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Chapter 1

Introduction

Xen allows the hardware resources of a machine to be virtualized and dynamically
partitioned, allowing multiple differentguest operating system images to be run
simultaneously. Virtualizing the machine in this manner provides considerable
flexibility, for example allowing different users to choose their preferredoperating
system (e.g., Linux, NetBSD, or a custom operating system). Furthermore,Xen
provides secure partitioning between virtual machines (known asdomains in Xen
terminology), and enables better resource accounting and QoS isolation than can
be achieved with a conventional operating system.

Xen essentially takes a ‘whole machine’ virtualization approach as pioneeredby
IBM VM/370. However, unlike VM/370 or more recent efforts such as VMware
and Virtual PC, Xen does not attempt to completely virtualize the underlying hard-
ware. Instead parts of the hosted guest operating systems are modified to work with
the VMM; the operating system is effectively ported to a new target architecture,
typically requiring changes in just the machine-dependent code. The user-level
API is unchanged, and so existing binaries and operating system distributions work
without modification.

In addition to exporting virtualized instances of CPU, memory, network and block
devices, Xen exposes a control interface to manage how these resources are shared
between the running domains. Access to the control interface is restricted:it may
only be used by one specially-privileged VM, known asdomain 0. This domain
is a required part of any Xen-based server and runs the application software that
manages the control-plane aspects of the platform. Running the control software in
domain 0, distinct from the hypervisor itself, allows the Xen framework to separate
the notions of mechanism and policy within the system.
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Chapter 2

Virtual Architecture

In a Xen/x86 system, only the hypervisor runs with full processor privileges (ring
0 in the x86 four-ring model). It has full access to the physical memory available
in the system and is responsible for allocating portions of it to running domains.

On a 32-bit x86 system, guest operating systems may userings 1, 2 and3 as they
see fit. Segmentation is used to prevent the guest OS from accessing the portion of
the address space that is reserved for Xen. We expect most guest operating systems
will use ring 1 for their own operation and place applications in ring 3.

On 64-bit systems it is not possible to protect the hypervisor from untrusted guest
code running in rings 1 and 2. Guests are therefore restricted to run in ring 3 only.
The guest kernel is protected from its applications by context switching between
the kernel and currently running application.

In this chapter we consider the basic virtual architecture provided by Xen: CPU
state, exception and interrupt handling, and time. Other aspects such as memory
and device access are discussed in later chapters.

2.1 CPU state

All privileged state must be handled by Xen. The guest OS has no direct access
to CR3 and is not permitted to update privileged bits in EFLAGS. Guest OSes use
hypercalls to invoke operations in Xen; these are analogous to system calls but
occur from ring 1 to ring 0.

A list of all hypercalls is given in Appendix A.
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2.2 Exceptions

A virtual IDT is provided — a domain can submit a table of trap handlers to Xen
via theset trap table hypercall. The exception stack frame presented to a virtual
trap handler is identical to its native equivalent.

2.3 Interrupts and events

Interrupts are virtualized by mapping them toevent channels, which are delivered
asynchronously to the target domain using a callback supplied via theset callbacks
hypercall. A guest OS can map these events onto its standard interrupt dispatch
mechanisms. Xen is responsible for determining the target domain that will handle
each physical interrupt source. For more details on the binding of eventsources to
event channels, see Chapter 8.

2.4 Time

Guest operating systems need to be aware of the passage of both real (or wallclock)
time and their own ‘virtual time’ (the time for which they have been executing).
Furthermore, Xen has a notion of time which is used for scheduling. The following
notions of time are provided:

Cycle counter time. This provides a fine-grained time reference. The cycle counter
time is used to accurately extrapolate the other time references. On SMP
machines it is currently assumed that the cycle counter time is synchronized
between CPUs. The current x86-based implementation achieves this within
inter-CPU communication latencies.

System time. This is a 64-bit counter which holds the number of nanoseconds that
have elapsed since system boot.

Wall clock time. This is the time of day in a Unix-stylestruct timeval (seconds
and microseconds since 1 January 1970, adjusted by leap seconds). An NTP
client hosted bydomain 0 can keep this value accurate.

Domain virtual time. This progresses at the same pace as system time, but only
while a domain is executing — it stops while a domain is de-scheduled.
Therefore the share of the CPU that a domain receives is indicated by the
rate at which its virtual time increases.
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Xen exports timestamps for system time and wall-clock time to guest operating
systems through a shared page of memory. Xen also provides the cycle counter
time at the instant the timestamps were calculated, and the CPU frequency in Hertz.
This allows the guest to extrapolate system and wall-clock times accurately based
on the current cycle counter time.

Since all time stamps need to be updated and readatomically a version number is
also stored in the shared info page, which is incremented before and afterupdating
the timestamps. Thus a guest can be sure that it read a consistent state by checking
the two version numbers are equal and even.

Xen includes a periodic ticker which sends a timer event to the currently executing
domain every 10ms. The Xen scheduler also sends a timer event whenevera do-
main is scheduled; this allows the guest OS to adjust for the time that has passed
while it has been inactive. In addition, Xen allows each domain to request that
they receive a timer event sent at a specified system time by using theset timer op
hypercall. Guest OSes may use this timer to implement timeout values when they
block.

2.5 Xen CPU Scheduling

Xen offers a uniform API for CPU schedulers. It is possible to choosefrom a
number of schedulers at boot and it should be easy to add more. The SEDF and
Credit schedulers are part of the normal Xen distribution. SEDF will be going
away and its use should be avoided once the credit scheduler has stabilized and
become the default. The Credit scheduler provides proportional fair shares of the
host’s CPUs to the running domains. It does this while transparently load balancing
runnable VCPUs across the whole system.

Note: SMP host support Xen has always supported SMP host systems. When
using the credit scheduler, a domain’s VCPUs will be dynamically moved across
physical CPUs to maximise domain and system throughput. VCPUs can also be
manually restricted to be mapped only on a subset of the host’s physical CPUs,
using the pinning mechanism.

2.6 Privileged operations

Xen exports an extended interface to privileged domains (viz.Domain 0). This
allows such domains to build and boot other domains on the server, and provides
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control interfaces for managing scheduling, memory, networking, and block de-
vices.
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Chapter 3

Memory

Xen is responsible for managing the allocation of physical memory to domains,
and for ensuring safe use of the paging and segmentation hardware.

3.1 Memory Allocation

As well as allocating a portion of physical memory for its own private use, Xen
also reserves s small fixed portion of every virtual address space. This is located
in the top 64MB on 32-bit systems, the top 168MB on PAE systems, and a larger
portion in the middle of the address space on 64-bit systems. Unreserved physical
memory is available for allocation to domains at a page granularity. Xen tracks
the ownership and use of each page, which allows it to enforce secure partitioning
between domains.

Each domain has a maximum and current physical memory allocation. A guest OS
may run a ‘balloon driver’ to dynamically adjust its current memory allocation up
to its limit.

3.2 Pseudo-Physical Memory

Since physical memory is allocated and freed on a page granularity, there isno
guarantee that a domain will receive a contiguous stretch of physical memory.
However most operating systems do not have good support for operating in a frag-
mented physical address space. To aid porting such operating systems to run on
top of Xen, we make a distinction betweenmachine memory andpseudo-physical
memory.
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Put simply, machine memory refers to the entire amount of memory installed in the
machine, including that reserved by Xen, in use by various domains, or currently
unallocated. We consider machine memory to comprise a set of 4kBmachine page
frames numbered consecutively starting from 0. Machine frame numbers mean the
same within Xen or any domain.

Pseudo-physical memory, on the other hand, is a per-domain abstraction.It allows
a guest operating system to consider its memory allocation to consist of a contigu-
ous range of physical page frames starting at physical frame 0, despitethe fact that
the underlying machine page frames may be sparsely allocated and in any order.

To achieve this, Xen maintains a globally readablemachine-to-physical table which
records the mapping from machine page frames to pseudo-physical ones. In addi-
tion, each domain is supplied with aphysical-to-machine table which performs the
inverse mapping. Clearly the machine-to-physical table has size proportional to the
amount of RAM installed in the machine, while each physical-to-machine table has
size proportional to the memory allocation of the given domain.

