Index of values

A
a_str [Lacaml_utils]
ab_str [Lacaml_utils]
add [Lacaml_complex64]
add [Lacaml_complex32]
add [Lacaml_float64]
add [Lacaml_float32]
add [Lacaml_C.Vec]

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

add [Lacaml_Z.Vec]

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

add [Lacaml_S.Vec]

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

add [Lacaml_D.Vec]

add ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y adds n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

add_const [Lacaml_C.Mat]

add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.

add_const [Lacaml_C.Vec]

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.

add_const [Lacaml_Z.Mat]

add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.

add_const [Lacaml_Z.Vec]

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.

add_const [Lacaml_S.Mat]

add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.

add_const [Lacaml_S.Vec]

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.

add_const [Lacaml_D.Mat]

add_const c ?m ?n ?br ?bc ?b ?ar ?ac a adds constant c to the designated m by n submatrix in a and stores the result in the designated submatrix in b.

add_const [Lacaml_D.Vec]

add_const c ?n ?ofsy ?incy ?y ?ofsx ?incx x adds constant c to the n elements of vector x and stores the result in y, using incx and incy as incremental steps respectively.

alphas_str [Lacaml_utils]
amax [Lacaml_C]

amax ?n ?ofsx ?incx x

amax [Lacaml_Z]

amax ?n ?ofsx ?incx x

amax [Lacaml_S]

amax ?n ?ofsx ?incx x

amax [Lacaml_D]

amax ?n ?ofsx ?incx x

ap_str [Lacaml_utils]
append [Lacaml_C.Vec]

append v1 v2

append [Lacaml_Z.Vec]

append v1 v2

append [Lacaml_S.Vec]

append v1 v2

append [Lacaml_D.Vec]

append v1 v2

as_vec [Lacaml_C.Mat]

as_vec mat

as_vec [Lacaml_Z.Mat]

as_vec mat

as_vec [Lacaml_S.Mat]

as_vec mat

as_vec [Lacaml_D.Mat]

as_vec mat

asum [Lacaml_S]

asum ?n ?ofsx ?incx x see BLAS documentation!

asum [Lacaml_D]

asum ?n ?ofsx ?incx x see BLAS documentation!

axpy [Lacaml_C.Mat]

axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for matrices.

axpy [Lacaml_C]

axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

axpy [Lacaml_Z.Mat]

axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for matrices.

axpy [Lacaml_Z]

axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

axpy [Lacaml_S.Mat]

axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for matrices.

axpy [Lacaml_S]

axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

axpy [Lacaml_D.Mat]

axpy ?alpha ?m ?n ?xr ?xc x ?yr ?yc y BLAS axpy function for matrices.

axpy [Lacaml_D]

axpy ?alpha ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

B
b_str [Lacaml_utils]
bc_str [Lacaml_utils]
br_str [Lacaml_utils]
C
c_str [Lacaml_utils]
calc_unpacked_dim [Lacaml_utils]
check_dim1_mat [Lacaml_utils]
check_dim2_mat [Lacaml_utils]
check_dim_mat [Lacaml_utils]
check_mat_square [Lacaml_utils]
check_var_ltz [Lacaml_utils]
check_vec [Lacaml_utils]
col [Lacaml_C.Mat]

col m n

col [Lacaml_Z.Mat]

col m n

col [Lacaml_S.Mat]

col m n

col [Lacaml_D.Mat]

col m n

concat [Lacaml_C.Vec]

concat vs

concat [Lacaml_Z.Vec]

concat vs

concat [Lacaml_S.Vec]

concat vs

concat [Lacaml_D.Vec]

concat vs

copy [Lacaml_C]

copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!

copy [Lacaml_Z]

copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!

copy [Lacaml_S]

copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!

copy [Lacaml_D]

copy ?n ?ofsy ?incy ?y ?ofsx ?incx x see BLAS documentation!

copy_diag [Lacaml_C.Mat]

copy_diag m

copy_diag [Lacaml_Z.Mat]

copy_diag m

copy_diag [Lacaml_S.Mat]

copy_diag m

copy_diag [Lacaml_D.Mat]

copy_diag m

copy_row [Lacaml_C.Mat]

copy_row ?vec mat int

copy_row [Lacaml_Z.Mat]

copy_row ?vec mat int

copy_row [Lacaml_S.Mat]

copy_row ?vec mat int

copy_row [Lacaml_D.Mat]

copy_row ?vec mat int

cos [Lacaml_S.Vec]

cos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cosine of n elements of the vector x using incx as incremental steps.

cos [Lacaml_D.Vec]

cos ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the cosine of n elements of the vector x using incx as incremental steps.

create [Lacaml_C.Mat]

create m n

create [Lacaml_C.Vec]

create n

create [Lacaml_Z.Mat]

create m n

create [Lacaml_Z.Vec]

create n

create [Lacaml_S.Mat]

create m n

create [Lacaml_S.Vec]

create n

create [Lacaml_D.Mat]

create m n

create [Lacaml_D.Vec]

create n

create [Lacaml_io.Context]
create_int32_vec [Lacaml_common]

create_int32_vec n

create_int_vec [Lacaml_common]

create_int_vec n

create_mvec [Lacaml_C.Mat]

create_mvec m

create_mvec [Lacaml_Z.Mat]

create_mvec m

create_mvec [Lacaml_S.Mat]

create_mvec m

create_mvec [Lacaml_D.Mat]

create_mvec m

D
d_str [Lacaml_utils]
detri [Lacaml_C.Mat]

detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.

detri [Lacaml_Z.Mat]

detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.

detri [Lacaml_S.Mat]

detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.

detri [Lacaml_D.Mat]

detri ?up ?n ?ar ?ac a takes a triangular (sub-)matrix a, i.e.

dim [Lacaml_C.Vec]

dim x

dim [Lacaml_Z.Vec]

dim x

dim [Lacaml_S.Vec]

dim x

dim [Lacaml_D.Vec]

dim x

dim1 [Lacaml_C.Mat]

dim1 m

dim1 [Lacaml_Z.Mat]

dim1 m

dim1 [Lacaml_S.Mat]

dim1 m

dim1 [Lacaml_D.Mat]

dim1 m

dim2 [Lacaml_C.Mat]

dim2 m

dim2 [Lacaml_Z.Mat]

dim2 m

dim2 [Lacaml_S.Mat]

dim2 m

dim2 [Lacaml_D.Mat]

dim2 m

div [Lacaml_C.Vec]

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

div [Lacaml_Z.Vec]

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

div [Lacaml_S.Vec]

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

div [Lacaml_D.Vec]

div ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y divides n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

dl_str [Lacaml_utils]
dot [Lacaml_S]

dot ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dot [Lacaml_D]

dot ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dotc [Lacaml_C]

dotc ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dotc [Lacaml_Z]

dotc ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dotu [Lacaml_C]

dotu ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

dotu [Lacaml_Z]

dotu ?n ?ofsx ?incx x ?ofsy ?incy y see BLAS documentation!

du_str [Lacaml_utils]
dummy_select_fun [Lacaml_utils]
E
e_str [Lacaml_utils]
ellipsis_default [Lacaml_io.Context]
empty [Lacaml_C.Mat]

empty, the empty matrix.

empty [Lacaml_C.Vec]

empty, the empty vector.

empty [Lacaml_Z.Mat]

empty, the empty matrix.

empty [Lacaml_Z.Vec]

empty, the empty vector.

empty [Lacaml_S.Mat]

empty, the empty matrix.

empty [Lacaml_S.Vec]

empty, the empty vector.

empty [Lacaml_D.Mat]

empty, the empty matrix.

empty [Lacaml_D.Vec]

empty, the empty vector.

empty_int32_vec [Lacaml_utils]
exp [Lacaml_S.Vec]

exp ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the exponential of n elements of the vector x using incx as incremental steps.

exp [Lacaml_D.Vec]

exp ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the exponential of n elements of the vector x using incx as incremental steps.

F
fill [Lacaml_C.Mat]

fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.

fill [Lacaml_C.Vec]

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

fill [Lacaml_Z.Mat]

fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.

fill [Lacaml_Z.Vec]

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

fill [Lacaml_S.Mat]

fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.

fill [Lacaml_S.Vec]

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

fill [Lacaml_D.Mat]

fill ?m ?n ?ar ?ac a x fills the specified sub-matrix in a with value x.

fill [Lacaml_D.Vec]

fill ?n ?ofsx ?incx x a fills vector x with value a in the designated range.

fold [Lacaml_C.Vec]

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

fold [Lacaml_Z.Vec]

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

fold [Lacaml_S.Vec]

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

fold [Lacaml_D.Vec]

fold f a ?n ?ofsx ?incx x is f (... (f (f a x.{ofsx}) x.{ofsx + incx}) ...) x.{ofsx + (n-1)*incx} if incx > 0 and the same in the reverse order of appearance of the x values if incx < 0.

fold_cols [Lacaml_C.Mat]

fold_cols f ?n ?ac acc a

fold_cols [Lacaml_Z.Mat]

fold_cols f ?n ?ac acc a

fold_cols [Lacaml_S.Mat]

fold_cols f ?n ?ac acc a

fold_cols [Lacaml_D.Mat]

fold_cols f ?n ?ac acc a

from_col_vec [Lacaml_C.Mat]

from_col_vec v

from_col_vec [Lacaml_Z.Mat]

from_col_vec v

from_col_vec [Lacaml_S.Mat]

from_col_vec v

from_col_vec [Lacaml_D.Mat]

from_col_vec v

from_row_vec [Lacaml_C.Mat]

from_row_vec v

from_row_vec [Lacaml_Z.Mat]

from_row_vec v

from_row_vec [Lacaml_S.Mat]

from_row_vec v

from_row_vec [Lacaml_D.Mat]

from_row_vec v

G
gXmv_get_params [Lacaml_utils]
gbmv [Lacaml_C]

gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!

