Belos  Version of the Day
Public Member Functions | List of all members
Belos::DGKSOrthoManager< ScalarType, MV, OP > Class Template Reference

An implementation of the Belos::MatOrthoManager that performs orthogonalization using (potentially) multiple steps of classical Gram-Schmidt. More...

#include <BelosDGKSOrthoManager.hpp>

Inheritance diagram for Belos::DGKSOrthoManager< ScalarType, MV, OP >:
Inheritance graph
[legend]

Public Member Functions

Teuchos::RCP< const Teuchos::ParameterListgetFastParameters () const
 
Constructor/Destructor
 DGKSOrthoManager (const std::string &label="Belos", Teuchos::RCP< const OP > Op=Teuchos::null, const int max_blk_ortho=2, const MagnitudeType blk_tol=10 *MGT::squareroot(MGT::eps()), const MagnitudeType dep_tol=MGT::one()/MGT::squareroot(2 *MGT::one()), const MagnitudeType sing_tol=10 *MGT::eps())
 Constructor specifying re-orthogonalization tolerance. More...
 
 DGKSOrthoManager (const Teuchos::RCP< Teuchos::ParameterList > &plist, const std::string &label="Belos", Teuchos::RCP< const OP > Op=Teuchos::null)
 Constructor that takes a list of parameters. More...
 
 ~DGKSOrthoManager ()
 Destructor. More...
 
Implementation of Teuchos::ParameterListAcceptorDefaultBase interface
void setParameterList (const Teuchos::RCP< Teuchos::ParameterList > &plist)
 
Teuchos::RCP< const Teuchos::ParameterListgetValidParameters () const
 
Accessor routines
void setBlkTol (const MagnitudeType blk_tol)
 Set parameter for block re-orthogonalization threshhold. More...
 
void setDepTol (const MagnitudeType dep_tol)
 Set parameter for re-orthogonalization threshhold. More...
 
void setSingTol (const MagnitudeType sing_tol)
 Set parameter for singular block detection. More...
 
MagnitudeType getBlkTol () const
 Return parameter for block re-orthogonalization threshhold. More...
 
MagnitudeType getDepTol () const
 Return parameter for re-orthogonalization threshhold. More...
 
MagnitudeType getSingTol () const
 Return parameter for singular block detection. More...
 
Error methods
Teuchos::ScalarTraits< ScalarType >::magnitudeType orthonormError (const MV &X) const
 This method computes the error in orthonormality of a multivector. More...
 
Teuchos::ScalarTraits< ScalarType >::magnitudeType orthonormError (const MV &X, Teuchos::RCP< const MV > MX) const
 This method computes the error in orthonormality of a multivector. The method has the option of exploiting a caller-provided MX. More...
 
Teuchos::ScalarTraits< ScalarType >::magnitudeType orthogError (const MV &X1, const MV &X2) const
 This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y). More...
 
Teuchos::ScalarTraits< ScalarType >::magnitudeType orthogError (const MV &X1, Teuchos::RCP< const MV > MX1, const MV &X2) const
 This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y). The method has the option of exploiting a caller-provided MX. More...
 
Label methods
void setLabel (const std::string &label)
 This method sets the label used by the timers in the orthogonalization manager. More...
 
const std::string & getLabel () const
 This method returns the label being used by the timers in the orthogonalization manager. More...
 
- Public Member Functions inherited from Belos::MatOrthoManager< ScalarType, MV, OP >
 MatOrthoManager (Teuchos::RCP< const OP > Op=Teuchos::null)
 Default constructor. More...
 
virtual ~MatOrthoManager ()
 Destructor. More...
 
void setOp (Teuchos::RCP< const OP > Op)
 Set operator. More...
 
