Theano, Pylearn2, libgpuarray Presentation

Frédéric Bastien, Bart van Merriénboer
Département d'Informatique et de Recherche Opérationnelle
Université de Montréal
Montréal, Canada
{bastienf, vanmerb}Qiro.umontreal.ca

OML Workshop 2014

Laboratoire d'Informatique Université Al\
des Systemes Adaptatifs
" . ivo.u cavis

s e enteon 1158 de Montréal

3¢

Introduction

High level

Python <- {NumPy/SciPy/libgpuarray} <- Theano <- Pylearn2
» Python: OO coding language

» Numpy: n-dimensional array object and scientific computing
toolbox

» SciPy: sparse matrix objects and more scientific computing
functionality

» libgpuarray: GPU n-dimensional array object in C for CUDA
and OpenCL

» Theano: compiler/symbolic graph manipulation

» Pylearn2: machine learning framework

Python

vV vV vV vV vV VvY

Introduction

General-purpose high-level OO interpreted language
Emphasizes code readability

Comprehensive standard library

Dynamic type and memory management

Slow execution

Easily extensible with C

Popular in web development and scientific communities

Introduction

NumPy /SciPy

» Python floats are full-fledged objects on the heap
» Not suitable for high-performance computing!
» NumPy provides an n-dimensional numeric array in Python
» Perfect for high-performance computing
» Slices of arrays are views (no copying)
» NumPy provides
» Elementwise computations
» Linear algebra, Fourier transforms
» Pseudorandom number generators (many distributions)
» SciPy provides lots more, including
» Sparse matrices
More linear algebra
Solvers and optimization algorithms
Matlab-compatible I/O
I/O and signal processing for images and audio

vV vy VvVyy

3/24

Introduction

What's missing?

Non-lazy evaluation (required by Python) hurts performance
Bound to the CPU

Lacks symbolic or automatic differentiation

vV v v Y

No automatic speed and stability optimization

Introduction

Theano

High-level domain-specific language tailored to numeric
computation.

>

>
>

vy

vy

Syntax as close to NumPy as possible

Compiles most common expressions to C for CPU and/or GPU
Limited expressivity means more opportunities optimizations
> No subroutines -> global optimization
» Strongly typed -> compiles to C
> Array oriented -> easy parallelism
» Support for looping and branching in expressions
Automatic speed and stability optimizations
Can reuse other technologies for best performance.
» BLAS, SciPy, Cython, Numba, PyCUDA, CUDA
Automatic differentiation and R op

Sparse matrices

5 / 24

Introduction

Pylearn2

Machine Learning library aimed at researchers

» Built on top of Theano, for fast execution and use of GPU

» Easy to try variants of implemented algorithms, and to extend
them (using Theano)

» Very modular, each component of the library can be used in
isolation

» Experiments can be specified through a YAML config file, or
by a Python script

» Scripts for visualizing weights, plot monitored values

Introduction

libgpuarray

Goal: A common GPU n-dimensional array that can be reused by
all projects, support for both CUDA and OpenCL.

Motivation:
» Currently there are at least 6 different GPU arrays in Python

» CudaNdarray (Theano), GPUArray (pycuda), CUDAMatrix
(cudamat), GPUArray (pyopencl), Clyther, Copperhead, ...
» There are even more if we include other languages.

» They are incompatible

» None have the same properties and interface
> All of them implement a subset of numpy.ndarray properties
» This is the new GPU backend on Theano

~

Introduction
Theano
Pylearn2
libgpuarray
Conclusion

Goal of the stack

Fast to develop
Fast to run

8/24

Introduction

Theano

Pylearn2

libgpuarray

Conclusion

Introduction
Theano
Pylearn2
libgpuarray
Conclusion

9/24

Theano

Description

» Mathematical symbolic expression compiler
» Expressions mimic NumPy's syntax and semantics
» Dynamic C/CUDA code generation
» C/C++, CUDA, OpenCL, PyCUDA, Cython, Numba, ...
» Efficient symbolic differentiation
» Speed and stability optimizations
> Gives the right answer for “log(1 + x)" even if x is really tiny.
» Extensive unit-testing and self-verification
» Works on Linux, OS X and Windows
» Transparent use of a GPU
» float32 only for now (libgpuarray provides much more)
» Limited support on Windows
» Sparse operations (CPU only)

Theano

Simple example

import theano

declare symbolic variable

a = theano.tensor.vector("a")
build symbolic expression
b=a+4+ a xx 10

compile function

f = theano.function([a], b)
print f([0, 1, 2])

prints ‘array ([0, 2, 1026])"

11/24

Introduction
Theano
Pylearn2
libgpuarray
Conclusion

Simple example: graph optimization

InplaceDimShuffle{x}_6

TensorType(int8, (True,)) 3_5
0

Elemwise{powno_inplace}_4

[TensorType(float64, vector)

Elemwise{Composite{{sqr,sqr,sqrmul},add}}

[Tensor Type(float64, vector)

TensorType(float64, vector) 12

1

Elemwise{add;no_inplace}_0

12/24

Theano

Project status?