gbmv [Lacaml_Z]

gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!

gbmv [Lacaml_S]

gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!

gbmv [Lacaml_D]

gbmv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a kl ku ?ofsx ?incx x see BLAS documentation!

gbsv [Lacaml_C]

gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.

gbsv [Lacaml_Z]

gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.

gbsv [Lacaml_S]

gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.

gbsv [Lacaml_D]

gbsv ?n ?ipiv ?abr ?abc ab kl ku ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is a band matrix of order n with kl subdiagonals and ku superdiagonals, and X and b are n-by-nrhs matrices.

geXrf_get_params [Lacaml_utils]
gecon [Lacaml_C]

gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a

gecon [Lacaml_Z]

gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a

gecon [Lacaml_S]

gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a

gecon [Lacaml_D]

gecon ?n ?norm ?anorm ?work ?rwork ?ar ?ac a

gecon_err [Lacaml_utils]
gecon_min_liwork [Lacaml_S]

gecon_min_liwork n

gecon_min_liwork [Lacaml_D]

gecon_min_liwork n

gecon_min_lrwork [Lacaml_C]

gecon_min_lrwork n

gecon_min_lrwork [Lacaml_Z]

gecon_min_lrwork n

gecon_min_lwork [Lacaml_C]

gecon_min_lwork n

gecon_min_lwork [Lacaml_Z]

gecon_min_lwork n

gecon_min_lwork [Lacaml_S]

gecon_min_lwork n

gecon_min_lwork [Lacaml_D]

gecon_min_lwork n

gees [Lacaml_C]

gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a See gees-function for details about arguments.

gees [Lacaml_Z]

gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a See gees-function for details about arguments.

gees [Lacaml_S]

gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a See gees-function for details about arguments.

gees [Lacaml_D]

gees ?n ?jobvs ?sort ?w ?vsr ?vsc ?vs ?work ?ar ?ac a See gees-function for details about arguments.

gees_err [Lacaml_utils]
gees_get_params_complex [Lacaml_utils]
gees_get_params_generic [Lacaml_utils]
gees_get_params_real [Lacaml_utils]
geev [Lacaml_C]

geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a

geev [Lacaml_Z]

geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a

geev [Lacaml_S]

geev ?work ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a

geev [Lacaml_D]

geev ?work ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a

geev_gen_get_params [Lacaml_utils]
geev_get_job_side [Lacaml_utils]
geev_min_lrwork [Lacaml_C]

geev_min_lrwork n

geev_min_lrwork [Lacaml_Z]

geev_min_lrwork n

geev_min_lwork [Lacaml_C]

geev_min_lwork n

geev_min_lwork [Lacaml_Z]

geev_min_lwork n

geev_min_lwork [Lacaml_S]

geev_min_lwork vectors n

geev_min_lwork [Lacaml_D]

geev_min_lwork vectors n

geev_opt_lwork [Lacaml_C]

geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a See geev-function for details about arguments.

geev_opt_lwork [Lacaml_Z]

geev ?work ?rwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofsw w ?ar ?ac a See geev-function for details about arguments.

geev_opt_lwork [Lacaml_S]

geev_opt_lwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a See geev-function for details about arguments.

geev_opt_lwork [Lacaml_D]

geev_opt_lwork ?n ?vlr ?vlc ?vl ?vrr ?vrc ?vr ?ofswr wr ?ofswi wi ?ar ?ac a See geev-function for details about arguments.

gels [Lacaml_C]

gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gels [Lacaml_Z]

gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gels [Lacaml_S]

gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gels [Lacaml_D]

gels ?m ?n ?work ?trans ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gelsX_err [Lacaml_utils]
gelsX_get_params [Lacaml_utils]
gelsX_get_s [Lacaml_utils]
gels_min_lwork [Lacaml_C]

gels_min_lwork ~m ~n ~nrhs

gels_min_lwork [Lacaml_Z]

gels_min_lwork ~m ~n ~nrhs

gels_min_lwork [Lacaml_S]

gels_min_lwork ~m ~n ~nrhs

gels_min_lwork [Lacaml_D]

gels_min_lwork ~m ~n ~nrhs

gels_opt_lwork [Lacaml_C]

gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b

gels_opt_lwork [Lacaml_Z]

gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b

gels_opt_lwork [Lacaml_S]

gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b

gels_opt_lwork [Lacaml_D]

gels_opt_lwork ?m ?n ?trans ?ar ?ac a ?nrhs ?br ?bc b

gelsd [Lacaml_S]

gelsd ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs b see LAPACK documentation!

gelsd [Lacaml_D]

gelsd ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs b see LAPACK documentation!

gelsd_min_iwork [Lacaml_S]

gelsd_min_iwork m n

gelsd_min_iwork [Lacaml_D]

gelsd_min_iwork m n

gelsd_min_lwork [Lacaml_S]

gelsd_min_lwork ~m ~n ~nrhs

gelsd_min_lwork [Lacaml_D]

gelsd_min_lwork ~m ~n ~nrhs

gelsd_opt_lwork [Lacaml_S]

gelsd_opt_lwork ?m ?n ?ar ?ac a ?nrhs b

gelsd_opt_lwork [Lacaml_D]

gelsd_opt_lwork ?m ?n ?ar ?ac a ?nrhs b

gelss [Lacaml_S]

gelss ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gelss [Lacaml_D]

gelss ?m ?n ?rcond ?ofss ?s ?ofswork ?work ?ar ?ac a ?nrhs ?br ?bc b see LAPACK documentation!

gelss_min_lwork [Lacaml_S]

gelss_min_lwork ~m ~n ~nrhs

gelss_min_lwork [Lacaml_D]

gelss_min_lwork ~m ~n ~nrhs

gelss_opt_lwork [Lacaml_S]

gelss_opt_lwork ?ar ?ac a ?m ?n ?nrhs ?br ?bc b

gelss_opt_lwork [Lacaml_D]

gelss_opt_lwork ?ar ?ac a ?m ?n ?nrhs ?br ?bc b

gelsy [Lacaml_S]

gelsy ?m ?n ?ar ?ac a ?rcond ?jpvt ?ofswork ?work ?nrhs b see LAPACK documentation!

gelsy [Lacaml_D]

gelsy ?m ?n ?ar ?ac a ?rcond ?jpvt ?ofswork ?work ?nrhs b see LAPACK documentation!

gelsy_min_lwork [Lacaml_S]

gelsy_min_lwork ~m ~n ~nrhs

gelsy_min_lwork [Lacaml_D]

gelsy_min_lwork ~m ~n ~nrhs

gelsy_opt_lwork [Lacaml_S]

gelsy_opt_lwork ?m ?n ?ar ?ac a ?nrhs ?br ?bc b

gelsy_opt_lwork [Lacaml_D]

gelsy_opt_lwork ?m ?n ?ar ?ac a ?nrhs ?br ?bc b

gemm [Lacaml_C]

gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b see BLAS documentation!

gemm [Lacaml_Z]

gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b see BLAS documentation!

gemm [Lacaml_S]

gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b see BLAS documentation!

gemm [Lacaml_D]

gemm ?m ?n ?k ?beta ?cr ?cc ?c ?transa ?alpha ?ar ?ac a ?transb ?br ?bc b see BLAS documentation!

gemm_diag [Lacaml_C.Mat]

gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

gemm_diag [Lacaml_Z.Mat]

gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

gemm_diag [Lacaml_S.Mat]

gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

gemm_diag [Lacaml_D.Mat]

gemm_diag ?n ?k ?beta ?ofsy ?y ?transa ?transb ?alpha ?ar ?ac a ?br ?bc b computes the diagonal of the product of the (sub-)matrices a and b (taking into account potential transposing), multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

gemm_get_params [Lacaml_utils]
gemm_trace [Lacaml_C.Mat]

gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).

gemm_trace [Lacaml_Z.Mat]

gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).

gemm_trace [Lacaml_S.Mat]

gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).

gemm_trace [Lacaml_D.Mat]

gemm_trace ?n ?k ?transa ?ar ?ac a ?transb ?br ?bc b computes the trace of the product of the (sub-)matrices a and b (taking into account potential transposing).

gemv [Lacaml_C]

gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation! BEWARE that the 1988 BLAS-2 specification mandates that this function has no effect when n=0 while the mathematically expected behabior is y ← beta * y.

gemv [Lacaml_Z]

gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation! BEWARE that the 1988 BLAS-2 specification mandates that this function has no effect when n=0 while the mathematically expected behabior is y ← beta * y.

gemv [Lacaml_S]

gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation! BEWARE that the 1988 BLAS-2 specification mandates that this function has no effect when n=0 while the mathematically expected behabior is y ← beta * y.

gemv [Lacaml_D]

gemv ?m ?n ?beta ?ofsy ?incy ?y ?trans ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation! BEWARE that the 1988 BLAS-2 specification mandates that this function has no effect when n=0 while the mathematically expected behabior is y ← beta * y.