Teuchos::RCP< const OP > getOp () const
 Get operator. More...
 
void innerProd (const MV &X, const MV &Y, Teuchos::SerialDenseMatrix< int, ScalarType > &Z) const
 Provides the inner product defining the orthogonality concepts, using the provided operator. More...
 
void innerProd (const MV &X, const MV &Y, Teuchos::RCP< const MV > MY, Teuchos::SerialDenseMatrix< int, ScalarType > &Z) const
 Provides the inner product defining the orthogonality concepts, using the provided operator. The method has the options of exploiting a caller-provided MX. More...
 
void norm (const MV &X, std::vector< typename Teuchos::ScalarTraits< ScalarType >::magnitudeType > &normvec) const
 Provides the norm induced by innerProd(). More...
 
void norm (const MV &X, Teuchos::RCP< const MV > MX, std::vector< typename Teuchos::ScalarTraits< ScalarType >::magnitudeType > &normvec) const
 Compute norm of each column of X. More...
 
int projectAndNormalize (MV &X, Teuchos::RCP< MV > MX, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B, Teuchos::ArrayView< Teuchos::RCP< const MV > > Q) const
 Given a set of bases Q[i] and a multivector X, this method computes an orthonormal basis for $colspan(X) - \sum_i colspan(Q[i])$. More...
 
- Public Member Functions inherited from Belos::OrthoManager< ScalarType, MV >
 OrthoManager ()
 Default constructor. More...
 
virtual ~OrthoManager ()
 Destructor. More...
 
int projectAndNormalize (MV &X, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B, Teuchos::ArrayView< Teuchos::RCP< const MV > > Q) const
 Project X against the Q[i] and normalize X. More...
 
- Public Member Functions inherited from Teuchos::ParameterListAcceptorDefaultBase
RCP< ParameterListgetNonconstParameterList ()
 
RCP< ParameterListunsetParameterList ()
 
RCP< const ParameterListgetParameterList () const
 
RCP< ParameterListgetNonconstParameterList ()
 
RCP< ParameterListunsetParameterList ()
 
RCP< const ParameterListgetParameterList () const
 
- Public Member Functions inherited from Teuchos::ParameterListAcceptor
virtual ~ParameterListAcceptor ()
 
virtual RCP< const DependencySheetgetDependencies () const
 
virtual RCP< const DependencySheetgetDependencies () const
 

Orthogonalization methods

void project (MV &X, Teuchos::RCP< MV > MX, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C, Teuchos::ArrayView< Teuchos::RCP< const MV > > Q) const
 Given a list of (mutually and internally) orthonormal bases Q, this method takes a multivector X and projects it onto the space orthogonal to the individual Q[i], optionally returning the coefficients of X for the individual Q[i]. All of this is done with respect to the inner product innerProd(). More...
 
void project (MV &X, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C, Teuchos::ArrayView< Teuchos::RCP< const MV > > Q) const
 This method calls project(X,Teuchos::null,C,Q); see documentation for that function. More...
 
int normalize (MV &X, Teuchos::RCP< MV > MX, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B) const
 This method takes a multivector X and attempts to compute an orthonormal basis for $colspan(X)$, with respect to innerProd(). More...
 
int normalize (MV &X, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B) const
 This method calls normalize(X,Teuchos::null,B); see documentation for that function. More...
 
virtual int projectAndNormalizeWithMxImpl (MV &X, Teuchos::RCP< MV > MX, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B, Teuchos::ArrayView< Teuchos::RCP< const MV > > Q) const
 Given a set of bases Q[i] and a multivector X, this method computes an orthonormal basis for $colspan(X) - \sum_i colspan(Q[i])$. More...
 

