CUDA
CUBLAS Library

PG-05326-032_V02
August, 2010

CUBLAS Library PG-05326-032_V02

Published by
NVIDIA Corporation
2701 San Tomas Expressway
Santa Clara, CA 95050

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
ang patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously
supplied. NVIDIA Cor]foration products are not authorized for use as critical components in life support
devices or systems without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, CUDA, and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright
© 2005-2010 by NVIDIA Corporation. All rights reserved.

Portions of the SGEMM, DGEMM, CGEMM, and ZGEMM library routines were written by Vasily Volkov
and are subject to the Modified Berkeley Software Distribution License as follows:

Copyright (c) 2007-2009, Regents of the University of California
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

¢ Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

¢ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

¢ Neither the name of the Universigy of California, Berkeley nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

NVIDIA Corporation

CUBLAS Library PG-05326-032_V02

Portions of the SGEMM, DGEMM and ZGEMM library routines were written by Davide Barbieri and are
subject to the Modified Berkeley Software Distribution License as follows:

Copyright (c) 2008-2009 Davide Barbieri @ University of Rome Tor Vergata.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

¢ Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* The name of the author may not be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

NVIDIA Corporation

CUBLAS Library PG-05326-032_V02

Portions of the DGEMM and SGEMM library routines optimized for the Fermi architecture were

developed by the University of Tennessee. Subsequently, several other routines that are optimized for the

Fermi architecture have been derived from these initial DGEMM and SGEMM implementations. Those
ortions of the source code are thus subject to the Modified Berkeley Software Distribution License as
ollows:

Copyright (c) 2010 The University of Tennessee. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

¢ Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

¢ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer listed in this license in the documentation and/or other materials provided with
the distribution.

* Neither the name of the copyright holders nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NVIDIA Corporation

/ 7
v
Table of Contents

/

e

1. The CUBLAS Library e e e e e e e 11
CUBLAS TYPBS .« v v it et e e e e e e e e e e e 18
Type CUbIASSTatUS 18
CUBLAS Helper FUNCLIONS.o o e e e e e e e e e e e e e 19
Function cublasInit()o e 19
Function cublasShutdown() 20
Function cublasGetError()ot 20
Function cublasAlloc() o oo 20
Function cublaskFree() oo e 21
Function cublasSetVector() e 21
Function cublasGetVector() oot 22
Function cublasSetMatrix()t 23
Function cublasGetMatrix()ot e 23
Function cublasSetKernelStream() 24
Function cublasSetVectorASynC() o v oo it 24
Function cublasGetVectorASyNC()« o v it i 25
Function cublasSetMatrixASYNC() oot 25
Function cublasGetMatrixASYNC() o v it 26
2. BLASL FUNCLIONS. . . . o e e e e e e 27
Single-Precision BLASL FUNCLIONSot e e e e e e e 28
Function cublaslsamax() oo e 29
Function cublaslsamin() 29
Function cublasSasum() e 30
Function cublasSaxpy() - . . .« o ot i 31
Function cublasScopy() . - - . . oo o 32
Function cublasSdot() oo e 33
Function cublasSnrm2().o e 34
Function cublasSrot()o e 34
Function cublasSrotg()o i 35
Function cublasSrotm() o e 36
Function cublasSrotmg() o 38
Function cublasSscal(). -« oo o 39
Function cublasSswap(). - - - -« o oot e 40
Single-Precision Complex BLASL FUNCLIONS i e e e 41
PG-05326-032_V02 \Y

NVIDIA

CUDA CUBLAS Library

Function cublasCaxpy() - - - -« o o v ot e 42
Function cublasCeopy() - . . . o o ot it 43
Function cublasCdote()ot e 44
Function cublasCdotu()o oot e 45
Function cublasCrot() oot 46
Function cublasCrotg() oo it a7
Function cublasCscal(). oo oo 48
Function cublasCsrot(). oot e 48
Function cublasCsscal() oot 49
Function cublasCswap(). . . .« o vt it e 50
Function cublasicamax() oo 51
Function cublaslcamin() 52
Function cublasScasum().o 52
Function cublasScnrm2() o 53
Double-Precision BLASL FUNCLIONSo e e 55
Function cublasldamax() oo 56
Function cublasldamin() 56
Function cublasDasum() 57
Function cublasDaxpy() -« o oot e 58
Function cublasDeopy() - . - . . o o oot e 59
Function cublasDdot()ot 60
Function cublasDNrm2()ot 61
Function cublasDrot()ot 62
Function cublasDrotg() oot 63
Function cublasDrotm() o 64
Function cublasDrotmg() oo 65
Function cublasDscal()ot e 66
Function cublasDswap() o oot 67
Double-Precision Complex BLAS1 functions 69
Function cublasDzasum(). oo e 70
Function cublasDznrm2(). o e 71
Function cublaslzamax() oot 71
Function cublaslzamin() 72
Function cublasZaxpy() . - -« . o v oo 73
Function cublasZcopy() - . - -« o ot o e 74
Function cublasZdotc()o e 75
Function cublasZdotu() o e 76
Function cublasZdrot() i 77
Function cublasZdscal(). oot e 78
Function cublasZrot()ot 79
Function cublasZrotg() oo ot 80
Function cublaszZscal(). oot e 80
Function cublasZswap(). o oo 81
Vi PG-05326-032_V02

NVIDIA

CUDA CUBLAS Library

3. Single-Precision BLAS2 FUNCHIONS. e e e 83
Single-Precision BLAS2 FUNCLIONS o e e e e 84
Function cublasSgbhmv() e 85
Function cublasSgemv() 86
Function cublasSger() o oo 87
Function cublasSsbmv() 88
Function cublasSspmv() oo 90
Function cublasSspr() o o e 91
Function cublasSspr2() oo oot 92
Function cublasSsymv() o e 94
Function cublasSsyr() oo 95
Function cublasSsyr2()ot 96
Function cublasSthmv(). 98
Function cublasSthsv() 99
Function cublasStpmv(). e 101
Function cublasStpsv() oo 102
Function cublasStrmv() 104
Function cublasStrsv().o e 105
Single-Precision Complex BLAS2 FUNCLIONSo e 107
Function cublasCgbmv() e 108
Function cublasCgemv() oo 109
Function cublasCgerc()ot 111
Function cublasCgeru() oot e 112
Function cublasChbmv() 113
Function cublasChemv() e 115
Function cublasCher(). 116
Function cublasCher2()o 117
Function cublasChpmv() 119
Function cublasChpr(). 120
Function cublasChpr2() oo e 121
Function cublasCthmv() e 123
Function cublasCthsv() oot 125
Function cublasCtpmv() oo 126
Function cublasCtpsv() oot 128
Function cublasCtrmv() e 129
Function cublasCtrsv()ot e 131
4. Double-Precision BLAS2 FUNCLIONS 133
Double-Precision BLAS2 FUNCLIONS oot e e e e e e 134
Function cublasDgbmv() e 135
Function cublasDgemv() 136
Function cublasDger(). oot 138
Function cublasDsbmv() e 139
Function cublasDSpmV() oot 141
PG-05326-032_V02 vii

NVIDIA

CUDA CUBLAS Library

Function cublasDspr() - - - -« o oot e 142
Function cublasDspr2() oo e 143
Function cublasDsymv()o e 144
Function cublasDsyr() oot 146
Function cublasDSyr2() oo 147
Function cublasDthmv(). 148
Function cublasDthsv() 150
Function cublasDIpmv(). oo e 152
Function cublasDIpsV() oot e 153
Function cublasDErmv() oo 154
Function cublasDErsv()t 156
Double-Precision Complex BLAS2 functions e 158
Function cublasZgbmv() 159
Function cublasZgemv() 161
Function cublasZgerc()ottt 162
Function cublasZgeru()o oo 163
Function cublasZhbmv() 165
Function cublasZhemv() e 167
Function cublaszZher() 168
Function cublasZher2() 170
Function cublasZhpmv() e 171
Function cublasZhpr() oo 173
Function cublasZhpr2()o 174
Function cublasZtbmv() 175
Function cublasZtbsv() 177
Function cublasZtpmv() 179
Function cublasZtpsv()ot e 180
Function cublasZtrmv() 182
Function cublasZtrsv().o oo 183
5. BLASB FUNCHIONS. . . . oo e e e e 185
Single-Precision BLAS3 FUNCLIONSot e e e et et e 186
Function cublasSgemm() 187
Function cublasSsymm() e 188
Function cublasSsyrk() e 190
Function cublasSsyr2K()o oot e 192
Function cublasStrmm() 194
Function cublasStrsm() 196
Single-Precision Complex BLAS3 FUNCLIONS.o oot e 199
Function cublasCgemm() o e 200
Function cublasChemm() 201
Function cublasCherk() e 203
Function cublasCher2K()o e 205
Function cublasCsymm() e 207
Viii PG-05326-032_V02

NVIDIA

CUDA CUBLAS Library

Function cublasCsyrk() oo oot e 209
Function cublasCsyr2Kk() e 211
Function cublasCtrmm() e 213
Function cublasCtrsm()o it 215
Double-Precision BLAS3 FUNCLIONS oo e e e e e e 218
Function cublasDgemm() 219
Function cublasDsymm() 220
Function cublasDsyrk()« oo e 222
Function cublasDsyr2K() oo e 224
Function cublasDtrmm() oo 226
Function cublasDtrsm()o ot e 228
Double-Precision Complex BLAS3 FUNCLIONS. 231
Function cublasZgemm(). 232
Function cublasZhemm(). e 233
Function cublasZherk() oo 235
Function cublasZher2k()o oo 238
Function cublasZsymm() e 240
Function cublasZsyrk()o 242
Function cublasZsyr2K() oo 244
Function cublasZtrmm() e 246
Function cublasZtrsm()o 248
A. CUBLAS Fortran Bindings i e e e e 251
PG-05326-032_V02 ixX

NVIDIA

-\

CHAPTER

The CUBLAS Library

CUBLAS is an implementation of BLAS (Basic Linear Algebra
Subprograms) on top of the NVIDIA® CUDA™ runtime. It allows
access to the computational resources of NVIDIA GPUs. The library is
self-contained at the API level, that is, no direct interaction with the
CUDA driver is necessary. CUBLAS attaches to a single GPU and does
not auto-parallelize across multiple GPUs.

The basic model by which applications use the CUBLAS library is to
create matrix and vector objects in GPU memory space, fill them with
data, call a sequence of CUBLAS functions, and, finally, upload the
results from GPU memory space back to the host. To accomplish this,
CUBLAS provides helper functions for creating and destroying objects
in GPU space, and for writing data to and retrieving data from these
objects.

For maximum compatibility with existing Fortran environments,
CUBLAS uses column-major storage and 1-based indexing. Since C
and C++ use row-major storage, applications cannot use the native
array semantics for two-dimensional arrays. Instead, macros or inline
functions should be defined to implement matrices on top of one-
dimensional arrays. For Fortran code ported to C in mechanical
fashion, one may chose to retain 1-based indexing to avoid the need to

PG-05326-032_V02 11
NVIDIA

CUDA

12

CUBLAS Library

transform loops. In this case, the array index of a matrix element in
row i and column j can be computed via the following macro:

#define IDX2F(i,j,1d) (CCA)-L)*d))+((i)-1))

Here, Id refers to the leading dimension of the matrix as allocated,
which in the case of column-major storage is the number of rows. For
natively written C and C++ code, one would most likely chose 0-based
indexing, in which case the indexing macro becomes

#define IDX2C(i,j,1d) (CA)*(1d))+(i))

Please refer to the code examples at the end of this section, which
show a tiny application implemented in Fortran on the host

(Example 1. “Fortran 77 Application Executing on the Host”) and
show versions of the application written in C using CUBLAS for the
indexing styles described above (Example 2. “Application Using C and
CUBLAS: 1-based Indexing” and Example 3. “Application Using C
and CUBLAS: 0-based Indexing”).

Because the CUBLAS core functions (as opposed to the helper
functions) do not return error status directly (for reasons of
compatibility with existing BLAS libraries), CUBLAS provides a
separate function to aid in debugging that retrieves the last recorded
€error.

The interface to the CUBLAS library is the header file cublas.h.
Applications using CUBLAS need to link against the DSO cublas.so
(Linux), the DLL cublas.dll (Windows), or the dynamic library
cublas.dylib (Mac OS X) when building for the device, and against
the DSO cublasemu.so (Linux), the DLL cublasemu.dll (Windows),
or the dynamic library cublasemu.dylib (Mac OS X) when building
for device emulation.

Following these three examples, the remainder of this chapter
discusses “CUBLAS Types” on page 18 and “CUBLAS Helper
Functions” on page 19.

