data b => b -> b) -> Type -> Type Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type Source # | |
Outputable Type # | |
isRuntimeRepTy :: Type -> Bool #
Is this the type RuntimeRep
?
A general-purpose pretty-printing precedence type.
type TyVarBinder = TyVarBndr TyVar ArgFlag #
Type Variable Binder
A TyVarBinder
is the binder of a ForAllTy
It's convenient to define this synonym here rather its natural
home in TyCoRep, because it's used in DataCon.hs-boot
Argument Flag
Is something required to appear in source Haskell (Required
),
permitted by request (Specified
) (visible type application), or
prohibited entirely from appearing in source Haskell (Inferred
)?
See Note [TyVarBndrs, TyVarBinders, TyConBinders, and visibility] in TyCoRep
Instances
Eq ArgFlag # | |
Data ArgFlag # | |
Defined in Var Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ArgFlag -> c ArgFlag Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ArgFlag Source # toConstr :: ArgFlag -> Constr Source # dataTypeOf :: ArgFlag -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ArgFlag) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ArgFlag) Source # gmapT :: (forall b. Data b => b -> b) -> ArgFlag -> ArgFlag Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ArgFlag -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ArgFlag -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ArgFlag -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ArgFlag -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ArgFlag -> m ArgFlag Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ArgFlag -> m ArgFlag Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ArgFlag -> m ArgFlag Source # | |
Ord ArgFlag # | |
Outputable ArgFlag # | |
Binary ArgFlag # | |
Outputable tv => Outputable (TyVarBndr tv ArgFlag) # | |
Variable
Essentially a typed Name
, that may also contain some additional information
about the Var
and it's use sites.
Instances
Eq Var # | |
Data Var # | |
Defined in Var Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var Source # toConstr :: Var -> Constr Source # dataTypeOf :: Var -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) Source # gmapT :: (forall b. Data b => b -> b) -> Var -> Var Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var Source # | |
Ord Var # | |
OutputableBndr Var # | |
Defined in PprCore Methods pprBndr :: BindingSite -> Var -> SDoc # pprPrefixOcc :: Var -> SDoc # pprInfixOcc :: Var -> SDoc # bndrIsJoin_maybe :: Var -> Maybe Int # | |
Outputable Var # | |
Uniquable Var # | |
HasOccName Var # | |
NamedThing Var # | |
isVisibleArgFlag :: ArgFlag -> Bool #
Does this ArgFlag
classify an argument that is written in Haskell?
isInvisibleArgFlag :: ArgFlag -> Bool #
Does this ArgFlag
classify an argument that is not written in Haskell?
binderVars :: [TyVarBndr tv argf] -> [tv] #
binderArgFlag :: TyVarBndr tv argf -> argf #
binderKind :: TyVarBndr TyVar argf -> Kind #
mkTyVarBinder :: ArgFlag -> Var -> TyVarBinder #
Make a named binder
mkTyVarBinders :: ArgFlag -> [TyVar] -> [TyVarBinder] #
Make many named binders
liftedTypeKind :: Kind #
splitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) #
Attempts to tease a type apart into a type constructor and the application of a number of arguments to that constructor
toposortTyVars :: [TyCoVar] -> [TyCoVar] #
Do a topological sort on a list of tyvars, so that binders occur before occurrences E.g. given [ a::k, k::*, b::k ] it'll return a well-scoped list [ k::*, a::k, b::k ]
This is a deterministic sorting operation (that is, doesn't depend on Uniques).
tyCoVarsOfTypeWellScoped :: Type -> [TyVar] #
Get the free vars of a type in scoped order
tyCoVarsOfTypesWellScoped :: [Type] -> [TyVar] #
Get the free vars of types in scoped order
tcView :: Type -> Maybe Type #
Gives the typechecker view of a type. This unwraps synonyms but
leaves Constraint
alone. c.f. coreView, which turns Constraint into
TYPE LiftedRep. Returns Nothing if no unwrapping happens.
See also Note [coreView vs tcView]
coreView :: Type -> Maybe Type #
This function Strips off the top layer only of a type synonym
application (if any) its underlying representation type.
Returns Nothing if there is nothing to look through.
This function considers Constraint
to be a synonym of TYPE LiftedRep
.
By being non-recursive and inlined, this case analysis gets efficiently joined onto the case analysis that the caller is already doing
eqType :: Type -> Type -> Bool #
Type equality on source types. Does not look through newtypes
or
PredType
s, but it does look through type synonyms.
This first checks that the kinds of the types are equal and then
checks whether the types are equal, ignoring casts and coercions.
(The kind check is a recursive call, but since all kinds have type
Type
, there is no need to check the types of kinds.)
See also Note [Non-trivial definitional equality] in TyCoRep.
piResultTy :: HasDebugCallStack => Type -> Type -> Type #
mkCastTy :: Type -> Coercion -> Type #
Make a CastTy
. The Coercion must be nominal. Checks the
Coercion for reflexivity, dropping it if it's reflexive.
See Note [Respecting definitional equality] in TyCoRep
isCoercionTy :: Type -> Bool #
A type labeled KnotTied
might have knot-tied tycons in it. See
Note [Type checking recursive type and class declarations] in
TcTyClsDecls
type KindOrType = Type #
The key representation of types within the compiler
pprShortTyThing :: TyThing -> SDoc #
pprTyThingCategory :: TyThing -> SDoc #
isInvisibleBinder :: TyBinder -> Bool #
Does this binder bind an invisible argument?
isVisibleBinder :: TyBinder -> Bool #
Does this binder bind a visible argument?
mkTyVarTys :: [TyVar] -> [Type] #
mkForAllTys :: [TyVarBinder] -> Type -> Type #
Wraps foralls over the type using the provided TyVar
s from left to right
isCoercionType :: Type -> Bool #
Create the plain type constructor type which has been applied to no type arguments at all.
isRuntimeRepVar :: TyVar -> Bool #
Is a tyvar of type RuntimeRep
?
tyCoVarsOfType :: Type -> TyCoVarSet #
Returns free variables of a type, including kind variables as a non-deterministic set. For type synonyms it does not expand the synonym.
tyCoVarsOfTypeDSet :: Type -> DTyCoVarSet #
tyCoFVsOfType
that returns free variables of a type in a deterministic
set. For explanation of why using VarSet
is not deterministic see
Note [Deterministic FV] in FV.
tyCoFVsOfType :: Type -> FV #
The worker for tyCoFVsOfType
and tyCoFVsOfTypeList
.
The previous implementation used unionVarSet
which is O(n+m) and can
make the function quadratic.
It's exported, so that it can be composed with
other functions that compute free variables.
See Note [FV naming conventions] in FV.
Eta-expanded because that makes it run faster (apparently) See Note [FV eta expansion] in FV for explanation.
tyCoFVsBndr :: TyVarBinder -> FV -> FV #
tyCoVarsOfTypes :: [Type] -> TyCoVarSet #
Returns free variables of types, including kind variables as a non-deterministic set. For type synonyms it does not expand the synonym.
coVarsOfType :: Type -> CoVarSet #
coVarsOfTypes :: [Type] -> TyCoVarSet #
closeOverKinds :: TyVarSet -> TyVarSet #
Add the kind variables free in the kinds of the tyvars in the given set. Returns a non-deterministic set.
closeOverKindsList :: [TyVar] -> [TyVar] #
Add the kind variables free in the kinds of the tyvars in the given set. Returns a deterministically ordered list.
noFreeVarsOfType :: Type -> Bool #
Returns True if this type has no free variables. Should be the same as isEmptyVarSet . tyCoVarsOfType, but faster in the non-forall case.
composeTCvSubstEnv :: InScopeSet -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv) #
(compose env1 env2)(x)
is env1(env2(x))
; i.e. apply env2
then env1
.
It assumes that both are idempotent.
Typically, env1
is the refinement to a base substitution env2
composeTCvSubst :: TCvSubst -> TCvSubst -> TCvSubst #
Composes two substitutions, applying the second one provided first, like in function composition.
mkEmptyTCvSubst :: InScopeSet -> TCvSubst #
isEmptyTCvSubst :: TCvSubst -> Bool #
mkTCvSubst :: InScopeSet -> (TvSubstEnv, CvSubstEnv) -> TCvSubst #
getTvSubstEnv :: TCvSubst -> TvSubstEnv #
getTCvInScope :: TCvSubst -> InScopeSet #
getTCvSubstRangeFVs :: TCvSubst -> VarSet #
Returns the free variables of the types in the range of a substitution as a non-deterministic set.
notElemTCvSubst :: Var -> TCvSubst -> Bool #
setTvSubstEnv :: TCvSubst -> TvSubstEnv -> TCvSubst #
zapTCvSubst :: TCvSubst -> TCvSubst #
extendTCvInScope :: TCvSubst -> Var -> TCvSubst #
extendTCvInScopeList :: TCvSubst -> [Var] -> TCvSubst #
extendTCvInScopeSet :: TCvSubst -> VarSet -> TCvSubst #
unionTCvSubst :: TCvSubst -> TCvSubst -> TCvSubst #
zipTvSubst :: [TyVar] -> [Type] -> TCvSubst #
Generates the in-scope set for the TCvSubst
from the types in the incoming
environment. No CoVars, please!
mkTvSubstPrs :: [(TyVar, Type)] -> TCvSubst #
Generates the in-scope set for the TCvSubst
from the types in the
incoming environment. No CoVars, please!
zipTyEnv :: [TyVar] -> [Type] -> TvSubstEnv #
zipCoEnv :: [CoVar] -> [Coercion] -> CvSubstEnv #
substTyWith :: HasCallStack => [TyVar] -> [Type] -> Type -> Type #
Type substitution, see zipTvSubst
substTyWithUnchecked :: [TyVar] -> [Type] -> Type -> Type #
Type substitution, see zipTvSubst
. Disables sanity checks.
