een

Interface manual
Xen v3.0 for x86

Xen is Copyright (c) 2002-2005, The Xen Team
University of Cambridge, UK

DISCLAIMER: This documentation is always under active developmat and

as such there may be mistakes and omissions — watch out for thesedgplease
report any you find to the developer’s mailing list. The latest versioris always
available on-line. Contributions of material, suggestions and corretions are
welcome.

Contents

1 Introduction 1
2 Virtual Architecture 3
21 CPUstate 3
2.2 Exceptions. e 4
2.3 Interruptsandevents 4
24 TiMe e 4
25 XenCPUScheduling 5
2.6 Privilegedoperations 5
3 Memory 7
3.1 Memory Allocation 7
3.2 Pseudo-PhysicalMemory oL 7
3.3 PageTableUpdates 8
3.4 WritablePageTables 9
3.5 ShadowPageTables 9
3.6 SegmentDescriptorTables 10
3.7 StartofDay e 10
3.8 VMassists. 10
4 Xen Info Pages 13
4.1 Sharedinfopage 13
411 wvepuinfot 14
4.1.2 wvcputimeinfo L 15
41.3 archsharedinfot 16
4,2 Startinfopage 16
5 Event Channels 19
5.1 Hypercallinterface 19

Grant tables 23

6.1 Interface 23
6.1.1 Granttable manipulation 23
6.1.2 Hypercalls 24

Xenstore 25

7.1 Guidelines L 25

7.2 Storelayout e 26

Devices 31

8.1 Networkl/O. 32
8.1.1 Backend PacketHandling 32
8.1.2 DataTransfer 33
8.1.3 Networkringinterface 33

8.2 Blockl/O 35
8.21 DataTransfer 35
8.2.2 Blockringinterface. 36

8.3 VirtualTPM 37
83.1 DataTransfer 37
8.3.2 \Virtual TPMringinterface 37

Further Information 39

9.1 Otherdocumentation 39

9.2 Onlinereferences 39

9.3 Mailinglists 40

Xen Hypercalls 41

A.l InvokingHypercalls. 41

A2 VirtualCPUSetup 42

A.3 Schedulingand Timer 43

A.4 Page Table Management 44

A5 Segmentation Support. oL 46

A.6 ContextSwitching 46

A.7 Physical Memory Management a7

A.8 Inter-Domain Communication 48

A.9 10 Configuration 49

A.10 Administrative Operations 49

A.11 Access Control Module Hypercalls 51

A.12 Debugging Hypercalls 52

Chapter 1

Introduction

Xen allows the hardware resources of a machine to be virtualized anchibaiby
partitioned, allowing multiple differenfuest operating system images to be run
simultaneously. Virtualizing the machine in this manner provides considerable
flexibility, for example allowing different users to choose their prefeopérating
system (e.g., Linux, NetBSD, or a custom operating system). Furtheridere,
provides secure partitioning between virtual machines (knowdoamsins in Xen
terminology), and enables better resource accounting and QoS isolationaha

be achieved with a conventional operating system.

Xen essentially takes a ‘whole machine’ virtualization approach as pionegred
IBM VM/370. However, unlike VM/370 or more recent efforts such as wWade
and Virtual PC, Xen does not attempt to completely virtualize the underlyirdy har
ware. Instead parts of the hosted guest operating systems are modifiedk twiti
the VMM; the operating system is effectively ported to a new target arc¢hitec
typically requiring changes in just the machine-dependent code. Thdewsé
APl is unchanged, and so existing binaries and operating system distnibutark
without modification.

In addition to exporting virtualized instances of CPU, memory, network antkblo
devices, Xen exposes a control interface to manage how these resavecshared
between the running domains. Access to the control interface is restrictedy
only be used by one specially-privileged VM, knowndmsnain 0. This domain

is a required part of any Xen-based server and runs the applicafiovase that
manages the control-plane aspects of the platform. Running the contws®in
domain O, distinct from the hypervisor itself, allows the Xen framework to separate
the notions of mechanism and policy within the system.

Chapter 2

Virtual Architecture

In a Xen/x86 system, only the hypervisor runs with full processor pgeiteting
0 in the x86 four-ring model). It has full access to the physical memory dlaila
in the system and is responsible for allocating portions of it to running domains

On a 32-bit x86 system, guest operating systems mayioge 1, 2 and3 as they
see fit. Segmentation is used to prevent the guest OS from accessingtitve pb
the address space that is reserved for Xen. We expect most geesting systems
will use ring 1 for their own operation and place applications in ring 3.

On 64-bit systems it is not possible to protect the hypervisor from unttygtest
code running in rings 1 and 2. Guests are therefore restricted to rurgi only.
The guest kernel is protected from its applications by context switchitgees
the kernel and currently running application.

In this chapter we consider the basic virtual architecture provided by X&J
state, exception and interrupt handling, and time. Other aspects such asymemo
and device access are discussed in later chapters.

2.1 CPU state

All privileged state must be handled by Xen. The guest OS has no diceess

to CR3 and is not permitted to update privileged bits in EFLAGS. Guest O®es us
hypercalls to invoke operations in Xen; these are analogous to system calls but
occur from ring 1 to ring 0.

A list of all hypercalls is given in Appendix A.

2.2 [Exceptions

A virtual IDT is provided — a domain can submit a table of trap handlers to Xen
via thesettrap _table hypercall. The exception stack frame presented to a virtual
trap handler is identical to its native equivalent.

2.3 Interrupts and events

Interrupts are virtualized by mapping themeient channels, which are delivered
asynchronously to the target domain using a callback supplied vietioallbacks
hypercall. A guest OS can map these events onto its standard interruatctlisp
mechanisms. Xen is responsible for determining the target domain that wilehand
each physical interrupt source. For more details on the binding of seeintes to
event channels, see Chapter 8.

2.4 Time

Guest operating systems need to be aware of the passage of both vesi¢lwck)
time and their own ‘virtual time’ (the time for which they have been executing).
Furthermore, Xen has a notion of time which is used for scheduling. Theviolip
notions of time are provided:

Cycle counter time. This provides a fine-grained time reference. The cycle counter
time is used to accurately extrapolate the other time references. On SMP
machines it is currently assumed that the cycle counter time is synchronized
between CPUs. The current x86-based implementation achieves this within
inter-CPU communication latencies.

System time. This is a 64-bit counter which holds the number of nanoseconds that
have elapsed since system boot.

Wall clock time. This is the time of day in a Unix-stylstruct timeval (seconds
and microseconds since 1 January 1970, adjusted by leap second$].FA
client hosted bylomain O can keep this value accurate.

Domain virtual time. This progresses at the same pace as system time, but only
while a domain is executing — it stops while a domain is de-scheduled.
Therefore the share of the CPU that a domain receives is indicated by the
rate at which its virtual time increases.

Xen exports timestamps for system time and wall-clock time to guest operating
systems through a shared page of memory. Xen also provides the cydieicou
time at the instant the timestamps were calculated, and the CPU frequency in Hertz
This allows the guest to extrapolate system and wall-clock times accuratelg bas
on the current cycle counter time.

Since all time stamps need to be updated and asadically a version number is
also stored in the shared info page, which is incremented before andpdiating
the timestamps. Thus a guest can be sure that it read a consistent stateliggh
the two version numbers are equal and even.

Xen includes a periodic ticker which sends a timer event to the currentlyigrgc
domain every 10ms. The Xen scheduler also sends a timer event whangwer
main is scheduled; this allows the guest OS to adjust for the time that has passed
while it has been inactive. In addition, Xen allows each domain to requetst tha
they receive a timer event sent at a specified system time by usisgtthimer _op
hypercall. Guest OSes may use this timer to implement timeout values when they
block.

2.5 Xen CPU Scheduling

Xen offers a uniform API for CPU schedulers. It is possible to chdose a
number of schedulers at boot and it should be easy to add more. Thie &iD
Credit schedulers are part of the normal Xen distribution. SEDF will bagyo
away and its use should be avoided once the credit scheduler has sthaiide
become the default. The Credit scheduler provides proportional farestof the
host’'s CPUs to the running domains. It does this while transparently loaaddiraga
runnable VCPUs across the whole system.

Note: SMP host support Xen has always supported SMP host systems. When
using the credit scheduler, a domain’s VCPUs will be dynamically movedacro
physical CPUs to maximise domain and system throughput. VCPUs can also be
manually restricted to be mapped only on a subset of the host’s physicad,CPU
using the pinning mechanism.