PG-05326-032_V02
NVIDIA

CHAPTER 1 The CUBLAS Library

Example 1. Fortran 77 Application Executing on the Host

subroutine modify (m, ldm, n, p, q, alpha, beta)
implicit none

integer ldm, n, p,

real*4 m(ldm,*), alpha, beta

external sscal

call sscal (n-p+l1, alpha, m(p,q), 1dm)

call sscal (Idm-p+1, beta, m(p,q), 1)

return

end

program matrixmod
implicit none
integer M, N
parameter (M=6, N=5)
real*4 a(M,N)
integer i, j

call modify (a, M, N, 2, 3, 16.0, 12.0)
doj =1, N

doi=1, M

write(*,"(F7.0%)") a(i,j)

enddo

write (*,*) "
enddo
stop
end

PG-05326-032_V02 13
NVIDIA

CUDA CUBLAS Library

Example 2. Application Using C and CUBLAS: 1-based Indexing

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "cublas.h"

#define IDX2F(i,j,1d) ((CQ)-1)*(1d))+((i)-1))

void modify (float *m, int Ildm, int n, int p, int g, float alpha,
float beta)
{
cublasSscal (n-p+1, alpha, &m[I1DX2F(p,q,idm)], Idm);
cublasSscal (ldm-p+1, beta, &m[IDX2F(p,q,ldm)], 1);

}

#define M 6
#define N 5
int main (void)
{
int i, j;
cublasStatus stat;
float* devPtrA;
float* a = 0;
a = (float *)malloc (M * N * sizeof (*a));
if (1a) {
printf ('host memory allocation failed");
return EXIT_FAILURE;
}
for g = 1; j <= N; j++) {
for (i = 1; i <= M; i++) {
a[IDX2F(i,j,M] = (-1) * M + j;
}

}
cublasInit();

stat = cublasAlloc (M*N, sizeof(*a), (void**)&devPtrA);

14 PG-05326-032_V02
NVIDIA

CHAPTER 1 The CUBLAS Library

Example 2. Application Using C and CUBLAS: 1-based Indexing (continued)

if (stat '= CUBLAS_STATUS_SUCCESS) {
printf ('device memory allocation failed™);
cublasShutdown();
return EXIT_FAILURE;

}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat '= CUBLAS_STATUS_SUCCESS) {
printf (“'data download failed™);
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;
}
modify (devPtrA, M, N, 2, 3, 16.0F, 12.0F);
stat = cublasCGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf (“"data upload failed");
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;
}
cublasFree (devPtrA);
cublasShutdown();
for G =1; j <= N; j++) {
for (i = 1; i <= M; i++) {
printf ("%7.0F", a[IDX2F(i,j,.M)]);

3
printf ('\n");
b
return EXIT_SUCCESS;
3
PG-05326-032_V02 15

NVIDIA

CUDA CUBLAS Library

Example 3. Application Using C and CUBLAS: 0-based Indexing

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cublas.h"

#define IDX2C(i,j,1d) CC@)*d))+(i))

void modify (float *m, int Ildm, int n, int p, int g, float alpha,
float beta)

{
cublasSscal (n-p, alpha, &m[IDX2C(p,q,ldm)], 1dm);
cublasSscal (ldm-p, beta, &m[I1DX2C(p,q,1dm)], 1);
}
#define M 6
#define N 5
int main (void)
{
int i, j;
cublasStatus stat;
float* devPtrA;
float* a = O;
a = (float *)malloc (M * N * sizeof (*a));
it (1a) {
printf ('host memory allocation failed");
return EXIT_FAILURE;
}
for (=0; J <N; j++) {
for (i = 0; 1 <M; 1++) {
a[IDX2C(i,j.M] =1 * M + j + 1;
}
}
cublasInit(Q);
stat = cublasAlloc (M*N, sizeof(*a), (void**)&devPtrA);
if (stat != CUBLAS_STATUS_SUCCESS) {
16 PG-05326-032_V02

NVIDIA

CHAPTER 1 The CUBLAS Library

Example 3. Application Using C and CUBLAS: 0-based Indexing (continued)

printf ('device memory allocation failed™);
cublasShutdown() ;
return EXIT_FAILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
ifT (stat != CUBLAS_STATUS_SUCCESS) {
printf (“'data download failed™);
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;
}
modify (devPtrA, M, N, 1, 2, 16.0F, 12.0F);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat '= CUBLAS_STATUS_SUCCESS) {
printf (“"data upload failed™);
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;
}
cublasFree (devPtrA);
cublasShutdown();
for G =05 jJ <N; j++) {
for (i =0; 1 <M; i++) {
printf ("%7.0f", a[IDX2C(i,j,.MD);

}
printf (''\n");
b
return EXIT_SUCCESS;
3
PG-05326-032_V02 17

NVIDIA

CUDA

CUBLAS Library

CUBLAS Types

The only CUBLAS type is cublasStatus.

Type cublasStatus

The type cublasStatus is used for function status returns. CUBLAS
helper functions return status directly, while the status of CUBLAS
core functions can be retrieved via cublasGetError(). Currently, the

18

following values are defined:
cublasStatus Values

CUBLAS_STATUS_SUCCESS
CUBLAS_STATUS_NOT_INITIALIZED
CUBLAS_STATUS_ALLOC_FAILED
CUBLAS_STATUS_INVALID_VALUE

CUBLAS_STATUS_ARCH_MISMATCH

CUBLAS_STATUS_MAPPING_ERROR

CUBLAS_STATUS_EXECUTION_FAILED

CUBLAS_STATUS_INTERNAL_ERROR

operation completed successfully
CUBLAS library not initialized
resource allocation failed

unsupported numerical value was
passed to function

function requires an architectural
feature absent from the architecture of
the device

access to GPU memory space failed
GPU program failed to execute
an internal CUBLAS operation failed

NVIDIA

PG-05326-032_V02

CHAPTER 1 The CUBLAS Library

CUBLAS Helper Functions

The following are the CUBLAS helper functions:
“Function cublasInit()” on page 19

“Function cublasShutdown()” on page 20
“Function cublasGetError()” on page 20
“Function cublasAlloc()” on page 20

“Function cublasFree()” on page 21

“Function cublasSetVector()” on page 21
“Function cublasGetVector()” on page 22
“Function cublasSetMatrix()” on page 23
“Function cublasGetMatrix()” on page 23
“Function cublasSetKernelStream()” on page 24
“Function cublasSetVectorAsync()” on page 24
“Function cublasGetVectorAsync()” on page 25
“Function cublasSetMatrixAsync()” on page 25

0000000000 0D 0O

“Function cublasGetMatrixAsync()” on page 26

Function cublaslInit()

cublasStatus
cublaslnit (void)

initializes the CUBLAS library and must be called before any other
CUBLAS API function is invoked. It allocates hardware resources
necessary for accessing the GPU. It attaches CUBLAS to whatever
GPU is currently bound to the host thread from which it was invoked.

Return Values
CUBLAS_STATUS_ALLOC_FAILED if resources could not be allocated

CUBLAS_STATUS_SUCCESS if CUBLAS library initialized successfully

PG-05326-032_V02 19
NVIDIA

CUDA

CUBLAS Library

Function cublasShutdown()

cublasStatus
cublasShutdown (void)

releases CPU-side resources used by the CUBLAS library. The release
of GPU-side resources may be deferred until the application shuts
down.

Return Values
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_SUCCESS CUBLAS library shut down successfully

Function cublasGetError()

cublasStatus
cublasGetError (void)

returns the last error that occurred on invocation of any of the
CUBLAS core functions. While the CUBLAS helper functions return
status directly, the CUBLAS core functions do not, improving
compatibility with those existing environments that do not expect
BLAS functions to return status. Reading the error status via
cublasGetError() resets the internal error state to
CUBLAS_STATUS_SUCCESS.

Function cublasAlloc()

20

cublasStatus
cublasAlloc (int n, int elemSize, void **devicePtr)

creates an object in GPU memory space capable of holding an array of
n elements, where each element requires elemSize bytes of storage. If
the function call is successful, a pointer to the object in GPU memory
space is placed in devicePtr. Note that this is a device pointer that
cannot be dereferenced in host code. Function cublasAlloc() is a
wrapper around cudaMal loc(). Device pointers returned by

PG-05326-032_V02
NVIDIA

CHAPTER 1 The CUBLAS Library

cublasAlloc() can therefore be passed to any CUDA device kernels,
not just CUBLAS functions.

Return Values

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE ifn<=0orelemSize <=0

CUBLAS_STATUS_ALLOC_FAILED if the object could not be allocated
due to lack of resources.

CUBLAS_STATUS_SUCCESS if storage was successfully allocated

Function cublasFree()

cublasStatus

cublasFree (const void *devicePtr)

destroys the object in GPU memory space referenced by devicePtr.
Return Values

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INTERNAL_ERROR if the object could not be deallocated
CUBLAS_STATUS_SUCCESS

if object was deallocated successfully

Function cublasSetVector()

cublasStatus
cublasSetVector (int n, int elemSize, const void *x,
int incx, void *y, int incy)

copies n elements from a vector x in CPU memory space to a vector y
in GPU memory space. Elements in both vectors are assumed to have a
size of elemSize bytes. Storage spacing between consecutive elements
is incx for the source vector x and incy for the destination vector y. In
general, y points to an object, or part of an object, allocated via
cublasAlloc(). Column-major format for two-dimensional matrices
is assumed throughout CUBLAS. If the vector is part of a matrix, a
vector increment equal to 1 accesses a (partial) column of the matrix.

PG-05326-032_V02 21

NVIDIA

CUDA CUBLAS Library

Similarly, using an increment equal to the leading dimension of the
matrix accesses a (partial) row.

Return Values
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE if incx, incy, or elemSize <=0
CUBLAS_STATUS_MAPPING_ERROR if error accessing GPU memory
CUBLAS_STATUS_SUCCESS

if operation completed successfully

Function cublasGetVector()

cublasStatus
cublasGetVector (int n, int elemSize, const void *x,

int incx, void *y, int incy)
copies n elements from a vector x in GPU memory space to a vector y
in CPU memory space. Elements in both vectors are assumed to have a
size of elemSize bytes. Storage spacing between consecutive elements
is incx for the source vector x and incy for the destination vector y. In
general, x points to an object, or part of an object, allocated via
cublasAlloc(). Column-major format for two-dimensional matrices
is assumed throughout CUBLAS. If the vector is part of a matrix, a
vector increment equal to 1 accesses a (partial) column of the matrix.
Similarly, using an increment equal to the leading dimension of the
matrix accesses a (partial) row.
Return Values

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE if incx, incy, or elemSize <=0
CUBLAS_STATUS_MAPPING_ERROR if error accessing GPU memory
CUBLAS_STATUS_SUCCESS

if operation completed successfully

22 PG-05326-032_V02
NVIDIA

CHAPTER 1 The CUBLAS Library

Function cublasSetMatrix()

cublasStatus

cublasSetMatrix (int rows, int cols, int elemSize,
const void *A, int lda, void *B,
int 1db)

copies a tile of rowsxcols elements from a matrix A in CPU memory
space to a matrix B in GPU memory space. Each element requires
storage of elemSize bytes. Both matrices are assumed to be stored in
column-major format, with the leading dimension (that is, the number
of rows) of source matrix A provided in Ida, and the leading
dimension of destination matrix B provided in Idb. B is a device
pointer that points to an object, or part of an object, that was allocated
in GPU memory space via cublasAlloc().

Return Values
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE if rows or cols < 0; or elemSize,
Ida, or Idb <=0

CUBLAS_STATUS_MAPPING_ERROR if error accessing GPU memory

CUBLAS_STATUS_SUCCESS if operation completed successfully

Function cublasGetMatrix()

cublasStatus

cublasGetMatrix (int rows, int cols, int elemSize,
const void *A, int lda, void *B,
int 1db)

copies a tile of rowsxcols elements from a matrix A in GPU memory
space to a matrix B in CPU memory space. Each element requires
storage of elemSize bytes. Both matrices are assumed to be stored in
column-major format, with the leading dimension (that is, the number
of rows) of source matrix A provided in Ida, and the leading
dimension of destination matrix B provided in Idb. A is a device

PG-05326-032_V02 23
NVIDIA

CUDA

CUBLAS Library

pointer that points to an object, or part of an object, that was allocated
in GPU memory space via cublasAlloc().

Return Values
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized

CUBLAS_STATUS_INVALID_VALUE if rows or cols < 0; or elemSize,
Ida, or Idb <=0
CUBLAS_STATUS_MAPPING_ERROR if error accessing GPU memory

CUBLAS_STATUS_SUCCESS if operation completed successfully

Function cublasSetKernelStream()

cublasStatus
cublasSetKernelStream (cudaStream_t stream)

sets the CUBLAS stream in which all subsequent CUBLAS kernel
launches will run.

By default, if the CUBLAS stream is not set, all kernels use the NULL

stream. This routine can be used to change the stream between kernel
launches and can be used also to set the CUBLAS stream back to NULL.

Return Values

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_SUCCESS

if stream set successfully

Function cublasSetVectorAsync()

24

cublasStatus

cublasSetVectorAsync (int n, int elemSize, const void *Xx,
int incx, void *y, int incy,
cudaStream_t stream);

has the same functionality as cublasSetVector(), but the transfer is

done asynchronously within the CUDA stream passed in via
parameter.

Return Values

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if incx, incy, or elemSize <=0

PG-05326-032_V02
NVIDIA

CHAPTER 1 The CUBLAS Library

Return Values (continued)
CUBLAS_STATUS_MAPPING_ERROR if error accessing GPU memory
CUBLAS_STATUS_SUCCESS

if operation completed successfully

Function cublasGetVectorAsync()

cublasStatus

cublasGetVectorAsync (int n, int elemSize, const void *Xx,
int incx, void *y, int incy,
cudaStream_t stream)

has the same functionality as cublasGetVector(), but the transfer is
done asynchronously within the CUDA stream passed in via
parameter.

Return Values
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_ INVALID_VALUE if incx, incy, or elemSize <=0
CUBLAS_STATUS_MAPPING_ERROR
CUBLAS_STATUS_SUCCESS

if error accessing GPU memory

if operation completed successfully

Function cublasSetMatrixAsync()

cublasStatus

cublasSetMatrixAsync (int rows, int cols, int elemSize,
const void *A, int lda, void *B,
int Idb, cudaStream_t stream)

has the same functionality as cublasSetMatrix(), but the transfer is
done asynchronously within the CUDA stream passed in via
parameter.

Return Values

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE if rows or cols < 0; or elemSize,
Ida, or Idb <=0

if error accessing GPU memory

CUBLAS_STATUS_MAPPING_ERROR

CUBLAS_STATUS_SUCCESS if operation completed successfully

PG-05326-032_V02 25

NVIDIA

CUDA

CUBLAS Library

Function cublasGetMatrixAsync()

26

cublasStatus

cublasGetMatrixAsync (int rows, int cols, int elemSize,
const void *A, int lda, void *B,
int Idb, cudaStream_t stream)

has the same functionality as cublasGetMatrix(), but the transfer is
done asynchronously within the CUDA stream passed in via
parameter.