Architecture dependent code in guest operating systems can then use thetwo tables
to provide the abstraction of pseudo-physical memory. In general, only certain
specialized parts of the operating system (such as page table management) needs
to understand the difference between machine and pseudo-physical addresses.

3.3 Page Table Updates

In the default mode of operation, Xen enforces read-only access to page tables
and requires guest operating systems to explicitly request any modifications. Xen
validates all such requests and only applies updates that it deems safe. This is
necessary to prevent domains from adding arbitrary mappings to their page tables.

To aid validation, Xen associates a type and reference count with each memory
page. A page has one of the following mutually-exclusive types at any point in
time: page directory (PD), page table (PT), local descriptor table (LDT), global
descriptor table (GDT), or writable (RW). Note that a guest OS may always create
readable mappings of its own memory regardless of its current type.

This mechanism is used to maintain the invariants required for safety; for example,
a domain cannot have a writable mapping to any part of a page table as this would
require the page concerned to simultaneously be of typesPT andRW.

mmu update(mmu update t *req, int count, int *success count, domid t do-
mid)

8



This hypercall is used to make updates to either the domain’s pagetables or to the
machine to physical mapping table. It supports submitting a queue of updates,
allowing batching for maximal performance. Explicitly queuing updates using this
interface will cause any outstanding writable pagetable state to be flushed from the
system.

3.4 Writable Page Tables

Xen also provides an alternative mode of operation in which guests have theil-
lusion that their page tables are directly writable. Of course this is not really the
case, since Xen must still validate modifications to ensure secure partitioning. To
this end, Xen traps any write attempt to a memory page of typePT (i.e., that is cur-
rently part of a page table). If such an access occurs, Xen temporarilyallows write
access to that page while at the same timedisconnecting it from the page table that
is currently in use. This allows the guest to safely make updates to the page be-
cause the newly-updated entries cannot be used by the MMU until Xen revalidates
and reconnects the page. Reconnection occurs automatically in a number ofsitua-
tions: for example, when the guest modifies a different page-table page,when the
domain is preempted, or whenever the guest uses Xen’s explicit page-table update
interfaces.

Writable pagetable functionality is enabled when the guest requests it, using a
vm assisthypercall. Writable pagetables donot provide full virtualisation of the
MMU, so the memory management code of the guest still needs to be aware that
it is running on Xen. Since the guest’s page tables are used directly, it musttrans-
late pseudo-physical addresses to real machine addresses when building page table
entries. The guest may not attempt to map its own pagetables writably, since this
would violate the memory type invariants; page tables will automatically be made
writable by the hypervisor, as necessary.

3.5 Shadow Page Tables

Finally, Xen also supports a form ofshadow page tables in which the guest OS
uses a independent copy of page tables which are unknown to the hardware (i.e.
which are never pointed to bycr3 ). Instead Xen propagates changes made to the
guest’s tables to the real ones, and vice versa. This is useful for logging page writes
(e.g. for live migration or checkpoint). A full version of the shadow pagetables
also allows guest OS porting with less effort.
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3.6 Segment Descriptor Tables

At start of day a guest is supplied with a default GDT, which does not reside within
its own memory allocation. If the guest wishes to use other than the default ‘flat’
ring-1 and ring-3 segments that this GDT provides, it must register a customGDT
and/or LDT with Xen, allocated from its own memory.

The following hypercall is used to specify a new GDT:

int set gdt(unsigned long *frame list, int entries)

frame list: An array of up to 14 machine page frames within which
the GDT resides. Any frame registered as a GDT frame may only be
mapped read-only within the guest’s address space (e.g., no writable
mappings, no use as a page-table page, and so on). Only 14 pages may
be specified because pages 15 and 16 are reserved for the hypervisor’s
GDT entries.

entries: The number of descriptor-entry slots in the GDT.

The LDT is updated via the generic MMU update mechanism (i.e., via themmu update
hypercall.

3.7 Start of Day

The start-of-day environment for guest operating systems is rather different to that
provided by the underlying hardware. In particular, the processor is already exe-
cuting in protected mode with paging enabled.

Domain 0 is created and booted by Xen itself. For all subsequent domains, the
analogue of the boot-loader is thedomain builder, user-space software running in
domain 0. The domain builder is responsible for building the initial page tables for
a domain and loading its kernel image at the appropriate virtual address.

3.8 VM assists

Xen provides a number of “assists” for guest memory management. These are
available on an “opt-in” basis to provide commonly-used extra functionality to a
guest.

vm assist(unsigned int cmd, unsigned int type)

The cmd parameter describes the action to be taken, whilst thetype parameter
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describes the kind of assist that is being referred to. Available commands are as
follows:

VMASST CMD enable Enable a particular assist type

VMASST CMD disable Disable a particular assist type

And the available types are:

VMASST TYPE 4gb segmentsProvide emulated support for instructions that
rely on 4GB segments (such as the techniques used by some TLS solutions).

VMASST TYPE 4gb segmentsnotify Provide a callback (via trap number 15)
to the guest if the above segment fixups are used: allows the guest to display
a warning message during boot.

VMASST TYPE writable pagetablesEnable writable pagetable mode - described
above.
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Chapter 4

Xen Info Pages

TheShared info pageis used to share various CPU-related state between the guest
OS and the hypervisor. This information includes VCPU status, time information
and event channel (virtual interrupt) state. TheStart info page is used to pass
build-time information to the guest when it boots and when it is resumed from a
suspended state. This chapter documents the fields included in theshared info t
andstart info t structures for use by the guest OS.

4.1 Shared info page

Theshared info t is accessed at run time by both Xen and the guest OS. It is used
to pass information relating to the virtual CPU and virtual machine state between
the OS and the hypervisor.

The structure is declared inxen/include/public/xen.h:
typedef struct shared_info {

vcpu_info_t vcpu_info[XEN_LEGACY_MAX_VCPUS];

/ *
* A domain can create "event channels" on which it can send and r eceive

* asynchronous event notifications. There are three classes of event that

* are delivered by this mechanism:

* 1. Bi-directional inter- and intra-domain connections. Do mains must

* arrange out-of-band to set up a connection (usually by alloc ating

* an unbound ’listener’ port and advertising that via a storag e service

* such as xenstore).

* 2. Physical interrupts. A domain with suitable hardware-ac cess

* privileges can bind an event-channel port to a physical inte rrupt

* source.

* 3. Virtual interrupts (’events’). A domain can bind an event -channel

* port to a virtual interrupt source, such as the virtual-time r

* device or the emergency console.

13



*
* Event channels are addressed by a "port index". Each channel is

* associated with two bits of information:

* 1. PENDING -- notifies the domain that there is a pending noti fication

* to be processed. This bit is cleared by the guest.

* 2. MASK -- if this bit is clear then a 0->1 transition of PENDIN G

* will cause an asynchronous upcall to be scheduled. This bit i s only

* updated by the guest. It is read-only within Xen. If a channel

* becomes pending while the channel is masked then the ’edge’ i s lost

* (i.e., when the channel is unmasked, the guest must manually handle

* pending notifications as no upcall will be scheduled by Xen) .

*
* To expedite scanning of pending notifications, any 0->1 pen ding

* transition on an unmasked channel causes a corresponding bi t in a

* per-vcpu selector word to be set. Each bit in the selector cov ers a

* ’C long’ in the PENDING bitfield array.

* /
unsigned long evtchn_pending[sizeof(unsigned long) * 8];
unsigned long evtchn_mask[sizeof(unsigned long) * 8];

/ *
* Wallclock time: updated only by control software. Guests sh ould base

* their gettimeofday() syscall on this wallclock-base value .

* /
uint32_t wc_version; / * Version counter: see vcpu_time_info_t. * /
uint32_t wc_sec; / * Secs 00:00:00 UTC, Jan 1, 1970. * /
uint32_t wc_nsec; / * Nsecs 00:00:00 UTC, Jan 1, 1970. * /

arch_shared_info_t arch;

} shared_info_t;

vcpu info An array ofvcpu info t structures, each of which holds either runtime
information about a virtual CPU, or is “empty” if the corresponding VCPU
does not exist.

evtchn pending Guest-global array, with one bit per event channel. Bits are set if
an event is currently pending on that channel.

evtchn mask Guest-global array for masking notifications on event channels.

wc version Version counter for current wallclock time.

wc sec Whole seconds component of current wallclock time.

wc nsec Nanoseconds component of current wallclock time.

arch Host architecture-dependent portion of the shared info structure.