2.6 Privileged operations

Xen exports an extended interface to privileged domains @amain 0). This
allows such domains to build and boot other domains on the server, anidgsov

control interfaces for managing scheduling, memory, networking, ank lwe-
vices.

Chapter 3

Memory

Xen is responsible for managing the allocation of physical memory to domains,
and for ensuring safe use of the paging and segmentation hardware.

3.1 Memory Allocation

As well as allocating a portion of physical memory for its own private use) Xe
also reserves s small fixed portion of every virtual address spads.isTlocated

in the top 64MB on 32-bit systems, the top 168MB on PAE systems, and a larger
portion in the middle of the address space on 64-bit systems. Unresdrysidal
memory is available for allocation to domains at a page granularity. Xen tracks
the ownership and use of each page, which allows it to enforce searitoming
between domains.

Each domain has a maximum and current physical memory allocation. A g8est O
may run a ‘balloon driver’ to dynamically adjust its current memory allocatipn u
to its limit.

3.2 Pseudo-Physical Memory

Since physical memory is allocated and freed on a page granularity, theee is
guarantee that a domain will receive a contiguous stretch of physical ngemor
However most operating systems do not have good support for opeiratirfrag-
mented physical address space. To aid porting such operating systeamsdo r
top of Xen, we make a distinction betwemachine memory and pseudo-physical
memory.

Put simply, machine memory refers to the entire amount of memory installed in the
machine, including that reserved by Xen, in use by various domains ramntly
unallocated. We consider machine memory to comprise a set ofnékBine page
frames numbered consecutively starting from 0. Machine frame numbers mean the
same within Xen or any domain.

Pseudo-physical memory, on the other hand, is a per-domain abstrattbows

a guest operating system to consider its memory allocation to consist of alcontig
ous range of physical page frames starting at physical frame 0, ddspfiact that
the underlying machine page frames may be sparsely allocated and in any ord

To achieve this, Xen maintains a globally readatédehine-to-physical table which
records the mapping from machine page frames to pseudo-physicalloraekli-

tion, each domain is supplied withphiysical-to-machine table which performs the
inverse mapping. Clearly the machine-to-physical table has size proitixche
amount of RAM installed in the machine, while each physical-to-machine table has
size proportional to the memory allocation of the given domain.

Architecture dependent code in guest operating systems can then tse thbles

to provide the abstraction of pseudo-physical memory. In general, @mntgic
specialized parts of the operating system (such as page table manageseeist) n
to understand the difference between machine and pseudo-physicesseks.

3.3 Page Table Updates

In the default mode of operation, Xen enforces read-only accessg® tpbles
and requires guest operating systems to explicitly request any modificakens
validates all such requests and only applies updates that it deems sageis Th
necessary to prevent domains from adding arbitrary mappings to theitablgs.

To aid validation, Xen associates a type and reference count with eachrgnemo
page. A page has one of the following mutually-exclusive types at anyt poin
time: page directoryRD), page tableRT), local descriptor tableLDT), global
descriptor table@DT), or writable RW). Note that a guest OS may always create
readable mappings of its own memory regardless of its current type.

This mechanism is used to maintain the invariants required for safety; fon@ea
a domain cannot have a writable mapping to any part of a page table as this wou
require the page concerned to simultaneously be of tifesndRW.

mmu_update(mmu_update_t *req, int count, int *success_count, domid_t do-
mid)

This hypercall is used to make updates to either the domain’s pagetables er to th
machine to physical mapping table. It supports submitting a queue of updates,
allowing batching for maximal performance. Explicitly queuing updates usisg th
interface will cause any outstanding writable pagetable state to be flugimedHe
system.

3.4 Writable Page Tables

Xen also provides an alternative mode of operation in which guests havk the
lusion that their page tables are directly writable. Of course this is not really th
case, since Xen must still validate modifications to ensure secure partitiorong. T
this end, Xen traps any write attempt to a memory page of Bpé.e., that is cur-
rently part of a page table). If such an access occurs, Xen tempaahoilys write
access to that page while at the same fifiseonnecting it from the page table that

is currently in use. This allows the guest to safely make updates to the page be
cause the newly-updated entries cannot be used by the MMU until Xeldates

and reconnects the page. Reconnection occurs automatically in a nunsiteiaef
tions: for example, when the guest modifies a different page-table pégs, the
domain is preempted, or whenever the guest uses Xen's explicit pdgaifatate
interfaces.

Writable pagetable functionality is enabled when the guest requests it, using a
vm_assisthypercall. Writable pagetables aot provide full virtualisation of the
MMU, so the memory management code of the guest still needs to be aware that
it is running on Xen. Since the guest’s page tables are used directly, itranst

late pseudo-physical addresses to real machine addresses whérgtpaige table
entries. The guest may not attempt to map its own pagetables writably, since this
would violate the memory type invariants; page tables will automatically be made
writable by the hypervisor, as necessary.

3.5 Shadow Page Tables

Finally, Xen also supports a form shadow page tables in which the guest OS
uses a independent copy of page tables which are unknown to thedrar(ive.
which are never pointed to liyr3). Instead Xen propagates changes made to the
guest's tables to the real ones, and vice versa. This is useful for pggie writes
(e.g. for live migration or checkpoint). A full version of the shadow péajdes
also allows guest OS porting with less effort.

3.6 Segment Descriptor Tables

At start of day a guest is supplied with a default GDT, which does nateesithin

its own memory allocation. If the guest wishes to use other than the defatilt ‘fla
ring-1 and ring-3 segments that this GDT provides, it must register a cUsidm
and/or LDT with Xen, allocated from its own memory.

The following hypercall is used to specify a new GDT:
int setgdt(unsigned long frame._list, int entries)

frame_list: An array of up to 14 machine page frames within which

the GDT resides. Any frame registered as a GDT frame may only be
mapped read-only within the guest’'s address space (e.g., no writable
mappings, No use as a page-table page, and so on). Only 14 pages may
be specified because pages 15 and 16 are reserved for the hgpervis
GDT entries.

entries. The number of descriptor-entry slots in the GDT.

The LDT is updated via the generic MMU update mechanism (i.e., vientha_update
hypercall.

3.7 Start of Day

The start-of-day environment for guest operating systems is ratheretiffto that
provided by the underlying hardware. In particular, the processdréady exe-
cuting in protected mode with paging enabled.

Domain 0 is created and booted by Xen itself. For all subsequent domains, the
analogue of the boot-loader is tdemain builder, user-space software running in
domain 0. The domain builder is responsible for building the initial page tables for
a domain and loading its kernel image at the appropriate virtual address.

3.8 VM assists

Xen provides a number of “assists” for guest memory management. These a
available on an “opt-in” basis to provide commonly-used extra functionality to a
guest.

vm_assist(unsigned int cmd, unsigned int type)

The cmd parameter describes the action to be taken, whilstyhe parameter

10

describes the kind of assist that is being referred to. Available commaedsar
follows:

VMASST _CMD _enable Enable a particular assist type
VMASST _CMD _disable Disable a particular assist type
And the available types are:

VMASST _TYPE _4gb_segmentsProvide emulated support for instructions that
rely on 4GB segments (such as the techniques used by some TLS solutions).

VMASST _TYPE _4gb_segmentsnotify Provide a callback (via trap number 15)
to the guest if the above segment fixups are used: allows the guest toydispla
a warning message during boot.

VMASST _TYPE _writable pagetables Enable writable pagetable mode - described
above.

11

12

Chapter 4

Xen Info Pages

TheShared info pageis used to share various CPU-related state between the guest
OS and the hypervisor. This information includes VCPU status, time information
and event channel (virtual interrupt) state. T3iart info page is used to pass
build-time information to the guest when it boots and when it is resumed from a
suspended state. This chapter documents the fields included shaihed info _t
andstart_info_t structures for use by the guest OS.

4.1 Shared info page

Theshared.info_t is accessed at run time by both Xen and the guest OS. Itis used
to pass information relating to the virtual CPU and virtual machine state between
the OS and the hypervisor.

The structure is declared ken/include/public/xen.h

typedef struct shared_info {
vepu_info_t vepu_infolXEN_LEGACY_MAX_VCPUS];

/

*

* A domain can create "event channels" on which it can send and r eceive
* asynchronous event notifications. There are three classes of event that
* are delivered by this mechanism:

* 1. Bi-directional inter- and intra-domain connections. Do mains must
* arrange out-of-band to set up a connection (usually by alloc ating
* an unbound ’listener’ port and advertising that via a storag e service
* such as xenstore).

* 2. Physical interrupts. A domain with suitable hardware-ac cess

* privileges can bind an event-channel port to a physical inte rrupt
* source.