Return Values

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE if rows, cols, elemSize, lda, or
Idb<=0

CUBLAS_STATUS_MAPPING_ERROR if error accessing GPU memory

CUBLAS_STATUS_SUCCESS if operation completed successfully

PG-05326-032_V02
NVIDIA

» CHAPTER

BLAS1 Functions

Level 1 Basic Linear Algebra Subprograms (BLASI) are functions that
perform scalar, vector, and vector-vector operations. The CUBLAS
BLASI implementation is described in these sections:

O “Single-Precision BLAS1 Functions” on page 28

Q “Single-Precision Complex BLAS1 Functions” on page 41
0 “Double-Precision BLASI Functions” on page 55

0 “Double-Precision Complex BLAS1 functions” on page 69

PG-05326-032_V02 27
NVIDIA

CUDA

Single-Precision BLAS1 Functions

The single-precision BLASI functions are as follows:

28

O 000000 D0 0D 0O DO

“Function cublasIsamax()” on page 29
“Function cublaslsamin()” on page 29
“Function cublasSasum()” on page 30
“Function cublasSaxpy()” on page 31
“Function cublasScopy()” on page 32
“Function cublasSdot()” on page 33
“Function cublasSnrm2()” on page 34
“Function cublasSrot()” on page 34
“Function cublasSrotg()” on page 35
“Function cublasSrotm()” on page 36
“Function cublasSrotmg()” on page 38
“Function cublasSscal()” on page 39
“Function cublasSswap()” on page 40

NVIDIA

CUBLAS Library

PG-05326-032_V02

CHAPTER 2 BLAS1 Functions

Function cublaslisamax()
int
cublaslsamax (int n, const float *x, int incx)
finds the smallest index of the maximum magnitude element of single-
precision vector x; that is, the result is the first i, i =0 to n-1, that

maximizes abs(x[1 + i * incx]) . The result reflects 1-based indexing
for compatibility with Fortran.

Input

n number of elements in input vector

X single-precision vector with n elements
incx storage spacing between elements of X
Output

returns the smallest index (returns zero if n <= 0 or incx <= 0)

Reference: http://www.netlib.org/blas/isamax.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ALLOC_FAILED if function could not allocate

reduction buffer
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublaslisamin()
int
cublaslsamin (int n, const float *x, Int Incx)
tinds the smallest index of the minimum magnitude element of single-
precision vector x; that is, the result is the first i, i = 0 to n-1, that

minimizes abs(x[1 + i * incx]) . The result reflects 1-based indexing
for compatibility with Fortran.

Input
n number of elements in input vector
X single-precision vector with n elements
incx storage spacing between elements of X
PG-05326-032_V02 29

NVIDIA

CUDA

CUBLAS Library

Output

returns the smallest index (returns zero if n <= 0 or incx <= 0)

Reference: http://www.netlib.org/scilib/blass.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ALLOC_FAILED

if function could not allocate
reduction buffer

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSasum()

30

float
cublasSasum (int n, const float *x, int incx)
computes the sum of the absolute values of the elements of single-

precision vector x; that is, the result is the sum from i = 0 to n-1 of
abs(x[1+1i*1Incx]).

Input

n number of elements in input vector

X single-precision vector with n elements
incx storage spacing between elements of X
Output

returns the single-precision sum of absolute values
(returns zero if n <= 0 or incx <= 0, or if an error occurred)

Reference: http://www .netlib.org/blas/sasum.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate

reduction buffer
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublasSaxpy()
void
cublasSaxpy (int n, float alpha, const float *x,
int incx, float *y, iInt incy)

multiplies single-precision vector x by single-precision scalar alpha
and adds the result to single-precision vector y; that is, it overwrites
single-precision y with single-precision alpha* x +y.

For i =0 to n-1, it replaces

y[ly + i * incy] with alpha* x[Ix+ i *incx]+y[ly+1i *incy],

where
Ix =0 if incx>=0, else
Ix =1+(1-n)*incx;

ly is defined in a similar way using incy.
Input

n number of elements in input vectors
alpha single-precision scalar multiplier

X single-precision vector with n elements
incx storage spacing between elements of x
y single-precision vector with n elements

incy storage spacing between elements of y

Output

y single-precision result (unchanged if n <= 0)

Reference: http://www.netlib.org/blas/saxpy.f
Error status for this function can be retrieved via cublasGetError().

Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 31
NVIDIA

CUDA CUBLAS Library

Function cublasScopy()
void
cublasScopy (int n, const float *x, int incx, Ffloat *y,
int incy)

copies the single-precision vector x to the single-precision vector y. For
i =0 ton-1, it copies

X[Ix+ 1 *incx] toy[ly+1 *incy],

where
Ix = 1if incx>=0, else
IXx =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X single-precision vector with n elements

incX storage spacing between elements of X
y single-precision vector with n elements

incy storage spacing between elements of y

Output

y contains single-precision vector X

Reference: http://www.netlib.org/blas/scopy.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

32 PG-05326-032_V02

NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublasSdot()

float
cublasSdot (int n, const float *x, iInt incx,
const float *y, int incy)

computes the dot product of two single-precision vectors. It returns
the dot product of the single-precision vectors x and y if successful,
and 0.0F otherwise. It computes the sum for i =0 to n-1 of

X[Ix+i*incx]*y[ly+1i *incy],

where
Ix = 1if incx>=0, else
Ix =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X single-precision vector with n elements

incX storage spacing between elements of X
y single-precision vector with n elements

incy storage spacing between elements of y

Output

returns single-precision dot product (returns zero if n <= 0)

Reference: http://www .netlib.org/blas/sdot.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer

CUBLAS_STATUS_EXECUTION_FAILED if function failed to execute on GPU

PG-05326-032_V02 33
NVIDIA

CUDA

CUBLAS Library

Function cublasSnrm2()

float
cublasSnrm2 (int n, const float *x, int incx)

computes the Euclidean norm of the single-precision n-vector x (with

storage increment incx). This code uses a multiphase model of
accumulation to avoid intermediate underflow and overflow.

Input

n number of elements in input vector
X single-precision vector with n elements

incX storage spacing between elements of X

Output

returns the Euclidian norm
(returns zero if n <= 0, incx <= 0, or if an error occurred)

Reference: http://www .netlib.org/blas/snrm?2.£

Reference: http://www .netlib.org/slatec/lin/snrm2.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ALLOC_FAILED

if function could not allocate
reduction buffer
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSrot()

34

void
cublasSrot (int n, float *x, int incx, float *y, int incy,
float sc, float ss)

T
multiplies a 2x2 matrix | SC SS| with the 2xn matrix {X } .
-Ss sc yT

The elements of x are in X[Ix + i * incx], i =0 to n-1, where

Ix = 1if incx>=0, else
Ix =1+(1-n)*incx;

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

y is treated similarly using ly and incy.

Input
n number of elements in input vectors
X single-precision vector with n elements

incx storage spacing between elements of X
y single-precision vector with n elements

incy storage spacing between elements of y

sc element of rotation matrix

ss element of rotation matrix

Output

X rotated vector X (unchanged if n <= 0)
y rotated vector y (unchanged if n <= 0)

Reference: http://www.netlib.org/blas/srot.f
Error status for this function can be retrieved via cublasGetError().

Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSrotg()
void
cublasSrotg (float *host_sa, float *host_sb,
float *host_sc, float *host_ss)

constructs the Givens transformation

G=| SCSS| gc24g5s2=1
-ss sc

which zeros the second entry of the 2-vector [s a sb} T

PG-05326-032_V02 35
NVIDIA

CUDA

CUBLAS Library

The quantity r = t./sa?+ sb? overwrites sa in storage. The value of
sb is overwritten by a value z which allows sc and ss to be recovered
by the following algorithm:

0.0 and ss = 1.0.
if abs(z) <1 set sc = J1-z2 and ss = z.
if abs(z) >1 set sc = 1/z and ss = J1-sc2.

ifz=1 set sc

The function cublasSrot(n, x, incx, y, incy, sc, ss) normally is
called next to apply the transformation to a 2xn matrix. Note that this
function is provided for completeness and is run exclusively on the
host.

Input

sa single-precision scalar
sb single-precision scalar
Output

sa single-precision r

sb single-precision z

sc single-precision result
S single-precision result

Reference: http://www.netlib.org/blas/srotg.f

This function does not set any error status.

Function cublasSrotm()

36

void cublasSrotm (int n, float *x, int incx, float *y,
int incy, const float *sparam)

=
applies the modified Givens transformation, h, to the 2xn matrix [XT]
Yy

The elements of x are in X[Ix + i * incx], i =0 to n-1, where

Ix = 1if incx>=0, else
Ix=1+(1-n)*incx;

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

y is treated similarly using ly and incy.

With sparam[0] = sflag, h has one of the following forms:

sflag = -1.0Ff sflag = 0.0F
h = |Sh00 sho1 h = |1-0F shO1
1sh10 sh1l 1sh10 1.0f
sflag = 1.0F sflag = -2.0f
h = | sShOO 1.0F h=|1-0f 0.0F
1-1.0f shll |0.0F 1.0Ff
Input
n number of elements in input vectors.
X single-precision vector with n elements.

incX storage spacing between elements of X.
y single-precision vector with n elements.
incy storage spacing between elements of y.

sparam 5-element vector. sparam[0] is sflag described above. sparam[1]
through sparam[4] contain the 2X2 rotation matrix h: sparam[1]
contains sh00, sparam[2] contains sh10, sparam[3] contains
sh01, and sparam[4] contains sh1l.

Output
X rotated vector X (unchanged if n <= 0)
y rotated vector y (unchanged if n <= 0)

Reference: http://www.netlib.org/blas/srotm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 37
NVIDIA

CUDA

CUBLAS Library

Function cublasSrotmg()

38

void

cublasSrotmg (float *host_sdl, float *host_sd2,

float *host_sx1, const float *host_syl,
float *host_sparam)

constructs the modified Givens transformation matrix h which zeros
the second component of the 2-vector (J/sd1*sx1, Jsd2*sy1)T.
With sparam[0] = sflag, h has one of the following forms:

sflag = -1.0F sflag = 0.0F
h = |Sh00 shO1 h = |1-0F shO1
1sh10 sh11l 1sh10 1.0F
sflag = 1.0F sflag = -2.0F
h = | shOO 1.0f h=|1-0f 0.0F
I-1.0f shll |0.0F 1.0F

sparam[1] through sparam[4] contain sh00, sh10, sh01, and sh11,
respectively. Values of 1.0f, -1.0F, or 0.0f implied by the value of
sflag are not stored in sparam. Note that this function is provided for
completeness and is run exclusively on the host.

Input

sdl single-precision scalar.

sd2 single-precision scalar.

sx1 single-precision scalar.

syl single-precision scalar.

Output

sdl changed to represent the effect of the transformation.

sd2 changed to represent the effect of the transformation.

sx1 changed to represent the effect of the transformation.

sparam 5-element vector. sparam[0] is sflag described above. sparam[1]

through sparam[4] contain the 2X2 rotation matrix h: sparam[1]
contains sh0O, sparam[2] contains sh10, sparam[3] contains
sh01, and sparam[4] contains sh11l.

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Reference: http://www.netlib.org/blas/srotmg.f

This function does not set any error status.

Function cublasSscal()
void
cublasSscal (int n, float alpha, float *x, int incx)

replaces single-precision vector x with single-precision alpha * x. For
i =0 ton-1, it replaces

X[Ix+ i * incx] with alpha* x[Ix+ i * incx],

where

Ix = 1if incx>=0, else

IXx =1+(1-n)*incx.
Input
n

number of elements in input vector
alpha single-precision scalar multiplier
X single-precision vector with n elements

incx storage spacing between elements of x

Output
X

single-precision result (unchanged if n <= 0 or incx <= 0)

Reference: http://www.netlib.org/blas/sscal.f

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED
CUBLAS_STATUS_EXECUTION_FAILED

if CUBLAS library was not initialized
if function failed to launch on GPU

PG-05326-032_V02

39
NVIDIA

CUDA CUBLAS Library

Function cublasSswap()
void
cublasSswap (int n, float *x, int incx, float *y,
int incy)

interchanges single-precision vector x with single-precision vector y.
For i =0 to n-1, it interchanges

X[Ix+ i * incx] with y[ly + i * incy],

where

Ix = 1if incx>=0, else

1+(1-n)*incx;

1x

ly is defined in a similar manner using incy.

Input
n number of elements in input vectors
X single-precision vector with n elements

incX storage spacing between elements of X
y single-precision vector with n elements

incy storage spacing between elements of y

Output
X single-precision vector y (unchanged from input if n <= 0)
y single-precision vector x (unchanged from input if n <= 0)

Reference: http://www.netlib.org/blas/sswap.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

40 PG-05326-032_V02
NVIDIA

CHAPTER 2

BLAS1 Functions

Single-Precision Complex BLAS1 Functions

The single-precision complex BLAS1 functions are as follows:

0000000000 0D 0O

“Function cublasCaxpy()” on page 42
“Function cublasCcopy()” on page 43
“Function cublasCdotc()” on page 44
“Function cublasCdotu()” on page 45
“Function cublasCrot()” on page 46
“Function cublasCrotg()” on page 47
“Function cublasCscal()” on page 48
“Function cublasCsrot()” on page 48
“Function cublasCsscal()” on page 49
“Function cublasCswap()” on page 50
“Function cublasIcamax()” on page 51
“Function cublasIcamin()” on page 52
“Function cublasScasum()” on page 52
“Function cublasScnrm?2()” on page 53

PG-05326-032_V02

NVIDIA

41

CUDA

CUBLAS Library

Function cublasCaxpy()

42

void

cublasCaxpy (int n, cuComplex alpha, const cuComplex *x,
int incx, cuComplex *y, int iIncy)

multiplies single-precision complex vector x by single-precision

complex scalar alpha and adds the result to single-precision complex

vector y; that is, it overwrites single-precision complex y with single-

precision complex alpha* x+y.

For i =0 to n-1, it replaces

y[ly + i *incy] with alpha* x[Ix+ i *incx]+y[ly+1i *incy],

where
Ix = 0 if incx>=0, else
Ix =1+(1-n)*incx;

ly is defined in a similar way using incy.
Input

n number of elements in input vectors

alpha single-precision complex scalar multiplier

X single-precision complex vector with n elements
incx storage spacing between elements of x

y single-precision complex vector with n elements

incy storage spacing between elements of y

Output

y single-precision complex result (unchanged if n <= 0)

Reference: http://www.netlib.org/blas/caxpy.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublasCcopy()
void
cublasCcopy (int n, const cuComplex *x, int incx,
cuComplex *y, iInt incy)

copies the single-precision complex vector x to the single-precision
complex vector y.