Additional Inherited Members

- Protected Member Functions inherited from Belos::MatOrthoManager< ScalarType, MV, OP >
virtual int projectAndNormalizeImpl (MV &X, Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > > C, Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > B, Teuchos::ArrayView< Teuchos::RCP< const MV > > Q) const
 
- Protected Member Functions inherited from Belos::OrthoManager< ScalarType, MV >
- Protected Member Functions inherited from Teuchos::ParameterListAcceptorDefaultBase
void setMyParamList (const RCP< ParameterList > &paramList)
 
RCP< ParameterListgetMyNonconstParamList ()
 
RCP< const ParameterListgetMyParamList () const
 
void setMyParamList (const RCP< ParameterList > &paramList)
 
RCP< ParameterListgetMyNonconstParamList ()
 
RCP< const ParameterListgetMyParamList () const
 
- Protected Attributes inherited from Belos::MatOrthoManager< ScalarType, MV, OP >
Teuchos::RCP< const OP > _Op
 
bool _hasOp
 

Detailed Description

template<class ScalarType, class MV, class OP>
class Belos::DGKSOrthoManager< ScalarType, MV, OP >

An implementation of the Belos::MatOrthoManager that performs orthogonalization using (potentially) multiple steps of classical Gram-Schmidt.

Author
Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist

Definition at line 73 of file BelosDGKSOrthoManager.hpp.

Constructor & Destructor Documentation

◆ DGKSOrthoManager() [1/2]

template<class ScalarType, class MV, class OP>
Belos::DGKSOrthoManager< ScalarType, MV, OP >::DGKSOrthoManager ( const std::string &  label = "Belos",
Teuchos::RCP< const OP >  Op = Teuchos::null,
const int  max_blk_ortho = 2,
const MagnitudeType  blk_tol = 10*MGT::squarerootMGT::eps() ),
const MagnitudeType  dep_tol = MGT::one()/MGT::squareroot( 2*MGT::one() ),
const MagnitudeType  sing_tol = 10*MGT::eps() 
)
inline

Constructor specifying re-orthogonalization tolerance.

Definition at line 89 of file BelosDGKSOrthoManager.hpp.

◆ DGKSOrthoManager() [2/2]

template<class ScalarType, class MV, class OP>
Belos::DGKSOrthoManager< ScalarType, MV, OP >::DGKSOrthoManager ( const Teuchos::RCP< Teuchos::ParameterList > &  plist,
const std::string &  label = "Belos",
Teuchos::RCP< const OP >  Op = Teuchos::null 
)
inline

Constructor that takes a list of parameters.

Definition at line 109 of file BelosDGKSOrthoManager.hpp.

◆ ~DGKSOrthoManager()

template<class ScalarType, class MV, class OP>
Belos::DGKSOrthoManager< ScalarType, MV, OP >::~DGKSOrthoManager ( )
inline

Destructor.

Definition at line 128 of file BelosDGKSOrthoManager.hpp.

Member Function Documentation

◆ setParameterList()

template<class ScalarType, class MV, class OP>
void Belos::DGKSOrthoManager< ScalarType, MV, OP >::setParameterList ( const Teuchos::RCP< Teuchos::ParameterList > &  plist)
inlinevirtual

Implements Teuchos::ParameterListAcceptor.

Definition at line 135 of file BelosDGKSOrthoManager.hpp.

◆ getValidParameters()

template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList> Belos::DGKSOrthoManager< ScalarType, MV, OP >::getValidParameters ( ) const
inlinevirtual

Reimplemented from Teuchos::ParameterListAcceptor.

Definition at line 170 of file BelosDGKSOrthoManager.hpp.

◆ getFastParameters()

template<class ScalarType, class MV, class OP>
Teuchos::RCP<const Teuchos::ParameterList> Belos::DGKSOrthoManager< ScalarType, MV, OP >::getFastParameters ( ) const
inline

Definition at line 209 of file BelosDGKSOrthoManager.hpp.

◆ setBlkTol()

template<class ScalarType, class MV, class OP>
void Belos::DGKSOrthoManager< ScalarType, MV, OP >::setBlkTol ( const MagnitudeType  blk_tol)
inline

Set parameter for block re-orthogonalization threshhold.

Definition at line 236 of file BelosDGKSOrthoManager.hpp.

◆ setDepTol()

template<class ScalarType, class MV, class OP>
void Belos::DGKSOrthoManager< ScalarType, MV, OP >::setDepTol ( const MagnitudeType  dep_tol)
inline

Set parameter for re-orthogonalization threshhold.