* 3. Virtual interrupts (‘events’). A domain can bind an event -channel
* port to a virtual interrupt source, such as the virtual-time r

*

device or the emergency console.

13

* Event channels are addressed by a "port index". Each channel is
* associated with two bits of information:

* 1. PENDING -- notifies the domain that there is a pending noti fication
* to be processed. This bit is cleared by the guest.

* 2. MASK -- if this bit is clear then a 0->1 transition of PENDIN G

* will cause an asynchronous upcall to be scheduled. This bit i s only
* updated by the guest. It is read-only within Xen. If a channel

* becomes pending while the channel is masked then the ’'edge’ i s lost
* (i.e., when the channel is unmasked, the guest must manually handle
* pending notifications as no upcall will be scheduled by Xen)

*

* To expedite scanning of pending notifications, any 0->1 pen ding

* transition on an unmasked channel causes a corresponding bi tin a

* per-vcpu selector word to be set. Each bit in the selector cov ers a

* 'C long’ in the PENDING bitfield array.

*/

unsigned long evtchn_pending[sizeof(unsigned long) * 8];

unsigned long evtchn_mask[sizeof(unsigned long) * 8J;

| *

* Wallclock time: updated only by control software. Guests sh ould base

* their gettimeofday() syscall on this wallclock-base value

*/

uint32_t wc_version; / * Version counter: see vcpu_time_info_t. */
uint32_t wc_sec; / * Secs 00:00:00 UTC, Jan 1, 1970. */

uint32_t wc_nsec; / * Nsecs 00:00:00 UTC, Jan 1, 1970. */

arch_shared_info_t arch;
} shared_info_t;

vepu_info An array ofvepu_info_t structures, each of which holds either runtime
information about a virtual CPU, or is “empty” if the corresponding VCPU
does not exist.

evtchn_pending Guest-global array, with one bit per event channel. Bits are set if
an event is currently pending on that channel.

evtchn.mask Guest-global array for masking notifications on event channels.
wc_version Version counter for current wallclock time.

wc_sec Whole seconds component of current wallclock time.

wc_nsec Nanoseconds component of current wallclock time.

arch Host architecture-dependent portion of the shared info structure.

4.1.1 vcpuinfo_t

typedef struct vcpu_info {
| *
* 'evtchn_upcall_pending’ is written non-zero by Xen to indi cate

14

* a pending notification for a particular VCPU. It is then clea red

* by the guest OS /before/ checking for pending work, thus avoi ding
* a set-and-check race. Note that the mask is only accessed by X en
* on the CPU that is currently hosting the VCPU. This means that the
* pending and mask flags can be updated by the guest without spe cial

* synchronisation (i.e., no need for the x86 LOCK prefix).

* This may seem suboptimal because if the pending flag is set by

* a different CPU then an IPI may be scheduled even when the mask
* is set. However, note:

* 1. The task of ’interrupt holdoff' is covered by the per-even t-

* channel mask bits. A ’'noisy’ event that is continually being

* triggered can be masked at source at this very precise

* granularity.

* 2. The main purpose of the per-VCPU mask is therefore to restr ict
* reentrant execution: whether for concurrency control, or t o}

* prevent unbounded stack usage. Whatever the purpose, we exp ect
* that the mask will be asserted only for short periods at a time ,
* and so the likelihood of a 'spurious’ IPI is suitably small.

* The mask is read before making an event upcall to the guest: a

* non-zero mask therefore guarantees that the VCPU will not re ceive
* an upcall activation. The mask is cleared when the VCPU reque sts

* to block: this avoids wakeup-waiting races.

*/

uint8_t evtchn_upcall_pending;
uint8_t evtchn_upcall_mask;
unsigned long evtchn_pending_sel;
arch_vcpu_info_t arch;
vepu_time_info_t time;
} vepu_info_t; / * 64 bytes (x86) */
evtchn_upcall_pending This is set non-zero by Xen to indicate that there are

pending events to be received.

evtchn.upcall_mask This is set non-zero to disable all interrupts for this CPU for
short periods of time. If individual event channels need to be masked, th
evtchn.maskin theshared.info _t is used instead.

evtchn_pending sel When an eventis delivered to this VCPU, a bitis set in this se-
lector to indicate which word of thevtchn_pendingarray in theshared.info _t
contains the event in question.

arch Architecture-specific VCPU info. On x86 this contains the virtualized CR2
register (page fault linear address) for this VCPU.

time Time values for this VCPU.

4.1.2 vcputime_info

typedef struct vcpu_time_info {

| *
* Updates to the following values are preceded and followed by an
* increment of 'version’. The guest can therefore detect upda tes by
* looking for changes to ’'version’. If the least-significant bit of

15

the version number is set then an update is in progress and the guest
must wait to read a consistent set of values.

The correct way to interact with the version number is simila r to

* Linux’s seglock: see the implementations of read_segbegin /read_seqretry.
*/

uint32_t version;

uint32_t pado;

E

uinté4_t tsc_timestamp; / * TSC at last update of time vals. */

uinté4_t system_time; / +* Time, in nanosecs, since boot. */

| *

* Current system time:

* system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul

* CPU frequency (Hz):
* ((1079 << 32) / tsc_to_system_mul) >> tsc_shift
*/
uint32_t tsc_to_system_mul;
int8_t tsc_shift;
int8_t padl[3];
} vepu_time_info_t; / * 32 bytes */

version Used to ensure the guest gets consistent time updates.

tsc_timestamp Cycle counter timestamp of last time value; could be used to ex-
polate in between updates, for instance.

systemtime Time since boot (nanoseconds).

tsc_to_systemmul Cycle counter to nanoseconds multiplier (used in extrapolating
current time).

tsc_shift Cycle counter to nanoseconds shift (used in extrapolating current time).

4.1.3 archshared.info_t

On x86, thearch_shared.info _t is defined as follows (from xen/public/arch-x3@2.h):

typedef struct arch_shared_info {
unsigned long max_pfn; / * max pfn that appears in table */
|+ Frame containing list of mfns containing list of mfns contai ning p2m. */
unsigned long pfn_to_mfn_frame_list_list;

} arch_shared_info_t;

max_pfn The maximum PFN listed in the physical-to-machine mapping table (P2M
table).

pfn_to_mfn_frame_list_list Machine address of the frame that contains the ma-
chine addresses of the P2M table frames.

4.2 Start info page

The start info structure is declared as the followingx@m/include/public/xen.h:

16

#define MAX_GUEST_CMDLINE 1024
typedef struct start_info {
/+* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME =/

char magic[32]; / * "Xen-<version>.<subversion>". */

unsigned long nr_pages; / * Total pages allocated to this domain. */
unsigned long shared_info; / * MACHINE address of shared info struct. */
uint32_t flags; / * SIF_xxx flags. */
unsigned long store_mfn; / * MACHINE page number of shared page. */
uint32_t store_evtchn; / +* Event channel for store communication. */
unsigned long console_mfn; / * MACHINE address of console page. */
uint32_t console_evtchn; / * Event channel for console messages. */
/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME) */
unsigned long pt_base; / * VIRTUAL address of page directory. */
unsigned long nr_pt_frames; / * Number of bootstrap p.t. frames. */
unsigned long mfn_list; / * VIRTUAL address of page-frame list. */
unsigned long mod_start; / * VIRTUAL address of pre-loaded module. */
unsigned long mod_len; / * Size (bytes) of pre-loaded module. */

int8_t cmd_line[]MAX_GUEST_CMDLINE];
} start_info_t;

The fields are in two groups: the first group are always filled in whemaailois
booted or resumed, the second set are only used at boot time.

The always-available group is as follows:
magic A text string identifying the Xen version to the guest.
nr_pages The number of real machine pages available to the guest.

sharedinfo Machine address of the shared info structure, allowing the guest to
map it during initialisation.

flags Flags for describing optional extra settings to the guest.

store.mfn Machine address of the Xenstore communications page.
store_evtchn Event channel to communicate with the store.

consolemfn Machine address of the console data page.

consoleevtchn Event channel to notify the console backend.

The boot-only group may only be safely referred to during system boot:
pt_base Virtual address of the page directory created for us by the domain huilder
nr_pt_frames Number of frames used by the builders’ bootstrap pagetables.
mfn_list Virtual address of the list of machine frames this domain owns.
mod_start Virtual address of any pre-loaded modules (e.g. ramdisk)
mod_len Size of pre-loaded module (if any).

cmd_line Kernel command line passed by the domain builder.