4.1.1 vcpuinfo t

typedef struct vcpu_info {
/ *

* ’evtchn_upcall_pending’ is written non-zero by Xen to indi cate
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* a pending notification for a particular VCPU. It is then clea red

* by the guest OS /before/ checking for pending work, thus avoi ding

* a set-and-check race. Note that the mask is only accessed by X en

* on the CPU that is currently hosting the VCPU. This means that the

* pending and mask flags can be updated by the guest without spe cial

* synchronisation (i.e., no need for the x86 LOCK prefix).

* This may seem suboptimal because if the pending flag is set by

* a different CPU then an IPI may be scheduled even when the mask

* is set. However, note:

* 1. The task of ’interrupt holdoff’ is covered by the per-even t-

* channel mask bits. A ’noisy’ event that is continually being

* triggered can be masked at source at this very precise

* granularity.

* 2. The main purpose of the per-VCPU mask is therefore to restr ict

* reentrant execution: whether for concurrency control, or t o

* prevent unbounded stack usage. Whatever the purpose, we exp ect

* that the mask will be asserted only for short periods at a time ,

* and so the likelihood of a ’spurious’ IPI is suitably small.

* The mask is read before making an event upcall to the guest: a

* non-zero mask therefore guarantees that the VCPU will not re ceive

* an upcall activation. The mask is cleared when the VCPU reque sts

* to block: this avoids wakeup-waiting races.

* /
uint8_t evtchn_upcall_pending;
uint8_t evtchn_upcall_mask;
unsigned long evtchn_pending_sel;
arch_vcpu_info_t arch;
vcpu_time_info_t time;

} vcpu_info_t; / * 64 bytes (x86) * /

evtchn upcall pending This is set non-zero by Xen to indicate that there are
pending events to be received.

evtchn upcall mask This is set non-zero to disable all interrupts for this CPU for
short periods of time. If individual event channels need to be masked, the
evtchn mask in theshared info t is used instead.

evtchn pending sel When an event is delivered to this VCPU, a bit is set in this se-
lector to indicate which word of theevtchn pendingarray in theshared info t
contains the event in question.

arch Architecture-specific VCPU info. On x86 this contains the virtualized CR2
register (page fault linear address) for this VCPU.

time Time values for this VCPU.

4.1.2 vcputime info

typedef struct vcpu_time_info {
/ *

* Updates to the following values are preceded and followed by an

* increment of ’version’. The guest can therefore detect upda tes by

* looking for changes to ’version’. If the least-significant bit of
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* the version number is set then an update is in progress and the guest

* must wait to read a consistent set of values.

* The correct way to interact with the version number is simila r to

* Linux’s seqlock: see the implementations of read_seqbegin /read_seqretry.

* /
uint32_t version;
uint32_t pad0;
uint64_t tsc_timestamp; / * TSC at last update of time vals. * /
uint64_t system_time; / * Time, in nanosecs, since boot. * /
/ *

* Current system time:

* system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul

* CPU frequency (Hz):

* ((10ˆ9 << 32) / tsc_to_system_mul) >> tsc_shift

* /
uint32_t tsc_to_system_mul;
int8_t tsc_shift;
int8_t pad1[3];

} vcpu_time_info_t; / * 32 bytes * /

version Used to ensure the guest gets consistent time updates.

tsc timestamp Cycle counter timestamp of last time value; could be used to ex-
polate in between updates, for instance.

systemtime Time since boot (nanoseconds).

tsc to systemmul Cycle counter to nanoseconds multiplier (used in extrapolating
current time).

tsc shift Cycle counter to nanoseconds shift (used in extrapolating current time).

4.1.3 archshared info t

On x86, thearch shared info t is defined as follows (from xen/public/arch-x8632.h):

typedef struct arch_shared_info {
unsigned long max_pfn; / * max pfn that appears in table * /
/ * Frame containing list of mfns containing list of mfns contai ning p2m. * /
unsigned long pfn_to_mfn_frame_list_list;

} arch_shared_info_t;

max pfn The maximum PFN listed in the physical-to-machine mapping table (P2M
table).

pfn to mfn frame list list Machine address of the frame that contains the ma-
chine addresses of the P2M table frames.

4.2 Start info page

The start info structure is declared as the following (inxen/include/public/xen.h):
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#define MAX_GUEST_CMDLINE 1024
typedef struct start_info {

/ * THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. * /
char magic[32]; / * "Xen-<version>.<subversion>". * /
unsigned long nr_pages; / * Total pages allocated to this domain. * /
unsigned long shared_info; / * MACHINE address of shared info struct. * /
uint32_t flags; / * SIF_xxx flags. * /
unsigned long store_mfn; / * MACHINE page number of shared page. * /
uint32_t store_evtchn; / * Event channel for store communication. * /
unsigned long console_mfn; / * MACHINE address of console page. * /
uint32_t console_evtchn; / * Event channel for console messages. * /
/ * THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). * /
unsigned long pt_base; / * VIRTUAL address of page directory. * /
unsigned long nr_pt_frames; / * Number of bootstrap p.t. frames. * /
unsigned long mfn_list; / * VIRTUAL address of page-frame list. * /
unsigned long mod_start; / * VIRTUAL address of pre-loaded module. * /
unsigned long mod_len; / * Size (bytes) of pre-loaded module. * /
int8_t cmd_line[MAX_GUEST_CMDLINE];

} start_info_t;

The fields are in two groups: the first group are always filled in when a domain is
booted or resumed, the second set are only used at boot time.

The always-available group is as follows:

magic A text string identifying the Xen version to the guest.

nr pages The number of real machine pages available to the guest.

shared info Machine address of the shared info structure, allowing the guest to
map it during initialisation.

flags Flags for describing optional extra settings to the guest.

store mfn Machine address of the Xenstore communications page.

store evtchn Event channel to communicate with the store.

consolemfn Machine address of the console data page.

consoleevtchn Event channel to notify the console backend.

The boot-only group may only be safely referred to during system boot:

pt base Virtual address of the page directory created for us by the domain builder.

nr pt frames Number of frames used by the builders’ bootstrap pagetables.

mfn list Virtual address of the list of machine frames this domain owns.

mod start Virtual address of any pre-loaded modules (e.g. ramdisk)

mod len Size of pre-loaded module (if any).

cmd line Kernel command line passed by the domain builder.
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Chapter 5

Event Channels

Event channels are the basic primitive provided by Xen for event notifications. An
event is the Xen equivalent of a hardware interrupt. They essentially store one bit
of information, the event of interest is signalled by transitioning this bit from 0to
1.

Notifications are received by a guest via an upcall from Xen, indicating when an
event arrives (setting the bit). Further notifications are masked until the bitis
cleared again (therefore, guests must check the value of the bit after re-enabling
event delivery to ensure no missed notifications).

Event notifications can be masked by setting a flag; this is equivalent to disabling
interrupts and can be used to ensure atomicity of certain operations in the guest
kernel.

5.1 Hypercall interface

event channel op(evtchn op t *op)

The event channel operation hypercall is used for all operations on event channels /
ports. Operations are distinguished by the value of thecmdfield of theopstructure.
The possible commands are described below:

EVTCHNOP alloc unbound Allocate a new event channel port, ready to be con-
nected to by a remote domain.

• Specified domain must exist.

• A free port must exist in that domain.
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Unprivileged domains may only allocate their own ports, privileged domains
may also allocate ports in other domains.

EVTCHNOP bind interdomain Bind an event channel for interdomain commu-
nications.

• Caller domain must have a free port to bind.

• Remote domain must exist.

• Remote port must be allocated and currently unbound.

• Remote port must be expecting the caller domain as the “remote”.

EVTCHNOP bind virq Allocate a port and bind a VIRQ to it.