geqrf [Lacaml_C]

geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.

geqrf [Lacaml_Z]

geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.

geqrf [Lacaml_S]

geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.

geqrf [Lacaml_D]

geqrf ?m ?n ?work ?tau ?ar ?ac a computes a QR factorization of a real m-by-n matrix a.

geqrf_min_lwork [Lacaml_C]

geqrf_min_lwork ~n

geqrf_min_lwork [Lacaml_Z]

geqrf_min_lwork ~n

geqrf_min_lwork [Lacaml_S]

geqrf_min_lwork ~n

geqrf_min_lwork [Lacaml_D]

geqrf_min_lwork ~n

geqrf_opt_lwork [Lacaml_C]

geqrf_opt_lwork ?m ?n ?ar ?ac a

geqrf_opt_lwork [Lacaml_Z]

geqrf_opt_lwork ?m ?n ?ar ?ac a

geqrf_opt_lwork [Lacaml_S]

geqrf_opt_lwork ?m ?n ?ar ?ac a

geqrf_opt_lwork [Lacaml_D]

geqrf_opt_lwork ?m ?n ?ar ?ac a

ger [Lacaml_S]

ger ?m ?n ?alpha ?ofsx ?incx x ?ofsy ?incy y n ?ar ?ac a see BLAS documentation!

ger [Lacaml_D]

ger ?m ?n ?alpha ?ofsx ?incx x ?ofsy ?incy y n ?ar ?ac a see BLAS documentation!

gesdd [Lacaml_S]
gesdd [Lacaml_D]
gesdd_err [Lacaml_utils]
gesdd_get_params [Lacaml_utils]
gesdd_liwork [Lacaml_S]
gesdd_liwork [Lacaml_D]
gesdd_min_lwork [Lacaml_S]

gesdd_min_lwork ?jobz ~m ~n

gesdd_min_lwork [Lacaml_D]

gesdd_min_lwork ?jobz ~m ~n

gesdd_opt_lwork [Lacaml_S]
gesdd_opt_lwork [Lacaml_D]
gesv [Lacaml_C]

gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.

gesv [Lacaml_Z]

gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.

gesv [Lacaml_S]

gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.

gesv [Lacaml_D]

gesv ?n ?ipiv ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n matrix and X and b are n-by-nrhs matrices.

gesvd [Lacaml_C]
gesvd [Lacaml_Z]
gesvd [Lacaml_S]
gesvd [Lacaml_D]
gesvd_err [Lacaml_utils]
gesvd_get_params [Lacaml_utils]
gesvd_lrwork [Lacaml_C]

gesvd_lrwork m n

gesvd_lrwork [Lacaml_Z]

gesvd_lrwork m n

gesvd_min_lwork [Lacaml_C]

gesvd_min_lwork ~m ~n

gesvd_min_lwork [Lacaml_Z]

gesvd_min_lwork ~m ~n

gesvd_min_lwork [Lacaml_S]

gesvd_min_lwork ~m ~n

gesvd_min_lwork [Lacaml_D]

gesvd_min_lwork ~m ~n

gesvd_opt_lwork [Lacaml_C]
gesvd_opt_lwork [Lacaml_Z]
gesvd_opt_lwork [Lacaml_S]
gesvd_opt_lwork [Lacaml_D]
get_c [Lacaml_utils]
get_cols_mat_tr [Lacaml_utils]
get_diag_char [Lacaml_utils]
get_dim1_mat [Lacaml_utils]
get_dim2_mat [Lacaml_utils]
get_dim_mat_packed [Lacaml_utils]
get_dim_vec [Lacaml_utils]
get_inc [Lacaml_utils]
get_inner_dim [Lacaml_utils]
get_job_char [Lacaml_utils]
get_k_mat_sb [Lacaml_utils]
get_mat [Lacaml_utils]
get_n_of_a [Lacaml_utils]
get_n_of_square [Lacaml_utils]
get_norm_char [Lacaml_utils]
get_nrhs_of_b [Lacaml_utils]
get_ofs [Lacaml_utils]
get_rows_mat_tr [Lacaml_utils]
get_s_d_job_char [Lacaml_utils]
get_side_char [Lacaml_utils]
get_trans_char [Lacaml_utils]
get_unpacked_dim [Lacaml_utils]
get_uplo_char [Lacaml_utils]
get_vec [Lacaml_utils]
get_vec_geom [Lacaml_utils]
get_work [Lacaml_utils]
getrf [Lacaml_C]

getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.

getrf [Lacaml_Z]

getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.

getrf [Lacaml_S]

getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.

getrf [Lacaml_D]

getrf ?m ?n ?ipiv ?ar ?ac a computes an LU factorization of a general m-by-n matrix a using partial pivoting with row interchanges.

getrf_err [Lacaml_utils]
getrf_get_ipiv [Lacaml_utils]
getrf_lu_err [Lacaml_utils]
getri [Lacaml_C]

getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml_C.getrf.

getri [Lacaml_Z]

getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml_Z.getrf.

getri [Lacaml_S]

getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml_S.getrf.

getri [Lacaml_D]

getri ?n ?ipiv ?work ?ar ?ac a computes the inverse of a matrix using the LU factorization computed by Lacaml_D.getrf.

getri_err [Lacaml_utils]
getri_min_lwork [Lacaml_C]

getri_min_lwork n

getri_min_lwork [Lacaml_Z]

getri_min_lwork n

getri_min_lwork [Lacaml_S]

getri_min_lwork n

getri_min_lwork [Lacaml_D]

getri_min_lwork n

getri_opt_lwork [Lacaml_C]

getri_opt_lwork ?n ?ar ?ac a

getri_opt_lwork [Lacaml_Z]

getri_opt_lwork ?n ?ar ?ac a

getri_opt_lwork [Lacaml_S]

getri_opt_lwork ?n ?ar ?ac a

getri_opt_lwork [Lacaml_D]

getri_opt_lwork ?n ?ar ?ac a

getrs [Lacaml_C]

getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml_C.getrf.

getrs [Lacaml_Z]

getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml_Z.getrf.

getrs [Lacaml_S]

getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml_S.getrf.

getrs [Lacaml_D]

getrs ?n ?ipiv ?trans ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a * X = b or a' * X = b with a general n-by-n matrix a using the LU factorization computed by Lacaml_D.getrf.

gtsv [Lacaml_C]

gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.

gtsv [Lacaml_Z]

gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.

gtsv [Lacaml_S]

gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.

gtsv [Lacaml_D]

gtsv ?n ?ofsdl dl ?ofsd d ?ofsdu du ?nrhs ?br ?bc b solves the equation a * X = b where a is an n-by-n tridiagonal matrix, by Gaussian elimination with partial pivoting.

H
hankel [Lacaml_S.Mat]

hankel n

hankel [Lacaml_D.Mat]

hankel n

hilbert [Lacaml_S.Mat]

hilbert n

hilbert [Lacaml_D.Mat]

hilbert n

horizontal_default [Lacaml_io.Context]
I
iamax [Lacaml_C]

iamax ?n ?ofsx ?incx x see BLAS documentation!

iamax [Lacaml_Z]

iamax ?n ?ofsx ?incx x see BLAS documentation!

iamax [Lacaml_S]

iamax ?n ?ofsx ?incx x see BLAS documentation!

iamax [Lacaml_D]

iamax ?n ?ofsx ?incx x see BLAS documentation!

identity [Lacaml_C.Mat]

identity n

identity [Lacaml_Z.Mat]

identity n

identity [Lacaml_S.Mat]

identity n

identity [Lacaml_D.Mat]

identity n

ilaenv [Lacaml_utils]
init [Lacaml_C.Vec]

init n f

init [Lacaml_Z.Vec]

init n f

init [Lacaml_S.Vec]

init n f

init [Lacaml_D.Vec]

init n f

init_cols [Lacaml_C.Mat]

init_cols m n f

init_cols [Lacaml_Z.Mat]

init_cols m n f

init_cols [Lacaml_S.Mat]

init_cols m n f

init_cols [Lacaml_D.Mat]

init_cols m n f

init_rows [Lacaml_C.Mat]

init_cols m n f

init_rows [Lacaml_Z.Mat]

init_cols m n f

init_rows [Lacaml_S.Mat]

init_cols m n f

init_rows [Lacaml_D.Mat]

init_cols m n f

int_of_complex32 [Lacaml_complex32]
int_of_complex64 [Lacaml_complex64]
int_of_float32 [Lacaml_float32]
int_of_float64 [Lacaml_float64]
ipiv_str [Lacaml_utils]
iseed_str [Lacaml_utils]
iter [Lacaml_C.Vec]

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

iter [Lacaml_Z.Vec]

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

iter [Lacaml_S.Vec]

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

iter [Lacaml_D.Vec]

iter ?n ?ofsx ?incx f x applies function f in turn to all elements of vector x.

iteri [Lacaml_C.Vec]

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

iteri [Lacaml_Z.Vec]

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

iteri [Lacaml_S.Vec]

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

iteri [Lacaml_D.Vec]

iteri ?n ?ofsx ?incx f x same as iter but additionally passes the index of the element as first argument and the element itself as second argument.