The problems that the sanity checks in substTy catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substTyUnchecked to
substTy and remove this function. Please don't use in new code.
substCoWithUnchecked :: [TyVar] -> [Type] -> Coercion -> Coercion #
Coercion substitution, see zipTvSubst
. Disables sanity checks.
The problems that the sanity checks in substCo catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substCoUnchecked to
substCo and remove this function. Please don't use in new code.
substTysWith :: [TyVar] -> [Type] -> [Type] -> [Type] #
Type substitution, see zipTvSubst
substTyAddInScope :: TCvSubst -> Type -> Type #
Substitute within a Type
after adding the free variables of the type
to the in-scope set. This is useful for the case when the free variables
aren't already in the in-scope set or easily available.
See also Note [The substitution invariant].
substTyUnchecked :: TCvSubst -> Type -> Type #
Substitute within a Type
disabling the sanity checks.
The problems that the sanity checks in substTy catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substTyUnchecked to
substTy and remove this function. Please don't use in new code.
substTys :: HasCallStack => TCvSubst -> [Type] -> [Type] #
Substitute within several Type
s
The substitution has to satisfy the invariants described in
Note [The substitution invariant].
substTysUnchecked :: TCvSubst -> [Type] -> [Type] #
Substitute within several Type
s disabling the sanity checks.
The problems that the sanity checks in substTys catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substTysUnchecked to
substTys and remove this function. Please don't use in new code.
substTheta :: HasCallStack => TCvSubst -> ThetaType -> ThetaType #
Substitute within a ThetaType
The substitution has to satisfy the invariants described in
Note [The substitution invariant].
substThetaUnchecked :: TCvSubst -> ThetaType -> ThetaType #
Substitute within a ThetaType
disabling the sanity checks.
The problems that the sanity checks in substTys catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substThetaUnchecked to
substTheta and remove this function. Please don't use in new code.
substTyVar :: TCvSubst -> TyVar -> Type #
substTyVars :: TCvSubst -> [TyVar] -> [Type] #
substCoUnchecked :: TCvSubst -> Coercion -> Coercion #
Substitute within a Coercion
disabling sanity checks.
The problems that the sanity checks in substCo catch are described in
Note [The substitution invariant].
The goal of #11371 is to migrate all the calls of substCoUnchecked to
substCo and remove this function. Please don't use in new code.
substTyVarBndr :: HasCallStack => TCvSubst -> TyVar -> (TCvSubst, TyVar) #
substTyVarBndrs :: HasCallStack => TCvSubst -> [TyVar] -> (TCvSubst, [TyVar]) #
cloneTyVarBndrs :: TCvSubst -> [TyVar] -> UniqSupply -> (TCvSubst, [TyVar]) #
pprParendType :: Type -> SDoc #
pprPrecType :: PprPrec -> Type -> SDoc #
pprParendKind :: Kind -> SDoc #
pprClassPred :: Class -> [Type] -> SDoc #
pprThetaArrowTy :: ThetaType -> SDoc #
pprSigmaType :: Type -> SDoc #
pprForAll :: [TyVarBinder] -> SDoc #
pprUserForAll :: [TyVarBinder] -> SDoc #
Print a user-level forall; see Note [When to print foralls]
pprTvBndrs :: [TyVarBinder] -> SDoc #
pprTvBndr :: TyVarBinder -> SDoc #
pprTypeApp :: TyCon -> [Type] -> SDoc #
tidyTyCoVarBndrs :: TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar]) #
This tidies up a type for printing in an error message, or in an interface file.
It doesn't change the uniques at all, just the print names.
tidyFreeTyCoVars :: TidyEnv -> [TyCoVar] -> TidyEnv #
Add the free TyVar
s to the env in tidy form,
so that we can tidy the type they are free in
tidyOpenTyCoVar :: TidyEnv -> TyCoVar -> (TidyEnv, TyCoVar) #
Treat a new TyCoVar
as a binder, and give it a fresh tidy name
using the environment if one has not already been allocated. See
also tidyTyCoVarBndr
tidyTyVarOcc :: TidyEnv -> TyVar -> TyVar #
tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type]) #
Grabs the free type variables, tidies them
and then uses tidyType
to work over the type itself
tidyTopType :: Type -> Type #
Calls tidyType
on a top-level type (i.e. with an empty tidying environment)
The (->)
type constructor.
(->) :: forall (rep1 :: RuntimeRep) (rep2 :: RuntimeRep). TYPE rep1 -> TYPE rep2 -> *
A choice of equality relation. This is separate from the type Role
because Phantom
does not define a (non-trivial) equality relation.
data TyCoMapper env m #
This describes how a "map" operation over a type/coercion should behave
Constructors
TyCoMapper | |
Fields
|
expandTypeSynonyms :: Type -> Type #
Expand out all type synonyms. Actually, it'd suffice to expand out just the ones that discard type variables (e.g. type Funny a = Int) But we don't know which those are currently, so we just expand all.
expandTypeSynonyms
only expands out type synonyms mentioned in the type,
not in the kinds of any TyCon or TyVar mentioned in the type.
Keep this synchronized with synonymTyConsOfType
mapCoercion :: Monad m => TyCoMapper env m -> env -> Coercion -> m Coercion #
getTyVar :: String -> Type -> TyVar #
Attempts to obtain the type variable underlying a Type
, and panics with the
given message if this is not a type variable type. See also getTyVar_maybe
getCastedTyVar_maybe :: Type -> Maybe (TyVar, CoercionN) #
If the type is a tyvar, possibly under a cast, returns it, along with the coercion. Thus, the co is :: kind tv ~N kind type
repGetTyVar_maybe :: Type -> Maybe TyVar #
Attempts to obtain the type variable underlying a Type
, without
any expansion
splitAppTy_maybe :: Type -> Maybe (Type, Type) #
Attempt to take a type application apart, whether it is a function, type constructor, or plain type application. Note that type family applications are NEVER unsaturated by this!
repSplitAppTy_maybe :: HasDebugCallStack => Type -> Maybe (Type, Type) #
Does the AppTy split as in splitAppTy_maybe
, but assumes that
any Core view stuff is already done
tcRepSplitAppTy_maybe :: Type -> Maybe (Type, Type) #
Does the AppTy split as in tcSplitAppTy_maybe
, but assumes that
any coreView stuff is already done. Refuses to look through (c => t)
tcRepSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type]) #
Like tcSplitTyConApp_maybe
but doesn't look through type synonyms.
splitAppTy :: Type -> (Type, Type) #
Attempts to take a type application apart, as in splitAppTy_maybe
,
and panics if this is not possible
splitAppTys :: Type -> (Type, [Type]) #
Recursively splits a type as far as is possible, leaving a residual type being applied to and the type arguments applied to it. Never fails, even if that means returning an empty list of type applications.
repSplitAppTys :: HasDebugCallStack => Type -> (Type, [Type]) #
Like splitAppTys
, but doesn't look through type synonyms
mkNumLitTy :: Integer -> Type #
isNumLitTy :: Type -> Maybe Integer #
Is this a numeric literal. We also look through type synonyms.
mkStrLitTy :: FastString -> Type #
isStrLitTy :: Type -> Maybe FastString #
Is this a symbol literal. We also look through type synonyms.
userTypeError_maybe :: Type -> Maybe Type #
Is this type a custom user error? If so, give us the kind and the error message.
pprUserTypeErrorTy :: Type -> SDoc #
Render a type corresponding to a user type error into a SDoc.
splitFunTy :: Type -> (Type, Type) #
Attempts to extract the argument and result types from a type, and
panics if that is not possible. See also splitFunTy_maybe
splitFunTy_maybe :: Type -> Maybe (Type, Type) #
Attempts to extract the argument and result types from a type
splitFunTys :: Type -> ([Type], Type) #
funResultTy :: Type -> Type #
Extract the function result type and panic if that is not possible
piResultTys :: HasDebugCallStack => Type -> [Type] -> Type #
(piResultTys f_ty [ty1, .., tyn]) gives the type of (f ty1 .. tyn)
where f :: f_ty
piResultTys
is interesting because:
1. f_ty
may have more for-alls than there are args
2. Less obviously, it may have fewer for-alls
For case 2. think of:
piResultTys (forall a.a) [forall b.b, Int]
This really can happen, but only (I think) in situations involving
undefined. For example:
undefined :: forall a. a
Term: undefined (forall b. b->b)
Int
This term should have type (Int -> Int), but notice that
there are more type args than foralls in undefined
s type.
mkTyConApp :: TyCon -> [Type] -> Type #
A key function: builds a TyConApp
or FunTy
as appropriate to
its arguments. Applies its arguments to the constructor from left to right.
tyConAppTyConPicky_maybe :: Type -> Maybe TyCon #
Retrieve the tycon heading this type, if there is one. Does not look through synonyms.
tyConAppTyCon_maybe :: Type -> Maybe TyCon #
The same as fst . splitTyConApp
tyConAppTyCon :: Type -> TyCon #
tyConAppArgs_maybe :: Type -> Maybe [Type] #
The same as snd . splitTyConApp
tyConAppArgs :: Type -> [Type] #
tyConAppArgN :: Int -> Type -> Type #
splitTyConApp :: Type -> (TyCon, [Type]) #
Attempts to tease a type apart into a type constructor and the application
of a number of arguments to that constructor. Panics if that is not possible.
