

NVIDIA® OpenCL™
JumpStart Guide

Technical Brief

Version 1.0

February 19, 2010

 NVIDIA OpenCL JumpStart Guide

 1
 www.nvidia.com

Introduction
The purposes of this guide are to assist developers who are familiar with CUDA C/C++
development and want to port code to OpenCL, and to assist developers who want to use CUDA
C/C++ now in a fashion that provides the easiest transition later to OpenCL.

Examples and explanations are provided to illustrate implementation of a simple GPU-accelerated
application using CUDA C/C++ compute kernels and the CUDA Driver API, with direct
comparison to the OpenCL implementation. A summary is also provided for the most significant
CUDA C/C++ capabilities that are not supported in OpenCL (or may not be supported in all
vendors implementations of OpenCL).

Overview

OpenCL (Open Compute Language) is an open standard for parallel programming of
heterogeneous systems, managed by the Khronos Group. OpenCL supports a wide range of
applications, from embedded and consumer software to HPC solutions, through a low-level, high-
performance, portable abstraction. By creating an efficient, close-to-the-metal programming
interface, OpenCL will form the foundation layer of a parallel computing ecosystem of platform-
independent tools, middleware and applications.

CUDA is NVIDIA's technology for GPU Computing. With the CUDA architecture and tools,
developers are achieving dramatic speedups in fields such as medical imaging and natural resource
exploration, and creating breakthrough applications in areas such as image recognition and real-time
HD video playback and encoding.

Leveraging the massively parallel processing power of NVIDIA GPUs, OpenCL running on the
CUDA architecture extends NVIDIA’s world-renowned graphics processor technology into the
realm of parallel computing. Applications that run on the CUDA architecture can take advantage of
an installed base of over one hundred million CUDA-enabled GPUs in desktop and notebook
computers, professional workstations, and supercomputer clusters. NVIDIA GPUs enable this
unprecedented performance via standard APIs such as OpenCL and DirectX Compute, and high
level programming languages such as C/C++, Fortran, Java, Python, and .NET.

The NVIDIA CUDA Driver API and Runtime API are the original API’s that allowed
programmers to develop applications for the CUDA architecture and are predecessors of OpenCL.
The CUDA Driver API is very similar to OpenCL with a high correspondence between functions.

Note: Developers interested in porting between CUDA API’s and OpenCL should focus upon the
CUDA Driver API rather than the the CUDA Runtime API due to similarities between the CUDA

Driver API and OpenCL. Choosing the CUDA Driver API and the guidelines explained in this

document will allow the smoothest transitions to/from OpenCL.

 NVIDIA OpenCL JumpStart Guide

 2
 www.nvidia.com

Getting Started

To get started, follow the steps in the CUDA Quickstart Guide for your operating system, and read
through the rest of this document. CUDA Quickstart Guides are available at:
 http://www.nvidia.com/object/cuda_develop.html

Note: You must have a CUDA-enabled GPU in your system. All recent NVIDIA GPUS have the

necessary support, and a full list is available here:

 http://www.nvidia.com/object/cuda_learn_products.html

General Differences between
OpenCL and the CUDA Driver
API

This section describes several key differences between the CUDA Driver API and OpenCL, as
guidance to developers who plan to support both or port from one to the other. These differences
might shift over time as either OpenCL or the CUDA Driver API are revised. Please also refer to
the OpenCL Programming Guide, the OpenCL Specification v1.0 and the CUDA Programming
Guide for additional details.

C Language Integration
CUDA C/C++ has features supported via a dedicated compiler that are not part of OpenCL. These
provide features such offline compilation of host and device code from a single source file and
sharing of user-defined types between the host and device. The CUDA C/C++ language supports
the C memory model in a manner C/C++ programmers will find very familiar, exposing device
memory via a pointer rather than an opaque handle. This permits arbitrary pointer dereferencing,
device memory pointer arithmetic on both the device and the host, and no requirement for address
space typed pointers.