J
job_char_false [Lacaml_utils]
job_char_true [Lacaml_utils]
K
k_str [Lacaml_utils]
ka_str [Lacaml_utils]
kb_str [Lacaml_utils]
kd_str [Lacaml_utils]
kl_str [Lacaml_utils]
ku_str [Lacaml_utils]
L
lacpy [Lacaml_C]

lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy a (triangular) (sub-)matrix a (to an optional (sub-)matrix b).

lacpy [Lacaml_Z]

lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy a (triangular) (sub-)matrix a (to an optional (sub-)matrix b).

lacpy [Lacaml_S]

lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy a (triangular) (sub-)matrix a (to an optional (sub-)matrix b).

lacpy [Lacaml_D]

lacpy ?uplo ?m ?n ?br ?bc ?b ?ar ?ac a copy a (triangular) (sub-)matrix a (to an optional (sub-)matrix b).

lamch [Lacaml_S]

lamch cmach see LAPACK documentation!

lamch [Lacaml_D]

lamch cmach see LAPACK documentation!

lange [Lacaml_C]

lange ?m ?n ?norm ?work ?ar ?ac a

lange [Lacaml_Z]

lange ?m ?n ?norm ?work ?ar ?ac a

lange [Lacaml_S]

lange ?m ?n ?norm ?work ?ar ?ac a

lange [Lacaml_D]

lange ?m ?n ?norm ?work ?ar ?ac a

lange_min_lwork [Lacaml_C]

lange_min_lwork m norm

lange_min_lwork [Lacaml_Z]

lange_min_lwork m norm

lange_min_lwork [Lacaml_S]

lange_min_lwork m norm

lange_min_lwork [Lacaml_D]

lange_min_lwork m norm

lansy [Lacaml_C]

lansy ?n ?up ?norm ?work ?ar ?ac a see LAPACK documentation!

lansy [Lacaml_Z]

lansy ?n ?up ?norm ?work ?ar ?ac a see LAPACK documentation!

lansy [Lacaml_S]

lansy ?norm ?up ?n ?ar ?ac ?work a see LAPACK documentation!

lansy [Lacaml_D]

lansy ?norm ?up ?n ?ar ?ac ?work a see LAPACK documentation!

lansy_min_lwork [Lacaml_C]

lansy_min_lwork m norm

lansy_min_lwork [Lacaml_Z]

lansy_min_lwork m norm

lansy_min_lwork [Lacaml_S]

lansy_min_lwork m norm

lansy_min_lwork [Lacaml_D]

lansy_min_lwork m norm

larnv [Lacaml_C]

larnv ?idist ?iseed ?n ?ofsx ?x ()

larnv [Lacaml_Z]

larnv ?idist ?iseed ?n ?ofsx ?x ()

larnv [Lacaml_S]

larnv ?idist ?iseed ?n ?ofsx ?x ()

larnv [Lacaml_D]

larnv ?idist ?iseed ?n ?ofsx ?x ()

lassq [Lacaml_C]

lassq ?n ?ofsx ?incx ?scale ?sumsq

lassq [Lacaml_Z]

lassq ?n ?ofsx ?incx ?scale ?sumsq

lassq [Lacaml_S]

lassq ?n ?ofsx ?incx ?scale ?sumsq

lassq [Lacaml_D]

lassq ?n ?ofsx ?incx ?scale ?sumsq

lauum [Lacaml_C]

lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.

lauum [Lacaml_Z]

lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.

lauum [Lacaml_S]

lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.

lauum [Lacaml_D]

lauum ?up ?n ?ar ?ac a computes the product U * U**T or L**T * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array a.

linspace [Lacaml_C.Vec]

linspace ?z a b n

linspace [Lacaml_Z.Vec]

linspace ?z a b n

linspace [Lacaml_S.Vec]

linspace ?z a b n

linspace [Lacaml_D.Vec]

linspace ?z a b n

liwork_str [Lacaml_utils]
log [Lacaml_S.Vec]

log ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logarithm of n elements of the vector x using incx as incremental steps.

log [Lacaml_D.Vec]

log ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the logarithm of n elements of the vector x using incx as incremental steps.

logspace [Lacaml_C.Vec]

logspace ?z a b base n

logspace [Lacaml_Z.Vec]

logspace ?z a b base n

logspace [Lacaml_S.Vec]

logspace ?z a b base n

logspace [Lacaml_D.Vec]

logspace ?z a b base n

lsc [Lacaml_io.Toplevel]
lwork_str [Lacaml_utils]
M
m_str [Lacaml_utils]
make [Lacaml_C.Mat]

make m n x

make [Lacaml_C.Vec]

make n x

make [Lacaml_Z.Mat]

make m n x

make [Lacaml_Z.Vec]

make n x

make [Lacaml_S.Mat]

make m n x

make [Lacaml_S.Vec]

make n x

make [Lacaml_D.Mat]

make m n x

make [Lacaml_D.Vec]

make n x

make0 [Lacaml_C.Mat]

make0 m n x

make0 [Lacaml_C.Vec]

make0 n x

make0 [Lacaml_Z.Mat]

make0 m n x

make0 [Lacaml_Z.Vec]

make0 n x

make0 [Lacaml_S.Mat]

make0 m n x

make0 [Lacaml_S.Vec]

make0 n x

make0 [Lacaml_D.Mat]

make0 m n x

make0 [Lacaml_D.Vec]

make0 n x

make_mvec [Lacaml_C.Mat]

make_mvec m x

make_mvec [Lacaml_Z.Mat]

make_mvec m x

make_mvec [Lacaml_S.Mat]

make_mvec m x

make_mvec [Lacaml_D.Mat]

make_mvec m x

map [Lacaml_C.Mat]

map f ?m ?n ?br ?bc ?b ?ar ?ac a

map [Lacaml_C.Vec]

map f ?n ?ofsx ?incx x

map [Lacaml_Z.Mat]

map f ?m ?n ?br ?bc ?b ?ar ?ac a

map [Lacaml_Z.Vec]

map f ?n ?ofsx ?incx x

map [Lacaml_S.Mat]

map f ?m ?n ?br ?bc ?b ?ar ?ac a

map [Lacaml_S.Vec]

map f ?n ?ofsx ?incx x

map [Lacaml_D.Mat]

map f ?m ?n ?br ?bc ?b ?ar ?ac a

map [Lacaml_D.Vec]

map f ?n ?ofsx ?incx x

mat_from_vec [Lacaml_common]

mat_from_vec a converts the vector a into a matrix with Array1.dim a rows and 1 column.

max [Lacaml_C.Vec]

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.

max [Lacaml_Z.Vec]

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.

max [Lacaml_S.Vec]

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.

max [Lacaml_D.Vec]

max ?n ?ofsx ?incx x computes the greater of the n elements in vector x (2-norm), separated by incx incremental steps.

min [Lacaml_C.Vec]

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.

min [Lacaml_Z.Vec]

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.

min [Lacaml_S.Vec]

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.

min [Lacaml_D.Vec]

min ?n ?ofsx ?incx x computes the smaller of the n elements in vector x (2-norm), separated by incx incremental steps.

mul [Lacaml_C.Vec]

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

mul [Lacaml_Z.Vec]

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

mul [Lacaml_S.Vec]

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

mul [Lacaml_D.Vec]

mul ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

mvec_of_array [Lacaml_C.Mat]

mvec_of_array ar

mvec_of_array [Lacaml_Z.Mat]

mvec_of_array ar

mvec_of_array [Lacaml_S.Mat]

mvec_of_array ar

mvec_of_array [Lacaml_D.Mat]

mvec_of_array ar

mvec_to_array [Lacaml_C.Mat]

mvec_to_array mat

mvec_to_array [Lacaml_Z.Mat]

mvec_to_array mat

mvec_to_array [Lacaml_S.Mat]

mvec_to_array mat

mvec_to_array [Lacaml_D.Mat]

mvec_to_array mat

N
n_str [Lacaml_utils]
neg [Lacaml_C.Vec]

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.

neg [Lacaml_Z.Vec]

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.

neg [Lacaml_S.Vec]

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.

neg [Lacaml_D.Vec]

neg ?n ?ofsy ?incy ?y ?ofsx ?incx x negates n elements of the vector x using incx as incremental steps.

nrhs_str [Lacaml_utils]
nrm2 [Lacaml_C]

nrm2 ?n ?ofsx ?incx x see BLAS documentation!

nrm2 [Lacaml_Z]

nrm2 ?n ?ofsx ?incx x see BLAS documentation!

nrm2 [Lacaml_S]

nrm2 ?n ?ofsx ?incx x see BLAS documentation!

nrm2 [Lacaml_D]

nrm2 ?n ?ofsx ?incx x see BLAS documentation!