17

18

Chapter 5

Event Channels

Event channels are the basic primitive provided by Xen for event ndtdita An
event is the Xen equivalent of a hardware interrupt. They essentiatly ste bit
of information, the event of interest is signalled by transitioning this bit frotm O
1.

Notifications are received by a guest via an upcall from Xen, indicatingnnan
event arrives (setting the bit). Further notifications are masked until this bit
cleared again (therefore, guests must check the value of the bit aktealding
event delivery to ensure no missed notifications).

Event notifications can be masked by setting a flag; this is equivalent tdidgsab
interrupts and can be used to ensure atomicity of certain operations in tee gue
kernel.

5.1 Hypercall interface

event_channel_op(evtchn_op_t *op)

The event channel operation hypercall is used for all operationgent ehannels /
ports. Operations are distinguished by the value o€thd field of theop structure.
The possible commands are described below:

EVTCHNORP _alloc_unbound Allocate a new event channel port, ready to be con-
nected to by a remote domain.

e Specified domain must exist.

e A free port must exist in that domain.

19

Unprivileged domains may only allocate their own ports, privileged domains
may also allocate ports in other domains.

EVTCHNOP _bind_interdomain Bind an event channel for interdomain commu-
nications.

e Caller domain must have a free port to bind.
e Remote domain must exist.
e Remote port must be allocated and currently unbound.
e Remote port must be expecting the caller domain as the “remote”.
EVTCHNOP _bind_virg Allocate a port and bind a VIRQ to it.
e Caller domain must have a free port to bind.
e VIRQ must be valid.
e VCPU must exist.
¢ VIRQ must not currently be bound to an event channel.
EVTCHNOP _bind_ipi Allocate and bind a port for notifying other virtual CPUs.
e Caller domain must have a free port to bind.
e VCPU must exist.
EVTCHNOP _bind_pirq Allocate and bind a port to a real IRQ.
e Caller domain must have a free port to bind.
e PIRQ must be within the valid range.
e Another binding for this PIRQ must not exist for this domain.
e Caller must have an available port.
EVTCHNOP _close Close an event channel (no more events will be received).
e Port must be valid (currently allocated).
EVTCHNOP _send Send a natification on an event channel attached to a port.
e Port must be valid.
e Only valid for Interdomain, IPI or Allocated Unbound ports.

EVTCHNOP _status Query the status of a port; what kind of port, whether it is
bound, what remote domain is expected, what PIRQ or VIRQ it is bound to,
what VCPU will be notified, etc. Unprivileged domains may only query the
state of their own ports. Privileged domains may query any port.

20

EVTCHNOP _bind_vcpu Bind event channel to a particular VCPU - receive no-
tification upcalls only on that VCPU.

e VCPU must exist.
e Port must be valid.

e Event channel must be either: allocated but unbound, bound to an in-
terdomain event channel, bound to a PIRQ.

21

22

Chapter 6

Grant tables

Xen'’s grant tables provide a generic mechanism to memory sharing betleeen
mains. This shared memory interface underpins the split device drivebdoitk
and network 10.

Each domain has its owgrant table. This is a data structure that is shared with
Xen; it allows the domain to tell Xen what kind of permissions other domains have
on its pages. Entries in the grant table are identifiegtayt references A grant
reference is an integer, which indexes into the grant table. It acts gzaitgy
which the grantee can use to perform operations on the granter's memory.

This capability-based system allows shared-memory communications betmween u
privileged domains. A grant reference also encapsulates the detailshafrad
page, removing the need for a domain to know the real machine addrepagéa

it is sharing. This makes it possible to share memory correctly with domains run-
ning in fully virtualised memory.

6.1 Interface

6.1.1 Grant table manipulation

Creating and destroying grant references is done by direct accisesgmant table.
This removes the need to involve Xen when creating grant referenceffying
access permissions, etc. The grantee domain will invoke hypercalls tosugeatit
references. Four main operations can be accomplished by directly maimigtltee
table:

Grant foreign accessallocate a new entry in the grant table and fill out the access

23

permissions accordingly. The access permissions will be looked up by Xen
when the grantee attempts to use the reference to map the granted frame.

End foreign accesscheck that the grant reference is not currently in use, then
remove the mapping permissions for the frame. This prevents further map-
pings from taking place but does not allow forced revocations of existing
mappings.

Grant foreign transfer allocate a new entry in the table specifying transfer per-
missions for the grantee. Xen will look up this entry when the grantee at-
tempts to transfer a frame to the granter.

End foreign transfer remove permissions to prevent a transfer occurring in fu-
ture. If the transfer is already committed, modifying the grant table cannot
prevent it from completing.

6.1.2 Hypercalls

Use of grant references is accomplished via a hypercall. The grdetdplhyper-
call takes three arguments:
grant_table_op(unsigned int cmd, void *uop, unsigned int count)

cmd indicates the grant table operation of interagip is a pointer to a structure
(or an array of structures) describing the operation to be performbd.cunt
field describes how many grant table operations are being batched togethe

The core logic is situated ixen/common/granttable.c. The grant table operation
hypercall can be used to perform the following actions:

GNTTABOP _map_grant_ref Given a grant reference from another domain, map
the referred page into the caller’s address space.

GNTTABOP _unmap_grant_ref Remove a mapping to a granted frame from the
caller's address space. This is used to voluntarily relinquish a mapping to a
granted page.

GNTTABOP _setuptable Setup grant table for caller domain.
GNTTABOP _dump_table Debugging operation.

GNTTABOP _transfer Given a transfer reference from another domain, transfer
ownership of a page frame to that domain.

24

Chapter 7

Xenstore

Xenstore is the mechanism by which control-plane activities occur. Tiotis&ias
include:

e Setting up shared memory regions and event channels for use with the split
device drivers.

o Notifying the guest of control events (e.g. balloon driver requests)

e Reporting back status information from the guest (e.g. performandedela
statistics, etc).

The store is arranged as a hierarchical collection of key-value paach &omain
has a directory hierarchy containing data related to its configuration. Deraggn
permitted to register for notifications about changes in subtrees of the aioréo

apply changes to the store transactionally.

7.1 Guidelines

A few principles govern the operation of the store:
e Domains should only modify the contents of their own directories.

e The setup protocol for a device channel should simply consist of egtirn
configuration data into the store.

e The store should allow device discovery without requiring the relevant de
vice drivers to be loaded: a Xen “bus” should be visible to probing code in
the guest.

e The store should be usable for inter-tool communications, allowing the tools
themselves to be decomposed into a number of smaller utilities, rather than

25

a single monolithic entity. This also facilitates the development of alternate
user interfaces to the same functionality.

7.2 Store layout

There are three main paths in XenStore:

/vm stores configuration information about domain

/local/domain stores information about the domain on the local node (domid, etc.)
ftool stores information for the various tools

The /vm path stores configuration information for a domain. This information
doesn’t change and is indexed by the domain’s UUID/v& entry contains the
following information:

uuid uuid of the domain (somewhat redundant)

on_reboot the action to take on a domain reboot request (destroy or restart)
on_poweroff the action to take on a domain halt request (destroy or restart)
on_crash the action to take on a domain crash (destroy or restart)

vcpus the number of allocated vcpus for the domain

memory the amount of memory (in megabytes) for the domain Note: appears to
sometimes be empty for domain-0

vcpu_avail the number of active vepus for the domain (vcpus - number of disabled
vcpus)

name the name of the domain

ivm/<uuid >/image/

The image path is only available for Domain-Us and contains:
ostype identifies the builder type (linux or vmx)

kernel path to kernel on domain-0

cmdline command line to pass to domain-U kernel

ramdisk path to ramdisk on domain-0

/local

The/local path currently only contains one directofipcal/domain that
is indexed by domain id. It contains the running domain information. The neaso
to have two storage areas is that during migration, the uuid doesn’t chanhtjee

26

domain id does. Thédocal/domain directory can be created and populated
before finalizing the migration enabling localhost to localhost migration.