• Caller domain must have a free port to bind.

• VIRQ must be valid.

• VCPU must exist.

• VIRQ must not currently be bound to an event channel.

EVTCHNOP bind ipi Allocate and bind a port for notifying other virtual CPUs.

• Caller domain must have a free port to bind.

• VCPU must exist.

EVTCHNOP bind pirq Allocate and bind a port to a real IRQ.

• Caller domain must have a free port to bind.

• PIRQ must be within the valid range.

• Another binding for this PIRQ must not exist for this domain.

• Caller must have an available port.

EVTCHNOP close Close an event channel (no more events will be received).

• Port must be valid (currently allocated).

EVTCHNOP send Send a notification on an event channel attached to a port.

• Port must be valid.

• Only valid for Interdomain, IPI or Allocated Unbound ports.

EVTCHNOP status Query the status of a port; what kind of port, whether it is
bound, what remote domain is expected, what PIRQ or VIRQ it is bound to,
what VCPU will be notified, etc. Unprivileged domains may only query the
state of their own ports. Privileged domains may query any port.
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EVTCHNOP bind vcpu Bind event channel to a particular VCPU - receive no-
tification upcalls only on that VCPU.

• VCPU must exist.

• Port must be valid.

• Event channel must be either: allocated but unbound, bound to an in-
terdomain event channel, bound to a PIRQ.
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Chapter 6

Grant tables

Xen’s grant tables provide a generic mechanism to memory sharing betweendo-
mains. This shared memory interface underpins the split device drivers for block
and network IO.

Each domain has its owngrant table. This is a data structure that is shared with
Xen; it allows the domain to tell Xen what kind of permissions other domains have
on its pages. Entries in the grant table are identified bygrant references. A grant
reference is an integer, which indexes into the grant table. It acts as a capability
which the grantee can use to perform operations on the granter’s memory.

This capability-based system allows shared-memory communications between un-
privileged domains. A grant reference also encapsulates the details of ashared
page, removing the need for a domain to know the real machine address of apage
it is sharing. This makes it possible to share memory correctly with domains run-
ning in fully virtualised memory.

6.1 Interface

6.1.1 Grant table manipulation

Creating and destroying grant references is done by direct access tothe grant table.
This removes the need to involve Xen when creating grant references, modifying
access permissions, etc. The grantee domain will invoke hypercalls to use the grant
references. Four main operations can be accomplished by directly manipulating the
table:

Grant foreign accessallocate a new entry in the grant table and fill out the access
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permissions accordingly. The access permissions will be looked up by Xen
when the grantee attempts to use the reference to map the granted frame.

End foreign accesscheck that the grant reference is not currently in use, then
remove the mapping permissions for the frame. This prevents further map-
pings from taking place but does not allow forced revocations of existing
mappings.

Grant foreign transfer allocate a new entry in the table specifying transfer per-
missions for the grantee. Xen will look up this entry when the grantee at-
tempts to transfer a frame to the granter.

End foreign transfer remove permissions to prevent a transfer occurring in fu-
ture. If the transfer is already committed, modifying the grant table cannot
prevent it from completing.

6.1.2 Hypercalls

Use of grant references is accomplished via a hypercall. The grant table op hyper-
call takes three arguments:

grant table op(unsigned int cmd, void *uop, unsigned int count)

cmd indicates the grant table operation of interest.uop is a pointer to a structure
(or an array of structures) describing the operation to be performed. The count
field describes how many grant table operations are being batched together.

The core logic is situated inxen/common/grant table.c. The grant table operation
hypercall can be used to perform the following actions:

GNTTABOP map grant ref Given a grant reference from another domain, map
the referred page into the caller’s address space.

GNTTABOP unmap grant ref Remove a mapping to a granted frame from the
caller’s address space. This is used to voluntarily relinquish a mapping to a
granted page.

GNTTABOP setup table Setup grant table for caller domain.

GNTTABOP dump table Debugging operation.

GNTTABOP transfer Given a transfer reference from another domain, transfer
ownership of a page frame to that domain.
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Chapter 7

Xenstore

Xenstore is the mechanism by which control-plane activities occur. These activities
include:

• Setting up shared memory regions and event channels for use with the split
device drivers.

• Notifying the guest of control events (e.g. balloon driver requests)

• Reporting back status information from the guest (e.g. performance-related
statistics, etc).

The store is arranged as a hierarchical collection of key-value pairs. Each domain
has a directory hierarchy containing data related to its configuration. Domains are
permitted to register for notifications about changes in subtrees of the store, and to
apply changes to the store transactionally.

7.1 Guidelines

A few principles govern the operation of the store:

• Domains should only modify the contents of their own directories.

• The setup protocol for a device channel should simply consist of entering the
configuration data into the store.

• The store should allow device discovery without requiring the relevant de-
vice drivers to be loaded: a Xen “bus” should be visible to probing code in
the guest.

• The store should be usable for inter-tool communications, allowing the tools
themselves to be decomposed into a number of smaller utilities, rather than
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a single monolithic entity. This also facilitates the development of alternate
user interfaces to the same functionality.

7.2 Store layout

There are three main paths in XenStore:

/vm stores configuration information about domain

/local/domain stores information about the domain on the local node (domid, etc.)

/tool stores information for the various tools

The /vm path stores configuration information for a domain. This information
doesn’t change and is indexed by the domain’s UUID. A/vm entry contains the
following information:

uuid uuid of the domain (somewhat redundant)

on reboot the action to take on a domain reboot request (destroy or restart)

on poweroff the action to take on a domain halt request (destroy or restart)

on crash the action to take on a domain crash (destroy or restart)

vcpus the number of allocated vcpus for the domain

memory the amount of memory (in megabytes) for the domain Note: appears to
sometimes be empty for domain-0

vcpu avail the number of active vcpus for the domain (vcpus - number of disabled
vcpus)

name the name of the domain

/vm/<uuid>/image/

The image path is only available for Domain-Us and contains:

ostype identifies the builder type (linux or vmx)

kernel path to kernel on domain-0

cmdline command line to pass to domain-U kernel

ramdisk path to ramdisk on domain-0

/local

The /local path currently only contains one directory,/local/domain that
is indexed by domain id. It contains the running domain information. The reason
to have two storage areas is that during migration, the uuid doesn’t changebut the
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domain id does. The/local/domain directory can be created and populated
before finalizing the migration enabling localhost to localhost migration.

/local/domain/<domid>

This path contains:

cpu time xend start time (this is only around for domain-0)

handle private handle for xend

name see /vm

on reboot see /vm

on poweroff see /vm

on crash see /vm

vm the path to the VM directory for the domain

domid the domain id (somewhat redundant)

running indicates that the domain is currently running

memory the current memory in megabytes for the domain (empty for domain-0?)

maxmem KiB the maximum memory for the domain (in kilobytes)

memory KiB the memory allocated to the domain (in kilobytes)

cpu the current CPU the domain is pinned to (empty for domain-0?)

cpu weight the weight assigned to the domain

vcpu avail a bitmap telling the domain whether it may use a given VCPU

online vcpus how many vcpus are currently online

vcpus the total number of vcpus allocated to the domain

console/ a directory for console information

ring-ref the grant table reference of the console ring queue

port the event channel being used for the console ring queue (local port)

tty the current tty the console data is being exposed of

limit the limit (in bytes) of console data to buffer

backend/ a directory containing all backends the domain hosts

vbd/ a directory containing vbd backends

<domid>/ a directory containing vbd’s for domid
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<virtual-device>/ a directory for a particular virtual-device on
domid

frontend-id domain id of frontend

frontend the path to the frontend domain

physical-device backend device number

sector-sizebackend sector size

info 0 read/write, 1 read-only (is this right?)