See also splitTyConApp_maybe
repSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) #
Like splitTyConApp_maybe
, but doesn't look through synonyms. This
assumes the synonyms have already been dealt with.
splitListTyConApp_maybe :: Type -> Maybe Type #
Attempts to tease a list type apart and gives the type of the elements if successful (looks through type synonyms)
newTyConInstRhs :: TyCon -> [Type] -> Type #
Unwrap one layer
of newtype on a type constructor and its
arguments, using an eta-reduced version of the newtype
if possible.
This requires tys to have at least newTyConInstArity tycon
elements.
tyConBindersTyBinders :: [TyConBinder] -> [TyBinder] #
mkCoercionTy :: Coercion -> Type #
isCoercionTy_maybe :: Type -> Maybe Coercion #
stripCoercionTy :: Type -> Coercion #
mkInvForAllTy :: TyVar -> Type -> Type #
Make a dependent forall over an Inferred (as opposed to Specified) variable
mkInvForAllTys :: [TyVar] -> Type -> Type #
Like mkForAllTys, but assumes all variables are dependent and Inferred, a common case
mkSpecForAllTys :: [TyVar] -> Type -> Type #
Like mkForAllTys, but assumes all variables are dependent and specified, a common case
mkVisForAllTys :: [TyVar] -> Type -> Type #
Like mkForAllTys, but assumes all variables are dependent and visible
mkLamType :: Var -> Type -> Type #
Makes a (->)
type or an implicit forall type, depending
on whether it is given a type variable or a term variable.
This is used, for example, when producing the type of a lambda.
Always uses Inferred binders.
mkTyConBindersPreferAnon :: [TyVar] -> Type -> [TyConBinder] #
Given a list of type-level vars and a result kind, makes TyBinders, preferring anonymous binders if the variable is, in fact, not dependent. e.g. mkTyConBindersPreferAnon (k:*),(b:k),(c:k) We want (k:*) Named, (a;k) Anon, (c:k) Anon
All binders are visible.
splitForAllTys :: Type -> ([TyVar], Type) #
Take a ForAllTy apart, returning the list of tyvars and the result type. This always succeeds, even if it returns only an empty list. Note that the result type returned may have free variables that were bound by a forall.
splitForAllTyVarBndrs :: Type -> ([TyVarBinder], Type) #
Like splitPiTys
but split off only named binders.
isForAllTy :: Type -> Bool #
Checks whether this is a proper forall (with a named binder)
splitForAllTy :: Type -> (TyVar, Type) #
Take a forall type apart, or panics if that is not possible.
dropForAlls :: Type -> Type #
Drops all ForAllTys
splitForAllTy_maybe :: Type -> Maybe (TyVar, Type) #
Attempts to take a forall type apart, but only if it's a proper forall, with a named binder
splitPiTy_maybe :: Type -> Maybe (TyBinder, Type) #
Attempts to take a forall type apart; works with proper foralls and functions
splitPiTys :: Type -> ([TyBinder], Type) #
Split off all TyBinders to a type, splitting both proper foralls and functions
splitPiTysInvisible :: Type -> ([TyBinder], Type) #
filterOutInvisibleTypes :: TyCon -> [Type] -> [Type] #
Given a tycon and its arguments, filters out any invisible arguments
partitionInvisibles :: TyCon -> (a -> Type) -> [a] -> ([a], [a]) #
Given a tycon and a list of things (which correspond to arguments), partitions the things into Inferred or Specified ones and Required ones The callback function is necessary for this scenario:
T :: forall k. k -> k partitionInvisibles T [forall m. m -> m -> m, S, R, Q]
After substituting, we get
T (forall m. m -> m -> m) :: (forall m. m -> m -> m) -> forall n. n -> n -> n
Thus, the first argument is invisible, S
is visible, R
is invisible again,
and Q
is visible.
If you're absolutely sure that your tycon's kind doesn't end in a variable, it's OK if the callback function panics, as that's the only time it's consulted.
mkAnonBinder :: Type -> TyBinder #
Make an anonymous binder
isAnonTyBinder :: TyBinder -> Bool #
Does this binder bind a variable that is not erased? Returns
True
for anonymous binders.
isNamedTyBinder :: TyBinder -> Bool #
tyBinderVar_maybe :: TyBinder -> Maybe TyVar #
tyBinderType :: TyBinder -> Type #
binderRelevantType_maybe :: TyBinder -> Maybe Type #
Extract a relevant type, if there is one.
Arguments
:: TyBinder | binder to scrutinize |
-> (TyVarBinder -> a) | named case |
-> (Type -> a) | anonymous case |
-> a |
Like maybe
, but for binders.
tcSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type]) #
Split a type constructor application into its type constructor and
applied types. Note that this may fail in the case of a FunTy
with an
argument of unknown kind FunTy
(e.g. FunTy (a :: k) Int
. since the kind
of a
isn't of the form TYPE rep
). Consequently, you may need to zonk your
type before using this function.
If you only need the TyCon
, consider using tcTyConAppTyCon_maybe
.
tcIsConstraintKind :: Kind -> Bool #
tcIsLiftedTypeKind :: Kind -> Bool #
Is this kind equivalent to *
?
This considers Constraint
to be distinct from *
. For a version that
treats them as the same type, see isLiftedTypeKind
.
tcReturnsConstraintKind :: Kind -> Bool #
isClassPred :: PredType -> Bool #
isNomEqPred :: PredType -> Bool #
isCTupleClass :: Class -> Bool #
isIPPred_maybe :: Type -> Maybe (FastString, Type) #
mkPrimEqPredRole :: Role -> Type -> Type -> PredType #
Makes a lifted equality predicate at the given role
mkPrimEqPred :: Type -> Type -> Type #
Creates a primitive type equality predicate. Invariant: the types are not Coercions
mkHeteroPrimEqPred :: Kind -> Kind -> Type -> Type -> Type #
Creates a primite type equality predicate with explicit kinds
mkHeteroReprPrimEqPred :: Kind -> Kind -> Type -> Type -> Type #
Creates a primitive representational type equality predicate with explicit kinds
splitCoercionType_maybe :: Type -> Maybe (Type, Type) #
Try to split up a coercion type into the types that it coerces
mkReprPrimEqPred :: Type -> Type -> Type #
equalityTyCon :: Role -> TyCon #
mkClassPred :: Class -> [Type] -> PredType #
isDictLikeTy :: Type -> Bool #
classifyPredType :: PredType -> PredTree #
getClassPredTys :: HasDebugCallStack => PredType -> (Class, [Type]) #
getEqPredTys :: PredType -> (Type, Type) #
getEqPredRole :: PredType -> Role #
predTypeEqRel :: PredType -> EqRel #
Get the equality relation relevant for a pred type.
dVarSetElemsWellScoped :: DVarSet -> [Var] #
Extract a well-scoped list of variables from a deterministic set of variables. The result is deterministic. NB: There used to exist varSetElemsWellScoped :: VarSet -> [Var] which took a non-deterministic set and produced a non-deterministic well-scoped list. If you care about the list being well-scoped you also most likely care about it being in deterministic order.
mkFamilyTyConApp :: TyCon -> [Type] -> Type #
Given a family instance TyCon and its arg types, return the corresponding family type. E.g:
data family T a data instance T (Maybe b) = MkT b
Where the instance tycon is :RTL, so:
mkFamilyTyConApp :RTL Int = T (Maybe Int)
coAxNthLHS :: CoAxiom br -> Int -> Type #
Get the type on the LHS of a coercion induced by a type/data family instance.
pprSourceTyCon :: TyCon -> SDoc #
isFamFreeTy :: Type -> Bool #
isLiftedType_maybe :: HasDebugCallStack => Type -> Maybe Bool #
Returns Just True if this type is surely lifted, Just False if it is surely unlifted, Nothing if we can't be sure (i.e., it is levity polymorphic), and panics if the kind does not have the shape TYPE r.
isUnliftedType :: HasDebugCallStack => Type -> Bool #
See Type for what an unlifted type is. Panics on levity polymorphic types.
isRuntimeRepKindedTy :: Type -> Bool #
Is this a type of kind RuntimeRep? (e.g. LiftedRep)
dropRuntimeRepArgs :: [Type] -> [Type] #
getRuntimeRep_maybe :: HasDebugCallStack => Type -> Maybe Type #
Extract the RuntimeRep classifier of a type. For instance,
getRuntimeRep_maybe Int = LiftedRep
. Returns Nothing
if this is not
possible.
getRuntimeRep :: HasDebugCallStack => Type -> Type #
Extract the RuntimeRep classifier of a type. For instance,
getRuntimeRep_maybe Int = LiftedRep
. Panics if this is not possible.
getRuntimeRepFromKind :: HasDebugCallStack => Type -> Type #
Extract the RuntimeRep classifier of a type from its kind. For example,
getRuntimeRepFromKind * = LiftedRep
; Panics if this is not possible.
getRuntimeRepFromKind_maybe :: HasDebugCallStack => Type -> Maybe Type #
Extract the RuntimeRep classifier of a type from its kind. For example,
getRuntimeRepFromKind * = LiftedRep
; Returns Nothing
if this is not
possible.
isUnboxedTupleType :: Type -> Bool #
isUnboxedSumType :: Type -> Bool #
See Type for what an algebraic type is. Should only be applied to types, as opposed to e.g. partially saturated type constructors
isDataFamilyAppType :: Type -> Bool #
Check whether a type is a data family type
isStrictType :: HasDebugCallStack => Type -> Bool #
Computes whether an argument (or let right hand side) should
be computed strictly or lazily, based only on its type.