Pointer Traversal
Multiple pointer traversals must be avoided on OpenCL, the behavior of such operations is
undefined in the specification. Pointer traversals are allowed with CUDA C/C++.

struct Node { Node* next; }

n = n->next; // undefined operation in OpenCL,

 // since ‘n’ here is a kernel input

To do this on OpenCL, pointers must be converted to be relative to the buffer base pointer and
only refer to data within the buffer itself (no pointers between OpenCL buffers are allowed).

struct Node { unsigned int next; }

…

n = bufBase + n; // pointer arithmetic is fine, bufBase is

 // a kernel input param to the buffer’s beginning

 NVIDIA OpenCL JumpStart Guide

 3
 www.nvidia.com

Kernel Programs
Using CUDA C/C++, kernel programs are precompiled into a binary format and there are function
calls for dealing with module and function loading. In OpenCL, the compiler is built into the
runtime and can be invoked on the raw text or a binary can be built and saved for later load. There
are slight differences in keywords and syntax of the languages used for kernels.

Kernel Invocation Memory Offsets
The current version of OpenCL does not support stream offsets at the API/kernel invocation level.
Offsets must be passed in as a parameter to the kernel and the address of the memory computed
inside it. CUDA kernels may be started at offsets within buffers at the API/kernel invocation level.

C++
CUDA C/C++ allows C++ constructs in device/kernel code including Default Parameters,
Operator Overloading, Namespaces and Function Templates. These aren’t presently supported by
OpenCL.

Automatic Demotion for Devices without native Double Precision
With CUDA C/C++, when compiling for devices without native double-precision floating-point
support (such as devices of compute capability 1.2 and lower), double variables get converted to
single-precision floating-point format (but retain their size of 64 bits) and double-precision floating-
point arithmetic gets demoted to single-precision floating-point arithmetic. Current OpenCL
compilers do not implement this automatic double-to-float demotion.

Multiple Device support
OpenCL allows multiple device management from within one context using multiple command
queues. CUDA C/C++ supports multiple devices using multiple contexts, with one context per
device.

API Command ordering
OpenCL supports explicit ordering of API commands within a command queue using event
dependencies. CUDA C/C++ enforces API command order as-issued within a stream.

Thread Safety
Applications using OpenCL should not rely on the drivers being thread-safe at present. The
OpenCL v1.0 specification does not require vendor implementations to be thread-safe, and there are
no conformance tests that verify thread-safety of any particular implementation.

Debugging
CUDA C/C++ allows debugging in device code from Visual Studio, so a developer can set
breakpoints and use other debugger features to interactively debug kernels. At this time, NVIDIA’s
OpenCL implementation and associated tools don’t provide for this.

 NVIDIA OpenCL JumpStart Guide

 4
 www.nvidia.com

Libraries
Several highly-optimized libraries are available for use with CUDA C/C++, including cublas, cufft,
cuddp, npp, nvcuvid, MAGMA, CULA and GPU-VSIPL. Equivalent libraries compatible with
existing OpenCL implementations may become available in the future but aren’t available at present.

Advanced Features
CUDA C/C++ has more extensive support at present for some advanced features such as linear-
memory-bound 1D texture fetches from kernel and warp vote functions from kernel code. Over
time, such features in CUDA C/C++ can reasonably be expected to be available in extensions in
NVIDIA’s OpenCL implementation or in future versions of the OpenCL specification. NVIDIA is
actively working with the Khronos organization on future versions of OpenCL.

Vector Addition Example
Here we show the differences between CUDA C/C++ and OpenCL implementations of vector
addition. The program adds two arrays of floats. The basic components of this program are
identical in CUDA C/C++ and OpenCL:

• A compute kernel, which will be executed in a massively parallel fashion on the compute
device (GPU). Each thread (also known as work item) executes the same kernel computation
on different data, adding an element from each of input arrays a and b and placing the result
in a corresponding element of array c.

• A host application drives the kernel execution.