domain name of frontend domain

params parameters for device

type the type of the device

dev the virtual device (as given by the user)

node output from block creation script

vif/ a directory containing vif backends

<domid>/ a directory containing vif’s for domid

<vif number>/ a directory for each vif

frontend-id the domain id of the frontend

frontend the path to the frontend

mac the mac address of the vif

bridge the bridge the vif is connected to

handle the handle of the vif

script the script used to create/stop the vif

domain the name of the frontend

vtpm/ a directory containing vtpm backends

<domid>/ a directory containing vtpm’s for domid

<vtpm number>/ a directory for each vtpm

frontend-id the domain id of the frontend

frontend the path to the frontend

instance the instance of the virtual TPM that is used

pref instance the instance number as given in the VM configura-
tion file; may be different frominstance
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domain the name of the domain of the frontend

device/ a directory containing the frontend devices for the domain

vbd/ a directory containing vbd frontend devices for the domain

<virtual-device>/ a directory containing the vbd frontend for virtual-
device

virtual-device the device number of the frontend device

backend-id the domain id of the backend

backend the path of the backend in the store (/local/domain path)

ring-ref the grant table reference for the block request ring queue

event-channel the event channel used for the block request ring
queue

vif/ a directory containing vif frontend devices for the domain

<id>/ a directory for vif id frontend device for the domain

backend-id the backend domain id

mac the mac address of the vif

handle the internal vif handle

backend a path to the backend’s store entry

tx-ring-ref the grant table reference for the transmission ring
queue

rx-ring-ref the grant table reference for the receiving ring
queue

event-channel the event channel used for the two ring queues

vtpm/ a directory containing the vtpm frontend device for the domain

<id> a directory for vtpm id frontend device for the domain

backend-id the backend domain id

backend a path to the backend’s store entry

ring-ref the grant table reference for the tx/rx ring

event-channel the event channel used for the ring

device-misc/ miscellaneous information for devices

vif/ miscellaneous information for vif devices

nextDeviceID the next device id to use
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security/ access control information for the domain

ssidref security reference identifier used inside the hypervisor

accesscontrol/ security label used by management tools

label security label name

policy security policy name

store/ per-domain information for the store

port the event channel used for the store ring queue

ring-ref - the grant table reference used for the store’s communication chan-
nel

image - private xend information
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Chapter 8

Devices

Virtual devices under Xen are provided by asplit device driver architecture. The
illusion of the virtual device is provided by two co-operating drivers: thefrontend,
which runs an the unprivileged domain and thebackend, which runs in a domain
with access to the real device hardware (often called adriver domain ; in practice
domain 0 usually fulfills this function).

The frontend driver appears to the unprivileged guest as if it were a real device,
for instance a block or network device. It receives IO requests fromits kernel as
usual, however since it does not have access to the physical hardware of the system
it must then issue requests to the backend. The backend driver is responsible for
receiving these IO requests, verifying that they are safe and then issuing them to
the real device hardware. The backend driver appears to its kernelas a normal
user of in-kernel IO functionality. When the IO completes the backend notifies
the frontend that the data is ready for use; the frontend is then able to report IO
completion to its own kernel.

Frontend drivers are designed to be simple; most of the complexity is in the back-
end, which has responsibility for translating device addresses, verifying that re-
quests are well-formed and do not violate isolation guarantees, etc.

Split drivers exchange requests and responses in shared memory, withan event
channel for asynchronous notifications of activity. When the frontenddriver comes
up, it uses Xenstore to set up a shared memory frame and an interdomain event
channel for communications with the backend. Once this connection is established,
the two can communicate directly by placing requests / responses into sharedmem-
ory and then sending notifications on the event channel. This separation of noti-
fication from data transfer allows message batching, and results in very efficient
device access.
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This chapter focuses on some individual split device interfaces availableto Xen
guests.

8.1 Network I/O

Virtual network device services are provided by shared memory communication
with a backend domain. From the point of view of other domains, the backend
may be viewed as a virtual ethernet switch element with each domain having one
or more virtual network interfaces connected to it.

From the point of view of the backend domain itself, the network backend driver
consists of a number of ethernet devices. Each of these has a logical direct con-
nection to a virtual network device in another domain. This allows the backend
domain to route, bridge, firewall, etc the traffic to / from the other domains using
normal operating system mechanisms.

8.1.1 Backend Packet Handling

The backend driver is responsible for a variety of actions relating to the transmis-
sion and reception of packets from the physical device. With regard to transmis-
sion, the backend performs these key actions:

• Validation: To ensure that domains do not attempt to generate invalid (e.g.
spoofed) traffic, the backend driver may validate headers ensuring that source
MAC and IP addresses match the interface that they have been sent from.

Validation functions can be configured using standard firewall rules (iptables

in the case of Linux).

• Scheduling:Since a number of domains can share a single physical network
interface, the backend must mediate access when several domains each have
packets queued for transmission. This general scheduling function subsumes
basic shaping or rate-limiting schemes.

• Logging and Accounting: The backend domain can be configured with
classifier rules that control how packets are accounted or logged. Forexam-
ple, log messages might be generated whenever a domain attempts to send a
TCP packet containing a SYN.

On receipt of incoming packets, the backend acts as a simple demultiplexer: Pack-
ets are passed to the appropriate virtual interface after any necessarylogging and
accounting have been carried out.
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8.1.2 Data Transfer

Each virtual interface uses two “descriptor rings”, one for transmit, the other for re-
ceive. Each descriptor identifies a block of contiguous machine memory allocated
to the domain.

The transmit ring carries packets to transmit from the guest to the backend domain.
The return path of the transmit ring carries messages indicating that the contents
have been physically transmitted and the backend no longer requires the associated
pages of memory.

To receive packets, the guest places descriptors of unused pages on the receive
ring. The backend will return received packets by exchanging these pages in the
domain’s memory with new pages containing the received data, and passing back
descriptors regarding the new packets on the ring. This zero-copy approach allows
the backend to maintain a pool of free pages to receive packets into, and then
deliver them to appropriate domains after examining their headers.

If a domain does not keep its receive ring stocked with empty buffers then packets
destined to it may be dropped. This provides some defence against receive livelock
problems because an overloaded domain will cease to receive further data. Simi-
larly, on the transmit path, it provides the application with feedback on the rateat
which packets are able to leave the system.

Flow control on rings is achieved by including a pair of producer indexeson the
shared ring page. Each side will maintain a private consumer index indicatingthe
next outstanding message. In this manner, the domains cooperate to divide the
ring into two message lists, one in each direction. Notification is decoupled from
the immediate placement of new messages on the ring; the event channel will be
used to generate notification wheneither a certain number of outstanding messages
are queued,or a specified number of nanoseconds have elapsed since the oldest
message was placed on the ring.

8.1.3 Network ring interface

The network device uses two shared memory rings for communication: one for
transmit, one for receive.

Transmit requests are described by the following structure:

typedef struct netif_tx_request {
grant_ref_t gref; / * Reference to buffer page * /
uint16_t offset; / * Offset within buffer page * /
uint16_t flags; / * NETTXF_* * /
uint16_t id; / * Echoed in response message. * /
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uint16_t size; / * Packet size in bytes. * /
} netif_tx_request_t;

gref Grant reference for the network buffer

offset Offset to data

flags Transmit flags (currently only NETTXFcsumblank is supported, to indicate
that the protocol checksum field is incomplete).

id Echoed to guest by the backend in the ring-level response so that the guest can
match it to this request

size Buffer size

Each transmit request is followed by a transmit response at some later date.This is
part of the shared-memory communication protocol and allows the guest to (poten-
tially) retire internal structures related to the request. It does not imply a network-
level response. This structure is as follows:

typedef struct netif_tx_response {
uint16_t id;
int16_t status;

} netif_tx_response_t;

id Echo of the ID field in the corresponding transmit request.

status Success / failure status of the transmit request.

Receive requests must be queued by the frontend, accompanied by a donation of
page-frames to the backend. The backend transfers page frames fullof data back
to the guest

typedef struct {
uint16_t id; / * Echoed in response message. * /
grant_ref_t gref; / * Reference to incoming granted frame * /

} netif_rx_request_t;

id Echoed by the frontend to identify this request when responding.

gref Transfer reference - the backend will use this reference to transfera frame of
network data to us.