Currently, it's just isUnliftedType
. Panics on levity-polymorphic types.
isPrimitiveType :: Type -> Bool #
Returns true of types that are opaque to Haskell.
isValidJoinPointType :: JoinArity -> Type -> Bool #
Determine whether a type could be the type of a join point of given total
arity, according to the polymorphism rule. A join point cannot be polymorphic
in its return type, since given
join j a
b x y z = e1 in e2,
the types of e1 and e2 must be the same, and a and b are not in scope for e2.
(See Note [The polymorphism rule of join points] in CoreSyn.) Returns False
also if the type simply doesn't have enough arguments.
Note that we need to know how many arguments (type *and* value) the putative join point takes; for instance, if j :: forall a. a -> Int then j could be a binary join point returning an Int, but it could *not* be a unary join point returning a -> Int.
TODO: See Note [Excess polymorphism and join points]
eqTypeX :: RnEnv2 -> Type -> Type -> Bool #
Compare types with respect to a (presumably) non-empty RnEnv2
.
eqTypes :: [Type] -> [Type] -> Bool #
Type equality on lists of types, looking through type synonyms but not newtypes.
nonDetCmpType :: Type -> Type -> Ordering #
nonDetCmpTypes :: [Type] -> [Type] -> Ordering #
nonDetCmpTc :: TyCon -> TyCon -> Ordering #
typeKind :: HasDebugCallStack => Type -> Kind #
isTypeLevPoly :: Type -> Bool #
Returns True if a type is levity polymorphic. Should be the same as (isKindLevPoly . typeKind) but much faster. Precondition: The type has kind (TYPE blah)
resultIsLevPoly :: Type -> Bool #
Looking past all pi-types, is the end result potentially levity polymorphic? Example: True for (forall r (a :: TYPE r). String -> a) Example: False for (forall r1 r2 (a :: TYPE r1) (b :: TYPE r2). a -> b -> Type)
tyConsOfType :: Type -> UniqSet TyCon #
All type constructors occurring in the type; looking through type synonyms, but not newtypes. When it finds a Class, it returns the class TyCon.
synTyConResKind :: TyCon -> Kind #
splitVisVarsOfType :: Type -> Pair TyCoVarSet #
Retrieve the free variables in this type, splitting them based on whether they are used visibly or invisibly. Invisible ones come first.
splitVisVarsOfTypes :: [Type] -> Pair TyCoVarSet #
pprWithTYPE :: Type -> SDoc #
This variant preserves any use of TYPE in a type, effectively locally setting -fprint-explicit-runtime-reps.
module TyCon
data UnivCoProvenance #
For simplicity, we have just one UnivCo that represents a coercion from
some type to some other type, with (in general) no restrictions on the
type. The UnivCoProvenance specifies more exactly what the coercion really
is and why a program should (or shouldn't!) trust the coercion.
It is reasonable to consider each constructor of UnivCoProvenance
as a totally independent coercion form; their only commonality is
that they don't tell you what types they coercion between. (That info
is in the UnivCo
constructor of Coercion
.
Instances
Data UnivCoProvenance # | |
Defined in TyCoRep Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UnivCoProvenance -> c UnivCoProvenance Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UnivCoProvenance Source # toConstr :: UnivCoProvenance -> Constr Source # dataTypeOf :: UnivCoProvenance -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UnivCoProvenance) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UnivCoProvenance) Source # gmapT :: (forall b. Data b => b -> b) -> UnivCoProvenance -> UnivCoProvenance Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UnivCoProvenance -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UnivCoProvenance -> r Source # gmapQ :: (forall d. Data d => d -> u) -> UnivCoProvenance -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> UnivCoProvenance -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UnivCoProvenance -> m UnivCoProvenance Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UnivCoProvenance -> m UnivCoProvenance Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UnivCoProvenance -> m UnivCoProvenance Source # | |
Outputable UnivCoProvenance # | |
Defined in TyCoRep |
A Coercion
is concrete evidence of the equality/convertibility
of two types.
Instances
Data Coercion # | |
Defined in TyCoRep Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Coercion -> c Coercion Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Coercion Source # toConstr :: Coercion -> Constr Source # dataTypeOf :: Coercion -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Coercion) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Coercion) Source # gmapT :: (forall b. Data b => b -> b) -> Coercion -> Coercion Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Coercion -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion -> m Coercion Source # | |
Outputable Coercion # | |
data LeftOrRight #
Instances
Eq LeftOrRight # | |
Defined in BasicTypes | |
Data LeftOrRight # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LeftOrRight -> c LeftOrRight Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LeftOrRight Source # toConstr :: LeftOrRight -> Constr Source # dataTypeOf :: LeftOrRight -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LeftOrRight) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LeftOrRight) Source # gmapT :: (forall b. Data b => b -> b) -> LeftOrRight -> LeftOrRight Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LeftOrRight -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LeftOrRight -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LeftOrRight -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LeftOrRight -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight Source # | |
Outputable LeftOrRight # | |
Defined in BasicTypes | |
Binary LeftOrRight # | |
Defined in Binary Methods put_ :: BinHandle -> LeftOrRight -> IO () # put :: BinHandle -> LeftOrRight -> IO (Bin LeftOrRight) # get :: BinHandle -> IO LeftOrRight # |
pickLR :: LeftOrRight -> (a, a) -> a #
Variable
Essentially a typed Name
, that may also contain some additional information
about the Var
and it's use sites.
Instances
Eq Var # | |
Data Var # | |
Defined in Var Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var Source # toConstr :: Var -> Constr Source # dataTypeOf :: Var -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) Source # gmapT :: (forall b. Data b => b -> b) -> Var -> Var Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var Source # | |
Ord Var # | |
OutputableBndr Var # | |
Defined in PprCore Methods pprBndr :: BindingSite -> Var -> SDoc # pprPrefixOcc :: Var -> SDoc # pprInfixOcc :: Var -> SDoc # bndrIsJoin_maybe :: Var -> Maybe Int # | |
Outputable Var # | |
Uniquable Var # | |
HasOccName Var # | |
NamedThing Var # | |
Constructors
Nominal | |
Representational | |
Phantom |
Instances
Eq Role # | |
Data Role # | |
Defined in CoAxiom Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role Source # toConstr :: Role -> Constr Source # dataTypeOf :: Role -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) Source # gmapT :: (forall b. Data b => b -> b) -> Role -> Role Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role Source # | |
Ord Role # | |
Outputable Role # | |
Binary Role # | |
data LiftingContext #
Instances
Outputable LiftingContext # | |
Defined in Coercion |
coercionType :: Coercion -> Type #
coercionKind :: Coercion -> Pair Type #
If it is the case that
c :: (t1 ~ t2)
i.e. the kind of c
relates t1
and t2
, then coercionKind c = Pair t1 t2
.
liftCoSubst :: HasDebugCallStack => Role -> LiftingContext -> Type -> Coercion #
liftCoSubst role lc ty
produces a coercion (at role role
)
that coerces between lc_left(ty)
and lc_right(ty)
, where
lc_left
is a substitution mapping type variables to the left-hand
types of the mapped coercions in lc
, and similar for lc_right
.
mkCoercionType :: Role -> Type -> Type -> Type #
Makes a coercion type from two types: the types whose equality
is proven by the relevant Coercion
coVarKindsTypesRole :: HasDebugCallStack => CoVar -> (Kind, Kind, Type, Type, Role) #
decomposePiCos :: HasDebugCallStack => CoercionN -> Pair Type -> [Type] -> ([CoercionN], CoercionN) #
isReflexiveCo :: Coercion -> Bool #
Slowly checks if the coercion is reflexive. Don't call this in a loop, as it walks over the entire coercion.
isReflCo :: Coercion -> Bool #
Tests if this coercion is obviously reflexive. Guaranteed to work
very quickly. Sometimes a coercion can be reflexive, but not obviously
so. c.f. isReflexiveCo
mkAxiomRuleCo :: CoAxiomRule -> [Coercion] -> Coercion #
Arguments
:: Role | role of the created coercion, "r" |
-> Coercion | :: phi1 ~N phi2 |
-> Coercion | g1 :: phi1 |
-> Coercion | g2 :: phi2 |
-> Coercion | :: g1 ~r g2 |
Make a "coercion between coercions".
mkCoherenceCo :: Coercion -> Coercion -> Coercion infixl 5 #
mkLRCo :: LeftOrRight -> Coercion -> Coercion #
mkSymCo :: Coercion -> Coercion #
Create a symmetric version of the given Coercion
that asserts
equality between the same types but in the other "direction", so
a kind of t1 ~ t2
becomes the kind t2 ~ t1
.