/local/domain/<domid>
This path contains:
cpu_time xend start time (this is only around for domain-0)
handle private handle for xend
name see /vm
on_reboot see /vm
on_poweroff see /vm
on_crash see /vm
vm the path to the VM directory for the domain
domid the domain id (somewhat redundant)
running indicates that the domain is currently running
memory the current memory in megabytes for the domain (empty for domain-07?)
maxmem.KiB the maximum memory for the domain (in kilobytes)
memory_KiB the memory allocated to the domain (in kilobytes)
cpu the current CPU the domain is pinned to (empty for domain-0?)
cpu_weight the weight assigned to the domain
vcpu_avail a bitmap telling the domain whether it may use a given VCPU
online_vcpus how many vcpus are currently online
vcpus the total number of vepus allocated to the domain
console/ a directory for console information
ring-ref the grant table reference of the console ring queue
port the event channel being used for the console ring queue (local port)
tty the current tty the console data is being exposed of
limit the limit (in bytes) of console data to buffer
backend/ a directory containing all backends the domain hosts
vbd/ a directory containing vbd backends

<domid>/ a directory containing vbd’s for domid

27

<virtual-device>/ a directory for a particular virtual-device on
domid

frontend-id domain id of frontend
frontend the path to the frontend domain
physical-device backend device number
sector-size backend sector size
info O read/write, 1 read-only (is this right?)
domain name of frontend domain
params parameters for device
type the type of the device
dev the virtual device (as given by the user)
node output from block creation script
vif/ a directory containing vif backends
<domid>/ a directory containing vif's for domid
<vif number >/ a directory for each vif
frontend-id the domain id of the frontend
frontend the path to the frontend
mac the mac address of the vif
bridge the bridge the vif is connected to
handle the handle of the vif
script the script used to create/stop the vif
domain the name of the frontend
vtpm/ a directory containing vtpm backends
<domid>/ a directory containing vtpm’s for domid
<vtpm number>/ a directory for each vtpm
frontend-id the domain id of the frontend
frontend the path to the frontend
instance the instance of the virtual TPM that is used

pref_instance the instance number as given in the VM configura-
tion file; may be different froninstance

28

domain the name of the domain of the frontend

device/ a directory containing the frontend devices for the domain

vbd/ a directory containing vbd frontend devices for the domain

<virtual-device>/ a directory containing the vbd frontend for virtual-

vif/

device

virtual-device the device number of the frontend device
backend-id the domain id of the backend

backend the path of the backend in the store (/local/domain path)
ring-ref the grant table reference for the block request ring queue

event-channel the event channel used for the block request ring

queue

a directory containing vif frontend devices for the domain

<id>/ adirectory for vif id frontend device for the domain

backend-id the backend domain id

mac the mac address of the vif

handle the internal vif handle

backend a path to the backend’s store entry

tx-ring-ref the grant table reference for the transmission ring
queue

rx-ring-ref the grant table reference for the receiving ring
queue

event-channel the event channel used for the two ring queues

vtpm/ a directory containing the vtpm frontend device for the domain

<id> adirectory for vtpm id frontend device for the domain

backend-id the backend domain id
backend a path to the backend’s store entry
ring-ref the grant table reference for the tx/rx ring

event-channel the event channel used for the ring

device-misc/ miscellaneous information for devices

vif/ miscellaneous information for vif devices

nextDevicelD the next device id to use

29

security/ access control information for the domain
ssidref security reference identifier used inside the hypervisor
accesscontrol/ security label used by management tools
label security label name
policy security policy name
store/ per-domain information for the store
port the event channel used for the store ring queue

ring-ref -the granttable reference used for the store’s communication chan-
nel

image - private xend information

30

Chapter 8

Devices

Virtual devices under Xen are provided bgglit device driver architecture. The
illusion of the virtual device is provided by two co-operating drivers:fthatend,
which runs an the unprivileged domain and teekend which runs in a domain
with access to the real device hardware (often callddwer domain; in practice
domain 0 usually fulfills this function).

The frontend driver appears to the unprivileged guest as if it wesabdevice,
for instance a block or network device. It receives |0 requests fteikernel as
usual, however since it does not have access to the physical hardfxthe system
it must then issue requests to the backend. The backend driver is\s#spdor
receiving these 10 requests, verifying that they are safe and thangsthiem to
the real device hardware. The backend driver appears to its kasnelnormal
user of in-kernel 10 functionality. When the 10 completes the backend estifi
the frontend that the data is ready for use; the frontend is then able td €po
completion to its own kernel.

Frontend drivers are designed to be simple; most of the complexity is in tlke bac
end, which has responsibility for translating device addresses, veyifiiat re-
quests are well-formed and do not violate isolation guarantees, etc.

Split drivers exchange requests and responses in shared memorgnétent
channel for asynchronous notifications of activity. When the frontizivetr comes

up, it uses Xenstore to set up a shared memory frame and an interdomain eve
channel for communications with the backend. Once this connection is elstahlis
the two can communicate directly by placing requests / responses into shemed

ory and then sending notifications on the event channel. This separétimi-o
fication from data transfer allows message batching, and results in g ref
device access.

31

This chapter focuses on some individual split device interfaces avatiaen
guests.

8.1 Network I/O

Virtual network device services are provided by shared memory comntigrica
with a backend domain. From the point of view of other domains, the backend
may be viewed as a virtual ethernet switch element with each domain having one
or more virtual network interfaces connected to it.

From the point of view of the backend domain itself, the network backenerdr
consists of a number of ethernet devices. Each of these has a log&etl ctin-
nection to a virtual network device in another domain. This allows the backend
domain to route, bridge, firewall, etc the traffic to / from the other domaingyusin
normal operating system mechanisms.

8.1.1 Backend Packet Handling

The backend driver is responsible for a variety of actions relating to amesmis-
sion and reception of packets from the physical device. With regardnertig-
sion, the backend performs these key actions:

e Validation: To ensure that domains do not attempt to generate invalid (e.qg.
spoofed) traffic, the backend driver may validate headers ensuahgadbrce
MAC and IP addresses match the interface that they have been sent from.

Validation functions can be configured using standard firewall rigesh(es
in the case of Linux).

e Scheduling: Since a number of domains can share a single physical network
interface, the backend must mediate access when several domaingeach h
packets queued for transmission. This general scheduling functisasigs
basic shaping or rate-limiting schemes.

e Logging and Accounting: The backend domain can be configured with
classifier rules that control how packets are accounted or logged:xaar-
ple, log messages might be generated whenever a domain attempts to send a
TCP packet containing a SYN.

On receipt of incoming packets, the backend acts as a simple demultiplegkf: Pa
ets are passed to the appropriate virtual interface after any necéssgiryg and
accounting have been carried out.

32

8.1.2 Data Transfer

Each virtual interface uses two “descriptor rings”, one for transmit, therdor re-
ceive. Each descriptor identifies a block of contiguous machine memonatdhbc
to the domain.

The transmit ring carries packets to transmit from the guest to the backemairl
The return path of the transmit ring carries messages indicating that thentsonte
have been physically transmitted and the backend no longer requirestiugadsd
pages of memory.

To receive packets, the guest places descriptors of unused padhe ceceive
ring. The backend will return received packets by exchanging thagespin the
domain’s memory with new pages containing the received data, and passing b
descriptors regarding the new packets on the ring. This zero-copgagipallows
the backend to maintain a pool of free pages to receive packets into, and th
deliver them to appropriate domains after examining their headers.

If a domain does not keep its receive ring stocked with empty buffers taekeps
destined to it may be dropped. This provides some defence againseréeeiock
problems because an overloaded domain will cease to receive furtiherSimi-
larly, on the transmit path, it provides the application with feedback on theatate
which packets are able to leave the system.

Flow control on rings is achieved by including a pair of producer indexethe
shared ring page. Each side will maintain a private consumer index indi¢agng
next outstanding message. In this manner, the domains cooperate to d&ide th
ring into two message lists, one in each direction. Notification is decoupled from
the immediate placement of new messages on the ring; the event channel will be
used to generate notification wheither a certain number of outstanding messages
are queuedor a specified number of nanoseconds have elapsed since the oldest
message was placed on the ring.

8.1.3 Network ring interface

The network device uses two shared memory rings for communication: one fo
transmit, one for receive.

Transmit requests are described by the following structure:

typedef struct netif_tx_request {

grant_ref_t gref; / *» Reference to buffer page */
uintl6_t offset; / * Offset within buffer page * [
uintl6_t flags; / * NETTXF * =/

uintl6_t id; / * Echoed in response message. */

33

uintl6_t size; / * Packet size in bytes. */
} netif_tx_request_t;

gref Grant reference for the network buffer
offset Offset to data

flags Transmit flags (currently only NETTXEsumblank is supported, to indicate
that the protocol checksum field is incomplete).

id Echoed to guest by the backend in the ring-level response so thateékeagun
match it to this request

size Buffer size

Each transmit request is followed by a transmit response at some latef Hestés
part of the shared-memory communication protocol and allows the guesttem{p
tially) retire internal structures related to the request. It does not imply somnletw
level response. This structure is as follows:

typedef struct netif_tx_response {
uintl6_t id;
intlé_t status;

} netif_tx_response_t;

id Echo of the ID field in the corresponding transmit request.
status Success / failure status of the transmit request.