Receive response descriptors are queued for each received frame. Note that these
may only be queued in reply to an existing receive request, providing an in-built
form of traffic throttling.

typedef struct {
uint16_t id;
uint16_t offset; / * Offset in page of start of received packet * /
uint16_t flags; / * NETRXF_* * /
int16_t status; / * -ve: BLKIF_RSP_ * ; +ve: Rx’ed pkt size. * /

} netif_rx_response_t;
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id ID echoed from the original request, used by the guest to match this response
to the original request.

offset Offset to data within the transferred frame.

flags Transmit flags (currently only NETRXFcsumvalid is supported, to indicate
that the protocol checksum field has already been validated).

status Success / error status for this operation.

Note that the receive protocol includes a mechanism for guests to receive incom-
ing memory frames but there is no explicit transfer of frames in the other direction.
Guests are expected to return memory to the hypervisor in order to use the network
interface. Theymust do this or they will exceed their maximum memory reserva-
tion and will not be able to receive incoming frame transfers. When necessary, the
backend is able to replenish its pool of free network buffers by claiming some of
this free memory from the hypervisor.

8.2 Block I/O

All guest OS disk access goes through the virtual block device VBD interface.
This interface allows domains access to portions of block storage devices visible
to the the block backend device. The VBD interface is a split driver, similar tothe
network interface described above. A single shared memory ring is used between
the frontend and backend drivers for each virtual device, across which IO requests
and responses are sent.

Any block device accessible to the backend domain, including network-based block
(iSCSI, *NBD, etc), loopback and LVM/MD devices, can be exported asa VBD.
Each VBD is mapped to a device node in the guest, specified in the guest’s startup
configuration.

8.2.1 Data Transfer

The per-(virtual)-device ring between the guest and the block backendsupports
two messages:

READ: Read data from the specified block device. The front end identifies the de-
vice and location to read from and attaches pages for the data to be copied to
(typically via DMA from the device). The backend acknowledges completed
read requests as they finish.
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WRITE: Write data to the specified block device. This functions essentially as
READ, except that the data moves to the device instead of from it.

8.2.2 Block ring interface

The block interface is defined by the structures passed over the sharedmemory
interface. These structures are either requests (from the frontend to the backend)
or responses (from the backend to the frontend).

The request structure is defined as follows:

typedef struct blkif_request {
uint8_t operation; / * BLKIF_OP_??? * /
uint8_t nr_segments; / * number of segments * /
blkif_vdev_t handle; / * only for read/write requests * /
uint64_t id; / * private guest value, echoed in resp * /
blkif_sector_t sector_number;/ * start sector idx on disk (r/w only) * /
struct blkif_request_segment {

grant_ref_t gref; / * reference to I/O buffer frame * /
/ * @first_sect: first sector in frame to transfer (inclusive) . * /
/ * @last_sect: last sector in frame to transfer (inclusive). * /
uint8_t first_sect, last_sect;

} seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
} blkif_request_t;

The fields are as follows:

operation operation ID: one of the operations described above

nr segmentsnumber of segments for scatter / gather IO described by this request

handle identifier for a particular virtual device on this interface

id this value is echoed in the response message for this IO; the guest may use itto
identify the original request

sector number start sector on the virtual device for this request

frame and sects This array contains structures encoding scatter-gather IO to be
performed:

gref The grant reference for the foreign I/O buffer page.

first sect First sector to access within the buffer page (0 to 7).

last sect Last sector to access within the buffer page (0 to 7).

Data will be transferred into frames at an offset determined by the value of
first sect .
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8.3 Virtual TPM

Virtual TPM (VTPM) support provides TPM functionality to each virtual machine
that requests this functionality in its configuration file. The interface enablesdo-
mains to access their own private TPM like it was a hardware TPM built into the
machine.

The virtual TPM interface is implemented as a split driver, similar to the network
and block interfaces described above. The user domain hosting the frontend ex-
ports a character device /dev/tpm0 to user-level applications for communicating
with the virtual TPM. This is the same device interface that is also offered if a
hardware TPM is available in the system. The backend provides a single interface
/dev/vtpm where the virtual TPM is waiting for commands from all domains that
have located their backend in a given domain.

8.3.1 Data Transfer

A single shared memory ring is used between the frontend and backend drivers.
TPM requests and responses are sent in pages where a pointer to thosepages and
other information is placed into the ring such that the backend can map the pages
into its memory space using the grant table mechanism.

The backend driver has been implemented to only accept well-formed TPM re-
quests. To meet this requirement, the length indicator in the TPM request must
correctly indicate the length of the request. Otherwise an error message is auto-
matically sent back by the device driver.

The virtual TPM implementation listens for TPM request on /dev/vtpm. Since it
must be able to apply the TPM request packet to the virtual TPM instance associ-
ated with the virtual machine, a 4-byte virtual TPM instance identifier is pretended
to each packet by the backend driver (in network byte order) for internal routing of
the request.

8.3.2 Virtual TPM ring interface

The TPM protocol is a strict request/response protocol and thereforeonly one ring
is used to send requests from the frontend to the backend and responses on the
reverse path.

The request/response structure is defined as follows:

typedef struct {
unsigned long addr; / * Machine address of packet. * /
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grant_ref_t ref; / * grant table access reference. * /
uint16_t unused; / * unused * /
uint16_t size; / * Packet size in bytes. * /

} tpmif_tx_request_t;

The fields are as follows:

addr The machine address of the page associated with the TPM request/response;
a request/response may span multiple pages

ref The grant table reference associated with the address.

size The size of the remaining packet; up to PAGESIZE bytes can be found in the
page referenced by ’addr’

The frontend initially allocates several pages whose addresses are stored in the
ring. Only these pages are used for exchange of requests and responses.

38



Chapter 9

Further Information

If you have questions that are not answered by this manual, the sourcesof infor-
mation listed below may be of interest to you. Note that bug reports, suggestions
and contributions related to the software (or the documentation) should be sent to
the Xen developers’ mailing list (address below).

9.1 Other documentation

If you are mainly interested in using (rather than developing for) Xen, theXen
Users’ Manual is distributed in thedocs/ directory of the Xen source distribution.

9.2 Online references

The official Xen web site can be found at:

http://www.xensource.com

This contains links to the latest versions of all online documentation, including the
latest version of the FAQ.

Information regarding Xen is also available at the Xen Wiki at

http://wiki.xensource.com/xenwiki/

The Xen project uses Bugzilla as its bug tracking system. You’ll find the Xen
Bugzilla at http://bugzilla.xensource.com/bugzilla/.
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9.3 Mailing lists

There are several mailing lists that are used to discuss Xen related topics. The most
widely relevant are listed below. An official page of mailing lists and subscription
information can be found at

http://lists.xensource.com/

xen-devel@lists.xensource.comUsed for development discussions and bug re-
ports. Subscribe at:
http://lists.xensource.com/xen-devel

xen-users@lists.xensource.comUsed for installation and usage discussions and
requests for help. Subscribe at:
http://lists.xensource.com/xen-users

xen-announce@lists.xensource.comUsed for announcements only. Subscribe
at:
http://lists.xensource.com/xen-announce

xen-changelog@lists.xensource.comChangelog feed from the unstable and 2.0
trees - developer oriented. Subscribe at:
http://lists.xensource.com/xen-changelog
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Appendix A

Xen Hypercalls

Hypercalls represent the procedural interface to Xen; this appendix categorizes and
describes the current set of hypercalls.

A.1 Invoking Hypercalls

Hypercalls are invoked in a manner analogous to system calls in a conventional op-
erating system; a software interrupt is issued which vectors to an entry point within
Xen. On x86/32 machines the instruction required isint $82 ; the (real) IDT is
setup so that this may only be issued from within ring 1. The particular hyper-
call to be invoked is contained inEAX— a list mapping these values to symbolic
hypercall names can be found inxen/include/public/xen.h .

On some occasions a set of hypercalls will be required to carry out a higher-level
function; a good example is when a guest operating wishes to context switchto
a new process which requires updating various privileged CPU state. Asan opti-
mization for these cases, there is a generic mechanism to issue a set of hypercalls
as a batch:

multicall(void *call list, int nr calls)

Execute a series of hypervisor calls;nr calls is the length of the ar-
ray of multicall entry t structures pointed to becall list .
Each entry contains the hypercall operation code followed by up to 7
word-sized arguments.