O
of_array [Lacaml_C.Mat]

of_array ar

of_array [Lacaml_C.Vec]

of_array ar

of_array [Lacaml_Z.Mat]

of_array ar

of_array [Lacaml_Z.Vec]

of_array ar

of_array [Lacaml_S.Mat]

of_array ar

of_array [Lacaml_S.Vec]

of_array ar

of_array [Lacaml_D.Mat]

of_array ar

of_array [Lacaml_D.Vec]

of_array ar

of_col_vecs [Lacaml_C.Mat]

of_col_vecs ar

of_col_vecs [Lacaml_Z.Mat]

of_col_vecs ar

of_col_vecs [Lacaml_S.Mat]

of_col_vecs ar

of_col_vecs [Lacaml_D.Mat]

of_col_vecs ar

of_diag [Lacaml_C.Mat]

of_diag v

of_diag [Lacaml_Z.Mat]

of_diag v

of_diag [Lacaml_S.Mat]

of_diag v

of_diag [Lacaml_D.Mat]

of_diag v

of_list [Lacaml_C.Vec]

of_list l

of_list [Lacaml_Z.Vec]

of_list l

of_list [Lacaml_S.Vec]

of_list l

of_list [Lacaml_D.Vec]

of_list l

one [Lacaml_complex64]
one [Lacaml_complex32]
one [Lacaml_float64]
one [Lacaml_float32]
orgqr [Lacaml_S]

orgqr ?m ?n ?k ?work ~tau ?ar ?ac a see LAPACK documentation!

orgqr [Lacaml_D]

orgqr ?m ?n ?k ?work ~tau ?ar ?ac a see LAPACK documentation!

orgqr_err [Lacaml_utils]
orgqr_get_params [Lacaml_utils]
orgqr_min_lwork [Lacaml_S]

orgqr_min_lwork ~n

orgqr_min_lwork [Lacaml_D]

orgqr_min_lwork ~n

orgqr_opt_lwork [Lacaml_S]

orgqr_opt_lwork ?m ?n ?k ~tau ?ar ?ac a

orgqr_opt_lwork [Lacaml_D]

orgqr_opt_lwork ?m ?n ?k ~tau ?ar ?ac a

ormqr [Lacaml_S]

ormqr ?side ?trans ?m ?n ?k ?work ~tau ?ar ?ac a ?cr ?cc c see LAPACK documentation!

ormqr [Lacaml_D]

ormqr ?side ?trans ?m ?n ?k ?work ~tau ?ar ?ac a ?cr ?cc c see LAPACK documentation!

ormqr_err [Lacaml_utils]
ormqr_get_params [Lacaml_utils]
ormqr_opt_lwork [Lacaml_S]

ormqr_opt_lwork ?side ?trans ?m ?n ?k ~tau ?ar ?ac a ?cr ?cc c

ormqr_opt_lwork [Lacaml_D]

ormqr_opt_lwork ?side ?trans ?m ?n ?k ~tau ?ar ?ac a ?cr ?cc c

P
packed [Lacaml_C.Mat]

packed ?up ?n ?ar ?ac a

packed [Lacaml_Z.Mat]

packed ?up ?n ?ar ?ac a

packed [Lacaml_S.Mat]

packed ?up ?n ?ar ?ac a

packed [Lacaml_D.Mat]

packed ?up ?n ?ar ?ac a

pascal [Lacaml_S.Mat]

pascal n

pascal [Lacaml_D.Mat]

pascal n

pbsv [Lacaml_C]

pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.

pbsv [Lacaml_Z]

pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.

pbsv [Lacaml_S]

pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.

pbsv [Lacaml_D]

pbsv ?n ?up ?kd ?abr ?abc ab ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite band matrix and X and b are n-by-nrhs matrices.

pocon [Lacaml_C]

pocon ?n ?up ?anorm ?work ?rwork ?ar ?ac a

pocon [Lacaml_Z]

pocon ?n ?up ?anorm ?work ?rwork ?ar ?ac a

pocon [Lacaml_S]

pocon ?n ?up ?anorm ?work ?iwork ?ar ?ac a

pocon [Lacaml_D]

pocon ?n ?up ?anorm ?work ?iwork ?ar ?ac a

pocon_min_liwork [Lacaml_S]

pocon_min_liwork n

pocon_min_liwork [Lacaml_D]

pocon_min_liwork n

pocon_min_lrwork [Lacaml_C]

pocon_min_lrwork n

pocon_min_lrwork [Lacaml_Z]

pocon_min_lrwork n

pocon_min_lwork [Lacaml_C]

pocon_min_lwork n

pocon_min_lwork [Lacaml_Z]

pocon_min_lwork n

pocon_min_lwork [Lacaml_S]

pocon_min_lwork n

pocon_min_lwork [Lacaml_D]

pocon_min_lwork n

posv [Lacaml_C]

posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.

posv [Lacaml_Z]

posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.

posv [Lacaml_S]

posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.

posv [Lacaml_D]

posv ?n ?up ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix and X and b are n-by-nrhs matrices.

potrf [Lacaml_C]

potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.

potrf [Lacaml_Z]

potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.

potrf [Lacaml_S]

potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.

potrf [Lacaml_D]

potrf ?n ?up ?ar ?ac ?jitter a factorizes symmetric positive definite matrix a (or the designated submatrix) using Cholesky factorization.

potrf_chol_err [Lacaml_utils]
potrf_err [Lacaml_utils]
potri [Lacaml_C]

potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_C.potrf.

potri [Lacaml_Z]

potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_Z.potrf.

potri [Lacaml_S]

potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_S.potrf.

potri [Lacaml_D]

potri ?n ?up ?ar ?ac ?factorize ?jitter a computes the inverse of the real symmetric positive definite matrix a using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_D.potrf.

potrs [Lacaml_C]

potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_C.potrf.

potrs [Lacaml_Z]

potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_Z.potrf.

potrs [Lacaml_S]

potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_S.potrf.

potrs [Lacaml_D]

potrs ?n ?up ?ar ?ac a ?nrhs ?br ?bc ?factorize ?jitter b solves a system of linear equations a*X = b, where a is symmetric positive definite matrix, using the Cholesky factorization a = U**T*U or a = L*L**T computed by Lacaml_D.potrf.

potrs_err [Lacaml_utils]
pp_cmat [Lacaml_io.Toplevel]
pp_cmat [Lacaml_io]
pp_complex_el_default [Lacaml_io]

fprintf ppf "(%G, %Gi)" el.re el.im

pp_cvec [Lacaml_io.Toplevel]
pp_cvec [Lacaml_io]
pp_float_el_default [Lacaml_io]

fprintf ppf "%G" el

pp_fmat [Lacaml_io.Toplevel]
pp_fmat [Lacaml_io]
pp_fvec [Lacaml_io.Toplevel]
pp_fvec [Lacaml_io]
pp_imat [Lacaml_io.Toplevel]
pp_imat [Lacaml_io]
pp_int32_el [Lacaml_io]

fprintf ppf "%ld" el

pp_ivec [Lacaml_io.Toplevel]
pp_ivec [Lacaml_io]
pp_labeled_cmat [Lacaml_io]
pp_labeled_cvec [Lacaml_io]
pp_labeled_fmat [Lacaml_io]
pp_labeled_fvec [Lacaml_io]
pp_labeled_imat [Lacaml_io]
pp_labeled_ivec [Lacaml_io]
pp_labeled_rcvec [Lacaml_io]
pp_labeled_rfvec [Lacaml_io]
pp_labeled_rivec [Lacaml_io]
pp_lcmat [Lacaml_io]
pp_lcvec [Lacaml_io]
pp_lfmat [Lacaml_io]
pp_lfvec [Lacaml_io]
pp_limat [Lacaml_io]
pp_livec [Lacaml_io]
pp_mat [Lacaml_C]

Pretty-printer for matrices.

pp_mat [Lacaml_Z]

Pretty-printer for matrices.

pp_mat [Lacaml_S]

Pretty-printer for matrices.

pp_mat [Lacaml_D]

Pretty-printer for matrices.

pp_mat_gen [Lacaml_io]

pp_mat_gen ?pp_open ?pp_close ?pp_head ?pp_foot ?pp_end_row ?pp_end_col ?pp_left ?pp_right ?pad pp_el ppf mat

pp_num [Lacaml_C]

pp_num ppf el is equivalent to fprintf ppf "(%G, %Gi)" el.re el.im.

pp_num [Lacaml_Z]

pp_num ppf el is equivalent to fprintf ppf "(%G, %Gi)" el.re el.im.

pp_num [Lacaml_S]

pp_num ppf el is equivalent to fprintf ppf "%G" el.

pp_num [Lacaml_D]

pp_num ppf el is equivalent to fprintf ppf "%G" el.

pp_ocmat [Lacaml_io]
pp_ocvec [Lacaml_io]
pp_ofmat [Lacaml_io]
pp_ofvec [Lacaml_io]
pp_oimat [Lacaml_io]
pp_oivec [Lacaml_io]
pp_omat [Lacaml_io]

pp_omat ppf pp_el mat prints matrix mat to formatter ppf in OCaml-style using the element printer pp_el.

pp_ovec [Lacaml_io]

pp_ovec ppf pp_el vec prints the column vector vec to formatter ppf in OCaml-style using the element printer pp_el.

pp_rcvec [Lacaml_io.Toplevel]
pp_rcvec [Lacaml_io]
pp_rfvec [Lacaml_io.Toplevel]
pp_rfvec [Lacaml_io]
pp_rivec [Lacaml_io.Toplevel]
pp_rivec [Lacaml_io]
pp_rlcvec [Lacaml_io]
pp_rlfvec [Lacaml_io]
pp_rlivec [Lacaml_io]
pp_rocvec [Lacaml_io]
pp_rofvec [Lacaml_io]
pp_roivec [Lacaml_io]
pp_rovec [Lacaml_io]

pp_rovec ppf pp_el vec prints the row vector vec to formatter ppf in OCaml-style using the element printer pp_el.

pp_vec [Lacaml_C]

Pretty-printer for column vectors.

pp_vec [Lacaml_Z]

Pretty-printer for column vectors.

pp_vec [Lacaml_S]

Pretty-printer for column vectors.

pp_vec [Lacaml_D]

Pretty-printer for column vectors.

ppsv [Lacaml_C]

ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.

ppsv [Lacaml_Z]

ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.

ppsv [Lacaml_S]

ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.

ppsv [Lacaml_D]

ppsv ?n ?up ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric positive definite matrix stored in packed format and X and b are n-by-nrhs matrices.

prec [Lacaml_complex64]
prec [Lacaml_complex32]
prec [Lacaml_float64]
prec [Lacaml_float32]
prec [Lacaml_C]

Precision for this submodule C.

prec [Lacaml_Z]

Precision for this submodule Z.

prec [Lacaml_S]

Precision for this submodule S.

prec [Lacaml_D]

Precision for this submodule D.

prod [Lacaml_C.Vec]

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

prod [Lacaml_Z.Vec]

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

prod [Lacaml_S.Vec]

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

prod [Lacaml_D.Vec]

prod ?n ?ofsx ?incx x computes the product of the n elements in vector x, separated by incx incremental steps.

ptsv [Lacaml_C]

ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.

ptsv [Lacaml_Z]

ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.

ptsv [Lacaml_S]

ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.

ptsv [Lacaml_D]

ptsv ?n ?ofsd d ?ofse e ?nrhs ?br ?bc b computes the solution to the real system of linear equations a*X = b, where a is an n-by-n symmetric positive definite tridiagonal matrix, and X and b are n-by-nrhs matrices.

