IIIIIII

(I 21 e T [0 Tt o 3 R
About cuda-memcheck
Why cuda-memchecK. ...t
Supported Error Detectionovvvviiiiiiiiiiiiiiii e
Installation and Cross-Platform Support

CUDA Memory Architecture

2 Using cuda-memcheck
Using standalone cuda-memcheck
Application debug build provides more information
Sample Application OUEPULS....ccviiiiiiiiiiiii i eeeeees 4
Using integrated cuda-memcheck
Integrated Operationuueeeiiiiiiiiiiiiiiiiiireienanaas 7
Integrated cuda-memcheck example

Appendix A: KNOWN ISSUESuuuuuuenneneeeeeeeeeeeeeececcsccsssssssssssssssnnnes 8

Graphics Driver cuda-memcheck DU-05355-001_v02 | i

INTRODUCTION

The CUDA debugger tool, cuda-gdb, includes a memory-checking feature for detecting
and debugging memory errors in CUDA applications. This document describes that
feature, called cuda-memcheck.

About cuda-memcheck

Why cuda-memcheck

NVIDIA simplifies the debugging of CUDA programming errors with its powerful cuda-
gdb hardware debugger. However, every programmer invariably encounters memory
related errors that are hard to detect and time consuming to debug. The number of
memory related errors increases substantially when dealing with thousands of threads.
The cuda-memcheck tool is designed to detect such memory access errors in your CUDA
application.

Supported Error Detection

The cuda-memcheck tool supports detection of out-of-bounds and misaligned global
memory accesses.

Installation and Cross-Platform Support

The standalone cuda-memcheck binary gets installed with cuda-gdb as part of the CUDA
toolkit installation, and is supported on all CUDA supported platforms.

cuda-memcheck DU-05355-001_v02 | 1

Chapter 01 : INTRODUCTION

CUDA Memory Architecture

CUDA uses a segmented memory architecture that allows applications to access data in
global, local, shared, constant, and texture memory.

A new unified addressing mode has been introduced in Fermi GPUs that allows data in
global, local, and shared memory to be accessed with a generic 40-bit address.

cuda-memcheck DU-05355-001_v02 | 2

USING CUDA-MEMCHECK

You can run cuda-memcheck as either a standalone tool or as part of cuda-gdb.
» “Using standalone cuda-memcheck” on page 3

» “Using integrated cuda-memcheck” on page 7

Using standalone cuda-memcheck

To run cuda-memcheck as a standalone tool, pass the application name as a parameter.
» Syntax:

cuda-memcheck [options] [your-program] [your-program-options]
» Options field:

e -h show this message

* --continue try to continue running on memory access violations

Refer to “Known Issues” on page 8 regarding use of the -continue flag.

Application debug build provides more information

You can execute either a debug or release build of your CUDA application with cuda-
memcheck.

» Using a debug version of your application built with the -g -G option pair gives you
additional information regarding the line number of the access violation.

» With a release version of the application, cuda-memcheck logs only the name of the
kernel responsible for the access violation.

cuda-memcheck DU-05355-001_v02 | 3

Chapter 02 : USING CUDA-MEMCHECK

Sample Application Outputs

This section presents a walk-through of cuda-memcheck run with a simple application
called memcheck_demo.

@ Note: Depending on the SM_type of your GPU, your system output
' may vary.

memcheck_demo.cu source code

#include <stdio.h>

__device int x;

~_global void unaligned kernel (void) {
(int) ((char*)&x + 1) = 42;

}

__global void out of bounds_ kernel (void) {
(int) 0x87654320 = 42;

int main() {
printf ("Running unaligned kernel\n");
unaligned kernel<<<1,1>>>();

printf ("Ran unaligned kernel: %s\n",
cudaGetErrorString (cudaGetLastError ())) ;

printf ("Sync: %$s\n", cudaGetErrorString(cudaThreadSynchronize())):;

printf ("Running out of bounds kernel\n");
out of bounds kernel<<<1l,1>>>();

printf ("Ran out of bounds kernel: %$s\n",
cudaGetErrorString (cudaGetLastError())) ;

printf ("Sync: %$s\n", cudaGetErrorString(cudaThreadSynchronize())):;

return 0;

cuda-memcheck DU-05355-001_v02 | 4

Chapter 02 : USING CUDA-MEMCHECK

Application output without cuda-memcheck

When a CUDA application causes access violations, the kernel launch may terminate
with an error code of unspecified launch failure or a subsequent cudathreadsynchronize
call which will fail with an error code of unspecified launch failure.

This sample application is causing two failures but there is no way to detect where these
kernels are causing the access violations, as illustrated in the following output:

$./memcheck demo
Running unaligned kernel
Ran unaligned kernel: no error
Sync: unspecified launch failure
Running out of bounds kernel
Ran out of bounds kernel: no error

Sync: unspecified launch failure

(Debug Build) Application output with cuda-memcheck

Now run this application with cuda-memcheck and check the output. We will use the --
continue option to let cuda-memcheck continue executing the rest of the kernel after its
first access violation.

In the output below the first kernel does not see the unspecified launch failure error since
that was the only access violation that kernel executes, and with the ~continue flag set,
cuda-memcheck will force it to continue. Depending on the application error checking,
with the --continue flag set cuda-memcheck can detect more than one occurrence of the
errors across kernels, but reports only the first error per kernel.