CUDA C/C++ Kernel Code:
__global__ void

vectorAdd(const float * a, const float * b, float * c)

{

 // Vector element index

 int nIndex = blockIdx.x * blockDim.x + threadIdx.x;

 c[nIndex] = a[nIndex] + b[nIndex];

}

OpenCL Kernel Code
__kernel void

vectorAdd(__global const float * a,

 __global const float * b,

 __global float * c)

{

 // Vector element index

 int nIndex = get_global_id(0);

 c[nIndex] = a[nIndex] + b[nIndex];

}

 NVIDIA OpenCL JumpStart Guide

 5
 www.nvidia.com

As can be seen from the kernel code, both languages are conceptually very similar. For this program,
the differences are mostly in the syntax. Let’s look at these differences in detail.

Kernel declaration specifier

CUDA C/C++ kernel functions are declared using the “__global__” function modifier,
while OpenCL kernel functions are declared using “__kernel”.

Pointer declaration specifiers

With OpenCL, it is mandatory to specify the address space for any pointers passed as
arguments to kernel functions. This kernel has three parameters a, b, and c that are pointers
to global device memory. These arrays must be declared using the __global specifier in
OpenCL.

Global thread index computation

In CUDA C/C++, all index and threadblock size information is available to kernels in three
structures: threadIdx.{x|y|z}, blockIdx.{x|y|z}, blockDim.{x|y|z} and
gridDim.{x|y|z}. The kernel developer is responsible for implementing the index
computations necessary for the kernel to operate on its data.

In contrast, OpenCL provides basic index information to kernels via functions. OpenCL also

provides several functions to access derived information such as get_global_id(). This
function computes a global work item index from work group index, work group size and thread
index. OpenCL also provides the function get_local_id() to query the id inside the work group,
get_work_dim() to query the number of dimension of the work group launched for the kernel
and the get_global_size() function to query the size of the work group.

CUDA Driver API Host Code:
The vectorAdd example is a very basic CUDA C/C++ program that adds two arrays together. The
CUDA driver API is a lower level API that offers a better level of control for CUDA applications.
It is language independent since it can deal directly with PTX or CUBIN objects. PTX or CUBIN
files generated by NVCC.EXE can be loaded using the CUDA Driver API.

This example assumes that the CUDA C/C++ kernel previously shown has been successfully
compiled via NVCC.exe into a CUBIN file named “vectorAdd.cubin”.

// Kernel launch configuration

const unsigned int cnBlockSize = 512;

const unsigned int cnBlocks = 3;

const unsigned int cnDimension = cnBlocks * cnBlockSize;

CUdevice hDevice;

CUcontext hContext;

CUmodule hModule;

CUfunction hFunction;

// create CUDA device & context, and load the kernel

cuInit(0);

cuDeviceGet(&hContext, 0); // pick first device

cuCtxCreate(&hContext, 0, hDevice));

cuModuleLoad(&hModule, “vectorAdd.cubin”);

cuModuleGetFunction(&hFunction, hModule, "vectorAdd");

 NVIDIA OpenCL JumpStart Guide

 6
 www.nvidia.com

// allocate host vectors

float * pA = new float[cnDimension];

float * pB = new float[cnDimension];

float * pC = new float[cnDimension];

// initialize host memory (using helper C function called “randomInit”)

randomInit(pA, cnDimension);

randomInit(pB, cnDimension);

// allocate memory on the device

CUdeviceptr pDeviceMemA, pDeviceMemB, pDeviceMemC;

cuMemAlloc(&pDeviceMemA, cnDimension * sizeof(float));

cuMemAlloc(&pDeviceMemB, cnDimension * sizeof(float));

cuMemAlloc(&pDeviceMemC, cnDimension * sizeof(float));

// copy host vectors to device

cuMemcpyHtoD(pDeviceMemA, pA, cnDimension * sizeof(float));

cuMemcpyHtoD(pDeviceMemB, pB, cnDimension * sizeof(float));

// setup parameter values

cuFuncSetBlockShape(hFunction, cnBlockSize, 1, 1);

cuParamSeti(hFunction, 0, pDeviceMemA);

cuParamSeti(hFunction, 4, pDeviceMemB);

cuParamSeti(hFunction, 8, pDeviceMemC);

cuParamSetSize(hFunction, 12);