Definition at line 250 of file BelosDGKSOrthoManager.hpp.

◆ setSingTol()

template<class ScalarType, class MV, class OP>
void Belos::DGKSOrthoManager< ScalarType, MV, OP >::setSingTol ( const MagnitudeType  sing_tol)
inline

Set parameter for singular block detection.

Definition at line 260 of file BelosDGKSOrthoManager.hpp.

◆ getBlkTol()

template<class ScalarType, class MV, class OP>
MagnitudeType Belos::DGKSOrthoManager< ScalarType, MV, OP >::getBlkTol ( ) const
inline

Return parameter for block re-orthogonalization threshhold.

Definition at line 270 of file BelosDGKSOrthoManager.hpp.

◆ getDepTol()

template<class ScalarType, class MV, class OP>
MagnitudeType Belos::DGKSOrthoManager< ScalarType, MV, OP >::getDepTol ( ) const
inline

Return parameter for re-orthogonalization threshhold.

Definition at line 273 of file BelosDGKSOrthoManager.hpp.

◆ getSingTol()

template<class ScalarType, class MV, class OP>
MagnitudeType Belos::DGKSOrthoManager< ScalarType, MV, OP >::getSingTol ( ) const
inline

Return parameter for singular block detection.

Definition at line 276 of file BelosDGKSOrthoManager.hpp.

◆ project() [1/2]

template<class ScalarType , class MV , class OP >
void Belos::DGKSOrthoManager< ScalarType, MV, OP >::project ( MV &  X,
Teuchos::RCP< MV >  MX,
Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > >  C,
Teuchos::ArrayView< Teuchos::RCP< const MV > >  Q 
) const
virtual

Given a list of (mutually and internally) orthonormal bases Q, this method takes a multivector X and projects it onto the space orthogonal to the individual Q[i], optionally returning the coefficients of X for the individual Q[i]. All of this is done with respect to the inner product innerProd().

After calling this routine, X will be orthogonal to each of the Q[i].

The method uses either one or two steps of classical Gram-Schmidt. The algebraically equivalent projection matrix is $P_Q = I - Q Q^H Op$, if Op is the matrix specified for use in the inner product. Note, this is not an orthogonal projector.

Parameters
X[in/out] The multivector to be modified. On output, X will be orthogonal to Q[i] with respect to innerProd().
MX[in/out] The image of X under the operator Op. If $ MX != 0$: On input, this is expected to be consistent with X. On output, this is updated consistent with updates to X. If $ MX == 0$ or $ Op == 0$: MX is not referenced.
C[out] The coefficients of X in the *Q[i], with respect to innerProd(). If C[i] is a non-null pointer and *C[i] matches the dimensions of X and *Q[i], then the coefficients computed during the orthogonalization routine will be stored in the matrix *C[i]. If C[i] is a non-null pointer whose size does not match the dimensions of X and *Q[i], then a std::invalid_argument std::exception will be thrown. Otherwise, if C.size() < i or C[i] is a null pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.
Q[in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each Q[i] is assumed to have orthonormal columns, and the Q[i] are assumed to be mutually orthogonal.

Implements Belos::MatOrthoManager< ScalarType, MV, OP >.

Definition at line 738 of file BelosDGKSOrthoManager.hpp.

◆ project() [2/2]

template<class ScalarType, class MV, class OP>
void Belos::DGKSOrthoManager< ScalarType, MV, OP >::project ( MV &  X,
Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > >  C,
Teuchos::ArrayView< Teuchos::RCP< const MV > >  Q 
) const
inlinevirtual

This method calls project(X,Teuchos::null,C,Q); see documentation for that function.

Reimplemented from Belos::MatOrthoManager< ScalarType, MV, OP >.

Definition at line 318 of file BelosDGKSOrthoManager.hpp.