For i = 0 to n-1, it copies

X[Ix+ 1 *incx] toy[ly+1i*incy],

where
Ix = 1if incx>=0, else
Ix=1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X single-precision complex vector with n elements

incx storage spacing between elements of X
y single-precision complex vector with n elements

incy storage spacing between elements of y

Output

y contains single-precision complex vector X

Reference: http://www.netlib.org/blas/ccopy.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 43
NVIDIA

CUDA

CUBLAS Library

Function cublasCdotc()

44

cuComplex
cublasCdotc (int n, const cuComplex *x, int incx,
const cuComplex *y, int incy)

computes the dot product of two single-precision complex vectors, the
tirst of which is conjugated. It returns the dot product of the complex
conjugate of single- precision complex vector x and the single-
precision complex vector y if successful, and complex zero otherwise.
For i =0 to n-1, it sums the products

X[Ix+ 1 *incx] *y[ly+1i*incy],

where
Ix = 1if incx>=0, else
Ix =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X single-precision complex vector with n elements

incx storage spacing between elements of x
y single-precision complex vector with n elements

incy storage spacing between elements of y

Output

returns single-precision complex dot product (zero if n <= 0)

Reference: http://www .netlib.org/blas/cdotc.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublasCdotu()

cuComplex
cublasCdotu (int n, const cuComplex *x, int incx,
const cuComplex *y, int incy)

computes the dot product of two single-precision complex vectors. It
returns the dot product of the single-precision complex vectors x and y
if successful, and complex zero otherwise. For i = 0 to n-1, it sums the
products

X[Ix+ 1 *incx] *y[ly+1i*incy],

where
Ix = 1if incx>=0, else
Ix =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X single-precision complex vector with n elements

incX storage spacing between elements of X
y single-precision complex vector with n elements

incy storage spacing between elements of y

Output

returns single-precision complex dot product (returns zero if n <= 0)

Reference: http://www .netlib.org/blas/cdotu.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 45
NVIDIA

CUDA CUBLAS Library

Function cublasCrot()
void
cublasCrot (int n, cuComplex *x, int incx, cuComplex *y,
int incy, float sc, cuComplex cs)

-
multiplies a 2x2 matrix { sC CS} with the 2xn matrix {X } .
-Ccs sc y'

The elements of x are in X[Ix + i * incx], i =0 to n-1, where

Ix = 1if incx>=0, else
1+(1-n)*incx;

1x

y is treated similarly using ly and incy.

Input
n number of elements in input vectors
X single-precision complex vector with n elements

incx storage spacing between elements of X
y single-precision complex vector with n elements

incy storage spacing between elements of y

sc single-precision cosine component of rotation matrix

cs single-precision complex sine component of rotation matrix
Output

X rotated vector X (unchanged if n <= 0)

y rotated vector y (unchanged if n <= 0)

Reference: http://netlib.org/lapack/explore-html/crot.f. html

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

46 PG-05326-032_V02
NVIDIA

CHAPTER 2

BLAS1 Functions

Function cublasCrotg()

void
cublasCrotg (cuComplex *host_ca, cuComplex cb,
float *host_sc, float *host_cs)

constructs the complex Givens transformation
sc cs —
G=| __ , sc*sc+cs*cs =1
—CS sC
which zeros the second entry of the complex 2-vector [ca cb} T

The quantity ca/|cal*||ca, cbl|| overwrites ca in storage. In this case,

|lca, cb|| = scale*«/lca/scale|2+ch/scalelz,where
scale = |cal +|cDb]|.

The function cublasCrot (n, x, incx, y, incy, sc, cs) normally is
called next to apply the transformation to a 2xn matrix. Note that this
function is provided for completeness and is run exclusively on the
host.

Input

ca single-precision complex scalar

cb single-precision complex scalar

Output

ca single-precision complex ca/|cal*||ca, cbll

sc single-precision cosine component of rotation matrix

cs single-precision complex sine component of rotation matrix

Reference: http://www.netlib.org/blas/crotg.f

This function does not set any error status.

PG-05326-032_V02 47

NVIDIA

CUDA

CUBLAS Library

Function cublasCscal()

void
cublasCscal (int n, cuComplex alpha, cuComplex *x,
int incx)

replaces single-precision complex vector x with single-precision
complex alpha * x.

For i =0 to n-1, it replaces
X[Ix+ i * incx] with alpha* x[Ix+ i * incx],

where

X
Il

1 if incx >=0, else
Ix=1+(1-n)*incx.

n number of elements in input vector
alpha single-precision complex scalar multiplier
X single-precision complex vector with n elements

incX storage spacing between elements of X

Output

X single-precision complex result (unchanged if n <= 0 or incx <= 0)

Reference: http://www .netlib.org/blas/cscal.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCsrot()

48

void
cublasCsrot (int n, cuComplex *x, int incx, cuComplex *y,
int incy, float sc, float ss)

=
multiplies a 2x2 matrix | SC SS| with the 2xn matrix t(/ } .
-ss sc T

PG-05326-032_V02
NVIDIA

CHAPTER 2

BLAS1 Functions

The elements of x are in X[Ix + i * incx], i =0 to n-1, where

Ix = 1if incx>=0, else
1+(1-n)*incx;

I1x

y is treated similarly using ly and incy.

Input
n number of elements in input vectors
X single-precision complex vector with n elements

incX storage spacing between elements of X
y single-precision complex vector with n elements

incy storage spacing between elements of y

sc single-precision cosine component of rotation matrix
ss single-precision sine component of rotation matrix
Output

X rotated vector X (unchanged if n <= 0)

y rotated vector y (unchanged if n <= 0)

Reference: http://www.netlib.org/blas/csrot.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCsscal()

void
cublasCsscal (int n, float alpha, cuComplex *x, int incx)

replaces single-precision complex vector x with single-precision
complex alpha * x. For i =0 to n-1, it replaces

X[Ix+ i * incx] with alpha* x[Ix+ i * incx],

where
Ix = 1if incx>=0, else
IXx =1+(1-n)*incx.
PG-05326-032_V02 49

NVIDIA

CUDA

CUBLAS Library

Input

n number of elements in input vector
alpha single-precision scalar multiplier
X single-precision complex vector with n elements

incx storage spacing between elements of X

Output

X single-precision complex result (unchanged if n <= 0 or incx <= 0)

Reference: http://www .netlib.org/blas/csscal.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCswap()

50

void

cublasCswap (int n, const cuComplex *x, int incx,
cuComplex *y, int incy)

interchanges the single-precision complex vector x with the single-

precision complex vector y. For i = 0 to n-1, it interchanges

X[Ix+ i * incx] with y[ly + i * incy],

where
Ix = 1if incx>=0, else
IXx =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X single-precision complex vector with n elements

incx storage spacing between elements of X
y single-precision complex vector with n elements

incy storage spacing between elements of y

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Output
X single-precision complex vector y (unchanged from input if n <= 0)
y single-precision complex vector x (unchanged from input if n <= 0)

Reference: http://www.netlib.org/blas/cswap.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublaslcamax()
int
cublaslcamax (int n, const cuComplex *x, iInt incx)
finds the smallest index of the maximum magnitude element of single-
precision complex vector x; that is, the result is the first i, i =0 to n-1,

that maximizes abs(x[1 + i * incx]). The result reflects 1-based
indexing for compatibility with Fortran.

Input
n number of elements in input vector
X single-precision complex vector with n elements
incx storage spacing between elements of X
Output

returns the smallest index (returns zero if n <= 0 or incx <= 0)

Reference: http://www .netlib.org/blas/icamax.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ALLOC_FAILED if function could not allocate

reduction buffer
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 51

NVIDIA

CUDA

CUBLAS Library

Function cublaslcamin()

int

cublaslcamin (int n, const cuComplex *x, iInt incx)

finds the smallest index of the minimum magnitude element of single-
precision complex vector x; that is, the result is the first i, i =0 ton-1,

that minimizes abs(x[1 + i * incx]). The result reflects 1-based
indexing for compatibility with Fortran.

Input
n number of elements in input vector
X single-precision complex vector with n elements
incx storage spacing between elements of X
Output

returns the smallest index (returns zero if n <= 0 or incx <= 0)

Reference: Analogous to http://www.netlib.org/blas/icamax.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ALLOC_FAILED if function could not allocate

reduction buffer
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasScasum()

52

float
cublasScasum (int n, const cuDouble *x, int incx)

takes the sum of the absolute values of a complex vector and returns a
single-precision result. Note that this is not the L1 norm of the vector.
The result is the sum from 0 to n-1 of

abs(real (X[Ix+ i *incx])) +abs(imag(X[Ix + i * incx])),

where
Ix = 1if incx <=0, else
Ix=1+(1-n)*incx.

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Input

n number of elements in input vector

X single-precision complex vector with n elements

incX storage spacing between elements of X

Output

returns the single-precision sum of absolute values of real and imaginary parts
(returns zero if n <=0, incx <= 0, or if an error occurred)

Reference: http://www.netlib.org/blas/scasum.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ALLOC_FAILED

if function could not allocate
reduction buffer

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasScnrm2()

float
cublasScnrm2 (int n, const cuComplex *x, iInt incx)
computes the Euclidean norm of single-precision complex n-vector x.

This implementation uses simple scaling to avoid intermediate
underflow and overflow.

Input
n number of elements in input vector
X single-precision complex vector with n elements

incX storage spacing between elements of X

Output

returns the Euclidian norm
(returns zero if n <=0, incx <= 0, or if an error occurred)

Reference: http://www .netlib.org/blas/scnrm?2.f

PG-05326-032_V02 53
NVIDIA

54

CUDA

CUBLAS Library

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED
CUBLAS_STATUS_ALLOC_FAILED

if CUBLAS library was not initialized

if function could not allocate
reduction buffer
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Double-Precision BLAS1 Functions

Note: Double-precision functions are only supported on GPUs with double-
precision hardware.

The double-precision BLASI1 functions are as follows:
“Function cublasldamax()” on page 56
“Function cublasldamin()” on page 56
“Function cublasDasum()” on page 57
“Function cublasDaxpy()” on page 58
“Function cublasDcopy()” on page 59
“Function cublasDdot()” on page 60
“Function cublasDnrm?2()” on page 61
“Function cublasDrot()” on page 62
“Function cublasDrotg()” on page 63
“Function cublasDrotm()” on page 64
“Function cublasDrotmg()” on page 65
“Function cublasDscal()” on page 66

o000 000000 oD oo

“Function cublasDswap()” on page 67

PG-05326-032_V02 55
NVIDIA

CUDA

CUBLAS Library

Function cublasidamax()

int

cublasldamax (int n, const double *x, iInt incx)

finds the smallest index of the maximum magnitude element of
double-precision vector x; that is, the result is the first i, i =0 to n-1,
that maximizes abs(x[1 + i * incx]) . The result reflects 1-based
indexing for compatibility with Fortran.

Input

n number of elements in input vector

X double-precision vector with n elements
incx storage spacing between elements of X
Output

returns the smallest index (returns zero if n <= 0 or incx <= 0)

Reference: http://www.netlib.org/blas/idamax.f

Error status for this function can be retrieved via cublasGetError().

Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasldamin()

56

int

cublasldamin (int n, const double *x, Int Incx)

finds the smallest index of the minimum magnitude element of
double-precision vector x; that is, the result is the first i, i =0 to n-1,
that minimizes abs(x[1 + i * incx]) . The result reflects 1-based
indexing for compatibility with Fortran.

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Input

n number of elements in input vector

X double-precision vector with n elements
incx storage spacing between elements of X
Output

returns the smallest index (returns zero if n <= 0 or incx <= 0)

Analogous to http://www.netlib.org/blas/idamax.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDasum()
double
cublasDasum (int n, const double *x, int incx)

computes the sum of the absolute values of the elements of double-
precision vector x; that is, the result is the sum from i = 0 to n-1 of
abs(X[1+ 1 *incx]).

Input

n number of elements in input vector

X double-precision vector with n elements
incx storage spacing between elements of x
Output

returns the double-precision sum of absolute values
(returns zero if n <= 0 or incx <= 0, or if an error occurred)

Reference: http://www.netlib.org/blas/dasum.f

PG-05326-032_V02 57
NVIDIA

CUDA

CUBLAS Library

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDaxpy()

58

void
cublasDaxpy (int n, double alpha, const double *x,
int incx, double *y, int incy)

multiplies double-precision vector x by double-precision scalar alpha
and adds the result to double-precision vector y; that is, it overwrites
double-precision y with double-precision alpha*x +y.

For i =0 to n-1, it replaces

y[ly + i * incy] with alpha*x[Ix+ i *incx]+y[ly+i *incy],

where
Ix = 0 if incx>=0, else
IXx =1+(1-n)*incx;

ly is defined in a similar way using incy.
Input

n number of elements in input vectors
alpha double-precision scalar multiplier

X double-precision vector with n elements
incX storage spacing between elements of X
y double-precision vector with n elements

incy storage spacing between elements of y

Output

y double-precision result (unchanged if n <= 0)

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Reference: http://www.netlib.org/blas/daxpy.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDcopy()
void
cublasDcopy (int n, const double *x, int incx, double *y,
int incy)

copies the double-precision vector x to the double-precision vector y.
For i = 0 to n-1, it copies

X[Ix+ 1 *incx] toy[ly+1 *incy],

where
Ix = 1if incx>=0, else
IXx =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X double-precision vector with n elements

incx storage spacing between elements of X
y double-precision vector with n elements

incy storage spacing between elements of y

Output

y contains double-precision vector X

Reference: http://www.netlib.org/blas/dcopy.f

PG-05326-032_V02 59

NVIDIA

CUDA

CUBLAS Library

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_ARCH_MISMATCH

if function invoked on device that
does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDdot()

60

double

cublasDdot (int n, const double *x, int incx,
const double *y, int incy)

computes the dot product of two double-precision vectors. It returns
the dot product of the double-precision vectors x and y if successful,
and 0.0 otherwise. It computes the sum for i = 0 to n-1 of

X[Ix+i*incx]*y[ly+1i *incy],

where

Ix = 1if incx>=0, else

Ix =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X double-precision vector with n elements

incX storage spacing between elements of X
y double-precision vector with n elements

incy storage spacing between elements of y

Output

returns double-precision dot product (returns zero if n <= 0)

Reference: http://www .netlib.org/blas/ddot.f

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDnrm2()
double
cublasDnrm2 (int n, const double *x, int incx)

computes the Euclidean norm of the double-precision n-vector x (with
storage increment incx). This code uses a multiphase model of
accumulation to avoid intermediate underflow and overflow.