Arguments
:: UnivCoProvenance | |
-> Role | role of the built coercion, "r" |
-> Type | t1 :: k1 |
-> Type | t2 :: k2 |
-> Coercion | :: t1 ~r t2 |
Make a universal coercion between two arbitrary types.
mkUnsafeCo :: Role -> Type -> Type -> Coercion #
Manufacture an unsafe coercion from thin air.
Currently (May 14) this is used only to implement the
unsafeCoerce#
primitive. Optimise by pushing
down through type constructors.
mkPhantomCo :: Coercion -> Type -> Type -> Coercion #
Make a phantom coercion between two types. The coercion passed in must be a nominal coercion between the kinds of the types.
mkAxiomInstCo :: CoAxiom Branched -> BranchIndex -> [Coercion] -> Coercion #
mkForAllCo :: TyVar -> Coercion -> Coercion -> Coercion #
Make a Coercion from a tyvar, a kind coercion, and a body coercion. The kind of the tyvar should be the left-hand kind of the kind coercion.
mkTyConAppCo :: HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion #
Apply a type constructor to a list of coercions. It is the caller's responsibility to get the roles correct on argument coercions.
data CoercionHole #
A coercion to be filled in by the type-checker. See Note [Coercion holes]
Instances
Data CoercionHole # | |
Defined in TyCoRep Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CoercionHole -> c CoercionHole Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CoercionHole Source # toConstr :: CoercionHole -> Constr Source # dataTypeOf :: CoercionHole -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CoercionHole) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CoercionHole) Source # gmapT :: (forall b. Data b => b -> b) -> CoercionHole -> CoercionHole Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CoercionHole -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CoercionHole -> r Source # gmapQ :: (forall d. Data d => d -> u) -> CoercionHole -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> CoercionHole -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CoercionHole -> m CoercionHole Source # | |
Outputable CoercionHole # | |
Defined in TyCoRep |
type MCoercionR = MCoercion #
A semantically more meaningful type to represent what may or may not be a
useful Coercion
.
coHoleCoVar :: CoercionHole -> CoVar #
setCoHoleCoVar :: CoercionHole -> CoVar -> CoercionHole #
tyCoVarsOfCo :: Coercion -> TyCoVarSet #
tyCoVarsOfCoDSet :: Coercion -> DTyCoVarSet #
Get a deterministic set of the vars free in a coercion
tyCoFVsOfCo :: Coercion -> FV #
tyCoVarsOfCos :: [Coercion] -> TyCoVarSet #
tyCoFVsOfCos :: [Coercion] -> FV #
coVarsOfCo :: Coercion -> CoVarSet #
getCvSubstEnv :: TCvSubst -> CvSubstEnv #
substCoWith :: HasCallStack => [TyVar] -> [Type] -> Coercion -> Coercion #
Coercion substitution, see zipTvSubst
substCos :: HasCallStack => TCvSubst -> [Coercion] -> [Coercion] #
Substitute within several Coercion
s
The substitution has to satisfy the invariants described in
Note [The substitution invariant].
substCoVar :: TCvSubst -> CoVar -> Coercion #
substCoVars :: TCvSubst -> [CoVar] -> [Coercion] #
pprParendCo :: Coercion -> SDoc #
coercionSize :: Coercion -> Int #
data NormaliseStepResult ev #
The result of stepping in a normalisation function.
See topNormaliseTypeX
.
Constructors
NS_Done | Nothing more to do |
NS_Abort | Utter failure. The outer function should fail too. |
NS_Step RecTcChecker Type ev | We stepped, yielding new bits; ^ ev is evidence; Usually a co :: old type ~ new type |
type NormaliseStepper ev = RecTcChecker -> TyCon -> [Type] -> NormaliseStepResult ev #
A function to check if we can reduce a type by one step. Used
with topNormaliseTypeX
.
setCoVarUnique :: CoVar -> Unique -> CoVar #
setCoVarName :: CoVar -> Name -> CoVar #
pprCoAxiom :: CoAxiom br -> SDoc #
pprCoAxBranch :: CoAxiom br -> CoAxBranch -> SDoc #
pprCoAxBranchHdr :: CoAxiom br -> BranchIndex -> SDoc #
decomposeFunCo :: HasDebugCallStack => Role -> Coercion -> (Coercion, Coercion) #
getCoVar_maybe :: Coercion -> Maybe CoVar #
Attempts to obtain the type variable underlying a Coercion
splitTyConAppCo_maybe :: Coercion -> Maybe (TyCon, [Coercion]) #
Attempts to tease a coercion apart into a type constructor and the application of a number of coercion arguments to that constructor
splitAppCo_maybe :: Coercion -> Maybe (Coercion, Coercion) #
Attempt to take a coercion application apart.
coVarTypes :: HasDebugCallStack => CoVar -> Pair Type #
isReflCoVar_maybe :: Var -> Maybe Coercion #
isReflCo_maybe :: Coercion -> Maybe (Type, Role) #
Returns the type coerced if this coercion is reflexive. Guaranteed
to work very quickly. Sometimes a coercion can be reflexive, but not
obviously so. c.f. isReflexiveCo_maybe
isReflexiveCo_maybe :: Coercion -> Maybe (Type, Role) #
Extracts the coerced type from a reflexive coercion. This potentially walks over the entire coercion, so avoid doing this in a loop.
mkRepReflCo :: Type -> Coercion #
Make a representational reflexive coercion
mkNomReflCo :: Type -> Coercion #
Make a nominal reflexive coercion
Arguments
:: Role | r1 |
-> Coercion | co1 :: ty1a ~r1 ty1b |
-> Type | ty1a |
-> Type | ty1b |
-> Role | r2 |
-> Coercion | co2 :: ty2a ~r2 ty2b |
-> Type | ty2a |
-> Type | ty2b |
-> Role | r3 |
-> Coercion | :: ty1a ty2a ~r3 ty1b ty2b |
Like mkAppCo
, but allows the second coercion to be other than
nominal. See Note [mkTransAppCo]. Role r3 cannot be more stringent
than either r1 or r2.
mkHomoForAllCos :: [TyVar] -> Coercion -> Coercion #
Make a Coercion quantified over a type variable; the variable has the same type in both sides of the coercion
mkHomoForAllCos_NoRefl :: [TyVar] -> Coercion -> Coercion #
Like mkHomoForAllCos
, but doesn't check if the inner coercion
is reflexive.
mkCoVarCos :: [CoVar] -> [Coercion] #
isCoVar_maybe :: Coercion -> Maybe CoVar #
Extract a covar, if possible. This check is dirty. Be ashamed of yourself. (It's dirty because it cares about the structure of a coercion, which is morally reprehensible.)
mkAxInstCo :: Role -> CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Coercion #
mkUnbranchedAxInstCo :: Role -> CoAxiom Unbranched -> [Type] -> [Coercion] -> Coercion #
mkAxInstRHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type #
mkUnbranchedAxInstRHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type #
mkAxInstLHS :: CoAxiom br -> BranchIndex -> [Type] -> [Coercion] -> Type #
Return the left-hand type of the axiom, when the axiom is instantiated at the types given.
mkUnbranchedAxInstLHS :: CoAxiom Unbranched -> [Type] -> [Coercion] -> Type #
Instantiate the left-hand side of an unbranched axiom
mkHoleCo :: CoercionHole -> Coercion #
Make a coercion from a coercion hole
nthCoRole :: Int -> Coercion -> Role #
If you're about to call mkNthCo r n co
, then r
should be
whatever nthCoRole n co
returns.
mkCoherenceRightCo :: Coercion -> Coercion -> Coercion infixl 5 #
A CoherenceCo c1 c2 applies the coercion c2 to the left-hand type in the kind of c1. This function uses sym to get the coercion on the right-hand type of c1. Thus, if c1 :: s ~ t, then mkCoherenceRightCo c1 c2 has the kind (s ~ (t |> c2)) down through type constructors. The second coercion must be representational.
mkCoherenceLeftCo :: Coercion -> Coercion -> Coercion infixl 5 #
An explicitly directed synonym of mkCoherenceCo. The second coercion must be representational.
downgradeRole :: Role -> Role -> Coercion -> Coercion #
Like downgradeRole_maybe
, but panics if the change isn't a downgrade.
See Note [Role twiddling functions]
maybeSubCo :: EqRel -> Coercion -> Coercion #
If the EqRel is ReprEq, makes a SubCo; otherwise, does nothing. Note that the input coercion should always be nominal.
setNominalRole_maybe :: Role -> Coercion -> Maybe Coercion #
Converts a coercion to be nominal, if possible. See Note [Role twiddling functions]
tyConRolesX :: Role -> TyCon -> [Role] #
tyConRolesRepresentational :: TyCon -> [Role] #
promoteCoercion :: Coercion -> CoercionN #
like mkKindCo, but aggressively & recursively optimizes to avoid using a KindCo constructor. The output role is nominal.
castCoercionKind :: Coercion -> Coercion -> Coercion -> Coercion #
Creates a new coercion with both of its types casted by different casts castCoercionKind g h1 h2, where g :: t1 ~ t2, has type (t1 |> h1) ~ (t2 |> h2) The second and third coercions must be nominal.
mkPiCo :: Role -> Var -> Coercion -> Coercion #
Make a forall Coercion
, where both types related by the coercion
are quantified over the same type variable.
instNewTyCon_maybe :: TyCon -> [Type] -> Maybe (Type, Coercion) #
If co :: T ts ~ rep_ty
then:
instNewTyCon_maybe T ts = Just (rep_ty, co)
Checks for a newtype, and for being saturated
mapStepResult :: (ev1 -> ev2) -> NormaliseStepResult ev1 -> NormaliseStepResult ev2 #
composeSteppers :: NormaliseStepper ev -> NormaliseStepper ev -> NormaliseStepper ev #
Try one stepper and then try the next, if the first doesn't make progress. So if it returns NS_Done, it means that both steppers are satisfied
unwrapNewTypeStepper :: NormaliseStepper Coercion #
A NormaliseStepper
that unwraps newtypes, careful not to fall into
a loop. If it would fall into a loop, it produces NS_Abort
.
topNormaliseTypeX :: NormaliseStepper ev -> (ev -> ev -> ev) -> Type -> Maybe (ev, Type) #
A general function for normalising the top-level of a type. It continues
to use the provided NormaliseStepper
until that function fails, and then
this function returns. The roles of the coercions produced by the
NormaliseStepper
must all be the same, which is the role returned from
the call to topNormaliseTypeX
.