// execute kernel

cuLaunchGrid(hFunction, cnBlocks, 1);

// copy the result from device back to host

cuMemcpyDtoH((void *) pC, pDeviceMemC, cnDimension * sizeof(float));

// cleanup

delete[] pA;

delete[] pB;

delete[] pC;

cuMemFree(pDeviceMemA);

cuMemFree(pDeviceMemB);

cuMemFree(pDeviceMemC);

OpenCL Host Code:
Let’s compare the Host Code from the CUDA Driver API to the OpenCL one below. The code
below assumes that the OpenCL kernel code from below is stored in a string named
“sProgramSource”.

// Kernel launch configuration

const unsigned int cnBlockSize = 512;

const unsigned int cnBlocks = 3;

const unsigned int cnDimension = cnBlocks * cnBlockSize;

// Get OpenCL platform count

cl_uint NumPlatforms;

clGetPlatformIDs (0, NULL, &NumPlatforms);

 NVIDIA OpenCL JumpStart Guide

 7
 www.nvidia.com

// Get all OpenCL platform IDs

cl_platform_id* PlatformIDs;

PlatformIDs = new cl_platform_id[NumPlatforms];

clGetPlatformIDs(NumPlatforms, PlatformIDs, NULL);

// Select NVIDIA platform (this example assumes it IS present)

char cBuffer[1024];

cl_uint NvPlatform;

for(cl_uint i = 0; i < NumPlatforms; ++i)

{

 clGetPlatformInfo (PlatformIDs[i], CL_PLATFORM_NAME, 1024, cBuffer, NULL);

 if(strstr(cBuffer, "NVIDIA") != NULL)

 {

 NvPlatform = i;

 break;

 }

}

// Get a GPU device on Platform (this example assumes one IS present)

cl_device_id cdDevice;

clGetDeviceIDs(PlatformIDs[NvPlatform], CL_DEVICE_TYPE_GPU, 1,

 &cdDevice, NULL);

// Create a context
cl_context hContext;

hContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, NULL);

// Create a command queue for the device in the context
cl_command_queue hCmdQueue;

hCmdQueue = clCreateCommandQueue(hContext, cdDevice, 0, NULL);

// Create & compile program

cl_program hProgram;

hProgram = clCreateProgramWithSource(hContext, 1, sProgramSource, 0, 0);

clBuildProgram(hProgram, 0, 0, 0, 0, 0);

// Create kernel instance

cl_kernel hKernel;

hKernel = clCreateKernel(hProgram, “vectorAdd”, 0);

// Allocate host vectors

float * pA = new float[cnDimension];

float * pB = new float[cnDimension];

float * pC = new float[cnDimension];

// Initialize host memory (using helper C function called “randomInit”)

randomInit(pA, cnDimension);

randomInit(pB, cnDimension);

// Allocate device memory (and init hDeviceMemA and hDeviceMemB)

cl_mem hDeviceMemA, hDeviceMemB, hDeviceMemC;

hDeviceMemA = clCreateBuffer(hContext,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 cnDimension * sizeof(cl_float), pA, 0);

hDeviceMemB = clCreateBuffer(hContext,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 cnDimension * sizeof(cl_float), pB, 0);

hDeviceMemC = clCreateBuffer(hContext,

 CL_MEM_WRITE_ONLY,

 cnDimension * sizeof(cl_float), 0, 0);

 NVIDIA OpenCL JumpStart Guide

 8
 www.nvidia.com

// Setup parameter values

clSetKernelArg(hKernel, 0, sizeof(cl_mem), (void *)&hDeviceMemA);

clSetKernelArg(hKernel, 1, sizeof(cl_mem), (void *)&hDeviceMemB);

clSetKernelArg(hKernel, 2, sizeof(cl_mem), (void *)&hDeviceMemC);

// Launch kernel

clEnqueueNDRangeKernel(hCmdQueue, hKernel, 1, 0, &cnDimension, 0, 0, 0, 0);

// Copy results from device back to host; block until complete

clEnqueueReadBuffer(hContext, hDeviceMemC, CL_TRUE, 0,

 cnDimension * sizeof(cl_float), pC, 0, 0, 0);