Input
n number of elements in input vector
X double-precision vector with n elements

incx storage spacing between elements of X

Output

returns the Buclidian norm
(returns zero if n <= 0, Incx <= 0, or if an error occurred)

Reference: http://www.netlib.org/blas/dnrm?2.f
Reference: http://www.netlib.org/slatec/lin/dnrm?2.f

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 61
NVIDIA

CUDA CUBLAS Library

Function cublasDrot()
void
cublasDrot (int n, double *x, iInt incx, double *y,
int incy, double dc, double ds)

-
multiplies a 2x2 matrix dc ds| with the 2xn matrix {X } .
—-ds dc yT

The elements of x are in X[Ix + i * incx], i =0 to n-1, where

Ix = 1if incx>=0, else
IXx =1+(1-n)*incx;

y is treated similarly using ly and incy.

Input
n number of elements in input vectors
X double-precision vector with n elements

incx storage spacing between elements of X

y double-precision vector with n elements
incy storage spacing between elements of y
dc element of rotation matrix

ds element of rotation matrix

Output

X rotated vector X (unchanged if n <= 0)
y rotated vector y (unchanged if n <= 0)

Reference: http://www.netlib.org/blas/drot.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

62 PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublasDrotg()
void
cublasDrotg (double *host_da, double *host_db,
double *host_dc, double *host_ds)

constructs the Givens transformation

¢ = |dc dS, dc2+ds? = 1
-ds dc

. T
which zeros the second entry of the 2-vector [da db} .

The quantity r = +./da? + db2overwrites da in storage. The value of
db is overwritten by a value z which allows dc and ds to be recovered
by the following algorithm:

ifz=1 setdc = 0.0 and ds = 1.0.
if abs(z) <1 setdc = J1-z2 and ds = z.
if abs(z) > 1 setdc = 1/z and ds = J1-dc?2.

The function cublasDrot(n, %, incx, y, incy, dc, ds) normally is
called next to apply the transformation to a 2xn matrix. Note that this
function is provided for completeness and is run exclusively on the

host.

Input

da double-precision scalar
db double-precision scalar
Output

da double-precision r

db double-precision z

dc double-precision result
ds double-precision result

Reference: http://www .netlib.org/blas/drotg.f

This function does not set any error status.

PG-05326-032_V02 63
NVIDIA

CUDA

CUBLAS Library

Function cublasDrotm()

64

void

cublasDrotm (int n, double *x, int incx, double *y,

=
applies the modified Givens transformation, h, to the 2xn matrix [X]

int incy, const double *dparam)

yT

The elements of x are in X[Ix + i * incx], i =0 to n-1, where

1x
1x

1 if incx >=0, else
1+(1-n)*incx;

y is treated similarly using ly and incy.

With dparam[0] = dflag, h has one of the following forms:

dflag = -1.0 dflag = 0.0
h = |dh00 dho1 h = | 1-0 dhOl
dh10 dh11 dh10 1.0
dflag = 1.0 dflag = -2.0
h = |dh00 1.0 h=|10 0.0
-1.0 dhl1l 0.0 1.0
Input
n number of elements in input vectors.
X double-precision vector with n elements.
incx storage spacing between elements of X.
y double-precision vector with n elements.
incy storage spacing between elements of y.
dparam 5-clement vector. dparam[0] is dflag described above. dparam[1]
through dparam[4] contain the 2X2 rotation matrix h: dparam[1]
contains dh00, dparam[2] contains dh10, dparam[3] contains
dh01, and dparam[4] contains dh11.
Output
X rotated vector X (unchanged if n <= 0)
y rotated vector y (unchanged if n <= 0)

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Reference: http://www.netlib.org/blas/drotm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH

if function invoked on device that
does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDrotmg()
void
cublasDrotmg (double *host_ddl, double *host_dd2,

double *host_dx1l, const double *host_dyl,
double *host_dparam)

constructs the modified Givens transformation matrix h which zeros
the second component of the 2-vector (/dd1*dx1, J/dd2*dy1)".
With dparam[0] = dflag, h has one of the following forms:

dflag = -1.0 dflag = 0.0
h = |dh00 dhO1 h = |1-0 dhol
|[dh10 dh11] |[dh10 1.0

dflag = 1.0 dflag = -2.0
h = [dh00 1.0 h=|10 0.0
|-1.0 dh11] 10.0 1.0

dparam[1] through dparam[4] contain dh00, dh10, dh01, and dh11,
respectively. Values of 1.0, -1.0, or 0.0 implied by the value of dflag
are not stored in dparam. Note that this function is provided for
completeness and is run exclusively on the host.

Input

ddi double-precision scalar
dd2 double-precision scalar
dx1 double-precision scalar
dyl double-precision scalar

PG-05326-032_V02 65
NVIDIA

CUDA

CUBLAS Library

Output

ddi changed to represent the effect of the transformation
dd2 changed to represent the effect of the transformation
dx1 changed to represent the effect of the transformation

dparam 5-eclement vector. dparam[0] is dflag described above. dparam[1]
through dparam[4] contain the 2X2 rotation matrix h: dparam[1]
contains dh00, dparam[2] contains dh10, dparam[3] contains
dh01, and dparam[4] contains dh11.

Reference: http://www.netlib.org/blas/drotmg.f

This function does not set any error status.

Function cublasDscal()

66

void
cublasDscal (int n, double alpha, double *x, iInt incx)

replaces double-precision vector x with double-precision alpha * x.
For i =0 to n-1, it replaces

X[Ix+ i * incx] with alpha* x[Ix+ i * incx],

where
Ix = 1if incx>=0, else
Ix=1+(1-n)*incx.

Input

n number of elements in input vector

alpha double-precision scalar multiplier
X double-precision vector with n elements

incX storage spacing between elements of X

Output

X double-precision result (unchanged if n <= 0 or incx <= 0)

Reference: http://www.netlib.org/blas/dscal.f

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED
CUBLAS_STATUS_ARCH_MISMATCH

if CUBLAS library was not initialized

if function invoked on device that
does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDswap()
void
cublasDswap (int n, double *x, int incx, double *y,
int incy)

interchanges double-precision vector x with double-precision vector y.
For i =0 to n-1, it interchanges

X[Ix+ i * incx] with y[ly + i * incy],

where
Ix = 1if incx>=0, else
IXx =1+(1-n)*incx;

ly is defined in a similar manner using incy.

Input

n number of elements in input vectors

X double-precision vector with n elements

incX storage spacing between elements of X

y double-precision vector with n elements

incy storage spacing between elements of y
Output

X double-precision vector y (unchanged from input if n <= 0)
y double-precision vector x (unchanged from input if n <= 0)

Reference: http://www.netlib.org/blas/dswap.f

PG-05326-032_V02 67
NVIDIA

68

CUDA

CUBLAS Library

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED
CUBLAS_STATUS_ARCH_MISMATCH

if CUBLAS library was not initialized
if function invoked on device that
does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Double-Precision Complex BLAS1 functions

Note: Double-precision functions are only supported on GPUs with double-
precision hardware.

The double-precision complex BLAS1 functions are listed below:
“Function cublasDzasum()” on page 70
“Function cublasDznrm2()” on page 71
“Function cublaslzamax()” on page 71
“Function cublaslzamin()” on page 72
“Function cublasZaxpy()” on page 73
“Function cublasZcopy()” on page 74
“Function cublasZdotc()” on page 75
“Function cublasZdotu()” on page 76
“Function cublasZdrot()” on page 77
“Function cublasZdscal()” on page 78
“Function cublasZrot()” on page 79
“Function cublasZrotg()” on page 80
“Function cublasZscal()” on page 80

000000000000 OO

“Function cublasZswap()” on page 81

PG-05326-032_V02 69
NVIDIA

CUDA

CUBLAS Library

Function cublasDzasum()

70

double
cublasDzasum (int n, const cuDoubleComplex *x, int incx)

takes the sum of the absolute values of a complex vector and returns a
double-precision result. Note that this is not the L1 norm of the vector.
The result is the sum from O to n-1 of

abs(real (X[Ix+ 1 *incx])) +abs(imag(X[Ix + i * incx])),

where

Ix = 1if incx<=0, else

IXx =1+(1-n)*incx.

Input
n number of elements in input vector
X double-precision complex vector with n elements

incX storage spacing between elements of X

Output

returns the double-precision sum of absolute values of real and imaginary parts
(returns zero if n <=0, incx <= 0, or if an error occurred)

Reference http://www.netlib.org/blas/dzasum.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublasDznrm2()
double
cublasDznrm2 (int n, const cuDoubleComplex *x, int incx)

computes the Euclidean norm of double-precision complex n-vector x.

This implementation uses simple scaling to avoid intermediate
underflow and overflow.

Input

n number of elements in input vector

X double-precision complex vector with n elements

incX storage spacing between elements of X

Output

returns the Euclidian norm
(returns zero if n <= 0, incx <= 0, or if an error occurred)

Reference: http://www .netlib.org/blas/dznrm?2.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH

if function invoked on device that
does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublaslzamax()
int
cublaslzamax (int n, const cuDoubleComplex *x, int incx)

finds the smallest index of the maximum magnitude element of

double-precision complex vector x; that is, the result is the first i, i =0
to n-1, that maximizes

abs(real (X[1+ i * incx])) + abs(imag(x[1 + i * incx])).

Input

n number of elements in input vector

X double-precision complex vector with n elements
incx storage spacing between elements of X

PG-05326-032_V02 71
NVIDIA

CUDA

CUBLAS Library

Output

returns the smallest index (returns zero if n <= 0 or incx <= 0)

Reference: http://www.netlib.org/blas/izamax.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublaslzamin()

72

int
cublaslzamin (int n, const cuDoubleComplex *x, int incx)

finds the smallest index of the minimum magnitude element of

double-precision complex vector x; that is, the result is the first i, i =0
to n-1, that minimizes

abs(real (x[1+ 1 * incx])) + abs(imag(x[1 + i * incx])).
Input

n number of elements in input vector

X double-precision complex vector with n elements
incx storage spacing between elements of X

Output

returns the smallest index (returns zero if n <= 0 or incx <= 0)

Reference: analogous to “Function cublaslzamax()” on page 71.

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublasZaxpy()
void
cublaszZzaxpy (int n, cuDoubleComplex alpha,

const cuDoubleComplex *x, iInt iIncx,
cuDoubleComplex *y, int incy)

multiplies double-precision complex vector x by double-precision
complex scalar alpha and adds the result to double-precision complex
vector y; that is, it overwrites double-precision complex y with double-
precision complex alpha* x +y.

For i =0 to n-1, it replaces

y[ly + i *incy] with alpha* x[Ix+ i *incx]+y[ly+i *incy],

where
Ix = 0 if incx>=0, else
Ix =1+(1-n)*incx;

ly is defined in a similar way using incy.
Input

n number of elements in input vectors

alpha double-precision complex scalar multiplier

X double-precision complex vector with n elements
incx storage spacing between elements of x

y double-precision complex vector with n elements

incy storage spacing between elements of y

Output

y double-precision complex result (unchanged if n <= 0)

Reference: http://www.netlib.org/blas/zaxpy.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that
does not support double precision

PG-05326-032_V02 73
NVIDIA

CUDA CUBLAS Library

Function cublasZcopy()
void
cublasZcopy (int n, const cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

copies the double-precision complex vector x to the double-precision
complex vector y. For i = 0 to n-1, it copies

X[Ix+ 1 *incx] toy[ly+1 *incy],

where
Ix = 1if incx>=0, else
IXx =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X double-precision complex vector with n elements

incX storage spacing between elements of X
y double-precision complex vector with n elements

incy storage spacing between elements of y

Output

y contains double-precision complex vector X

Reference: http://www.netlib.org/blas/zcopy.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

74 PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublasZdotc()

cuDoubleComplex
cublaszdotc (int n, const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int iIncy)

computes the dot product of two double-precision complex vectors. It
returns the dot product of the double-precision complex vectors x and
y if successful, and complex zero otherwise. For i =0 to n-1, it sums
the products

X[Ix+ 1 *incx] *y[ly+1i*incy],

where
Ix = 1if incx>=0, else
Ix =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X double-precision complex vector with n elements

incX storage spacing between elements of X
y double-precision complex vector with n elements

incy storage spacing between elements of y

Output

returns double-precision complex dot product (zero if n <= 0)

Reference: http://www .netlib.org/blas/zdotc.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that
does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 75
NVIDIA

CUDA

CUBLAS Library

Function cublasZdotu()

76

cuDoubleComplex
cublaszdotu (int n, const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int iIncy)

computes the dot product of two double-precision complex vectors. It
returns the dot product of the double-precision complex vectors x and
y if successful, and complex zero otherwise. For i =0 to n-1, it sums
the products

X[Ix+ 1 *incx] *y[ly+1i*incy],

where
Ix = 1if incx>=0, else
Ix =1+(1-n)*incx;

ly is defined in a similar way using incy.

Input
n number of elements in input vectors
X double-precision complex vector with n elements

incX storage spacing between elements of X
y double-precision complex vector with n elements

incy storage spacing between elements of y

Output

returns double-precision complex dot product (returns zero if n <= 0)

Reference: http://www .netlib.org/blas/zdotu.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ALLOC_FAILED if function could not allocate
reduction buffer
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that
does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublaszZdrot()
void
cublaszdrot (int n, cuDoubleComplex *x, int incx,

cuDoubleComplex *y, int incy,
double c, double s)

-S C y

The elements of x are in X[Ix + i * incx], i =0 to n-1, where

=
multiplies a 2x2 matrix { ¢ S} with the 2xn matrix [XT] .

Ix = 1if incx>=0, else
Ix =1+(1-n)*incx;

y is treated similarly using ly and incy.

Input
n number of elements in input vectors
X double-precision complex vector with n elements

incx storage spacing between elements of x
y double-precision complex vector with n elements

incy storage spacing between elements of y

c double-precision cosine component of rotation matrix
S double-precision sine component of rotation matrix
Output

X rotated vector X (unchanged if n <= 0)

y rotated vector y (unchanged if n <= 0)

Reference: http://www.netlib.org/blas/zdrot.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that
does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 77
NVIDIA

78

CUDA CUBLAS Library

Function cublasZdscal()
void
cublaszdscal (int n, double alpha, cuDoubleComplex *x,
int incx)

replaces double-precision complex vector x with double-precision
complex alpha * x.