Typically ev is Coercion.
If topNormaliseTypeX step plus ty = Just (ev, ty')
then ty ~ev1~ t1 ~ev2~ t2 ... ~evn~ ty'
and ev = ev1 plus
ev2 plus
... plus
evn
If it returns Nothing then no newtype unwrapping could happen
topNormaliseNewType_maybe :: Type -> Maybe (Coercion, Type) #
Sometimes we want to look through a newtype
and get its associated coercion.
This function strips off newtype
layers enough to reveal something that isn't
a newtype
. Specifically, here's the invariant:
topNormaliseNewType_maybe rec_nts ty = Just (co, ty')
then (a) co : ty0 ~ ty'
.
(b) ty' is not a newtype.
The function returns Nothing
for non-newtypes
,
or unsaturated applications
This function does *not* look through type families, because it has no access to the type family environment. If you do have that at hand, consider to use topNormaliseType_maybe, which should be a drop-in replacement for topNormaliseNewType_maybe If topNormliseNewType_maybe ty = Just (co, ty'), then co : ty ~R ty'
eqCoercion :: Coercion -> Coercion -> Bool #
Syntactic equality of coercions
eqCoercionX :: RnEnv2 -> Coercion -> Coercion -> Bool #
Compare two Coercion
s, with respect to an RnEnv2
liftCoSubstWithEx :: Role -> [TyVar] -> [Coercion] -> [TyVar] -> [Type] -> (Type -> Coercion, [Type]) #
Arguments
:: LiftingContext | original LC |
-> TyVar | new variable to map... |
-> Coercion | ...to this lifted version |
-> LiftingContext |
Extend a lifting context with a new type mapping.
extendLiftingContextAndInScope #
Arguments
:: LiftingContext | Original LC |
-> TyVar | new variable to map... |
-> Coercion | to this coercion |
-> LiftingContext |
Extend a lifting context with a new mapping, and extend the in-scope set
zapLiftingContext :: LiftingContext -> LiftingContext #
Erase the environments in a lifting context
substForAllCoBndrUsingLC :: Bool -> (Coercion -> Coercion) -> LiftingContext -> TyVar -> Coercion -> (LiftingContext, TyVar, Coercion) #
Like substForAllCoBndr
, but works on a lifting context
liftCoSubstTyVar :: LiftingContext -> Role -> TyVar -> Maybe Coercion #
liftCoSubstVarBndrUsing :: (LiftingContext -> Type -> (Coercion, a)) -> LiftingContext -> TyVar -> (LiftingContext, TyVar, Coercion, a) #
isMappedByLC :: TyCoVar -> LiftingContext -> Bool #
Is a var in the domain of a lifting context?
substLeftCo :: LiftingContext -> Coercion -> Coercion #
substRightCo :: LiftingContext -> Coercion -> Coercion #
swapLiftCoEnv :: LiftCoEnv -> LiftCoEnv #
Apply "sym" to all coercions in a LiftCoEnv
lcSubstLeft :: LiftingContext -> TCvSubst #
lcSubstRight :: LiftingContext -> TCvSubst #
liftEnvSubstLeft :: TCvSubst -> LiftCoEnv -> TCvSubst #
liftEnvSubstRight :: TCvSubst -> LiftCoEnv -> TCvSubst #
lcTCvSubst :: LiftingContext -> TCvSubst #
Extract the underlying substitution from the LiftingContext
lcInScopeSet :: LiftingContext -> InScopeSet #
Get the InScopeSet
from a LiftingContext
coercionKinds :: [Coercion] -> Pair [Type] #
Apply coercionKind
to multiple Coercion
s
coercionKindRole :: Coercion -> (Pair Type, Role) #
Get a coercion's kind and role. Why both at once? See Note [Computing a coercion kind and role]
coercionRole :: Coercion -> Role #
Retrieve the role from a coercion.
buildCoercion :: Type -> Type -> CoercionN #
Assuming that two types are the same, ignoring coercions, find a nominal coercion between the types. This is useful when optimizing transitivity over coercion applications, where splitting two AppCos might yield different kinds. See Note [EtaAppCo] in OptCoercion.
module TysWiredIn
module HscTypes
data SpliceExplicitFlag #
Constructors
ExplicitSplice | = $(f x y) |
ImplicitSplice | = f x y, i.e. a naked top level expression |
Instances
Data SpliceExplicitFlag # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpliceExplicitFlag -> c SpliceExplicitFlag Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpliceExplicitFlag Source # toConstr :: SpliceExplicitFlag -> Constr Source # dataTypeOf :: SpliceExplicitFlag -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpliceExplicitFlag) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpliceExplicitFlag) Source # gmapT :: (forall b. Data b => b -> b) -> SpliceExplicitFlag -> SpliceExplicitFlag Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpliceExplicitFlag -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpliceExplicitFlag -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SpliceExplicitFlag -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SpliceExplicitFlag -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpliceExplicitFlag -> m SpliceExplicitFlag Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpliceExplicitFlag -> m SpliceExplicitFlag Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpliceExplicitFlag -> m SpliceExplicitFlag Source # |
data IntWithInf #
An integer or infinity
Instances
Eq IntWithInf # | |
Defined in BasicTypes | |
Num IntWithInf # | |
Defined in BasicTypes Methods (+) :: IntWithInf -> IntWithInf -> IntWithInf Source # (-) :: IntWithInf -> IntWithInf -> IntWithInf Source # (*) :: IntWithInf -> IntWithInf -> IntWithInf Source # negate :: IntWithInf -> IntWithInf Source # abs :: IntWithInf -> IntWithInf Source # signum :: IntWithInf -> IntWithInf Source # fromInteger :: Integer -> IntWithInf Source # | |
Ord IntWithInf # | |
Defined in BasicTypes Methods compare :: IntWithInf -> IntWithInf -> Ordering # (<) :: IntWithInf -> IntWithInf -> Bool # (<=) :: IntWithInf -> IntWithInf -> Bool # (>) :: IntWithInf -> IntWithInf -> Bool # (>=) :: IntWithInf -> IntWithInf -> Bool # max :: IntWithInf -> IntWithInf -> IntWithInf # min :: IntWithInf -> IntWithInf -> IntWithInf # | |
Outputable IntWithInf # | |
Defined in BasicTypes |
data FractionalLit #
Fractional Literal
Used (instead of Rational) to represent exactly the floating point literal that we encountered in the user's source program. This allows us to pretty-print exactly what the user wrote, which is important e.g. for floating point numbers that can't represented as Doubles (we used to via Double for pretty-printing). See also #2245.
Instances
data IntegralLit #
Integral Literal
Used (instead of Integer) to represent negative zegative zero which is required for NegativeLiterals extension to correctly parse `-0::Double` as negative zero. See also #13211.