$ cuda-memcheck --continue ./memcheck_demo

========= CUDA-MEMCHECK

Running unaligned kernel

Ran unaligned kernel: no error

Sync: no error

Running out of bounds kernel

Ran out of bounds kernel: no error

Sync: unspecified launch failure

========= Invalid write of size 4
at 0x00000028 in memcheck demo.cu:5:unaligned kernel
by thread (0,0,0) in block (0,0)
========= Address 0x00002c0l is misaligned

========= Tnvalid write of size 4

at 0x00000048 in memcheck demo.cu:8:out of bounds kernel
by thread (0,0,0) in block (0,0)

========= Address 0x87654320 is out of bounds

========= ERROR SUMMARY: 2 errors

cuda-memcheck DU-05355-001_v02 | 5

Chapter 02 : USING CUDA-MEMCHECK

(Debug Build) Application output with cuda-memcheck, without --
continue

Now run this application with cuda-memcheck but without using the --continue
option.

Without the —continue option, the first kernel shows the unspecified launch failure and
only the first error gets reported by cuda-memcheck. In this case, after the access violation
in the first kernel the application allows the second kernel to execute and there is
application output for both kernels. Even so, the cuda-memcheck error is logged only for
the first kernel.

$ cuda-memcheck ./memcheck_demo
========= CUDA-MEMCHECK
Running unaligned kernel
Ran unaligned kernel: no error
Sync: unspecified launch failure
Running out of bounds kernel
Ran out of bounds kernel: unspecified launch failure
Sync: unspecified launch failure
========= Invalid write of size 4
S======== at 0x00000028 in memcheck demo.cu:5:unaligned kernel
========= by thread (0,0,0) in block (0,0)
========= Address 0x00002c0l is misaligned

========= ERROR SUMMARY: 1 error

(Release Build) Application output with cuda-memcheck

In this case, since the application is built in release mode, the cuda-memcheck output
contains only the kernel names from the application causing the access violation. Though
the kernel name and error type are detected, there is no line number information on the
failing kernel.

$ cuda-memcheck ./memcheck_demo
Ran unaligned kernel: no error
Sync: unspecified launch failure
Running out of bounds kernel
Ran out of bounds kernel: unspecified launch failure
Sync: unspecified launch failure
========= Invalid write of size 4
========= at 0x00000018 in unaligned kernel
========= by thread (0,0,0) in block (0,0)
========= Address 0x00002c0l is misaligned

========= ERROR SUMMARY: 1 error

cuda-memcheck DU-05355-001_v02 | 6

Chapter 02 : USING CUDA-MEMCHECK

Using integrated cuda-memcheck

Integrated operation

You can execute cuda-memcheck from within cuda-gdb by using the following variable
before running the application:

e (cuda-gdb) set cuda memcheck on

Integrated cuda-memcheck example

This example shows how to enable cuda-memcheck from within cuda-gdb and detect
errors within the debugger so you can access the line number information and check the
state of the variables.

In this example the unaligned kernel has a misaligned memory access in block 1 lane 1,
which gets trapped as an illegal lane address at line 5 from within cuda-gdb.

(cuda-gdb) r

Starting program: memcheck demo

[Thread debugging using libthread db enabled]
[New process 23653]

Running unaligned kernel

[New Thread 140415864006416 (LWP 23653)]
[Launch of CUDA Kernel 0 on Device 0]

Program received signal CUDA EXCEPTION 1, Lane Illegal Address.
[Switching to CUDA Kernel 0 (<<<(0,0), (0,0,0)>>>)]

0x0000000000992e68 in unaligned kernel <<<(1,1),(1,1,1)>>> () at
memcheck demo.cu:5
5 *(int*) ((char*)e&x + 1) = 42;

(cuda-gdb) p &x

$1 = (Qglobal int *) 0x42c00
(cuda-gdb) c

Continuing.

Program terminated with signal CUDA EXCEPTION 1, Lane Illegal Address.
The program no longer exists.
(cuda-gdb)

cuda-memcheck DU-05355-001_v02 | 7

KNOWN ISSUES

The following are known issues with the current release.
» Applications run much slower when using cuda-memcheck.

» cuda-memcheck imposes blocking launches which means only one kernel executes at a
time.

» Without cuda-memcheck, when an application causes an access violation the kernel
launch could fail with an error code indicating Unspecified Launch Failure.

» When using the “--continue” flag, cuda-memcheck tries to continue execution of the
kernel and more than one occurrence of the errors across multiple kernels may be
detected.

cuda-memcheck DU-05355-001_v02 | 8

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA nForce, GeForce, NVIDIA Quadro, NVDVD, NVIDIA Personal Cinema, NVIDIA
Soundstorm, Vanta, TNT2, TNT, RIVA, RIVA TNT, VOODOO, VOODOO GRAPHICS, WAVEBAY, Accuview
Antialiasing, Detonator, Digital Vibrance Control, ForceWare, NVRotate, NVSensor, NVSync, PowerMizer,
Quincunx Antialiasing, Sceneshare, See What You've Been Missing, StreamThru, SuperStability, T-BUFFER,
The Way It's Meant to be Played Logo, TwinBank, TwinView and the Video & Nth Superscript Design Logo are
registered trademarks or trademarks of NVIDIA Corporation in the United States and/or other countries.
Other company and product names may be trademarks or registered trademarks of the respective owners
with which they are associated.

Copyright
© 2007-2010 NVIDIA Corporation. All rights reserved.

@

www.nvidia.com NVIDIA.

	01 Introduction
	About cuda-memcheck
	Why cuda-memcheck
	Supported Error Detection
	Installation and Cross-Platform Support

	CUDA Memory Architecture

	02 Using cuda-memcheck
	Using standalone cuda-memcheck
	Application debug build provides more information
	Sample Application Outputs

	Using integrated cuda-memcheck
	Integrated operation
	Integrated cuda-memcheck example

	Appendix A Known Issues