For i =0 to n-1, it replaces
X[Ix+ i * incx] with alpha®* x[Ix+ i * incx],

where

X
Il

1 if incx >=0, else
Ix=1+(1-n)*incx.

n number of elements in input vector
alpha double-precision scalar multiplier
X double-precision complex vector with n elements

incX storage spacing between elements of X

Output

X double-precision complex result (unchanged if n <= 0 or incx <= 0)

Reference: http://www .netlib.org/blas/zdscal.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

Function cublasZrot()
void
cublasZrot (int n, cuDoubleComplex *x, int Incx,

cuDoubleComplex *y, int incy, double sc,
cuDoubleComplex cs)

-
multiplies a 2x2 matrix { sC CS} with the 2xn matrix {X } .
-Ccs sc y'

The elements of x are in X[Ix + i * incx], i =0 to n-1, where

Ix = 1if incx>=0, else

1+(1-n)*incx;

1x

y is treated similarly using ly and incy.

Input
n number of elements in input vectors
X double-precision complex vector with n elements

incx storage spacing between elements of X
y double-precision complex vector with n elements

incy storage spacing between elements of y

sc double-precision cosine component of rotation matrix

cs double-precision complex sine component of rotation matrix
Output

X rotated double-precision complex vector X (unchanged if n <= 0)
y rotated double-precision complex vector y (unchanged if n <= 0)

Reference: http://netlib.org/lapack/explore-html/zrot.f.html

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 79
NVIDIA

CUDA CUBLAS Library

Function cublasZrotg()
void
cublasZrotg (cuDoubleComplex *host_ca,

cuDoubleComplex *host_cb, double *host_sc,
double *host_cs)

constructs the complex Givens transformation

sc cs
G = , sc2+|cs|2:1
-CS sC

which zeros the second entry of the complex 2-vector [ca ij T

The quantity ca/|cal*||ca, cb|| overwrites ca in storage. The function
cublasCrot (n, x, incx, y, incy, sc, cs) normally is called next to
apply the transformation to a 2xn matrix. Note that this function is
provided for completeness and is run exclusively on the host.

Input

ca double-precision complex scalar

cb double-precision complex scalar

Output

ca double-precision complex ca/|cal*||ca, cb||

sc double-precision cosine component of rotation matrix

cs double-precision complex sine component of rotation mattix

Reference: http://www.netlib.org/blas/zrotg.t

This function does not set any error status.

Function cublasZscal()
void
cublaszscal (int n, cuDoubleComplex alpha,
cubDoubleComplex *x, int incx)

replaces double-precision complex vector x with double-precision
complex alpha * x.

80 PG-05326-032_V02
NVIDIA

CHAPTER 2 BLAS1 Functions

For i =0 to n-1, it replaces

X[Ix+ i * incx] with alpha®* x[Ix+ i * incx],

where
Ix = 1if incx>=0, else
Ix=1+(1-n)*incx.

Input

n number of elements in input vector

alpha double-precision complex scalar multiplier

X double-precision complex vector with n elements

incX storage spacing between elements of X

Output
X

double-precision complex result (unchanged if n <= 0 or incx <= 0)

Reference: http://www .netlib.org/blas/zscal.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU
CUBLAS_STATUS_ARCH_MISMATCH

if function invoked on device that
does not support double precision

Function cublasZswap()
void
cublaszZswap (int n, cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

interchanges double-precision complex vector x with double-precision
complex vector y. For i = 0 to n-1, it interchanges

X[Ix+ i * incx] with y[ly + i * incy],

where
Ix = 1if incx>=0, else
Ix =1+(1-n)*incx;

PG-05326-032_V02 81
NVIDIA

CUDA

82

CUBLAS Library

ly is defined in a similar manner using incy.

Input
n number of elements in input vectors
X double-precision complex vector with n elements

incx storage spacing between elements of X
y double-precision complex vector with n elements

incy storage spacing between elements of y

Output
X double-precision complex vector y (unchanged from input if n <= 0)
y double-precision complex vector x (unchanged from input if n <= 0)

Reference: http://www.netlib.org/blas/zswap.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that
does not support double precision

PG-05326-032_V02
NVIDIA

» CHAPTER

Single-Precision BLAS2
Functions

The Level 2 Basic Linear Algebra Subprograms (BLAS2) are functions
that perform matrix-vector operations. The CUBLAS implementations
of single-precision BLAS2 functions are described in these sections:

O “Single-Precision BLAS2 Functions” on page 84
Q “Single-Precision Complex BLAS2 Functions” on page 107

PG-05326-032_V02 83
NVIDIA

CUDA CUBLAS Library

Single-Precision BLAS2 Functions

The single-precision BLAS2 functions are as follows:
“Function cublasSgbmv()” on page 85
“Function cublasSgemv()” on page 86
“Function cublasSger()” on page 87
“Function cublasSsbmv()” on page 88
“Function cublasSspmv()” on page 90
“Function cublasSspr()” on page 91
“Function cublasSspr2()” on page 92
“Function cublasSsymv()” on page 94
“Function cublasSsyr()” on page 95
“Function cublasSsyr2()” on page 96
“Function cublasStbmv()” on page 98
“Function cublasStbsv()” on page 99
“Function cublasStpmv()” on page 101
“Function cublasStpsv()” on page 102
“Function cublasStrmv()” on page 104

I I I I I I I N N = E A |

“Function cublasStrsv()” on page 105

84 PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Function cublasSgbmv()
void
cublasSgbmv (char trans, int m, int n, int kl, int ku,
float alpha, const float *A, int lda,
const float *x, int incx, float beta,
float *y, int incy);

performs one of the matrix-vector operations
y = alpha*op(A) *x+beta*y,
where op(A) = A or op(A) = AT,
alpha and beta are single-precision scalars, and x and y are single-

precision vectors. A is an mxn band matrix consisting of single-
precision elements with kl subdiagonals and ku superdiagonals.

Input
trans gpecifies op(A). If trans == "N” or "n”, op(A) = A.
Iftrans=="T", "t", "C", or "c", op(A) = AT.

m the number of rows of matrix A; m must be at least zero.

n the number of columns of matrix A; n must be at least zero.

k1 the number of subdiagonals of matrix A; KI must be at least zero.
ku the number of superdiagonals of matrix A; ku must be at least zero.

alpha single-precision scalar multiplier applied to op(A).

A single-precision array of dimensions (lda, n). The leading
(kI + ku +1) x n part of array A must contain the band matrix A,
supplied column by column, with the leading diagonal of the matrix in
row ku+1 of the array, the first superdiagonal starting at position 2 in
row ku, the first subdiagonal starting at position 1 in row ku+2, and so
on. Elements in the array A that do not correspond to elements in the
band matrix (such as the top left kuxku triangle) are not referenced.

Ida leading dimension of A; Ida must be at least kI + ku + 1.

X single-precision array of length at least (1 +(n-1)* abs(incx))
when trans == "N" or "n", and at least (1 +(m-1) * abs(incx))
otherwise.

incx storage spacing between elements of X; incx must not be zero.

beta single-precision scalar multiplier applied to vector y. If beta is zero, y
is not read.

PG-05326-032_V02 85
NVIDIA

CUDA

CUBLAS Library

Input (continued)

y single-precision array of length at least (1 + (m—1) * abs(incy))
when trans == "N" or "n" and at least (1 + (n—-1) * abs(incy))
otherwise. If beta is zero, y is not read.

incy storage spacing between elements of y; incy must not be zero.

Output

y updated according to y = alpha* op(A) *x+beta*y.

Reference: http://www.netlib.org/blas/sgbmv.f

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0,kl <0,ku<0,

incx ==0, or incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSgemv()

86

void

cublasSgemv (char trans, int m, int n, float alpha,
const float *A, int lda, const float *x,
int incx, float beta, float *y, int incy)

performs one of the matrix-vector operations

y = alpha*op(A) *x+beta*vy,

where op(A) = A or op(A) = AT,
alpha and beta are single-precision scalars, and x and y are single-
precision vectors. A is an mxn matrix consisting of single-precision

elements. Matrix A is stored in column-major format, and Ida is the
leading dimension of the two-dimensional array in which A is stored.

Input

trans gpecifies op(A). If trans == *N” or "n", op(A) = A.
Iftrans == "T", "t", "C", or "c", op(A) = AT.
m specifies the number of rows of matrix A; m must be at least zero.

specifies the number of columns of matrix A; n must be at least zero.

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Input (continued)

alpha single-precision scalar multiplier applied to op(A).

A single-precision array of dimensions (lda, n) if trans == *N*" or
“n=, of dimensions (Ida, m) otherwise; Ida must be at least
max(1, m) if trans == "N" or "n" and at least max(1, n) otherwise.

Ida leading dimension of two-dimensional array used to store matrix A.
single-precision array of length at least (1 + (n—-1) * abs(incx)) if
trans == "N" or "n", else at least (1 + (m-1) * abs(incx)).

incx specifies the storage spacing for elements of X; incx must not be zero.

beta single-precision scalar multiplier applied to vector y. If beta is zero, y
is not read.

y single-precision array of length at least (1 +(m—1) * abs(incy)) if
trans == "N" or "n", else at least (1 +(n-1) * abs(incy)).

incy the storage spacing between elements of y; incy must not be zero.

Output

y updated according to y = alpha* op(A) *x +beta*y.

Reference: http://www.netlib.org/blas/sgemv.f
Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0, or

incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSger()
void
cublasSger (int m, int n, float alpha, const float *x,

int incx, const float *y, int incy, float *A,
int 1da)

performs the symmetric rank 1 operation

A = alpha * x * yT + A,

PG-05326-032_V02 87
NVIDIA

CUDA CUBLAS Library

where alpha is a single-precision scalar, x is an m-element single-
precision vector, y is an n-element single-precision vector, and A is an
mxn matrix consisting of single-precision elements. Matrix A is stored
in column-major format, and lda is the leading dimension of the two-
dimensional array used to store A.

Input

m specifies the number of rows of the matrix A; m must be at least zero.
n specifies the number of columns of matrix A; n must be at least zero.
alpha single-precision scalar multiplier applied to x * yT.

X

single-precision array of length at least (1 +(m-1) * abs(incx)).

incx the storage spacing between elements of X; incx must not be zero.

y single-precision array of length at least (1 +(n-1)* abs(incy)).
incy the storage spacing between elements of y; incy must not be zero.
A single-precision array of dimensions (lda, n).

Ida leading dimension of two-dimensional array used to store matrix A.
Output

A

updated according to A = alpha*x*yT+A.

Reference: http://www.netlib.org/blas/sger.f

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0, or

incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSsbmv()
void
cublasSsbmv (char uplo, int n, int k, float alpha,

const float *A, int lda, const float *x,
int incx, float beta, float *y, int incy)

performs the matrix-vector operation

y = alpha*A*x+beta*y,

88 PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

where alpha and beta are single-precision scalars, and x and y are
n-element single-precision vectors. A is an nxn symmetric band matrix
consisting of single-precision elements, with k superdiagonals and the
same number of subdiagonals.

Input

uplo

alpha

Ida

incx
beta

incy

specifies whether the upper or lower triangular part of the symmetric
band matrix A is being supplied. If uplo == "U" or "u®, the upper
triangular part is being supplied. If uplo == "L*" or "17, the lower
triangular part is being supplied.

specifies the number of rows and the number of columns of the
symmetric matrix A; N must be at least zero.

specifies the number of superdiagonals of matrix A. Since the matrix is
symmetric, this is also the number of subdiagonals; k must be at least
ZEero.

single-precision scalar multiplier applied to A * x.

single-precision array of dimensions (Ida, n). When uplo == "U" or
"u”, the leading (k+1)xn part of array A must contain the upper
triangular band of the symmetric matrix, supplied column by column,
with the leading diagonal of the matrix in row k+1 of the array, the
first superdiagonal starting at position 2 in row k, and so on. The top
left kxk triangle of the array A is not referenced. When uplo == "L*
or "1, the leading (k+1)xn part of the array A must contain the
lower triangular band part of the symmetric matrix, supplied column
by column, with the leading diagonal of the matrix in row 1 of the
array, the first subdiagonal starting at position 1 in row 2, and so on.
The bottom right kxk triangle of the array A is not referenced.

leading dimension of A; Ida must be at least kK+1.
single-precision array of length at least (1 +(n-1)* abs(incx)).
storage spacing between elements of X; incx must not be zero.

single-precision scalar multiplier applied to vector y. If beta is zero, y
is not read.

single-precision array of length at least (1 +(n-1)* abs(incy)).
If beta is zero, y is not read.

storage spacing between elements of y; incy must not be zero.

Output

updated according to y = alpha*A*x+beta*y.

PG-05326-032_V02

89
NVIDIA

CUDA

CUBLAS Library

Reference: http://www.netlib.org/blas/ssbmv.f

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifk<0,n<0, incx ==0, or

incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSspmv()

920

void

cublasSspmv (char uplo, int n, float alpha,
const float *AP, const float *x, int incx,
float beta, float *y, int incy)

performs the matrix-vector operation
y = alpha*A*x+beta*y,

where alpha and beta are single-precision scalars, and x and y are
n-element single-precision vectors. A is a symmetric nxn matrix that
consists of single-precision elements and is supplied in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array AP. If uplo == "U~ or "u”, the upper triangular
part of Ais supplied in AP. If uplo == "L~ or "I 7, the lower triangular
part of A is supplied in AP.

n the number of rows and columns of matrix A; n must be at least zero.

alpha single-precision scalar multiplier applied to A * x.

AP single-precision array with at least (n* (n + 1))/2 elements. If
uplo == "U" or "u", array AP contains the upper triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i <= j,A[i.j] is stored in AP[i +(J * (j +1)/2)]. Ifuplo == "L"
or "7, the array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i >= j, A[i,j]is stored in AP[i +((2*n-j +1)*j)/2].

X

single-precision array of length at least (1 +(n-1)* abs(incx)).

incx storage spacing between elements of x; incx must not be zero.

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Input (continued)

beta single-precision scalar multiplier applied to vector y. If beta is zero, y
is not read.

y single-precision array of length at least (1 + (n-1)* abs(incy)).
If beta is zero, y is not read.

incy storage spacing between elements of y; incy must not be zeto.

Output

y updated according to y = alpha*A*x+beta*y.