◆ normalize() [1/2]

template<class ScalarType , class MV , class OP >
int Belos::DGKSOrthoManager< ScalarType, MV, OP >::normalize ( MV &  X,
Teuchos::RCP< MV >  MX,
Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >  B 
) const
virtual

This method takes a multivector X and attempts to compute an orthonormal basis for $colspan(X)$, with respect to innerProd().

The method uses classical Gram-Schmidt, so that the coefficient matrix B is upper triangular.

This routine returns an integer rank stating the rank of the computed basis. If X does not have full rank and the normalize() routine does not attempt to augment the subspace, then rank may be smaller than the number of columns in X. In this case, only the first rank columns of output X and first rank rows of B will be valid.

The method attempts to find a basis with dimension the same as the number of columns in X. It does this by augmenting linearly dependant vectors in X with random directions. A finite number of these attempts will be made; therefore, it is possible that the dimension of the computed basis is less than the number of vectors in X.

Parameters
X[in/out] The multivector to the modified. On output, X will have some number of orthonormal columns (with respect to innerProd()).
MX[in/out] The image of X under the operator Op. If $ MX != 0$: On input, this is expected to be consistent with X. On output, this is updated consistent with updates to X. If $ MX == 0$ or $ Op == 0$: MX is not referenced.
B[out] The coefficients of the original X with respect to the computed basis. The first rows in B corresponding to the valid columns in X will be upper triangular.
Returns
Rank of the basis computed by this method.

Implements Belos::MatOrthoManager< ScalarType, MV, OP >.

Definition at line 722 of file BelosDGKSOrthoManager.hpp.

◆ normalize() [2/2]

template<class ScalarType, class MV, class OP>
int Belos::DGKSOrthoManager< ScalarType, MV, OP >::normalize ( MV &  X,
Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >  B 
) const
inlinevirtual

This method calls normalize(X,Teuchos::null,B); see documentation for that function.

Reimplemented from Belos::MatOrthoManager< ScalarType, MV, OP >.

Definition at line 356 of file BelosDGKSOrthoManager.hpp.

◆ projectAndNormalizeWithMxImpl()

template<class ScalarType , class MV , class OP >
int Belos::DGKSOrthoManager< ScalarType, MV, OP >::projectAndNormalizeWithMxImpl ( MV &  X,
Teuchos::RCP< MV >  MX,
Teuchos::Array< Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > > >  C,
Teuchos::RCP< Teuchos::SerialDenseMatrix< int, ScalarType > >  B,
Teuchos::ArrayView< Teuchos::RCP< const MV > >  Q 
) const
protectedvirtual

Given a set of bases Q[i] and a multivector X, this method computes an orthonormal basis for $colspan(X) - \sum_i colspan(Q[i])$.

This routine returns an integer rank stating the rank of the computed basis. If the subspace $colspan(X) - \sum_i colspan(Q[i])$ does not have dimension as large as the number of columns of X and the orthogonalization manager doe not attempt to augment the subspace, then rank may be smaller than the number of columns of X. In this case, only the first rank columns of output X and first rank rows of B will be valid.

The method attempts to find a basis with dimension the same as the number of columns in X. It does this by augmenting linearly dependant vectors with random directions. A finite number of these attempts will be made; therefore, it is possible that the dimension of the computed basis is less than the number of vectors in X.