R
raise_mat_ofs [Lacaml_utils]
raise_mat_ofs_neg [Lacaml_utils]
random [Lacaml_C.Mat]

random ?rnd_state ?re_from ?re_range ?im_from ?im_range m n

random [Lacaml_C.Vec]

random ?rnd_state ?re_from ?re_range ?im_from ?im_range n

random [Lacaml_Z.Mat]

random ?rnd_state ?re_from ?re_range ?im_from ?im_range m n

random [Lacaml_Z.Vec]

random ?rnd_state ?re_from ?re_range ?im_from ?im_range n

random [Lacaml_S.Mat]

random ?rnd_state ?from ?range m n

random [Lacaml_S.Vec]

random ?rnd_state ?from ?range n

random [Lacaml_D.Mat]

random ?rnd_state ?from ?range m n

random [Lacaml_D.Vec]

random ?rnd_state ?from ?range n

reci [Lacaml_C.Vec]

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.

reci [Lacaml_Z.Vec]

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.

reci [Lacaml_S.Vec]

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.

reci [Lacaml_D.Vec]

reci ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the reciprocal value of n elements of the vector x using incx as incremental steps.

rev [Lacaml_C.Vec]

rev x reverses vector x (non-destructive).

rev [Lacaml_Z.Vec]

rev x reverses vector x (non-destructive).

rev [Lacaml_S.Vec]

rev x reverses vector x (non-destructive).

rev [Lacaml_D.Vec]

rev x reverses vector x (non-destructive).

rosser [Lacaml_S.Mat]

rosser n

rosser [Lacaml_D.Mat]

rosser n

S
s_str [Lacaml_utils]
sbev [Lacaml_S]

sbev ?n ?vectors ?zr ?zc ?z ?up ?ofswork ?work ?ofsw ?w ?abr ?abc ab computes all the eigenvalues and, optionally, eigenvectors of the real symmetric band matrix ab.

sbev [Lacaml_D]

sbev ?n ?vectors ?zr ?zc ?z ?up ?ofswork ?work ?ofsw ?w ?abr ?abc ab computes all the eigenvalues and, optionally, eigenvectors of the real symmetric band matrix ab.

sbev_min_lwork [Lacaml_S]

sbev_min_lwork n

sbev_min_lwork [Lacaml_D]

sbev_min_lwork n

sbgv [Lacaml_S]

sbgv ?n ?ka ?kb ?zr ?zc ?z ?up ?work ?ofsw ?w ?ar ?ac a ?br ?bc b computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form a*x=(lambda)*b*x.

sbgv [Lacaml_D]

sbgv ?n ?ka ?kb ?zr ?zc ?z ?up ?work ?ofsw ?w ?ar ?ac a ?br ?bc b computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form a*x=(lambda)*b*x.

sbmv [Lacaml_S]

sbmv ?n ?k ?ofsy ?incy ?y ?ar ?ac a ?up ?alpha ?beta ?ofsx ?incx x see BLAS documentation!

sbmv [Lacaml_D]

sbmv ?n ?k ?ofsy ?incy ?y ?ar ?ac a ?up ?alpha ?beta ?ofsx ?incx x see BLAS documentation!

scal [Lacaml_C.Mat]

scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.

scal [Lacaml_C]

scal ?n alpha ?ofsx ?incx x see BLAS documentation!

scal [Lacaml_Z.Mat]

scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.

scal [Lacaml_Z]

scal ?n alpha ?ofsx ?incx x see BLAS documentation!

scal [Lacaml_S.Mat]

scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.

scal [Lacaml_S]

scal ?n alpha ?ofsx ?incx x see BLAS documentation!

scal [Lacaml_D.Mat]

scal ?m ?n alpha ?ar ?ac a BLAS scal function for (sub-)matrices.

scal [Lacaml_D]

scal ?n alpha ?ofsx ?incx x see BLAS documentation!

scal_cols [Lacaml_C.Mat]

scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.

scal_cols [Lacaml_Z.Mat]

scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.

scal_cols [Lacaml_S.Mat]

scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.

scal_cols [Lacaml_D.Mat]

scal_cols ?m ?n ?ar ?ac a ?ofs alphas column-wise scal function for matrices.

scal_rows [Lacaml_C.Mat]

scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.

scal_rows [Lacaml_Z.Mat]

scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.

scal_rows [Lacaml_S.Mat]

scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.

scal_rows [Lacaml_D.Mat]

scal_rows ?m ?n ?ofs alphas ?ar ?ac a row-wise scal function for matrices.

set_dim_defaults [Lacaml_io.Context]
sin [Lacaml_S.Vec]

sin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sine of n elements of the vector x using incx as incremental steps.

sin [Lacaml_D.Vec]

sin ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the sine of n elements of the vector x using incx as incremental steps.

sort [Lacaml_C.Vec]

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

sort [Lacaml_Z.Vec]

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

sort [Lacaml_S.Vec]

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

sort [Lacaml_D.Vec]

sort ?cmp ?n ?ofsx ?incx x sorts the array x in increasing order according to the comparison function cmp.

spsv [Lacaml_C]

spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.

spsv [Lacaml_Z]

spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.

spsv [Lacaml_S]

spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.

spsv [Lacaml_D]

spsv ?n ?up ?ipiv ?ofsap ap ?nrhs ?br ?bc b computes the solution to the real system of linear equations a * X = b, where a is an n-by-n symmetric matrix stored in packed format and X and b are n-by-nrhs matrices.

sqr [Lacaml_S.Vec]

sqr ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square of n elements of the vector x using incx as incremental steps.

sqr [Lacaml_D.Vec]

sqr ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square of n elements of the vector x using incx as incremental steps.

sqr_nrm2 [Lacaml_C.Vec]

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.

sqr_nrm2 [Lacaml_Z.Vec]

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.

sqr_nrm2 [Lacaml_S.Vec]

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.

sqr_nrm2 [Lacaml_D.Vec]

sqr_nrm2 ?stable ?n ?c ?ofsx ?incx x computes the square of the 2-norm (Euclidean norm) of vector x separated by incx incremental steps.

sqrt [Lacaml_S.Vec]

sqrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square root of n elements of the vector x using incx as incremental steps.

sqrt [Lacaml_D.Vec]

sqrt ?n ?ofsy ?incy ?y ?ofsx ?incx x computes the square root of n elements of the vector x using incx as incremental steps.

ssqr [Lacaml_C.Vec]

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.

ssqr [Lacaml_Z.Vec]

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.

ssqr [Lacaml_S.Vec]

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.

ssqr [Lacaml_D.Vec]

ssqr ?n ?c ?ofsx ?incx x computes the sum of squared differences of the n elements in vector x from constant c, separated by incx incremental steps.

ssqr_diff [Lacaml_C.Vec]

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

ssqr_diff [Lacaml_Z.Vec]

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

ssqr_diff [Lacaml_S.Vec]

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

ssqr_diff [Lacaml_D.Vec]

ssqr_diff ?n ?ofsx ?incx x ?ofsy ?incy y returns the sum of squared differences of n elements of vectors x and y, using incx and incy as incremental steps respectively.

sub [Lacaml_C.Vec]

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

sub [Lacaml_Z.Vec]

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

sub [Lacaml_S.Vec]

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

sub [Lacaml_D.Vec]

sub ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y subtracts n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively.

sum [Lacaml_C.Mat]

sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.

sum [Lacaml_C.Vec]

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

sum [Lacaml_Z.Mat]

sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.

sum [Lacaml_Z.Vec]

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

sum [Lacaml_S.Mat]

sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.

sum [Lacaml_S.Vec]

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

sum [Lacaml_D.Mat]

sum ?m ?n ?ar ?ac a computes the sum of all elements in the m-by-n submatrix starting at row ar and column ac.

sum [Lacaml_D.Vec]

sum ?n ?ofsx ?incx x computes the sum of the n elements in vector x, separated by incx incremental steps.

swap [Lacaml_C]

swap ?n ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!

swap [Lacaml_Z]

swap ?n ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!

swap [Lacaml_S]

swap ?n ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!

swap [Lacaml_D]

swap ?n ?ofsx ?incx ~x ?ofsy ?incy y see BLAS documentation!