Reference: http://www.netlib.org/blas/sspmv.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if n< 0, incx==0, or incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSspr()
void
cublasSspr (char uplo, int n, float alpha,
const float *x, int incx, float *AP)

performs the symmetric rank 1 operation

A = alpha*x*xT+A,

where alpha is a single-precision scalar, and x is an n-element single-
precision vector. A is a symmetric nxn matrix that consists of single-
precision elements and is supplied in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array AP. If uplo == "U~ or "u”, the upper triangular
part of Ais supplied in AP. If uplo == "L~ or "I 7, the lower triangular
part of A is supplied in AP.

n the number of rows and columns of matrix A; n must be at least zero.

alpha single-precision scalar multiplier applied to x * xT.

2 single-precision array of length at least (1 +(n-1)* abs(incx)).
PG-05326-032_V02 91

NVIDIA

CUDA CUBLAS Library

Input (continued)

incX storage spacing between elements of X; incx must not be zeto.

AP single-precision array with at least (n* (n+1))/2 elements. If
uplo == "U" or "u®, array AP contains the upper triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i <=]j,A[i,j]isstoredin AP[i+(J*(J+1)/2)].Ifuplo=="L"
or " 17, the array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column,; that is, if
i >= j, A[i,j] is stored in AP[i +((2*n-j +1)*j)/2].

Output

A

updated according to A = alpha*x*xT+A.

Reference: http://www .netlib.org/blas/sspr.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE if n <0 or incx ==

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSspr2()
void
cublasSspr2 (char uplo, int n, float alpha,
const float *x, int incx, const float *y,
int incy, float *AP)

performs the symmetric rank 2 operation
A = alpha*x*yT+alpha*y*xT+A,

where alpha is a single-precision scalar, and x and y are n-element
single-precision vectors. A is a symmetric nxn matrix that consists of
single-precision elements and is supplied in packed form.

92 PG-05326-032_V02
NVIDIA

CHAPTER 3

Input

Single-Precision BLAS2 Functions

uplo

alpha

incx

incy
AP

specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u”, only the upper
triangular part of A may be referenced and the lower triangular part of
Ais inferred. If uplo == "L" or "I1", only the lower triangular part of
A may be referenced and the upper triangular part of A is inferred.

the number of rows and columns of matrix A; n must be at least zero.
single-precision scalatr multiplier applied to x * yT +alpha*y * xT.
single-precision array of length at least (1 + (n-1)* abs(incx)).
storage spacing between elements of X; incx must not be zero.
single-precision array of length at least (1 +(n-1)* abs(incy)).
storage spacing between elements of y; incy must not be zero.

single-precision array with at least (n* (n+1))/2 elements. If

uplo == "U" or "u", array AP contains the upper triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i <= j,A[i,J] is stored in AP[i +(j * (j + 1)/2)]. Ifuplo == "L~
or 17, the array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i>=j,A[i,j]isstoredin AP[I+((2*n-J+1)*j)/2].

Output

A

updated according to A = alpha*x*yT+alpha*y*xT+A.

Reference: http://www.netlib.org/blas/sspr2.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE if n <0, incx ==0, or incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02

93
NVIDIA

CUDA

CUBLAS Library

Function cublasSsymv()

void

cublasSsymv (char uplo, int n, float alpha,

const float *A, int lda, const float *x,
int incx, float beta, float *y, int incy)

performs the matrix-vector operation

y = alpha*A*x+beta*y,

where alpha and beta are single-precision scalars, and x and y are
n-element single-precision vectors. A is a symmetric nxn matrix that
consists of single-precision elements and is stored in either upper or
lower storage mode.

Input

uplo

alpha

Ida

incx
beta

94

specifies whether the upper or lower triangular part of the array A is
referenced. If uplo == "U" or "u”, the symmetric matrix A is stored in
upper storage mode; that is, only the upper triangular part of A is
referenced while the lower triangular part of A is inferred. If uplo ==
"L" or "I7, the symmetric matrix A is stored in lower storage mode;
that is, only the lower triangular part of A is referenced while the upper
triangular part of A is inferred.

specifies the number of rows and the number of columns of the
symmetric matrix A; n must be at least zero.
single-precision scalar multiplier applied to A * x.

single-precision array of dimensions (Ida, n). Ifuplo == "U" or "u®,
the leading nxn upper triangular part of the array A must contain the
upper triangular part of the symmetric matrix, and the strictly lower
triangular part of A is not referenced. If uplo == "L" or "1", the
leading nxn lower triangular part of the array A must contain the lower
triangular part of the symmetric matrix, and the strictly upper
triangular part of A is not referenced.

leading dimension of A; Ida must be at least max(1, n).
single-precision array of length at least (1 +(n-1)* abs(incx)).
storage spacing between elements of X; incx must not be zero.

single-precision scalar multiplier applied to vector y.

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Input (continued)

y single-precision array of length at least (1 +(n-1)* abs(incy)).
If beta is zero, y is not read.

incy storage spacing between elements of y; incy must not be zero.

Output

y updated according to y = alpha*A*x +beta*y.

Reference: http://www .netlib.org/blas/ssymv.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE ifn<0,incx==0,or incy ==

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSsyr()
void
cublasSsyr (char uplo, int n, float alpha,
const float *x, int incx, float *A, int 1da)

performs the symmetric rank 1 operation

A = alpha*x*xT+A,
where alpha is a single-precision scalar, x is an n-element single-
precision vector, and A is an nxn symmetric matrix consisting of single-

precision elements. A is stored in column-major format, and Ida is the
leading dimension of the two-dimensional array containing A.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u®, only the upper
triangular part of A is referenced. If uplo == "L" or "17, only the
lower triangular part of A is referenced.

n the number of rows and columns of matrix A; n must be at least zero.
alpha single-precision scalar multiplier applied to x * xT.
X

single-precision array of length at least (1 +(n-1)* abs(incx)).

PG-05326-032_V02 95

NVIDIA

CUDA

CUBLAS Library

Input (continued)

incx the storage spacing between elements of X; incx must not be zeto.

A single-precision array of dimensions (Ida, n). Ifuplo=="U" or "u”,
A contains the upper triangular part of the symmetric matrix, and the
strictly lower triangular part is not referenced. If uplo == "L" or "1%,
A contains the lower triangular part of the symmetric matrix, and the
strictly upper triangular part is not referenced.

Ida leading dimension of the two-dimensional array containing A;
Ida must be at least max (1, n).

Output
A

updated according to A = alpha* x> xT+A.

Reference: http://www.netlib.org/blas/ssyr.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if n<0orincx ==

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSsyr2()

96

void

cublasSsyr2 (char uplo, int n, float alpha,
const float *x, int incx, const float *y,
int incy, float *A, int lda)

performs the symmetric rank 2 operation
A = alpha*x*yT+alpha*y*xT+A,

where alpha is a single-precision scalar, x and y are n-element single-
precision vectors, and A is an nxn symmetric matrix consisting of
single-precision elements.

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u®, only the upper
triangular part of A is referenced and the lower triangular part of A is
inferred. If uplo == "L" or "17, only the lower triangular part of A is
referenced and the upper triangular part of A is inferred.

n the number of rows and columns of matrix A; n must be at least zero.

alpha gingle-precision scalar multiplier applied to x * yT+y * xT .

single-precision array of length at least (1 + (n-1)* abs(incx)).

incx storage spacing between elements of X; incx must not be zeto.

y single-precision array of length at least (1 +(n-1)* abs(incy)).

incy storage spacing between elements of y; incy must not be zeto.

A single-precision array of dimensions (lda, n). If uplo=="U" or "u”",
A contains the upper triangular part of the symmetric matrix, and the
strictly lower triangular part is not referenced. If uplo=="L" or "I ",

A contains the lower triangular part of the symmetric matrix, and the
strictly upper triangular part is not referenced.

Ida leading dimension of A; Ida must be at least max(1, n).

Output
A

updated according to A = alpha*x*yT+alpha*y*xT+A.

Reference: http://www.netlib.org/blas/ssyr2.f
Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE if n< 0, incx==0, or incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 97
NVIDIA

CUDA CUBLAS Library

Function cublasStbmv()
void
cublasStbmv (char uplo, char trans, char diag, int n,

int k, const float *A, int lda, float *x,
int incx)

performs one of the matrix-vector operations
X = op(A) *x,
where op(A) = A or op(A) = AT,
x is an n-element single-precision vector, and A is an nxn, unit or non-

unit, upper or lower, triangular band matrix consisting of single-
precision elements.

Input

uplo specifies whether the matrix A is an upper or lower triangular band
matrix. If uplo == "U" or "u”, Ais an upper triangular band matrix. If
uplo=="L" or "1, Ais a lower triangular band matrix.

trans specifies op(A). If trans == *N" or "n", op(A) = A.
If trans == "T", "t", "C", or "c", op(A) = AT.
diag specifies whether or not matrix A is unit triangular. If diag == "U" or

"u®, Ais assumed to be unit triangular. If diag == "N" or "n", Ais
not assumed to be unit triangular.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

k specifies the number of superdiagonals or subdiagonals. If uplo ==
"U" or "u”, k specifies the number of superdiagonals. If uplo == "L*"
or "I* k specifies the number of subdiagonals; k must at least be zero.

A single-precision array of dimension (lda, n). If uplo == "U" or "u",
the leading (k+1)xn part of the array A must contain the upper
triangular band matrix, supplied column by column, with the leading
diagonal of the matrix in row K+1 of the array, the first superdiagonal
starting at position 2 in row K, and so on. The top left kxk triangle of
the array A is not referenced. If uplo == "L" or "I, the leading
(k+1)xn part of the array A must contain the lower triangular band
matrix, supplied column by column, with the leading diagonal of the
matrix in row 1 of the array, the first subdiagonal starting at position 1
in row 2, and so on. The bottom right kxk triangle of the array is not
referenced.

98 PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

Input (continued)

Ida is the leading dimension of A; Ida must be at least k+1.

X single-precision array of length at least (1 +(n—-1)* abs(incx)).

On entry, X contains the source vector. On exit, X is overwritten with
the result vector.

incx specifies the storage spacing for elements of X; incx must not be zero.

Output

X updated according to x = op(A) * X.

Reference: http://www.netlib.org/blas/stbmv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0,k<0,or incx ==

CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough
internal scratch vector memory
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasStbsv()

void

cublasStbsv (char uplo, char trans, char diag, int n,
int k, const float *A, int lda, float *X,
int incx)

solves one of the systems of equations

op(A) *x = Db,

where op(A) = A or op(A) = AT,
b and x are n-element vectors, and A is an nxn, unit or non-unit, upper
or lower, triangular band matrix with k+1 diagonals.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

PG-05326-032_V02 99

NVIDIA

CUDA

Input

CUBLAS Library

uplo

trans

diag

incx

specifies whether the matrix is an upper or lower triangular band
matrix: If uplo == "U" or "u”, Ais an upper triangular band matrix. If
uplo=="L" or "1, Ais alower triangular band matrix.

specifies op(A). If trans == "N" or "n", op(A) = A.

If trans=="T", "t", "C", or "c", op(A) = AT,

specifies whether A is unit triangular. If diag == "U" or "u”, Ais
assumed to be unit triangular; that is, diagonal elements are not read

and are assumed to be unity. If diag == "N or "n*", Ais not assumed
to be unit triangular.

the number of rows and columns of matrix A; n must be at least zero.

specifies the number of superdiagonals or subdiagonals.

If uplo == "U" or "u", k specifies the number of superdiagonals. If
uplo=="L" or "I", k specifies the number of subdiagonals; k must
be at least zero.

single-precision array of dimension (lda, n). If uplo == "U" or "u",
the leading (k+1)xn part of the array A must contain the upper
triangular band matrix, supplied column by column, with the leading
diagonal of the matrix in row k+1 of the array, the first superdiagonal
starting at position 2 in row K, and so on. The top left kxk triangle of
the array A is not referenced. If uplo == "L" or " 17, the leading
(k+1)xn part of the array A must contain the lower triangular band
matrix, supplied column by column, with the leading diagonal of the
matrix in row 1 of the array, the first sub-diagonal starting at position
11in row 2, and so on. The bottom right kxk triangle of the array is not
referenced.

single-precision array of length at least (1 +(n-1)* abs(incx)).
On entry, X contains the n-element right-hand side vector b. On exit, it
is overwritten with the solution vector X.

storage spacing between elements of X; incx must not be zero.

Output

X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www .netlib.org/blas/stbsv.f

100

PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE if incx==0o0rn<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasStpmv()

void
cublasStpmv (char uplo, char trans, char diag, int n,
const float *AP, float *x, Int incx)

performs one of the matrix-vector operations
X = op(A) *x,
where op(A) = A or op(A) = AT,
x is an n-element single-precision vector, and A is an nxn, unit or non-

unit, upper or lower, triangular matrix consisting of single-precision
elements.

Input

uplo specifies whether the matrix A is an upper or lower triangular mattix.
If uplo == "U~ or "u”, Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais a lower triangular matrix.

trans gpecifies op(A). If trans == "N or "n", op(A) = A.
If trans == "T*, "t", "C", or "c", op(A) = AT.

diag specifies whether or not matrix A is unit triangular.
If diag == "U" or "u", A is assumed to be unit triangular.
If diag == "N or "n", A is not assumed to be unit triangulat.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

AP single-precision array with at least (n* (n+1))/2 elements. If

uplo == "U" or "u", the array AP contains the upper triangular part of
the symmetric matrix A, packed sequentially, column by column; that
is, if i <= j, A[i,j] is stored in AP[i + (j * (j +1)/2)]. If uplo ==
"L" or "17, array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i >= j, A[i,j] is stored in AP[i +((2*n—j +1)*j)/2].

PG-05326-032_V02 101

NVIDIA

CUDA CUBLAS Library

Input (continued)
X

single-precision array of length at least (1 +(n-1)* abs(incx)).
On entry, X contains the source vector. On exit, X is overwritten with
the result vector.

incx specifies the storage spacing for elements of X; incx must not be zero.

Output
X

updated according to X = op(A) * X.