Receive requests must be queued by the frontend, accompanied batgodmf
page-frames to the backend. The backend transfers page framekdath back
to the guest

typedef struct {
uintl6_t id; / * Echoed in response message. */
grant_ref_t gref; / * Reference to incoming granted frame */
} netif_rx_request_t;

id Echoed by the frontend to identify this request when responding.

gref Transfer reference - the backend will use this reference to traasfame of
network data to us.

Receive response descriptors are queued for each receiveel fNote that these
may only be queued in reply to an existing receive request, providing bnilin-
form of traffic throttling.

typedef struct {

uintl6_t id;

uintl6_t offset; / * Offset in page of start of received packet */
uintl6_t flags; / * NETRXFx* =/

intlé_t status; / * -ve: BLKIF_RSP_ * ; +ve: Rx'ed pkt size. */

} netif_rx_response_t;

34

id ID echoed from the original request, used by the guest to match thisnmsspo
to the original request.

offset Offset to data within the transferred frame.

flags Transmit flags (currently only NETRXEsumvalid is supported, to indicate
that the protocol checksum field has already been validated).

status Success / error status for this operation.

Note that the receive protocol includes a mechanism for guests to edoewm-
ing memory frames but there is no explicit transfer of frames in the othertidinec
Guests are expected to return memory to the hypervisor in order to useweke
interface. Theymust do this or they will exceed their maximum memory reserva-
tion and will not be able to receive incoming frame transfers. When naggskse
backend is able to replenish its pool of free network buffers by claimingesof
this free memory from the hypervisor.

8.2 Block /O

All guest OS disk access goes through the virtual block device VBD atterf
This interface allows domains access to portions of block storage devgibev
to the the block backend device. The VBD interface is a split driver, similtréo
network interface described above. A single shared memory ring is @$egdn
the frontend and backend drivers for each virtual device, acroghvO requests
and responses are sent.

Any block device accessible to the backend domain, including networdh@sck
(iSCSl, *NBD, etc), loopback and LVM/MD devices, can be exported &8D.
Each VBD is mapped to a device node in the guest, specified in the guedtpstar
configuration.

8.2.1 Data Transfer

The per-(virtual)-device ring between the guest and the block backepports
two messages:

READ Read data from the specified block device. The front end identifies the de
vice and location to read from and attaches pages for the data to be copied to
(typically via DMA from the device). The backend acknowledges completed
read requests as they finish.

35

WRITE Write data to the specified block device. This functions essentially as
READ except that the data moves to the device instead of from it.

8.2.2 Block ring interface

The block interface is defined by the structures passed over the shamadry
interface. These structures are either requests (from the frontend batkend)
or responses (from the backend to the frontend).

The request structure is defined as follows:
typedef struct blkif_request {

uint8_t operation; / * BLKIF_OP_??? * [
uint8_t nr_segments; / * number of segments */
blkif_vdev_t handle; / * only for read/write requests */
uinté4_t id; / * private guest value, echoed in resp */
blkif_sector_t sector_number;/ * start sector idx on disk (r/w only) */
struct blkif_request_segment {

grant_ref_t gref; / * reference to I/O buffer frame */

[= @first_sect: first sector in frame to transfer (inclusive) . */

|+ @last_sect: last sector in frame to transfer (inclusive). * [

uint8_t first_sect, last_sect;
} seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
} blkif_request_t;
The fields are as follows:
operation operation ID: one of the operations described above
nr_segmentsnumber of segments for scatter / gather 10 described by this request
handle identifier for a particular virtual device on this interface

id this value is echoed in the response message for this 10; the guest magouse it
identify the original request

sectornumber start sector on the virtual device for this request

frame_and_sects This array contains structures encoding scatter-gather 10 to be
performed:

gref The grant reference for the foreign 1/O buffer page.
first _sect First sector to access within the buffer page (0 to 7).
last_sect Last sector to access within the buffer page (0 to 7).

Data will be transferred into frames at an offset determined by the value of
first _sect .

36

8.3 Virtual TPM

Virtual TPM (VTPM) support provides TPM functionality to each virtual raee

that requests this functionality in its configuration file. The interface enalues
mains to access their own private TPM like it was a hardware TPM built into the
machine.

The virtual TPM interface is implemented as a split driver, similar to the network
and block interfaces described above. The user domain hosting therfdoax-
ports a character device /dev/tpmO to user-level applications for commumgicatin
with the virtual TPM. This is the same device interface that is also offered if a
hardware TPM is available in the system. The backend provides a singlaoater
/dev/vtpm where the virtual TPM is waiting for commands from all domains that
have located their backend in a given domain.

8.3.1 Data Transfer

A single shared memory ring is used between the frontend and backemdsdri
TPM requests and responses are sent in pages where a pointer tpabeseand
other information is placed into the ring such that the backend can map the page
into its memory space using the grant table mechanism.

The backend driver has been implemented to only accept well-formed EPM r
guests. To meet this requirement, the length indicator in the TPM request must
correctly indicate the length of the request. Otherwise an error messagmis a
matically sent back by the device driver.

The virtual TPM implementation listens for TPM request on /dev/vtpm. Since it
must be able to apply the TPM request packet to the virtual TPM instancei-ass
ated with the virtual machine, a 4-byte virtual TPM instance identifier is pretend
to each packet by the backend driver (in network byte order) fornateouting of

the request.

8.3.2 Virtual TPM ring interface

The TPM protocol is a strict request/response protocol and therefilyeone ring
is used to send requests from the frontend to the backend and resmondee
reverse path.

The request/response structure is defined as follows:

typedef struct {
unsigned long addr; / * Machine address of packet. */

37

grant_ref_t ref; / * grant table access reference. */

uintl6_t unused; / * unused */

uintlé_t size; / * Packet size in bytes. */
} tpmif_tx_request_t;

The fields are as follows:

addr The machine address of the page associated with the TPM request/espons
a request/response may span multiple pages

ref The grant table reference associated with the address.

size The size of the remaining packet; up to PAGEZE bytes can be found in the
page referenced by 'addr’

The frontend initially allocates several pages whose addresses agd siathe
ring. Only these pages are used for exchange of requests andsespo

38

Chapter 9

Further Information

If you have questions that are not answered by this manual, the saircdor-
mation listed below may be of interest to you. Note that bug reports, suggestion
and contributions related to the software (or the documentation) shouldhbse
the Xen developers’ mailing list (address below).

9.1 Other documentation

If you are mainly interested in using (rather than developing for) Xen Xidve
Users Manual is distributed in thelocs/ directory of the Xen source distribution.

9.2 Online references

The official Xen web site can be found at:
http://www.xensource.com

This contains links to the latest versions of all online documentation, includeang th
latest version of the FAQ.

Information regarding Xen is also available at the Xen Wiki at
http://wiki.xensource.com/xenwiki/

The Xen project uses Bugzilla as its bug tracking system. You'll find the Xen
Bugzilla at http://bugzilla.xensource.com/bugzilla/.

39

9.3 Mailing lists

There are several mailing lists that are used to discuss Xen related topesost
widely relevant are listed below. An official page of mailing lists and subsorip
information can be found at

http://lists.xensource.com/

xen-devel@lists.xensource.consed for development discussions and bug re-
ports. Subscribe at:
http://lists.xensource.com/xen-devel

xen-users@lists.xensource.consed for installation and usage discussions and
requests for help. Subscribe at:
http://lists.xensource.com/xen-users

xen-announce@lists.xensource.cortdsed for announcements only. Subscribe
at:
http://lists.xensource.com/xen-announce

xen-changelog@lists.xensource.cor@hangelog feed from the unstable and 2.0
trees - developer oriented. Subscribe at:
http://lists.xensource.com/xen-changelog

40

Appendix A

Xen Hypercalls

Hypercalls represent the procedural interface to Xen; this appeattigaerizes and
describes the current set of hypercalls.

A.1 Invoking Hypercalls

Hypercalls are invoked in a manner analogous to system calls in a comnamn
erating system; a software interrupt is issued which vectors to an entrygtiim

Xen. On x86/32 machines the instruction requirethts$82 ; the (real) IDT is
setup so that this may only be issued from within ring 1. The particular hyper-
call to be invoked is contained BAX— a list mapping these values to symbolic
hypercall names can be foundxen/include/public/xen.h

On some occasions a set of hypercalls will be required to carry out ailiglel
function; a good example is when a guest operating wishes to context gwitch
a new process which requires updating various privileged CPU statan Agti-
mization for these cases, there is a generic mechanism to issue a setmfligpe
as a batch:

multicall(void *call_list, int nr_calls)

Execute a series of hypervisor calts;_calls is the length of the ar-
ray of multicall _entry _t structures pointed to beall _list

Each entry contains the hypercall operation code followed by up to 7
word-sized arguments.