sycon [Lacaml_C]

sycon ?n ?up ?ipiv ?anorm ?work ?ar ?ac a

sycon [Lacaml_Z]

sycon ?n ?up ?ipiv ?anorm ?work ?ar ?ac a

sycon [Lacaml_S]

sycon ?n ?up ?ipiv ?anorm ?work ?iwork ?ar ?ac a

sycon [Lacaml_D]

sycon ?n ?up ?ipiv ?anorm ?work ?iwork ?ar ?ac a

sycon_min_liwork [Lacaml_S]

sycon_min_liwork n

sycon_min_liwork [Lacaml_D]

sycon_min_liwork n

sycon_min_lwork [Lacaml_C]

sycon_min_lwork n

sycon_min_lwork [Lacaml_Z]

sycon_min_lwork n

sycon_min_lwork [Lacaml_S]

sycon_min_lwork n

sycon_min_lwork [Lacaml_D]

sycon_min_lwork n

syev [Lacaml_S]

syev ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.

syev [Lacaml_D]

syev ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.

syev_min_lwork [Lacaml_S]

syev_min_lwork n

syev_min_lwork [Lacaml_D]

syev_min_lwork n

syev_opt_lwork [Lacaml_S]

syev_opt_lwork ?n ?vectors ?up ?ar ?ac a

syev_opt_lwork [Lacaml_D]

syev_opt_lwork ?n ?vectors ?up ?ar ?ac a

syevd [Lacaml_S]

syevd ?n ?vectors ?up ?ofswork ?work ?iwork ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.

syevd [Lacaml_D]

syevd ?n ?vectors ?up ?ofswork ?work ?iwork ?ofsw ?w ?ar ?ac a computes all eigenvalues and, optionally, eigenvectors of the real symmetric matrix a.

syevd_min_liwork [Lacaml_S]

syevd_min_liwork vectors n

syevd_min_liwork [Lacaml_D]

syevd_min_liwork vectors n

syevd_min_lwork [Lacaml_S]

syevd_min_lwork vectors n

syevd_min_lwork [Lacaml_D]

syevd_min_lwork vectors n

syevd_opt_l_li_work [Lacaml_S]

syevd_opt_l_li_iwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_l_li_work [Lacaml_D]

syevd_opt_l_li_iwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_liwork [Lacaml_S]

syevd_opt_liwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_liwork [Lacaml_D]

syevd_opt_liwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_lwork [Lacaml_S]

syevd_opt_lwork ?n ?vectors ?up ?ar ?ac a

syevd_opt_lwork [Lacaml_D]

syevd_opt_lwork ?n ?vectors ?up ?ar ?ac a

syevr [Lacaml_S]

syevr ?n ?vectors ?range ?up ?abstol ?work ?iwork ?ofsw ?w ?zr ?zc ?z ?isuppz ?ar ?ac a range is either `A for computing all eigenpairs, `V (vl, vu) defines the lower and upper range of computed eigenvalues, `I (il, iu) defines the indexes of the computed eigenpairs, which are sorted in ascending order.

syevr [Lacaml_D]

syevr ?n ?vectors ?range ?up ?abstol ?work ?iwork ?ofsw ?w ?zr ?zc ?z ?isuppz ?ar ?ac a range is either `A for computing all eigenpairs, `V (vl, vu) defines the lower and upper range of computed eigenvalues, `I (il, iu) defines the indexes of the computed eigenpairs, which are sorted in ascending order.

syevr_min_liwork [Lacaml_S]

syevr_min_liwork n

syevr_min_liwork [Lacaml_D]

syevr_min_liwork n

syevr_min_lwork [Lacaml_S]

syevr_min_lwork n

syevr_min_lwork [Lacaml_D]

syevr_min_lwork n

syevr_opt_l_li_work [Lacaml_S]

syevr_opt_l_li_iwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_l_li_work [Lacaml_D]

syevr_opt_l_li_iwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_liwork [Lacaml_S]

syevr_opt_liwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_liwork [Lacaml_D]

syevr_opt_liwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_lwork [Lacaml_S]

syevr_opt_lwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

syevr_opt_lwork [Lacaml_D]

syevr_opt_lwork ?n ?vectors ?range ?up ?abstol ?ar ?ac a

sygv [Lacaml_S]

sygv ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form a*x=(lambda)*b*x, a*b*x=(lambda)*x, or b*a*x=(lambda)*x.

sygv [Lacaml_D]

sygv ?n ?vectors ?up ?ofswork ?work ?ofsw ?w ?ar ?ac a computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form a*x=(lambda)*b*x, a*b*x=(lambda)*x, or b*a*x=(lambda)*x.

sygv_opt_lwork [Lacaml_S]

sygv_opt_lwork ?n ?vectors ?up ?ar ?ac a ?br ?bc b

sygv_opt_lwork [Lacaml_D]

sygv_opt_lwork ?n ?vectors ?up ?ar ?ac a ?br ?bc b

symm [Lacaml_C]

symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

symm [Lacaml_Z]

symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

symm [Lacaml_S]

symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

symm [Lacaml_D]

symm ?m ?n ?side ?up ?beta ?cr ?cc ?c ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

symm2_trace [Lacaml_C.Mat]

symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.

symm2_trace [Lacaml_Z.Mat]

symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.

symm2_trace [Lacaml_S.Mat]

symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.

symm2_trace [Lacaml_D.Mat]

symm2_trace ?n ?upa ?ar ?ac a ?upb ?br ?bc b computes the trace of the product of the symmetric (sub-)matrices a and b.

symm_get_params [Lacaml_utils]
symv [Lacaml_C]

symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

symv [Lacaml_Z]

symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

symv [Lacaml_S]

symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

symv [Lacaml_D]

symv ?n ?beta ?ofsy ?incy ?y ?up ?alpha ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

symv_get_params [Lacaml_utils]
syr [Lacaml_S]

syr ?n ?alpha ?up ?ofsx ?incx x ?ar ?ac a see BLAS documentation!

syr [Lacaml_D]

syr ?n ?alpha ?up ?ofsx ?incx x ?ar ?ac a see BLAS documentation!

syr2k [Lacaml_C]

syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

syr2k [Lacaml_Z]

syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

syr2k [Lacaml_S]

syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

syr2k [Lacaml_D]

syr2k ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a ?br ?bc b see BLAS documentation!

syr2k_get_params [Lacaml_utils]
syrk [Lacaml_C]

syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!

syrk [Lacaml_Z]

syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!

syrk [Lacaml_S]

syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!

syrk [Lacaml_D]

syrk ?n ?k ?up ?beta ?cr ?cc ?c ?trans ?alpha ?ar ?ac a see BLAS documentation!

syrk_diag [Lacaml_C.Mat]

syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

syrk_diag [Lacaml_Z.Mat]

syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

syrk_diag [Lacaml_S.Mat]

syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

syrk_diag [Lacaml_D.Mat]

syrk_diag ?n ?k ?beta ?ofsy ?y ?trans ?alpha ?ar ?ac a computes the diagonal of the symmetric rank-k product of the (sub-)matrix a, multiplying it with alpha and adding beta times y, storing the result in y starting at the specified offset.

syrk_get_params [Lacaml_utils]
syrk_trace [Lacaml_C.Mat]

syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.

syrk_trace [Lacaml_Z.Mat]

syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.

syrk_trace [Lacaml_S.Mat]

syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.

syrk_trace [Lacaml_D.Mat]

syrk_trace ?n ?k ?ar ?ac a computes the trace of either a' * a or a * a', whichever is more efficient (results are identical), of the (sub-)matrix a multiplied by its own transpose.

sysv [Lacaml_C]

sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.

sysv [Lacaml_Z]

sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.

sysv [Lacaml_S]

sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.

sysv [Lacaml_D]

sysv ?n ?up ?ipiv ?work ?ar ?ac a ?nrhs ?br ?bc b computes the solution to a real system of linear equations a * X = b, where a is an N-by-N symmetric matrix and X and b are n-by-nrhs matrices.

sysv_opt_lwork [Lacaml_C]

sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b

sysv_opt_lwork [Lacaml_Z]

sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b

sysv_opt_lwork [Lacaml_S]

sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b

sysv_opt_lwork [Lacaml_D]

sysv_opt_lwork ?n ?up ?ar ?ac a ?nrhs ?br ?bc b

sytrf [Lacaml_C]

sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.

sytrf [Lacaml_Z]

sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.

sytrf [Lacaml_S]

sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.

sytrf [Lacaml_D]

sytrf ?n ?up ?ipiv ?work ?ar ?ac a computes the factorization of the real symmetric matrix a using the Bunch-Kaufman diagonal pivoting method.

sytrf_err [Lacaml_utils]
sytrf_fact_err [Lacaml_utils]
sytrf_get_ipiv [Lacaml_utils]
sytrf_min_lwork [Lacaml_C]

sytrf_min_lwork ()

sytrf_min_lwork [Lacaml_Z]

sytrf_min_lwork ()

sytrf_min_lwork [Lacaml_S]

sytrf_min_lwork ()

sytrf_min_lwork [Lacaml_D]

sytrf_min_lwork ()

sytrf_opt_lwork [Lacaml_C]

sytrf_opt_lwork ?n ?up ?ar ?ac a

sytrf_opt_lwork [Lacaml_Z]

sytrf_opt_lwork ?n ?up ?ar ?ac a

sytrf_opt_lwork [Lacaml_S]

sytrf_opt_lwork ?n ?up ?ar ?ac a

sytrf_opt_lwork [Lacaml_D]

sytrf_opt_lwork ?n ?up ?ar ?ac a

sytri [Lacaml_C]

sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_C.sytrf.

sytri [Lacaml_Z]

sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_Z.sytrf.

sytri [Lacaml_S]

sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_S.sytrf.

sytri [Lacaml_D]

sytri ?n ?up ?ipiv ?work ?ar ?ac a computes the inverse of the real symmetric indefinite matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_D.sytrf.

sytri_min_lwork [Lacaml_C]

sytri_min_lwork n

sytri_min_lwork [Lacaml_Z]

sytri_min_lwork n

sytri_min_lwork [Lacaml_S]

sytri_min_lwork n

sytri_min_lwork [Lacaml_D]

sytri_min_lwork n

sytrs [Lacaml_C]

sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_C.sytrf.

sytrs [Lacaml_Z]

sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_Z.sytrf.

sytrs [Lacaml_S]

sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_S.sytrf.

sytrs [Lacaml_D]

sytrs ?n ?up ?ipiv ?ar ?ac a ?nrhs ?br ?bc b solves a system of linear equations a*X = b with a real symmetric matrix a using the factorization a = U*D*U**T or a = L*D*L**T computed by Lacaml_D.sytrf.