Note that multicalls are provided purely as an optimization; there is no requirement
to use them when first porting a guest operating system.

41



A.2 Virtual CPU Setup

At start of day, a guest operating system needs to setup the virtual CPU itis execut-
ing on. This includes installing vectors for the virtual IDT so that the guest OS can
handle interrupts, page faults, etc. However the very first thing a guestOS must
setup is a pair of hypervisor callbacks: these are the entry points which Xen will
use when it wishes to notify the guest OS of an occurrence.

set callbacks(unsigned long event selector, unsigned long event address,
unsigned long failsafe selector, unsigned long failsafe address)

Register the normal (“event”) and failsafe callbacks for event pro-
cessing. In each case the code segment selector and address within
that segment are provided. The selectors must have RPL 1; in Xen-
Linux we simply use the kernel’s CS for bothevent selectorandfail-
safeselector.

The valueevent addressspecifies the address of the guest OSes event
handling and dispatch routine; thefailsafe addressspecifies a sepa-
rate entry point which is used only if a fault occurs when Xen attempts
to use the normal callback.

On x86/64 systems the hypercall takes slightly different arguments. This is be-
cause callback CS does not need to be specified (since teh callbacks areentered via
SYSRET), and also because an entry address needs to be specified for SYSCALLs
from guest user space:

set callbacks(unsigned long event address, unsigned long fail-
safe address, unsigned long syscall address)

After installing the hypervisor callbacks, the guest OS can install a ‘virtualIDT’
by using the following hypercall:

set trap table(trap info t *table)

Install one or more entries into the per-domain trap handler table (es-
sentially a software version of the IDT). Each entry in the array pointed
to by table includes the exception vector number with the correspond-
ing segment selector and entry point. Most guest OSes can use the
same handlers on Xen as when running on the real hardware.

A further hypercall is provided for the management of virtual CPUs:

vcpu op(int cmd, int vcpuid, void *extra args)
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This hypercall can be used to bootstrap VCPUs, to bring them up and
down and to test their current status.

A.3 Scheduling and Timer

Domains are preemptively scheduled by Xen according to the parameters installed
by domain 0 (see Section A.10). In addition, however, a domain may choose to
explicitly control certain behavior with the following hypercall:

sched op new(int cmd, void *extra args)

Request scheduling operation from hypervisor. The following sub-
commands are available:

SCHEDOP yield voluntarily yields the CPU, but leaves the caller
marked as runnable. No extra arguments are passed to this com-
mand.

SCHEDOP block removes the calling domain from the run queue
and causes it to sleep until an event is delivered to it. No extra
arguments are passed to this command.

SCHEDOP shutdown is used to end the calling domain’s execution.
The extra argument is aschedshutdown structure which indi-
cates the reason why the domain suspended (e.g., for reboot, halt,
power-off).

SCHEDOP poll allows a VCPU to wait on a set of event channels
with an optional timeout (all of which are specified in theschedpoll
extra argument). The semantics are similar to the UNIXpoll
system call. The caller must have event-channel upcalls masked
when executing this command.

schedop new was not available prior to Xen 3.0.2. Older versions provide only
the following hypercall:

sched op(int cmd, unsigned long extra arg)

This hypercall supports the following subset ofschedop new com-
mands:

SCHEDOP yield (extra argument is 0).

SCHEDOP block (extra argument is 0).

SCHEDOP shutdown (extra argument is numeric reason code).

43



To aid the implementation of a process scheduler within a guest OS, Xen provides
a virtual programmable timer:

set timer op(uint64 t timeout)

Request a timer event to be sent at the specified system time (time in
nanoseconds since system boot).

Note that callingset timer op prior to schedop allows block-with-timeout se-
mantics.

A.4 Page Table Management

Since guest operating systems have read-only access to their page tables, Xen must
be involved when making any changes. The following multi-purpose hypercall
can be used to modify page-table entries, update the machine-to-physical mapping
table, flush the TLB, install a new page-table base pointer, and more.

mmu update(mmu update t *req, int count, int *success count)

Update the page table for the domain; a set ofcount updates are sub-
mitted for processing in a batch, withsuccesscount being updated to
report the number of successful updates.

Each element ofreq[] contains a pointer (address) and value; the least
significant 2-bits of the pointer are used to distinguish the type of up-
date requested as follows:

MMU NORMAL PT UPDATE: update a page directory entry or
page table entry to the associated value; Xen will check that the
update is safe, as described in Chapter 3.

MMU MACHPHYS UPDATE: update an entry in the machine-to-
physical table. The calling domain must own the machine page
in question (or be privileged).

Explicitly updating batches of page table entries is extremely efficient, but can
require a number of alterations to the guest OS. Using the writable page table mode
(Chapter 3) is recommended for new OS ports.

Regardless of which page table update mode is being used, however, there are some
occasions (notably handling a demand page fault) where a guest OS will wish to
modify exactly one PTE rather than a batch, and where that PTE is mapped into
the current address space. This is catered for by the following:
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update va mapping(unsigned long va, uint64 t val, unsigned long
flags)

Update the currently installed PTE that maps virtual addressva to new
valueval. As with mmu update, Xen checks the modification is safe
before applying it. Theflags determine which kind of TLB flush, if
any, should follow the update.

Finally, sufficiently privileged domains may occasionally wish to manipulate the
pages of others:

update va mapping otherdomain(unsigned long va, uint64 t val,
unsigned long flags, domid t domid)

Identical toupdate va mapping save that the pages being mapped
must belong to the domaindomid.

An additional MMU hypercall provides an “extended command” interface.This
provides additional functionality beyond the basic table updating commands:

mmuext op(struct mmuext op *op, int count, int *success count,
domid t domid)

This hypercall is used to perform additional MMU operations. These
include updatingcr3 (or just re-installing it for a TLB flush), request-
ing various kinds of TLB flush, flushing the cache, installing a new
LDT, or pinning & unpinning page-table pages (to ensure their refer-
ence count doesn’t drop to zero which would require a revalidation of
all entries). Some of the operations available are restricted to domains
with sufficient system privileges.

It is also possible for privileged domains to reassign page ownership
via an extended MMU operation, although grant tables are used in-
stead of this where possible; see Section A.8.

Finally, a hypercall interface is exposed to activate and deactivate various optional
facilities provided by Xen for memory management.

vm assist(unsigned int cmd, unsigned int type)

Toggle various memory management modes (in particular writable
page tables).
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A.5 Segmentation Support

Xen allows guest OSes to install a custom GDT if they require it; this is context
switched transparently whenever a domain is [de]scheduled. The following hyper-
call is effectively a ‘safe’ version oflgdt :

set gdt(unsigned long *frame list, int entries)

Install a global descriptor table for a domain;frame list is an array
of up to 16 machine page frames within which the GDT resides, with
entries being the actual number of descriptor-entry slots. All page
frames must be mapped read-only within the guest’s address space,
and the table must be large enough to contain Xen’s reserved entries
(seexen/include/public/arch-x8632.h).

Many guest OSes will also wish to install LDTs; this is achieved by usingmmu update
with an extended command, passing the linear address of the LDT base alongwith
the number of entries. No special safety checks are required; Xen needs to perform
this task simply sincelldt requires CPL 0.

Xen also allows guest operating systems to update just an individual segment de-
scriptor in the GDT or LDT:

update descriptor(uint64 t ma, uint64 t desc)

Update the GDT/LDT entry at machine addressma; the new 8-byte
descriptor is stored indesc. Xen performs a number of checks to en-
sure the descriptor is valid.

Guest OSes can use the above in place of context switching entire LDTs (or the
GDT) when the number of changing descriptors is small.

A.6 Context Switching

When a guest OS wishes to context switch between two processes, it can use the
page table and segmentation hypercalls described above to perform the thebulk of
the privileged work. In addition, however, it will need to invoke Xen to switch the
kernel (ring 1) stack pointer:

stack switch(unsigned long ss, unsigned long esp)

Request kernel stack switch from hypervisor;ssis the new stack seg-
ment, whichespis the new stack pointer.
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A useful hypercall for context switching allows “lazy” save and restore of floating
point state:

fpu taskswitch(int set)

This call instructs Xen to set theTS bit in the cr0 control register;
this means that the next attempt to use floating point will cause a trap
which the guest OS can trap. Typically it will then save/restore the FP
state, and clear theTS bit, using the same call.