Note that multicalls are provided purely as an optimization; there is no requitemen
to use them when first porting a guest operating system.

41

A.2 Virtual CPU Setup

At start of day, a guest operating system needs to setup the virtual @GP&xécut-
ing on. This includes installing vectors for the virtual IDT so that the gu&stén
handle interrupts, page faults, etc. However the very first thing a gd@gnust
setup is a pair of hypervisor callbacks: these are the entry points whichwXle
use when it wishes to notify the guest OS of an occurrence.

set_callbacks(unsigned long event_selector, unsigned long event_address,
unsigned long failsafe_selector, unsigned long failsafe_address)

Register the normal (“event”) and failsafe callbacks for event pro-
cessing. In each case the code segment selector and address within
that segment are provided. The selectors must have RPL 1; in Xen-
Linux we simply use the kernel's CS for boghent selectorandfail-

safe selector

The valueevent addressspecifies the address of the guest OSes event
handling and dispatch routine; tii@lsafe_ addressspecifies a sepa-
rate entry point which is used only if a fault occurs when Xen attempts
to use the normal callback.

On x86/64 systems the hypercall takes slightly different arguments. This-is b
cause callback CS does not need to be specified (since teh callbaeksaaes via
SYSRET), and also because an entry address needs to be speci8&EALLS
from guest user space:

set_callbacks(unsigned long event_address, unsigned long fail-
safe_address, unsigned long syscall_address)

After installing the hypervisor callbacks, the guest OS can install a ‘vitiDal
by using the following hypercall:

set_trap_table(trap_info_t *table)

Install one or more entries into the per-domain trap handler table (es-
sentially a software version of the IDT). Each entry in the array pointed
to bytable includes the exception vector number with the correspond-
ing segment selector and entry point. Most guest OSes can use the
same handlers on Xen as when running on the real hardware.

A further hypercall is provided for the management of virtual CPUs:

vcpu_op(int cmd, int vepuid, void *extra_args)

42

This hypercall can be used to bootstrap VCPUs, to bring them up and
down and to test their current status.

A.3 Scheduling and Timer

Domains are preemptively scheduled by Xen according to the parametatkenhs
by domain 0 (see Section A.10). In addition, however, a domain may choose to
explicitly control certain behavior with the following hypercall:

sched_op_new(int cmd, void *extra_args)

Request scheduling operation from hypervisor. The following sub-
commands are available:

SCHEDORP._yield voluntarily yields the CPU, but leaves the caller
marked as runnable. No extra arguments are passed to this com-
mand.

SCHEDOP_block removes the calling domain from the run queue
and causes it to sleep until an event is delivered to it. No extra
arguments are passed to this command.

SCHEDOP_shutdown is used to end the calling domain’s execution.
The extra argument is schedshutdown structure which indi-
cates the reason why the domain suspended (e.qg., for reboot, halt,
power-off).

SCHEDOP_poll allows a VCPU to wait on a set of event channels
with an optional timeout (all of which are specified in gehedpoll
extra argument). The semantics are similar to the UNbA
system call. The caller must have event-channel upcalls masked
when executing this command.

schedop_new was not available prior to Xen 3.0.2. Older versions provide only
the following hypercall:
sched_op(int cmd, unsigned long extra_arg)

This hypercall supports the following subsetsshedop_new com-
mands:

SCHEDOP._yield (extra argument is 0).
SCHEDOP_block (extra argument is 0).

SCHEDOP_shutdown (extra argument is numeric reason code).

43

To aid the implementation of a process scheduler within a guest OS, Xen @sovid
a virtual programmable timer:

set_timer_op(uint64_t timeout)

Request a timer event to be sent at the specified system time (time in
nanoseconds since system boot).

Note that callingsettimer _op prior to schedop allows block-with-timeout se-
mantics.

A.4 Page Table Management

Since guest operating systems have read-only access to their pageXahlesust
be involved when making any changes. The following multi-purpose hgflerc
can be used to modify page-table entries, update the machine-to-physpzhma
table, flush the TLB, install a new page-table base pointer, and more.

mmu_update(mmu_update_t *req, int count, int *success_count)

Update the page table for the domain; a setaint updates are sub-
mitted for processing in a batch, witluccesscount being updated to
report the number of successful updates.

Each element afeq[] contains a pointer (address) and value; the least
significant 2-bits of the pointer are used to distinguish the type of up-
date requested as follows:

MMU _NORMAL _PT_UPDATE: update a page directory entry or
page table entry to the associated value; Xen will check that the
update is safe, as described in Chapter 3.

MMU MACHPHYS _UPDATE: update an entry in the machine-to-
physical table. The calling domain must own the machine page
in question (or be privileged).

Explicitly updating batches of page table entries is extremely efficient, but can
require a number of alterations to the guest OS. Using the writable page tadbde mo
(Chapter 3) is recommended for new OS ports.

Regardless of which page table update mode is being used, howeveatheome
occasions (notably handling a demand page fault) where a guest OS Wiltavis
modify exactly one PTE rather than a batch, and where that PTE is mapped into
the current address space. This is catered for by the following:

44

update_va_mapping(unsigned long va, uint64_t val, unsigned long
flags)

Update the currently installed PTE that maps virtual addra$s new
valueval. As with mmu_update, Xen checks the modification is safe
before applying it. Thdlags determine which kind of TLB flush, if
any, should follow the update.

Finally, sufficiently privileged domains may occasionally wish to manipulate the
pages of others:

update_va_mapping_otherdomain(unsigned long va, uint64_t val,
unsigned long flags, domid_t domid)

Identical toupdate_va_mapping save that the pages being mapped
must belong to the domabtomid.

An additional MMU hypercall provides an “extended command” interfatkis
provides additional functionality beyond the basic table updating commands:

mmuext_op(struct mmuext_op *op, int count, int *success_count,
domid_t domid)

This hypercall is used to perform additional MMU operations. These
include updatingr3 (or justre-installing it for a TLB flush), request-

ing various kinds of TLB flush, flushing the cache, installing a new
LDT, or pinning & unpinning page-table pages (to ensure their refer-
ence count doesn’t drop to zero which would require a revalidation of
all entries). Some of the operations available are restricted to domains
with sufficient system privileges.

It is also possible for privileged domains to reassign page ownership
via an extended MMU operation, although grant tables are used in-
stead of this where possible; see Section A.8.

Finally, a hypercall interface is exposed to activate and deactivateugaojational
facilities provided by Xen for memory management.
vm_assist(unsigned int cmd, unsigned int type)

Toggle various memory management modes (in particular writable
page tables).

45

A.5 Segmentation Support

Xen allows guest OSes to install a custom GDT if they require it; this is context
switched transparently whenever a domain is [de]scheduled. The fotidwiper-
call is effectively a ‘safe’ version dfjdt

set_gdt(unsigned long *frame_list, int entries)

Install a global descriptor table for a domainame._list is an array

of up to 16 machine page frames within which the GDT resides, with
entries being the actual number of descriptor-entry slots. All page
frames must be mapped read-only within the guest's address space,
and the table must be large enough to contain Xen’s reserved entries
(seexen/include/public/arch-x86.32.h).

Many guest OSes will also wish to install LDTs; this is achieved by usingi_update
with an extended command, passing the linear address of the LDT basenétlong
the number of entries. No special safety checks are required; Xels teperform
this task simply sincéidt requires CPL 0.

Xen also allows guest operating systems to update just an individual sedeen
scriptor in the GDT or LDT:
update_descriptor(uint64_t ma, uint64_t desc)

Update the GDT/LDT entry at machine address; the new 8-byte
descriptor is stored idesc Xen performs a number of checks to en-
sure the descriptor is valid.

Guest OSes can use the above in place of context switching entire LDTise(0
GDT) when the number of changing descriptors is small.

A.6 Context Switching

When a guest OS wishes to context switch between two processes, is&dineu
page table and segmentation hypercalls described above to perform tugktioé
the privileged work. In addition, however, it will need to invoke Xen to stvitice
kernel (ring 1) stack pointer:

stack_switch(unsigned long ss, unsigned long esp)

Request kernel stack switch from hypervisssis the new stack seg-
ment, whichespis the new stack pointer.