T
tau_str [Lacaml_utils]
tbtrs [Lacaml_C]

tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.

tbtrs [Lacaml_Z]

tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.

tbtrs [Lacaml_S]

tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.

tbtrs [Lacaml_D]

tbtrs ?n ?kd ?up ?trans ?diag ?abr ?abc ab ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = b, where a is a triangular band matrix of order n, and b is an n-by-nrhs matrix.

tbtrs_err [Lacaml_utils]
to_array [Lacaml_C.Mat]

to_array mat

to_array [Lacaml_C.Vec]

to_array v

to_array [Lacaml_Z.Mat]

to_array mat

to_array [Lacaml_Z.Vec]

to_array v

to_array [Lacaml_S.Mat]

to_array mat

to_array [Lacaml_S.Vec]

to_array v

to_array [Lacaml_D.Mat]

to_array mat

to_array [Lacaml_D.Vec]

to_array v

to_col_vecs [Lacaml_C.Mat]

to_col_vecs mat

to_col_vecs [Lacaml_Z.Mat]

to_col_vecs mat

to_col_vecs [Lacaml_S.Mat]

to_col_vecs mat

to_col_vecs [Lacaml_D.Mat]

to_col_vecs mat

to_list [Lacaml_C.Vec]

to_list v

to_list [Lacaml_Z.Vec]

to_list v

to_list [Lacaml_S.Vec]

to_list v

to_list [Lacaml_D.Vec]

to_list v

toeplitz [Lacaml_S.Mat]

toeplitz v

toeplitz [Lacaml_D.Mat]

toeplitz v

tpXv_get_params [Lacaml_utils]
tpmv [Lacaml_C]

tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpmv [Lacaml_Z]

tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpmv [Lacaml_S]

tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpmv [Lacaml_D]

tpmv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpsv [Lacaml_C]

tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpsv [Lacaml_Z]

tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpsv [Lacaml_S]

tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

tpsv [Lacaml_D]

tpsv ?n ?trans ?diag ?up ?ofsap ap ?ofsx ?incx x see BLAS documentation!

trXm_get_params [Lacaml_utils]
trXv_get_params [Lacaml_utils]
trace [Lacaml_C.Mat]

trace m

trace [Lacaml_Z.Mat]

trace m

trace [Lacaml_S.Mat]

trace m

trace [Lacaml_D.Mat]

trace m

transpose [Lacaml_C.Mat]

transpose ?m ?n ?ar ?ac aa

transpose [Lacaml_Z.Mat]

transpose ?m ?n ?ar ?ac aa

transpose [Lacaml_S.Mat]

transpose ?m ?n ?ar ?ac aa

transpose [Lacaml_D.Mat]

transpose ?m ?n ?ar ?ac aa

transpose_copy [Lacaml_C.Mat]

transpose_copy ?m ?n ?ar ?ac a ?br ?bc b copy the transpose of (sub-)matrix a into (sub-)matrix b.

transpose_copy [Lacaml_Z.Mat]

transpose_copy ?m ?n ?ar ?ac a ?br ?bc b copy the transpose of (sub-)matrix a into (sub-)matrix b.

transpose_copy [Lacaml_S.Mat]

transpose_copy ?m ?n ?ar ?ac a ?br ?bc b copy the transpose of (sub-)matrix a into (sub-)matrix b.

transpose_copy [Lacaml_D.Mat]

transpose_copy ?m ?n ?ar ?ac a ?br ?bc b copy the transpose of (sub-)matrix a into (sub-)matrix b.

trmm [Lacaml_C]

trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trmm [Lacaml_Z]

trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trmm [Lacaml_S]

trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trmm [Lacaml_D]

trmm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trmv [Lacaml_C]

trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trmv [Lacaml_Z]

trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trmv [Lacaml_S]

trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trmv [Lacaml_D]

trmv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trsm [Lacaml_C]

trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trsm [Lacaml_Z]

trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trsm [Lacaml_S]

trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trsm [Lacaml_D]

trsm ?m ?n ?side ?up ?transa ?diag ?alpha ?ar ?ac ~a ?br ?bc b see BLAS documentation!

trsv [Lacaml_C]

trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trsv [Lacaml_Z]

trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trsv [Lacaml_S]

trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trsv [Lacaml_D]

trsv ?n ?trans ?diag ?up ?ar ?ac a ?ofsx ?incx x see BLAS documentation!

trtri [Lacaml_C]

trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.

trtri [Lacaml_Z]

trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.

trtri [Lacaml_S]

trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.

trtri [Lacaml_D]

trtri ?n ?up ?diag ?ar ?ac a computes the inverse of a real upper or lower triangular matrix a.

trtri_err [Lacaml_utils]
trtrs [Lacaml_C]

trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.

trtrs [Lacaml_Z]

trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.

trtrs [Lacaml_S]

trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.

trtrs [Lacaml_D]

trtrs ?n ?up ?trans ?diag ?ar ?ac a ?nrhs ?br ?bc b solves a triangular system of the form a * X = b or a**T * X = n, where a is a triangular matrix of order n, and b is an n-by-nrhs matrix.

trtrs_err [Lacaml_utils]
U
u_str [Lacaml_utils]
um_str [Lacaml_utils]
un_str [Lacaml_utils]
unpacked [Lacaml_C.Mat]

unpacked ?up x

unpacked [Lacaml_Z.Mat]

unpacked ?up x

unpacked [Lacaml_S.Mat]

unpacked ?up x

unpacked [Lacaml_D.Mat]

unpacked ?up x

V
vandermonde [Lacaml_S.Mat]

vandermonde v

vandermonde [Lacaml_D.Mat]

vandermonde v

version [Lacaml_version]
vertical_default [Lacaml_io.Context]
vm_str [Lacaml_utils]
vn_str [Lacaml_utils]
vs_str [Lacaml_utils]
vsc_str [Lacaml_utils]
vsr_str [Lacaml_utils]
vt_str [Lacaml_utils]
W
w_str [Lacaml_utils]
wi_str [Lacaml_utils]
wilkinson [Lacaml_S.Mat]

wilkinson n

wilkinson [Lacaml_D.Mat]

wilkinson n

work_str [Lacaml_utils]
wr_str [Lacaml_utils]
X
x_str [Lacaml_utils]
xlange_get_params [Lacaml_utils]
xxcon_err [Lacaml_utils]
xxev_get_params [Lacaml_utils]
xxev_get_wx [Lacaml_utils]
xxsv_a_err [Lacaml_utils]
xxsv_err [Lacaml_utils]
xxsv_get_ipiv [Lacaml_utils]
xxsv_get_params [Lacaml_utils]
xxsv_ind_err [Lacaml_utils]
xxsv_lu_err [Lacaml_utils]
xxsv_pos_err [Lacaml_utils]
xxsv_work_err [Lacaml_utils]
xxtri_err [Lacaml_utils]
xxtri_singular_err [Lacaml_utils]
xxtrs_err [Lacaml_utils]
xxtrs_get_params [Lacaml_utils]
Y
y_str [Lacaml_utils]
Z
z_str [Lacaml_utils]
zero [Lacaml_complex64]
zero [Lacaml_complex32]
zero [Lacaml_float64]
zero [Lacaml_float32]
zmxy [Lacaml_C.Vec]

zmxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z if provided.

zmxy [Lacaml_Z.Vec]

zmxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z if provided.

zmxy [Lacaml_S.Vec]

zmxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z if provided.

zmxy [Lacaml_D.Vec]

zmxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and substracts the result from and stores it in the specified range in z if provided.

zpxy [Lacaml_C.Vec]

zpxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z if provided.

zpxy [Lacaml_Z.Vec]

zpxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z if provided.

zpxy [Lacaml_S.Vec]

zpxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z if provided.

zpxy [Lacaml_D.Vec]

zpxy ?n ?ofsz ?incz ?z ?ofsx ?incx x ?ofsy ?incy y multiplies n elements of vectors x and y elementwise, using incx and incy as incremental steps respectively, and adds the result to and stores it in the specified range in z if provided.