// Cleanup

delete[] pA;

delete[] pB;

delete[] pC;

delete[] PlatformIDs;

clReleaseKernel(hKernel);

clReleaseProgram(hProgram);

clReleaseMemObj(hDeviceMemA);

clReleaseMemObj(hDeviceMemB);

clReleaseMemObj(hDeviceMemC);

clReleaseCommandQueue(hCmdQueue);

clReleaseContext(hContext);

API Differences

Both CUDA C/C++ and OpenCL implementations perform the same steps conceptually. The
main differences are the naming schemes and how data gets passed to the API. Both OpenCL and
the CUDA Driver API require the developer to manage the contexts and parameter passing.

One noteworthy difference is that CUDA C/C++ programs are compiled with an external tool (the
NVCC compiler) before executing on the final application. This compilation step is typically
performed when the actual application is built. Typically, the OpenCL compiler is invoked at
runtime and the programmer needs to create or obtain the strings with the kernel programs. It is
also possible to offline compile OpenCL source in a similar fashion to CUDA C/C++.

The following sections cover the API differences per program section.

Initialization, Context and Device Creation
CUDA Driver API and OpenCL both have to concept of a “Context”. Any resources involved in
executing compute code using either of the APIs will belong to a Context. One of the first steps for
any compute program is to create such a context.

Using the CUDA Driver API:
Before any function calls to the CUDA driver API can be made, CUDA needs to be initialized with
a call to cuInit(0);

In future versions of CUDA, cuInit() will also include initialization flags as parameters. The
current versions of CUDA require 0 (Zero) to be passed.

 NVIDIA OpenCL JumpStart Guide

 9
 www.nvidia.com

In CUDA a context is created for a specific device. The typical flow is to first query the CUDA
devices available on a given system, get a handle to the device one wants to execute the CUDA
C/C++ode on and create a context on that device. The vectorAdd sample uses a simplified version
of this workflow and simply picks the first CUDA device (device 0):

cuInit(0);

cuDeviceGet(&hContext, 0);

cuCtxCreate(&hContext, 0, hDevice));

Using OpenCL:
OpenCL does not require global initialization of the library, but it does require a few additional
setup steps due to the diverse scope of device types and driver implementations embraced by the
OpenCL standard.

Using OpenCL, one obtains the Platform ID and Device ID, and then creates a Context.
Additionally, OpenCL introduces the concept of Command Queues. Commands launching kernels
and reading or writing memory are always issued for a specific Command Queue. A Command
Queue is created on a specific device in a context.

// Get OpenCL platform count

cl_uint NumPlatforms;

clGetPlatformIDs (0, NULL, &NumPlatforms);

// Get all OpenCL platform IDs

cl_platform_id* PlatformIDs;

PlatformIDs = new cl_platform_id[NumPlatforms];

clGetPlatformIDs (NumPlatforms, PlatformIDs, NULL);

// Select NVIDIA platform (this example assumes it IS present)

char cBuffer[1024];

cl_uint NvPlatform;

for(cl_uint i = 0; i < NumPlatforms; ++i)

{

 clGetPlatformInfo (PlatformIDs[i], CL_PLATFORM_NAME, 1024, cBuffer, NULL);

 if(strstr(cBuffer, "NVIDIA") != NULL)

 {

 NvPlatform = i;

 break;

 }

}

//Get a GPU device on Platform (this example assumes one IS present)

cl_device_id cdDevice;

clGetDeviceIDs(PlatformIDs[NvPlatform], CL_DEVICE_TYPE_GPU, 1, cdDevice, NULL);

//Create a context
cl_context hContext;

hContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, NULL);

//Create a command queue for the device in the context
cl_command_queue hCmdQueue;

hCmdQueue = clCreateCommandQueue(hContext, cdDevice, 0, NULL);

At this point, the CUDA Driver API and OpenCL programs are ready to create a compute kernel,
upload data to the GPU device’s memory and process it by launching a compute kernel on the
device.