46

A useful hypercall for context switching allows “lazy” save and restwirfloating
point state:

fpu_taskswitch(int set)

This call instructs Xen to set thES bit in the crO control register;

this means that the next attempt to use floating point will cause a trap
which the guest OS can trap. Typically it will then save/restore the FP
state, and clear thES bit, using the same call.

This is provided as an optimization only; guest OSes can also choose tarshve
restore FP state on all context switches for simplicity.

Finally, a hypercall is provided for entering vm86 mode:

switch_.vm86

This allows the guest to run code in vm86 mode, which is needed for
some legacy software.

A.7 Physical Memory Management

As mentioned previously, each domain has a maximum and current memory allo-
cation. The maximum allocation, set at domain creation time, cannot be modified.
However a domain can choose to reduce and subsequently grow itst@lloea-

tion by using the following call:

memory_op(unsigned int op, void *arg)

Increase or decrease current memory allocation (as determined by the
value ofop). The available operations are:

XENMEM _increasereservation Request an increase in machine mem-
ory allocation;arg must point to axen.memory_reservation
structure.

XENMEM _decreasereservation Request a decrease in machine mem-
ory allocation;arg must point to axen.memory_reservation
structure.

XENMEM _maximum_ram_page Request the frame number of the
highest-addressed frame of machine memory in the systegn.
must point to arunsigned longwhere this value will be stored.

XENMEM _current _reservation Returns current memory reservation
of the specified domain.

a7

XENMEM _maximum_reservation Returns maximum memory reser-
vation of the specified domain.

In addition to simply reducing or increasing the current memory allocation via a
‘balloon driver’, this call is also useful for obtaining contiguous regiohmachine
memory when required (e.g. for certain PCI devices, or if using sugeg)a

A.8 Inter-Domain Communication

Xen provides a simple asynchronous notification mechanisnevaat channels.
Each domain has a set of end-points forts) which may be bound to an event
source (e.g. a physical IRQ, a virtual IRQ, or an port in another dom&ifhen

a pair of end-points in two different domains are bound together, theeral"s
operation on one will cause an event to be received by the destinationrdoma

The control and use of event channels involves the following hypercall:

event_channel_op(evtchn_op_t *op)

Inter-domain event-channel managememtjs a discriminated union
which allows the following 7 operations:

alloc_unbound: allocate a free (unbound) local port and prepare for
connection from a specified domain.

bind_virg: bind alocal port to a virtual IRQ; any particular VIRQ can
be bound to at most one port per domain.

bind_pirg: bind a local port to a physical IRQ; once more, a given
pIRQ can be bound to at most one port per domain. Furthermore
the calling domain must be sufficiently privileged.

bind_interdomain: construct an interdomain event channel; in gen-
eral, the target domain must have previously allocated an un-
bound port for this channel, although this can be bypassed by
privileged domains during domain setup.

close: close an interdomain event channel.

send: send an event to the remote end of a interdomain event channel.
status: determine the current status of a local port.

For more details seeen/include/public/eventchannel.h

Event channels are the fundamental communication primitive between Xen do-
mains and seamlessly support SMP. However they provide little bandwidth for

48

communicatiorper seand hence are typically married with a piece of shared mem-
ory to produce effective and high-performance inter-domain communicatio

Safe sharing of memory pages between guest OSes is carried outribiygrac-
cess on a per page basis to individual domains. This is achieved by uging th
grant _table _op hypercall.

grant_table_op(unsigned int cmd, void *uop, unsigned int count)

Used to invoke operations on a grant reference, to setup the grant table
and to dump the tables’ contents for debugging.

A.9 10 Configuration

Domains with physical device access (i.e. driver domains) receive limitsgsac

to certain PCI devices (bus address space and interrupts). Howewmgrguast
operating systems attempt to determine the PCI configuration by directly access
the PCI BIOS, which cannot be allowed for safety.

Instead, Xen provides the following hypercall:

physdev_op(void *physdev_op)

Set and query IRQ configuration details, set the system IOPL, set the
TSS 10 bitmap.

For examples of usinghysdev _op, see the Xen-specific PCI code in the linux
sparse tree.

A.10 Administrative Operations

A large number of control operations are available to a sufficiently priededp-
main (typically domain 0). These allow the creation and management of new do-
mains, for example. A complete list is given below: for more details on any or all
of these, please seen/include/public/dom0 _ops.h

domO_op(domO_op_t *op)

Administrative domain operations for domain management. The op-
tions are:

DOMO_GETMEMLIST: get list of pages used by the domain
DOMO_SCHEDCTL:

49

DOMO_ADJUSTDOM: adjust scheduling priorities for domain
DOMO_CREATEDOMAIN: create a new domain

DOMO_DESTROYDOMAIN: deallocate all resources associated with
a domain

DOMO_PAUSEDOMAIN: remove a domain from the scheduler run
gueue.

DOMO_UNPAUSEDOMAIN: mark a paused domain as schedulable
once again.

DOMO_GETDOMAININFO: get statistics about the domain
DOMO_SETDOMAININFO: set VCPU-related attributes
DOMO_MSR: read or write model specific registers
DOMO_DEBUG: interactively invoke the debugger
DOMO_SETTIME: set system time
DOMO_GETPAGEFRAMEINFO:
DOMO_READCONSOLE: read console content from hypervisor buffer
ring
DOMO_PINCPUDOMAIN: pin domain to a particular CPU
DOMO_TBUFCONTROL: get and set trace buffer attributes
DOMO_PHYSINFO: get information about the host machine
DOMO_SCHED.ID: get the ID of the current Xen scheduler
DOMO_SHADOW _CONTROL.: switch between shadow page-table

modes

DOMO_SETDOMAINMAXMEM: set maximum memory allocation
of a domain

DOMO_GETPAGEFRAMEINFO2: batched interface for getting page
frame info

DOMO_ADD _MEMTYPE: set MTRRs
DOMO_DEL _MEMTYPE: remove a memory type range
DOMO_READ _MEMTYPE: read MTRR

DOMO_PERFCCONTROL: control Xen's software performance coun-
ters

DOMO_MICROCODE: update CPU microcode

50

DOMO_IOPORT _.PERMISSION: modify domain permissions for
an 10 port range (enable / disable a range for a particular do-
main)

DOMO_GETVCPUCONTEXT: get context from a VCPU

DOMO_GETVCPUINFO: get current state for a VCPU

DOMO_GETDOMAININFOLIST: batched interface to get domain
info

DOMO_PLATFORM _QUIRK: inform Xen of a platform quirk it
needs to handle (e.g. noirgbalance)

DOMO_PHYSICAL _MEMORY _MAP: getinfo aboutdomQ’s mem-
ory map

DOMO_MAX _VCPUS: change max number of VCPUs for a domain

DOMO_SETDOMAINHANDLE: set the handle for a domain

Most of the above are best understood by looking at the code implemenging th
(inxen/common/domO _ops.c) and inthe user-space tools that use them (mostly
in tools/libxc).

A.11 Access Control Module Hypercalls

Hypercalls relating to the management of the Access Control Module areealso
stricted to domain 0 access for now. For more details on any or all of thiesesep
seexen/include/public/acm _ops.h . A complete list is given below:

acm_op(int cmd, void *args)

This hypercall can be used to configure the state of the ACM, query
that state, request access control decisions and dump additional infor-
mation.

ACMOP _SETPOLICY: setthe access control policy

ACMOP _GETPOLICY: get the current access control policy and
status

ACMOP DUMPSTATS: get current access control hook invocation
statistics

ACMOP _GETSSID: get security access control information for a
domain

51

ACMOP _GETDECISION: getaccess decision based on the currently
enforced access control policy

Most of the above are best understood by looking at the code implemenging th
(in xen/common/acm _ops.c) and in the user-space tools that use them (mostly
in tools/security andtools/python/xen/lowlevel/acm).

A.12 Debugging Hypercalls

A few additional hypercalls are mainly useful for debugging:

console_io(int cmd, int count, char *str)

Use Xen to interact with the console; operations are:
CONSOLEIQwrite: Output count characters from buffer str.
CONSOLEIQread: Input at most count characters into buffer str.

A pair of hypercalls allows access to the underlying debug registers:

set_debugreg(int reg, unsigned long value)

Set debug registeeg to value

get_debugreg(int reg)
Return the contents of the debug registay
And finally:

xen_version(int cmd)
Request Xen version number.

This is useful to ensure that user-space tools are in sync with the uimdgnlyper-
visor.

52