This is provided as an optimization only; guest OSes can also choose to saveand
restore FP state on all context switches for simplicity.

Finally, a hypercall is provided for entering vm86 mode:

switch vm86

This allows the guest to run code in vm86 mode, which is needed for
some legacy software.

A.7 Physical Memory Management

As mentioned previously, each domain has a maximum and current memory allo-
cation. The maximum allocation, set at domain creation time, cannot be modified.
However a domain can choose to reduce and subsequently grow its current alloca-
tion by using the following call:

memory op(unsigned int op, void *arg)

Increase or decrease current memory allocation (as determined by the
value ofop). The available operations are:

XENMEM increasereservation Request an increase in machine mem-
ory allocation; arg must point to axen memory reservation
structure.

XENMEM decreasereservation Request a decrease in machine mem-
ory allocation; arg must point to axen memory reservation
structure.

XENMEM maximum ram page Request the frame number of the
highest-addressed frame of machine memory in the system.arg
must point to anunsigned longwhere this value will be stored.

XENMEM current reservation Returns current memory reservation
of the specified domain.
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XENMEM maximum reservation Returns maximum memory reser-
vation of the specified domain.

In addition to simply reducing or increasing the current memory allocation via a
‘balloon driver’, this call is also useful for obtaining contiguous regions of machine
memory when required (e.g. for certain PCI devices, or if using superpages).

A.8 Inter-Domain Communication

Xen provides a simple asynchronous notification mechanism viaevent channels.
Each domain has a set of end-points (orports) which may be bound to an event
source (e.g. a physical IRQ, a virtual IRQ, or an port in another domain). When
a pair of end-points in two different domains are bound together, then a ‘send’
operation on one will cause an event to be received by the destination domain.

The control and use of event channels involves the following hypercall:

event channel op(evtchn op t *op)

Inter-domain event-channel management;op is a discriminated union
which allows the following 7 operations:

alloc unbound: allocate a free (unbound) local port and prepare for
connection from a specified domain.

bind virq: bind a local port to a virtual IRQ; any particular VIRQ can
be bound to at most one port per domain.

bind pirq: bind a local port to a physical IRQ; once more, a given
pIRQ can be bound to at most one port per domain. Furthermore
the calling domain must be sufficiently privileged.

bind interdomain: construct an interdomain event channel; in gen-
eral, the target domain must have previously allocated an un-
bound port for this channel, although this can be bypassed by
privileged domains during domain setup.

close: close an interdomain event channel.

send: send an event to the remote end of a interdomain event channel.

status: determine the current status of a local port.

For more details seexen/include/public/eventchannel.h.

Event channels are the fundamental communication primitive between Xen do-
mains and seamlessly support SMP. However they provide little bandwidth for
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communicationper se, and hence are typically married with a piece of shared mem-
ory to produce effective and high-performance inter-domain communication.

Safe sharing of memory pages between guest OSes is carried out by granting ac-
cess on a per page basis to individual domains. This is achieved by using the
grant table op hypercall.

grant table op(unsigned int cmd, void *uop, unsigned int count)

Used to invoke operations on a grant reference, to setup the grant table
and to dump the tables’ contents for debugging.

A.9 IO Configuration

Domains with physical device access (i.e. driver domains) receive limited access
to certain PCI devices (bus address space and interrupts). However many guest
operating systems attempt to determine the PCI configuration by directly access
the PCI BIOS, which cannot be allowed for safety.

Instead, Xen provides the following hypercall:

physdev op(void *physdev op)

Set and query IRQ configuration details, set the system IOPL, set the
TSS IO bitmap.

For examples of usingphysdev op , see the Xen-specific PCI code in the linux
sparse tree.

A.10 Administrative Operations

A large number of control operations are available to a sufficiently privileged do-
main (typically domain 0). These allow the creation and management of new do-
mains, for example. A complete list is given below: for more details on any or all
of these, please seexen/include/public/dom0 ops.h

dom0 op(dom0 op t *op)

Administrative domain operations for domain management. The op-
tions are:

DOM0 GETMEMLIST: get list of pages used by the domain

DOM0 SCHEDCTL:
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DOM0 ADJUSTDOM: adjust scheduling priorities for domain

DOM0 CREATEDOMAIN: create a new domain

DOM0 DESTROYDOMAIN: deallocate all resources associated with
a domain

DOM0 PAUSEDOMAIN: remove a domain from the scheduler run
queue.

DOM0 UNPAUSEDOMAIN: mark a paused domain as schedulable
once again.

DOM0 GETDOMAININFO: get statistics about the domain

DOM0 SETDOMAININFO: set VCPU-related attributes

DOM0 MSR: read or write model specific registers

DOM0 DEBUG: interactively invoke the debugger

DOM0 SETTIME: set system time

DOM0 GETPAGEFRAMEINFO:

DOM0 READCONSOLE: read console content from hypervisor buffer
ring

DOM0 PINCPUDOMAIN: pin domain to a particular CPU

DOM0 TBUFCONTROL: get and set trace buffer attributes

DOM0 PHYSINFO: get information about the host machine

DOM0 SCHED ID: get the ID of the current Xen scheduler

DOM0 SHADOW CONTROL: switch between shadow page-table
modes

DOM0 SETDOMAINMAXMEM: set maximum memory allocation
of a domain

DOM0 GETPAGEFRAMEINFO2: batched interface for getting page
frame info

DOM0 ADD MEMTYPE: set MTRRs

DOM0 DEL MEMTYPE: remove a memory type range

DOM0 READ MEMTYPE: read MTRR

DOM0 PERFCCONTROL: control Xen’s software performance coun-
ters

DOM0 MICROCODE: update CPU microcode
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DOM0 IOPORT PERMISSION: modify domain permissions for
an IO port range (enable / disable a range for a particular do-
main)

DOM0 GETVCPUCONTEXT: get context from a VCPU

DOM0 GETVCPUINFO: get current state for a VCPU

DOM0 GETDOMAININFOLIST: batched interface to get domain
info

DOM0 PLATFORM QUIRK: inform Xen of a platform quirk it
needs to handle (e.g. noirqbalance)

DOM0 PHYSICAL MEMORY MAP: get info about dom0’s mem-
ory map

DOM0 MAX VCPUS: change max number of VCPUs for a domain

DOM0 SETDOMAINHANDLE: set the handle for a domain

Most of the above are best understood by looking at the code implementing them
(in xen/common/dom0 ops.c ) and in the user-space tools that use them (mostly
in tools/libxc ).

A.11 Access Control Module Hypercalls

Hypercalls relating to the management of the Access Control Module are alsore-
stricted to domain 0 access for now. For more details on any or all of these, please
seexen/include/public/acm ops.h . A complete list is given below:

acm op(int cmd, void *args)

This hypercall can be used to configure the state of the ACM, query
that state, request access control decisions and dump additional infor-
mation.

ACMOP SETPOLICY: set the access control policy

ACMOP GETPOLICY: get the current access control policy and
status

ACMOP DUMPSTATS: get current access control hook invocation
statistics

ACMOP GETSSID: get security access control information for a
domain
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ACMOP GETDECISION: get access decision based on the currently
enforced access control policy

Most of the above are best understood by looking at the code implementing them
(in xen/common/acm ops.c ) and in the user-space tools that use them (mostly
in tools/security andtools/python/xen/lowlevel/acm ).

A.12 Debugging Hypercalls

A few additional hypercalls are mainly useful for debugging:

console io(int cmd, int count, char *str)

Use Xen to interact with the console; operations are:

CONSOLEIOwrite: Output count characters from buffer str.

CONSOLEIOread: Input at most count characters into buffer str.

A pair of hypercalls allows access to the underlying debug registers:

set debugreg(int reg, unsigned long value)

Set debug registerreg to value

get debugreg(int reg)

Return the contents of the debug registerreg

And finally:

xen version(int cmd)

Request Xen version number.

This is useful to ensure that user-space tools are in sync with the underlying hyper-
visor.
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