 NVIDIA OpenCL JumpStart Guide

 10
 www.nvidia.com

Kernel Creation
The following sections discuss how kernels are created using the CUDA Driver API and OpenCL.

Using the CUDA Driver API:
CUDA kernel code is typically stored in a separate file and compiled to binary format (using the
NVCC compiler). This is similar to compiling a C file to object code. The result of this compilation
step is a CUBIN file, which is loaded by an application at runtime using the cuModuleLoad()
function.

A handle to a specific kernel in a CUBIN module is obtained via a string lookup of the kernel
function’s name. The code for module loading and accessing the kernel function assumes that the
vectorAdd.cu kernel code has been compiled to vectorAdd.cubin:

CUmodule hModule;

cuModuleLoad(&hModule, “vectorAdd.cubin”);

cuModuleGetFunction(&hFunction, hModule, "vectorAdd");

Using OpenCL:
OpenCL is different from CUDA C/C++ in that OpenCL does not provide a standalone compiler
for creating device ready binary code. The OpenCL interface provides methods for compiling
kernels given a string containing the kernel code (clCreateProgramWithSource()) at
runtime. Once a kernel is compiled it can be launched on the device.

Note: The OpenCL API also provides methods to access a program’s binaries after successful

compilation, as well as methods to create program objects from such binaries. Using those
methods, it is theoretically possible for a developer to re-create the tools for a workflow like

the CUDA one using the OpenCL API, where a separate compile (implemented based on the

OpenCL library) is used to compile binaries which the application loads during runtime. This
approach would allow applications to avoid lengthy compilations every time they are launched

by caching the kernel binaries on disk and only recompiling if the binaries for a specific device
are not already in cache. But it should be noted that NVIDIA’s OpenCL implementation does

not currently support this.

In summary, the most straight forward process is to compile the kernels at runtime and this is what
the following code does:

// create a program object and compile/build the device code

cl_program hProgram;

hProgram = clCreateProgramWithSource(hContext, 1, sProgramSource, 0, 0);

clBuildProgram(hProgram, 0, 0, 0, 0, 0);

// create a kernel instance

cl_kernel hKernel;

hKernel = clCreateKernel(hProgram, “vectorAdd”, 0);

The clCreateProgramWithSource() function creates a program object. sProgramSource
is a C string containing the kernel source code. clBuildProgram() compiles the kernel source
into binary code suited for the context’s devices (it is possible to restrict compilation to a subset of a
context’s devices by passing a non-zero pointer to a list of device descriptors).

 NVIDIA OpenCL JumpStart Guide

 11
 www.nvidia.com

clCreateKernel() returns a handle to an instance of the kernel given a string with the kernel
function’s name within the program object that has been built.

Device Memory Allocation
This section covers how memory is allocated on the device. The vectorAdd example allocates arrays
of float (in global device memory) for the three vectors (A, B, C) involved in the addition C = A+B.

CUDA’s device memory for the Driver API’s management functions are modeled after the C
runtime’s malloc(), free(), and memcpy() functions. The following code allocates three buffers of
appropriate size to hold the three arrays and fills the two input vectors (A, B) with data prepared on
the host via a host-to-device copy.

Using the CUDA Driver API:
We use cuMemcpyHtoD() to copy data from host to device.

CUdeviceptr pDeviceMemA, pDeviceMemB, pDeviceMemC;

cuMemAlloc(&pDeviceMemA, cnDimension * sizeof(float));

cuMemAlloc(&pDeviceMemB, cnDimension * sizeof(float));

cuMemAlloc(&pDeviceMemC, cnDimension * sizeof(float));

// copy host vectors to device

cuMemcpyHtoD(pDeviceMemA, pA, cnDimension * sizeof(float));

cuMemcpyHtoD(pDeviceMemB, pB, cnDimension * sizeof(float));

Using OpenCL:
OpenCL’s device memory is managed via “buffer objects”. Buffer objects are created via the
clCreateBuffer() function, which offers a richer set of parameters than CUDA memory management
functions: Buffer objects can be flagged as read and write-only, and it’s even possible to specify a
host memory region to be used by the device directly.