Instances
data InlineSpec #
Inline Specification
Constructors
Inline | |
Inlinable | |
NoInline | |
NoUserInline |
Instances
Eq InlineSpec # | |
Defined in BasicTypes | |
Data InlineSpec # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InlineSpec -> c InlineSpec Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InlineSpec Source # toConstr :: InlineSpec -> Constr Source # dataTypeOf :: InlineSpec -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InlineSpec) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InlineSpec) Source # gmapT :: (forall b. Data b => b -> b) -> InlineSpec -> InlineSpec Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InlineSpec -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InlineSpec -> r Source # gmapQ :: (forall d. Data d => d -> u) -> InlineSpec -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> InlineSpec -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InlineSpec -> m InlineSpec Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InlineSpec -> m InlineSpec Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InlineSpec -> m InlineSpec Source # | |
Show InlineSpec # | |
Defined in BasicTypes | |
Outputable InlineSpec # | |
Defined in BasicTypes | |
Binary InlineSpec # | |
Defined in Binary Methods put_ :: BinHandle -> InlineSpec -> IO () # put :: BinHandle -> InlineSpec -> IO (Bin InlineSpec) # get :: BinHandle -> IO InlineSpec # |
data InlinePragma #
Constructors
InlinePragma | |
Fields
|
Instances
Eq InlinePragma # | |
Defined in BasicTypes | |
Data InlinePragma # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InlinePragma -> c InlinePragma Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InlinePragma Source # toConstr :: InlinePragma -> Constr Source # dataTypeOf :: InlinePragma -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InlinePragma) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InlinePragma) Source # gmapT :: (forall b. Data b => b -> b) -> InlinePragma -> InlinePragma Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InlinePragma -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InlinePragma -> r Source # gmapQ :: (forall d. Data d => d -> u) -> InlinePragma -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> InlinePragma -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InlinePragma -> m InlinePragma Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InlinePragma -> m InlinePragma Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InlinePragma -> m InlinePragma Source # | |
Outputable InlinePragma # | |
Defined in BasicTypes | |
Binary InlinePragma # | |
Defined in Binary Methods put_ :: BinHandle -> InlinePragma -> IO () # put :: BinHandle -> InlinePragma -> IO (Bin InlinePragma) # get :: BinHandle -> IO InlinePragma # |
data RuleMatchInfo #
Rule Match Information
Instances
data Activation #
Constructors
NeverActive | |
AlwaysActive | |
ActiveBefore SourceText PhaseNum | |
ActiveAfter SourceText PhaseNum |
Instances
Eq Activation # | |
Defined in BasicTypes | |
Data Activation # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Activation -> c Activation Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Activation Source # toConstr :: Activation -> Constr Source # dataTypeOf :: Activation -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Activation) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Activation) Source # gmapT :: (forall b. Data b => b -> b) -> Activation -> Activation Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Activation -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Activation -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Activation -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Activation -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Activation -> m Activation Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Activation -> m Activation Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Activation -> m Activation Source # | |
Outputable Activation # | |
Defined in BasicTypes | |
Binary Activation # | |
Defined in Binary Methods put_ :: BinHandle -> Activation -> IO () # put :: BinHandle -> Activation -> IO (Bin Activation) # get :: BinHandle -> IO Activation # |
data CompilerPhase #
Constructors
Phase PhaseNum | |
InitialPhase |
Instances
Outputable CompilerPhase # | |
Defined in BasicTypes |
data SourceText #
Constructors
SourceText String | |
NoSourceText | For when code is generated, e.g. TH, deriving. The pretty printer will then make its own representation of the item. |
Instances
Eq SourceText # | |
Defined in BasicTypes | |
Data SourceText # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceText -> c SourceText Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceText Source # toConstr :: SourceText -> Constr Source # dataTypeOf :: SourceText -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceText) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceText) Source # gmapT :: (forall b. Data b => b -> b) -> SourceText -> SourceText Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceText -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceText -> r Source # gmapQ :: (forall d. Data d => d -> u) -> SourceText -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceText -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceText -> m SourceText Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceText -> m SourceText Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceText -> m SourceText Source # | |
Show SourceText # | |
Defined in BasicTypes | |
Outputable SourceText # | |
Defined in BasicTypes | |
Binary SourceText # | |
Defined in Binary Methods put_ :: BinHandle -> SourceText -> IO () # put :: BinHandle -> SourceText -> IO (Bin SourceText) # get :: BinHandle -> IO SourceText # |
data SuccessFlag #
Instances
Outputable SuccessFlag # | |
Defined in BasicTypes |
data DefMethSpec ty #
Default Method Specification
Instances
Outputable (DefMethSpec ty) # | |
Defined in BasicTypes | |
Binary (DefMethSpec IfaceType) # | |
data TailCallInfo #
Constructors
AlwaysTailCalled JoinArity | |
NoTailCallInfo |
Instances
Eq TailCallInfo # | |
Defined in BasicTypes | |
Outputable TailCallInfo # | |
Defined in BasicTypes |
type InterestingCxt = Bool #
Interesting Context
identifier Occurrence Information
Constructors
ManyOccs | There are many occurrences, or unknown occurrences |
Fields
| |
IAmDead | Marks unused variables. Sometimes useful for lambda and case-bound variables. |
OneOcc | Occurs exactly once (per branch), not inside a rule |
Fields
| |
IAmALoopBreaker | This identifier breaks a loop of mutually recursive functions. The field marks whether it is only a loop breaker due to a reference in a rule |
Fields
|
Constructors
BoxedTuple | |
UnboxedTuple | |
ConstraintTuple |
Instances
Eq TupleSort # | |
Data TupleSort # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TupleSort -> c TupleSort Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TupleSort Source # toConstr :: TupleSort -> Constr Source # dataTypeOf :: TupleSort -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TupleSort) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TupleSort) Source # gmapT :: (forall b. Data b => b -> b) -> TupleSort -> TupleSort Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TupleSort -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TupleSort -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TupleSort -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TupleSort -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TupleSort -> m TupleSort Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TupleSort -> m TupleSort Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TupleSort -> m TupleSort Source # | |
Binary TupleSort # | |
A general-purpose pretty-printing precedence type.
data OverlapMode #
Constructors
NoOverlap SourceText | This instance must not overlap another |
Overlappable SourceText | Silently ignore this instance if you find a more specific one that matches the constraint you are trying to resolve Example: constraint (Foo [Int]) instance Foo [Int] instance {--} Foo [a] Since the second instance has the Overlappable flag, the first instance will be chosen (otherwise its ambiguous which to choose) |
Overlapping SourceText | Silently ignore any more general instances that may be used to solve the constraint. Example: constraint (Foo [Int]) instance {--} Foo [Int] instance Foo [a] Since the first instance has the Overlapping flag, the second---more general---instance will be ignored (otherwise it is ambiguous which to choose) |
Overlaps SourceText | Equivalent to having both |
Incoherent SourceText | Behave like Overlappable and Overlapping, and in addition pick an an arbitrary one if there are multiple matching candidates, and don't worry about later instantiation Example: constraint (Foo [b])
instance {-# INCOHERENT -} Foo [Int]
instance Foo [a]
Without the Incoherent flag, we'd complain that
instantiating |
Instances
Eq OverlapMode # | |
Defined in BasicTypes | |
Data OverlapMode # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OverlapMode -> c OverlapMode Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OverlapMode Source # toConstr :: OverlapMode -> Constr Source # dataTypeOf :: OverlapMode -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OverlapMode) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OverlapMode) Source # gmapT :: (forall b. Data b => b -> b) -> OverlapMode -> OverlapMode Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OverlapMode -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OverlapMode -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OverlapMode -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OverlapMode -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OverlapMode -> m OverlapMode Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OverlapMode -> m OverlapMode Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OverlapMode -> m OverlapMode Source # | |
Outputable OverlapMode # | |
Defined in BasicTypes | |
Binary OverlapMode # | |
Defined in Binary Methods put_ :: BinHandle -> OverlapMode -> IO () # put :: BinHandle -> OverlapMode -> IO (Bin OverlapMode) # get :: BinHandle -> IO OverlapMode # |
data OverlapFlag #
The semantics allowed for overlapping instances for a particular
instance. See Note [Safe Haskell isSafeOverlap] (in hs
) for a
explanation of the isSafeOverlap
field.
AnnKeywordId
:AnnOpen
'{-# OVERLAPPABLE'
or'{-# OVERLAPPING'
or'{-# OVERLAPS'
or'{-# INCOHERENT'
,AnnClose
`#-}`
,
Constructors
OverlapFlag | |
Fields |
Instances
Eq OverlapFlag # | |
Defined in BasicTypes | |
Data OverlapFlag # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OverlapFlag -> c OverlapFlag Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OverlapFlag Source # toConstr :: OverlapFlag -> Constr Source # dataTypeOf :: OverlapFlag -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OverlapFlag) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OverlapFlag) Source # gmapT :: (forall b. Data b => b -> b) -> OverlapFlag -> OverlapFlag Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OverlapFlag -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OverlapFlag -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OverlapFlag -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OverlapFlag -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OverlapFlag -> m OverlapFlag Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OverlapFlag -> m OverlapFlag Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OverlapFlag -> m OverlapFlag Source # | |
Outputable OverlapFlag # | |
Defined in BasicTypes | |
Binary OverlapFlag # | |
Defined in Binary Methods put_ :: BinHandle -> OverlapFlag -> IO () # put :: BinHandle -> OverlapFlag -> IO (Bin OverlapFlag) # get :: BinHandle -> IO OverlapFlag # |
Constructors
FromSource | |
Generated |
Instances
Eq Origin # | |
Data Origin # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Origin -> c Origin Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Origin Source # toConstr :: Origin -> Constr Source # dataTypeOf :: Origin -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Origin) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Origin) Source # gmapT :: (forall b. Data b => b -> b) -> Origin -> Origin Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Origin -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Origin -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Origin -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Origin -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Origin -> m Origin Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Origin -> m Origin Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Origin -> m Origin Source # | |
Outputable Origin # | |
Recursivity Flag
Constructors
Recursive | |
NonRecursive |
Instances
Eq RecFlag # | |
Data RecFlag # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RecFlag -> c RecFlag Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RecFlag Source # toConstr :: RecFlag -> Constr Source # dataTypeOf :: RecFlag -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RecFlag) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RecFlag) Source # gmapT :: (forall b. Data b => b -> b) -> RecFlag -> RecFlag Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RecFlag -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RecFlag -> r Source # gmapQ :: (forall d. Data d => d -> u) -> RecFlag -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> RecFlag -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RecFlag -> m RecFlag Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RecFlag -> m RecFlag Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RecFlag -> m RecFlag Source # | |
Outputable RecFlag # | |
Binary RecFlag # | |
Instances
Eq Boxity # | |
Data Boxity # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Boxity -> c Boxity Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Boxity Source # toConstr :: Boxity -> Constr Source # dataTypeOf :: Boxity -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Boxity) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Boxity) Source # gmapT :: (forall b. Data b => b -> b) -> Boxity -> Boxity Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Boxity -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Boxity -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Boxity -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Boxity -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Boxity -> m Boxity Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Boxity -> m Boxity Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Boxity -> m Boxity Source # | |
Outputable Boxity # | |
data TopLevelFlag #
Constructors
TopLevel | |
NotTopLevel |
Instances
Outputable TopLevelFlag # | |
Defined in BasicTypes |
data LexicalFixity #
Captures the fixity of declarations as they are parsed. This is not necessarily the same as the fixity declaration, as the normal fixity may be overridden using parens or backticks.