» Mature: Theano has been developed and used since January
2008 (6.5 yrs old)

Driven over 100 research papers

Good user documentation

Active mailing list with participants from outside our lab
Core technology for a few Silicon-Valley start-ups

Many contributors (some from outside our lab)

Used to teach many university classes

vV V. vV vV VvV VY

Has been used for research at Google and Yahoo.

Theano: deeplearning.net/software/theano/
Deep Learning Tutorials: deeplearning.net/tutorial/

deeplearning.net/software/theano/
deeplearning.net/tutorial/

Introduction

Theano

Pylearn2

libgpuarray

Conclusion

Introduction
Theano
Pylearn2
libgpuarray
Conclusion

14 /24

Pylearn2

Pylearn2 details

The core library contains a collection of:
» Training algorithms (e.g. Stochastic and Batch GD,
model-specific rules)

» Costs, supervised/unsupervised and exact/estimated (e.g.
NLL, Score matching, NCE)

» Monitor, history of (functions of) parameters and
hyperparameters on different data sets (training, validation,
test)

» Termination criteria, determine when to stop training

» Training extensions, perform actions throughout the training
process (e.g., early stopping)
» Models (e.g. NNets, ConvNets, RBMs, k-means, PCA, SVMs)

» Datasets (e.g. MNIST, CIFAR-10) and preprocessors (LCN,
ZCA)

Pylearn2

Pylearn2 details, continued

» Data specifications which give semantics to data
» IndexSpace, 1D integer array e.g. for labels
» VectorSpace, 1D float array e.g. for softmax output
» Conv2DSpace, 3D float32 arrays e.g. for color image input
» Allows for automatic conversion when needed e.g. labels to
one-hot vectors, images to flattened vectors

» YAML file allows experiments to be conducted without writing
code

16/

Pylearn2

Project status

» Has been used for scientific publications, Kaggle competitions,
used by many researchers at LISA

» Still under rapid development, however the API shouldn’t
break without warning

Documentation is incomplete, but quickly improving
Active mailing list with participants from outside our lab

Core technology for a least one Silicon-Valley start-up

vV vy VY

Features currently in development:
» Recurrent neural networks (RNNs), based on the GroundHog
framework developed at LISA
» Better hyperparameter search support, using e.g. Hyperopt

Introduction

Theano

Pylearn2

libgpuarray

Conclusion

Introduction
Theano
Pylearn2
libgpuarray
Conclusion

18 /24

libgpuarray

libgpuarray: Design Goals

vV Yy VvV VvV Yy

Have the base object in C to allow collaboration with more
projects.

» We want people from C, C++, ruby, R, ...all use the same
base GPU ndarray.

Be compatible with CUDA and OpenCL.
Not too simple, (don’t support just matrix).
Support all dtype.

Allow strided views.

But still easy to develop new code that support only a few
memory layout.

» This ease the development of new code.

libgpuarray

Project status?

» Usable directly, but not all implementation available.

» Multiple GPUs works.
» Is the next GPU array container for Theano and is working.

» Not all Theano implementations available now.
» OpenCL misses more implementations.
» Multiple GPUs on the way.

> Web site:
http://deeplearning.net/software/libgpuarray/

20/24

http://deeplearning.net/software/libgpuarray/

Introduction

Theano

Pylearn2

libgpuarray

Conclusion

Introduction
Theano
Pylearn2
libgpuarray
Conclusion

21/24

Conclusion

Conclusion

Theano/Pylearn2/libgpuarry provide an environment for machine
learning that is: Fast to develop
Fast to run

Conclusion

Acknowledgments

» All people working or having worked at the LISA lab.
» All Theano/Pylearn 2 users/contributors

» Compute Canada, RQCHP, NSERC, and Canada Research
Chairs for providing funds or access to compute resources.

23 /24

Questions?

	Introduction
	Theano
	Pylearn2
	libgpuarray
	Conclusion