OpenCL buffer creation also allows for passing a host pointer to the data to be copied into the new
buffer, all in one call; the following code shows the buffer creation for the three device memory
region for vector A, B, C. A and B are being filled with data from the host, pointed to by pA, and
pB. Since vector C is there to receive the results, it is not getting prefilled with data.

cl_mem hDeviceMemA, hDeviceMemB, hDeviceMemC;

hDeviceMemA = clCreateBuffer(hContext,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 cnDimension * sizeof(cl_float), pA, 0);

hDeviceMemB = clCreateBuffer(hContext,

 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

 cnDimension * sizeof(cl_float), pB, 0);

hDeviceMemC = clCreateBuffer(hContext,

 CL_MEM_WRITE_ONLY,

 cnDimension * sizeof(cl_float), 0, 0);

 NVIDIA OpenCL JumpStart Guide

 12
 www.nvidia.com

Kernel Parameter Specification
The next step in preparing the kernels for launch is to establish a mapping between the kernels’
parameters, essentially pointers to the three vectors A, B and C, to the three device memory regions,
which were allocated in the previous section.

Parameter setting in both APIs is a pretty low-level affair. It requires knowledge of the total number,
order, and types of a given kernel’s parameters. The order and types of the parameters are used to
determine a specific parameter’s offset inside the data block made up of all parameters. The offset in
bytes for the nth parameter is essentially the sum of the sizes of all (n-1) preceding parameters.

Using the CUDA Driver API:
In CUDA device pointers are represented as unsigned int and the CUDA Driver API has a
dedicated method for setting that type. Here’s the code for setting the three parameters. Note how
the offset is incrementally computed as the sum of the previous parameters’ sizes.

cuParamSeti(hFunction, 0, pDeviceMemA);

cuParamSeti(hFunction, 4, pDeviceMemB);

cuParamSeti(hFunction, 8, pDeviceMemC);

cuParamSetSize(hFunction, 12);

Using OpenCL:
In OpenCL parameter setting is done via a single function that takes a pointer to the location of the
parameter to be set.

clSetKernelArg(hKernel, 0, sizeof(cl_mem), (void *)&hDeviceMemA);

clSetKernelArg(hKernel, 1, sizeof(cl_mem), (void *)&hDeviceMemB);

clSetKernelArg(hKernel, 2, sizeof(cl_mem), (void *)&hDeviceMemC);

Kernel Launch
Launching a kernel requires the specification of the dimension and size of the “thread-grid”. The
CUDA Programming Guide and the OpenCL specification contain details about the structure of
those grids. For NVIDIA GPUs the permissible structures are the same for CUDA and OpenCL.

For the vectorAdd sample we need to start one thread per vector-element (of the output vector).
The number of elements in the vector is given in the cnDimension variable. It is defined to be
cnDimension = cnBlockSize * cnBlocks. This means that cnDimension threads
need to be executed. The threads are structured into cnBlocks one-dimensional thread blocks of
size cnBlockSize.

Using the CUDA Driver API:
A kernel’s block size is specified in a call separate from the actual kernel launch using
cuFunctSetBlockShape. The kernel launching function cuLaunchGrid then only
specifies the number of blocks to be launched.

cuFuncSetBlockShape(hFunction, cnBlockSize, 1, 1);

cuLaunchGrid (hFunction, cnBlocks, 1);

 NVIDIA OpenCL JumpStart Guide

 13
 www.nvidia.com

Using OpenCL:
The OpenCL equivalent of kernel launching is to “enqueue” a kernel for execution into a command
queue. The enqueue function takes parameters for both the work group size (work group is the
OpenCL equivalent of a CUDA thread-block), and the global work size, which is the size of the
global array of threads.

Note: Where in CUDA the global work size is specified in terms of number of thread blocks, it is

given in number of threads in OpenCL.