Parameters
X[in/out] The multivector to the modified. On output, the relevant rows of X will be orthogonal to the Q[i] and will have orthonormal columns (with respect to innerProd()).
MX[in/out] The image of X under the operator Op. If $ MX != 0$: On input, this is expected to be consistent with X. On output, this is updated consistent with updates to X. If $ MX == 0$ or $ Op == 0$: MX is not referenced.
C[out] The coefficients of the original X in the Q[i], with respect to innerProd(). If C[i] is a non-null pointer and *C[i] matches the dimensions of X and *Q[i], then the coefficients computed during the orthogonalization routine will be stored in the matrix C[i]. If C[i] is a non-null pointer whose size does not match the dimensions of X and *Q[i], then *C[i] will first be resized to the correct size. This will destroy the original contents of the matrix. (This is a change from previous behavior, in which a std::invalid_argument exception was thrown if *C[i] was of the wrong size.) Otherwise, if C.size() < i<> or C[i] is a null pointer, then the orthogonalization manager will declare storage for the coefficients and the user will not have access to them.
B[out] The coefficients of the original X with respect to the computed basis. The first rows in B corresponding to the valid columns in X will be upper triangular.
Q[in] A list of multivector bases specifying the subspaces to be orthogonalized against. Each Q[i] is assumed to have orthonormal columns, and the Q[i] are assumed to be mutually orthogonal.
Returns
Rank of the basis computed by this method.

Implements Belos::MatOrthoManager< ScalarType, MV, OP >.

Definition at line 573 of file BelosDGKSOrthoManager.hpp.

◆ orthonormError() [1/2]

template<class ScalarType, class MV, class OP>
Teuchos::ScalarTraits<ScalarType>::magnitudeType Belos::DGKSOrthoManager< ScalarType, MV, OP >::orthonormError ( const MV &  X) const
inlinevirtual

This method computes the error in orthonormality of a multivector.

Reimplemented from Belos::MatOrthoManager< ScalarType, MV, OP >.

Definition at line 435 of file BelosDGKSOrthoManager.hpp.

◆ orthonormError() [2/2]

template<class ScalarType , class MV , class OP >
Teuchos::ScalarTraits< ScalarType >::magnitudeType Belos::DGKSOrthoManager< ScalarType, MV, OP >::orthonormError ( const MV &  X,
Teuchos::RCP< const MV >  MX 
) const
virtual

This method computes the error in orthonormality of a multivector. The method has the option of exploiting a caller-provided MX.

Implements Belos::MatOrthoManager< ScalarType, MV, OP >.

Definition at line 545 of file BelosDGKSOrthoManager.hpp.

◆ orthogError() [1/2]

template<class ScalarType, class MV, class OP>
Teuchos::ScalarTraits<ScalarType>::magnitudeType Belos::DGKSOrthoManager< ScalarType, MV, OP >::orthogError ( const MV &  X1,
const MV &  X2 
) const
inlinevirtual

This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y).

Reimplemented from Belos::MatOrthoManager< ScalarType, MV, OP >.

Definition at line 452 of file BelosDGKSOrthoManager.hpp.

◆ orthogError() [2/2]

template<class ScalarType , class MV , class OP >
Teuchos::ScalarTraits< ScalarType >::magnitudeType Belos::DGKSOrthoManager< ScalarType, MV, OP >::orthogError ( const MV &  X1,
Teuchos::RCP< const MV >  MX1,
const MV &  X2 
) const
virtual

This method computes the error in orthogonality of two multivectors, measured as the Frobenius norm of innerProd(X,Y). The method has the option of exploiting a caller-provided MX.

Implements Belos::MatOrthoManager< ScalarType, MV, OP >.

Definition at line 560 of file BelosDGKSOrthoManager.hpp.

◆ setLabel()

template<class ScalarType , class MV , class OP >
void Belos::DGKSOrthoManager< ScalarType, MV, OP >::setLabel ( const std::string &  label)
virtual

This method sets the label used by the timers in the orthogonalization manager.

Implements Belos::OrthoManager< ScalarType, MV >.

Definition at line 530 of file BelosDGKSOrthoManager.hpp.

◆ getLabel()

template<class ScalarType, class MV, class OP>
const std::string& Belos::DGKSOrthoManager< ScalarType, MV, OP >::getLabel ( ) const
inlinevirtual

This method returns the label being used by the timers in the orthogonalization manager.

Implements Belos::OrthoManager< ScalarType, MV >.

Definition at line 474 of file BelosDGKSOrthoManager.hpp.


The documentation for this class was generated from the following file:

Generated for Belos by doxygen 1.8.14