Instances
Eq LexicalFixity # | |
Defined in BasicTypes Methods (==) :: LexicalFixity -> LexicalFixity -> Bool # (/=) :: LexicalFixity -> LexicalFixity -> Bool # | |
Data LexicalFixity # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LexicalFixity -> c LexicalFixity Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LexicalFixity Source # toConstr :: LexicalFixity -> Constr Source # dataTypeOf :: LexicalFixity -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LexicalFixity) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LexicalFixity) Source # gmapT :: (forall b. Data b => b -> b) -> LexicalFixity -> LexicalFixity Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LexicalFixity -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LexicalFixity -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LexicalFixity -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LexicalFixity -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LexicalFixity -> m LexicalFixity Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LexicalFixity -> m LexicalFixity Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LexicalFixity -> m LexicalFixity Source # | |
Outputable LexicalFixity # | |
Defined in BasicTypes |
data FixityDirection #
Instances
Constructors
Fixity SourceText Int FixityDirection |
Instances
Eq Fixity # | |
Data Fixity # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity Source # toConstr :: Fixity -> Constr Source # dataTypeOf :: Fixity -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) Source # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # | |
Outputable Fixity # | |
Binary Fixity # | |
type RuleName = FastString #
data WarningTxt #
Warning Text
reason/explanation from a WARNING or DEPRECATED pragma
Constructors
WarningTxt (Located SourceText) [Located StringLiteral] | |
DeprecatedTxt (Located SourceText) [Located StringLiteral] |
Instances
Eq WarningTxt # | |
Defined in BasicTypes | |
Data WarningTxt # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WarningTxt -> c WarningTxt Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WarningTxt Source # toConstr :: WarningTxt -> Constr Source # dataTypeOf :: WarningTxt -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WarningTxt) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WarningTxt) Source # gmapT :: (forall b. Data b => b -> b) -> WarningTxt -> WarningTxt Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WarningTxt -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WarningTxt -> r Source # gmapQ :: (forall d. Data d => d -> u) -> WarningTxt -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> WarningTxt -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WarningTxt -> m WarningTxt Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WarningTxt -> m WarningTxt Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WarningTxt -> m WarningTxt Source # | |
Outputable WarningTxt # | |
Defined in BasicTypes | |
Binary WarningTxt # | |
Defined in Binary Methods put_ :: BinHandle -> WarningTxt -> IO () # put :: BinHandle -> WarningTxt -> IO (Bin WarningTxt) # get :: BinHandle -> IO WarningTxt # |
data StringLiteral #
A String Literal in the source, including its original raw format for use by source to source manipulation tools.
Constructors
StringLiteral | |
Fields
|
Instances
data FunctionOrData #
Constructors
IsFunction | |
IsData |
Instances
Constructors
NotSwapped | |
IsSwapped |
data OneShotInfo #
If the Id
is a lambda-bound variable then it may have lambda-bound
variable info. Sometimes we know whether the lambda binding this variable
is a "one-shot" lambda; that is, whether it is applied at most once.
This information may be useful in optimisation, as computations may safely be floated inside such a lambda without risk of duplicating work.
Constructors
NoOneShotInfo | No information |
OneShotLam | The lambda is applied at most once. |
Instances
Eq OneShotInfo # | |
Defined in BasicTypes | |
Outputable OneShotInfo # | |
Defined in BasicTypes |
Constructor Tag
Type of the tags associated with each constructor possibility or superclass selector
The number of arguments that a join point takes. Unlike the arity of a function, this is a purely syntactic property and is fixed when the join point is created (or converted from a value). Both type and value arguments are counted.
The number of value arguments that can be applied to a value before it does "real work". So: fib 100 has arity 0 x -> fib x has arity 1 See also Note [Definition of arity] in CoreArity
data LeftOrRight #
Instances
Eq LeftOrRight # | |
Defined in BasicTypes | |
Data LeftOrRight # | |
Defined in BasicTypes Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LeftOrRight -> c LeftOrRight Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LeftOrRight Source # toConstr :: LeftOrRight -> Constr Source # dataTypeOf :: LeftOrRight -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LeftOrRight) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LeftOrRight) Source # gmapT :: (forall b. Data b => b -> b) -> LeftOrRight -> LeftOrRight Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LeftOrRight -> r Source # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LeftOrRight -> r Source # gmapQ :: (forall d. Data d => d -> u) -> LeftOrRight -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> LeftOrRight -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftOrRight -> m LeftOrRight Source # | |
Outputable LeftOrRight # | |
Defined in BasicTypes | |
Binary LeftOrRight # | |
Defined in Binary Methods put_ :: BinHandle -> LeftOrRight -> IO () # put :: BinHandle -> LeftOrRight -> IO (Bin LeftOrRight) # get :: BinHandle -> IO LeftOrRight # |
pickLR :: LeftOrRight -> (a, a) -> a #
noOneShotInfo :: OneShotInfo #
It is always safe to assume that an Id
has no lambda-bound variable information
isOneShotInfo :: OneShotInfo -> Bool #
hasNoOneShotInfo :: OneShotInfo -> Bool #
worstOneShot :: OneShotInfo -> OneShotInfo -> OneShotInfo #
bestOneShot :: OneShotInfo -> OneShotInfo -> OneShotInfo #
bumpVersion :: Version -> Version #
pprWarningTxtForMsg :: WarningTxt -> SDoc #
pprRuleName :: RuleName -> SDoc #
maxPrecedence :: Int #
minPrecedence :: Int #
defaultFixity :: Fixity #
negateFixity :: Fixity #
funTyFixity :: Fixity #
isNotTopLevel :: TopLevelFlag -> Bool #
isTopLevel :: TopLevelFlag -> Bool #
boolToRecFlag :: Bool -> RecFlag #
isGenerated :: Origin -> Bool #
hasIncoherentFlag :: OverlapMode -> Bool #
hasOverlappableFlag :: OverlapMode -> Bool #
hasOverlappingFlag :: OverlapMode -> Bool #
tupleSortBoxity :: TupleSort -> Boxity #
boxityTupleSort :: Boxity -> TupleSort #
tupleParens :: TupleSort -> SDoc -> SDoc #
Arguments
:: (a -> SDoc) | The pretty printing function to use |
-> a | The things to be pretty printed |
-> ConTag | Alternative (one-based) |
-> Arity | Arity |
-> SDoc |
|
Pretty print an alternative in an unboxed sum e.g. "| a | |".
isManyOccs :: OccInfo -> Bool #
seqOccInfo :: OccInfo -> () #
tailCallInfo :: OccInfo -> TailCallInfo #
zapOccTailCallInfo :: OccInfo -> OccInfo #
isAlwaysTailCalled :: OccInfo -> Bool #
isWeakLoopBreaker :: OccInfo -> Bool #
isStrongLoopBreaker :: OccInfo -> Bool #
zapFragileOcc :: OccInfo -> OccInfo #
successIf :: Bool -> SuccessFlag #
succeeded :: SuccessFlag -> Bool #
failed :: SuccessFlag -> Bool #
pprWithSourceText :: SourceText -> SDoc -> SDoc #
Special combinator for showing string literals.
isConLike :: RuleMatchInfo -> Bool #
isFunLike :: RuleMatchInfo -> Bool #
noUserInlineSpec :: InlineSpec -> Bool #
isInlinePragma :: InlinePragma -> Bool #
isInlinablePragma :: InlinePragma -> Bool #
isAnyInlinePragma :: InlinePragma -> Bool #
inlinePragmaSat :: InlinePragma -> Maybe Arity #
pprInline :: InlinePragma -> SDoc #
pprInlineDebug :: InlinePragma -> SDoc #
isActive :: CompilerPhase -> Activation -> Bool #
isActiveIn :: PhaseNum -> Activation -> Bool #
competesWith :: Activation -> Activation -> Bool #
isNeverActive :: Activation -> Bool #
isAlwaysActive :: Activation -> Bool #
isEarlyActive :: Activation -> Bool #
mkIntegralLit :: Integral a => a -> IntegralLit #
mkFractionalLit :: Real a => a -> FractionalLit #
integralFractionalLit :: Bool -> Integer -> FractionalLit #
infinity :: IntWithInf #
A representation of infinity
intGtLimit :: Int -> IntWithInf -> Bool #
treatZeroAsInf :: Int -> IntWithInf #
Turn a positive number into an IntWithInf
, where 0 represents infinity
mkIntWithInf :: Int -> IntWithInf #
Inject any integer into an IntWithInf
module VarSet
module VarEnv
module NameSet
module NameEnv
module UniqSet
module UniqFM
module FiniteMap
module Util
module GHC.Serialized
module SrcLoc
module Outputable
module UniqSupply
Class of things that we can obtain a Unique
from
Instances
Unique identifier.
The type of unique identifiers that are used in many places in GHC
for fast ordering and equality tests. You should generate these with
the functions from the UniqSupply
module
These are sometimes also referred to as "keys" in comments in GHC.
module FastString