Both work group size and global work size are potentially one, two, or three dimensional arrays. The
function expects pointers of unsigned ints to be passed in the fourth and fifth parameters.
For the vectorAdd example, work groups and total work size is a one-dimensional grid of threads.

clEnqueueNDRangeKernel(hCmdQueue, hKernel, 1, 0,

 &cnDimension, &cnBlockSize, 0, 0, 0);

The parameters of cnDimension and cnBlockSize must be pointers to unsigned int. Work
group sizes that are dimensions greater than 1, the parameters will be a pointer to arrays of sizes.

Cleanup/Teardown
The CUDA Driver API and OpenCL both provide teardown functions for objects created in the
application. For OpenCL, there are a few additional objects to deallocate associated with platform

Using the CUDA Driver API:
// cleanup

delete[] pA;

delete[] pB;

delete[] pC;

cuMemFree(pDeviceMemA);

cuMemFree(pDeviceMemB);

cuMemFree(pDeviceMemC);

Using OpenCL:

// Cleanup

delete[] pA;

delete[] pB;

delete[] pC;

delete[] PlatformIDs;

clReleaseKernel(hKernel);

clReleaseProgram(hProgram);

clReleaseMemObj(hDeviceMemA);

clReleaseMemObj(hDeviceMemB);

clReleaseMemObj(hDeviceMemC);

clReleaseCommandQueue(hCmdQueue);

clReleaseContext(hContext);

 NVIDIA OpenCL JumpStart Guide

 14
 www.nvidia.com

Retrieving Results to Host from Device
Both kernel launch functions (CUDA and OpenCL) are asynchronous, i.e. they return immediately
after scheduling the kernel to be executed on the GPU. In order for a copy operation that retrieves
the result vector C (copy from device to host) to produce correct results in synchronization with the
kernel completion needs to happen.

CUDA memcpy functions automatically synchronize and complete any outstanding kernel launches
proceeding. Both API’s also provide a set of asynchronous memory transfer functions which
allows a user to overlap memory transfers with computation to increase throughput.

Using the CUDA Driver API:
Use cuMemcpyDtoH() to copy results back to the host.

cuMemcpyDtoH((void *)pC, pDeviceMemC, cnDimension * sizeof(float));

Using OpenCL:
OpenCL’s clEnqueueReadBuffer() function allows the user to specify whether a read is to
be synchronous or asynchronous (third argument). For the simple vectorAdd sample a
synchronizing read is used, which results in the same behavior as the simple synchronous CUDA
memory copy above:

clEnqueueReadBuffer(hContext, hDeviceC, CL_TRUE, 0,

 cnDimension * sizeof(cl_float),

 pC, 0, 0, 0);

When used for asynchronous reads, OpenCL has an event mechanism that allows the host
application to query the status or wait for the completion of a given call.

 NVIDIA OpenCL JumpStart Guide

 15
 www.nvidia.com

�

Additional Resources

Resource URL

Khronos OpenCL Homepage http://www.khronos.org/opencl

OpenCL 1.0 Specification http://www.khronos.org/registry/cl

OpenCL at NVIDIA http://www.nvidia.com/object/cuda_opencl.html

CUDA Driver http://www.nvidia.com/object/cuda_get.html

CUDA Toolkit http://www.nvidia.com/object/cuda_get.html

CUDA SDK http://www.nvidia.com/object/cuda_get.html

CUDA Reference Guide http://www.nvidia.com/object/cuda_develop.html

CUDA Programming Guide http://www.nvidia.com/object/cuda_develop.html

CUDA Zone http://www.nvidia.com/cuda

Developer Forums http://forums.nvidia.com/index.php?showforum=62

CUDA Visual Profiler http://www.nvidia.com/object/cuda_get.html

CUDA GDB http://www.nvidia.com/object/cuda_get.html

NVIDIA Nexus http://developer.nvidia.com/object/nexus.html

For more information about GPU Computing with OpenCL and other technologies, please visit www.nvidia.com/cuda.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, and GeForce are trademarks or registered trademarks of NVIDIA Corporation.
OpenCL is an Apple Trademark licensed by Khronos. Other company and product names may be trademarks
of the respective companies with which they are associated.

Copyright

© 2010 by NVIDIA Corporation. All rights reserved.