Reference: http://www .netlib.org/blas/stpmv.f
Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifincx==0 orn<0
CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough

internal scratch vector memory
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasStpsv()
void
cublasStpsv (char uplo, char trans, char diag, int n,
const float *AP, float *X, Int incx)

solves one of the systems of equations

op(A) *x = b,

where op(A) = A or op(A) = AT,
b and x are n-element single-precision vectors, and A is an nxn, unit or
non-unit, upper or lower, triangular matrix.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

102 PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

Input

uplo specifies whether the matrix is an upper or lower triangular matrix. If
uplo == "U" or "u”, Ais an upper triangular matrix. If uplo == "L*"
or "I", Ais a lower triangular matrix.

trans gpecifies op(A). If trans == "N” or "n”, op(A) = A.
If trans=="T", "t", "C", or "c", op(A) = AT,

diag specifies whether A is unit triangular. If diag == "U" or "u", A s
assumed to be unit triangular; that is, diagonal elements are not read

and are assumed to be unity. If diag == "N or "n*", Ais not assumed
to be unit triangular.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

AP single-precision array with at least (n* (n+ 1))/2 elements. If

uplo == "U" or "u", array AP contains the upper triangular matrix A,
packed sequentially, column by column; that is, if § <= j, A[i,J] is
stored in AP[i +(j * (j +1)/2)]. Ifuplo == "L" or " 1", array AP
contains the lower triangular matrix A, packed sequentially, column by
column; that is, if 1 >= j, A[i,]j] is stored in

AP[i +((2*n-j+1)*j)/2]. When diag == "U*" or "u", the
diagonal elements of A are not referenced and are assumed to be unity.
single-precision array of length at least (1 +(n-1)* abs(incx)).
On entry, X contains the n-element right-hand side vector b. On exit, it
is overwritten with the solution vector X.

incx storage spacing between elements of X; incx must not be zeto.

Output
X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www.netlib.org/blas/stpsv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if incx==0o0rn<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 103

NVIDIA

CUDA

CUBLAS Library

Function cublasStrmv()

void

cublasStrmv (char uplo, char trans, char diag, int n,

const float *A, int lda, float *x, iInt incx)

performs one of the matrix-vector operations

x = op(A) *Xx,
where op(A) = A or op(A) = AT,

x is an n-element single-precision vector, and A is an nxn, unit or non-
unit, upper or lower, triangular matrix consisting of single-precision

elements.
Input
uplo specifies whether the matrix A is an upper or lower triangular mattix.

trans

diag

Ida

incx

If uplo == "U" or "u”, Ais an upper triangular matrix.

If uplo == "L" or "17, Ais an lower triangular matrix.

specifies op(A). If trans == *N” or "n~, op(A) = A.

If trans=="T", "t", "C", or "c", op(A) = AT,

specifies whether or not A is a unit triangular matrix. If diag == "U*"
or "u”, Ais assumed to be unit triangular. If diag == *N" or "n", Ais
not assumed to be unit triangular.

specifies the number of rows and columns of the matrix A; n must be
at least zero.

single-precision array of dimensions (lda, n). If uplo=="U" or "u”",
the leading nxn upper triangular part of the array A must contain the
upper triangular matrix, and the strictly lower triangular part of A is
not referenced. If uplo == "L" or "17, the leading nxn lower
triangular part of the array A must contain the lower triangular matrix,
and the strictly upper triangular part of A is not referenced. When
diag == "U" or "u”, the diagonal elements of A are not referenced
either, but are assumed to be unity.

leading dimension of A; lda must be at least max (1, n).
single-precision array of length at least (1 +(n-1)* abs(incx)).
On entry, X contains the source vector. On exit, X is overwritten with
the result vector.

the storage spacing between elements of X; incx must not be zero.

104

PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

Output

X updated according to X = op(A) * X.

Reference: http://www.netlib.org/blas/strmv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifincx==0o0rn<0

CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough
internal scratch vector memory
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasStrsv()

void
cublasStrsv (char uplo, char trans, char diag, int n,
const float *A, int lda, float *x, iInt incx)

solves a system of equations

op(A) *x = b,

where op(A) = A or op(A) = AT,
b and x are n-element single-precision vectors, and A is an nxn, unit or
non-unit, upper or lower, triangular matrix consisting of single-
precision elements. Matrix A is stored in column-major format, and

Ida is the leading dimension of the two-dimensional array
containing A.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u”, only the upper
triangular part of A may be referenced. If uplo == "L" or "1+, only
the lower triangular part of A may be referenced.

trans gpecifies op(A). If trans == "N” or "n", op(A) = A.
If trans=="T", "t", "C", or "c", op(A) = AT,

PG-05326-032_V02 105

NVIDIA

CUDA

106

CUBLAS Library

Input (continued)

diag specifies whether or not A is a unit triangular matrix.
If diag == "U" or "u", A is assumed to be unit triangular.
If diag == "N" or "n", A is not assumed to be unit triangular.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

A single-precision array of dimensions (lda, n). If uplo=="U" or "u”",
A contains the upper triangular part of the symmetric matrix, and the
strictly lower triangular part is not referenced. If uplo=="L" or "I ",
A contains the lower triangular part of the symmetric matrix, and the
strictly upper triangular part is not referenced.

Ida leading dimension of the two-dimensional array containing A;
Ida must be at least max(d, n).

X single-precision array of length at least (1 +(n-1)* abs(incx)).
On entry, X contains the n-element, right-hand-side vector b. On exit,
it is overwritten with the solution vector X.

incX the storage spacing between elements of X; incx must not be zero.

Output

X updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www.netlib.org/blas/strsv.f
Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if incx==00rn<0
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

Single-Precision Complex BLAS2 Functions

The two single-precision complex BLAS2 functions are as follows:

o000 0000 D000 0D O DO

“Function cublasCgbmv()” on page 108
“Function cublasCgemv()” on page 109
“Function cublasCgerc()” on page 111
“Function cublasCgeru()” on page 112
“Function cublasChbmv()” on page 113
“Function cublasChemv()” on page 115
“Function cublasCher()” on page 116
“Function cublasCher2()” on page 117
“Function cublasChpmv()” on page 119
“Function cublasChpr()” on page 120
“Function cublasChpr2()” on page 121
“Function cublasCtbmv()” on page 123
“Function cublasCtbsv()” on page 125
“Function cublasCtpmv()” on page 126
“Function cublasCtpsv()” on page 128
“Function cublasCtrmv()” on page 129
“Function cublasCtrsv()” on page 131

PG-05326-032_V02

NVIDIA

107

CUDA CUBLAS Library

Function cublasCgbmv()
void
cublasCgbmv (char trans, int m, int n, int kl, int ku,
cuComplex alpha, const cuComplex *A,
int Ida, const cuComplex *x, int Incx,
cuComplex beta, cuComplex *y, int incy)

performs one of the matrix-vector operations

y = alpha*op(A) * x + beta*y, where

op(A) = A, op(A) = AT,or op(A) = AF;
alpha and beta are single-precision complex scalars, and x and y are
single-precision complex vectors. A is an mxn band matrix consisting

of single-precision complex elements with kl subdiagonals and ku
superdiagonals.

Input

trans gpecifies op(A). If trans == "N or "n”, op(A) = A.
If trans == "T" or "t", op(A) = AT.
If trans == "C", or "c", op(A) = AM,

specifies the number of rows of matrix A; m must be at least zero.

specifies the number of columns of matrix A; n must be at least zero.

Kkl specifies the number of subdiagonals of matrix A; KI must be at least
Zero.

ku specifies the number of superdiagonals of matrix A; Ku must be at
least zero.

alpha single-precision complex scalar multiplier applied to op(A).

A single-precision complex array of dimensions (lda, n). The leading
(kI+ku+1)xn part of the array A must contain the band matrix A,
supplied column by column, with the leading diagonal of the matrix in
row (Ku+1) of the array, the first superdiagonal starting at position 2 in
row Kku, the first subdiagonal starting at position 1 in row (ku+2), and
so on. Elements in the array A that do not correspond to elements in
the band matrix (such as the top left kuxku triangle) are not
referenced.

Ida leading dimension A; lda must be at least (kl+ku+1).

108 PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

Input (continued)

X single-precision complex array of length at least
(1+(n-1)*abs(incx)) if trans == "N" or "n", else at least
(1+(m-1)*abs(incx)).

incx specifies the increment for the elements of x; incx must not be zero.

beta single-precision complex scalar multiplier applied to vector y. If beta
is zero, y is not read.

y single-precision complex array of length at least
(1+(m-1)*abs(incy)) if trans == "N" or "n", else at least
(1+(n-1)*abs(incy)). If beta is zero, y is not read.

incy on entry, incy specifies the increment for the elements of y; incy
must not be zero.

Output

y updated according to y = alpha > op(A) *x +beta*y.

Reference: http://www.netlib.org/blas/cgbmv.f
Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0, or

incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCgemv()

void

cublasCgemv (char trans, int m, int n,
cuComplex alpha, const cuComplex *A,
int Ida, const cuComplex *x, int iIncx,
cuComplex beta, cuComplex *y, iInt incy)

performs one of the matrix-vector operations
y = alpha*op(A) *x+beta*y,
where op(A) = A, op(A) = AT, or op(A) = AH;

PG-05326-032_V02 109

NVIDIA

CUDA

CUBLAS Library

alpha and beta are single-precision complex scalars; and x and y are
single-precision complex vectors. A is an mxn matrix consisting of
single-precision complex elements. Matrix A is stored in column-major
format, and Ida is the leading dimension of the two-dimensional array
in which A is stored.

Input

trans

alpha

Ida

incx
beta

incy

specifies op(A). If trans == "N" or "n", op(A) = A.

If trans == "T" or "t", op(A) = AT.

If trans == "C" or "c", op(A) = AH,

specifies the number of rows of matrix A; m must be at least zero.
specifies the number of columns of matrix A; n must be at least zero.
single-precision complex scalar multiplier applied to op(A).

single-precision complex array of dimensions (lda, n) if trans ==
"N" or "n", of dimensions (Ida, m) otherwise; lda must be at least
max(1, m) if trans == "N" or "n" and at least max(1, n) otherwise.

leading dimension of two-dimensional array used to store matrix A.
single-precision complex array of length at least
(1+(n-1)*abs(incx)) if trans == "N" or "n", else at least
(L+(m-1)*abs(incx)).

specifies the storage spacing for elements of X; incx must not be zero.

single-precision complex scalar multiplier applied to vector y. If beta
is zero, y is not read.

single-precision complex array of length at least
(1+(m=1)*abs(incy)) if trans == "N" or "n", else at least
(1+(n-1)*abs(incy)).

the storage spacing between elements of y; incy must not be zero.

Output

y

updated according to y = alpha* op(A) *x+beta*y.

Reference: http://www.netlib.org/blas/cgemv.f

110

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0, or

incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCgerc()
void
cublasCgerc (int m, int n, cuComplex alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int lda)

performs the symmetric rank 1 operation

A = alpha * x * yH + A,

where alpha is a single-precision complex scalar, x is an m-element
single-precision complex vector, y is an n-element single-precision
complex vector, and A is an mxn matrix consisting of single-precision
complex elements. Matrix A is stored in column-major format, and lda
is the leading dimension of the two-dimensional array used to store A.

Input

m specifies the number of rows of the matrix A; m must be at least zero.
n specifies the number of columns of matrix A; n must be at least zero.
alpha ingle-precision complex scalar multiplier applied to x * yH.

X single-precision complex array of length at least

(L+(m-1)*abs(incx)).
incX the storage spacing between elements of X; Incx must not be zero.
y single-precision complex array of length at least
(1+(n-1)*abs(incy)).
incy the storage spacing between elements of y; incy must not be zero.
A single-precision complex array of dimensions (lda, n).

lda leading dimension of two-dimensional array used to store matrix A.

PG-05326-032_V02 111

NVIDIA

CUDA

CUBLAS Library

Output
A

updated according to A = alpha*x*yH+A.

Reference: http://www.netlib.org/blas/cgerc.t

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0, or

incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCgeru()

112

void

cublasCgeru (int m, int n, cuComplex alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int lda)

performs the symmetric rank 1 operation

A = alpha * x * yT + A,

where alpha is a single-precision complex scalar, x is an m-element
single-precision complex vector, y is an n-element single-precision
complex vector, and A is an mxn matrix consisting of single-precision
complex elements. Matrix A is stored in column-major format, and Ida
is the leading dimension of the two-dimensional array used to store A.

Input

m specifies the number of rows of the matrix A; m must be at least zero.
n specifies the number of columns of matrix A; n must be at least zero.
alpha

single-precision complex scalar multiplier applied to x * yT.

X single-precision complex array of length at least
(1+(m-1)*abs(incx)).

incX the storage spacing between elements of X; Incx must not be zero.

y single-precision complex array of length at least
(1+(n-1)*abs(incy)).

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Input (continued)

incy the storage spacing between elements of y; incy must not be zero.

A single-precision complex array of dimensions (lda, n).

Ida leading dimension of two-dimensional array used to store matrix A.
Output

A

updated according to A = alpha*x*yT+A.

Reference: http://www.netlib.org/blas/cgeru.f

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0, or

incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasChbmv()
void
cublasChbmv (char uplo, int n, int k, cuComplex alpha,
const cuComplex *A, int lda,
const cuComplex *x, int incx,
cuComplex beta, cuComplex *y, int incy)

performs the matrix-vector operation
y = alpha*A*x+beta*y,

where alpha and beta are single-precision complex scalars, and x and
y are n-element single-precision complex vectors. A is a Hermitian nxn
band matrix that consists of single-precision complex elements, with k
superdiagonals and the same number of subdiagonals.

Input

uplo specifies whether the upper or lower triangular part of the Hermitian
band matrix A is being supplied. If uplo == "U" or "u”, the upper
triangular part is being supplied. If uplo == "L" or "1, the lower
triangular part is being supplied.

n specifies the number of rows and the number of columns of the
symmetric matrix A; n must be at least zero.

PG-05326-032_V02 113
NVIDIA

CUDA

114

CUBLAS Library

Input (continued)

k

alpha

Ida

incx
beta
y

incy

specifies the number of superdiagonals of matrix A. Since the matrix is
Hermitian, this is also the number of subdiagonals; k must be at least
Zeto.

single-precision complex scalar multiplier applied to A * x.
single-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u”, the leading (k + 1)xn part of array A must contain the
upper triangular band of the Hermitian matrix, supplied column by
column, with the leading diagonal of the matrix in row k + 1 of the
array, the first superdiagonal starting at position 2 in row K, and so on.
The top left kxk triangle of array A is not referenced. When uplo ==
"L" or 17, the leading (k + 1)xn part of array A must contain the
lower triangular band part of the Hermitian matrix, supplied column
by column, with the leading diagonal of the matrix in row 1 of the
array, the first subdiagonal starting at position 1 in row 2, and so on.
The bottom right kxk triangle of array A is not referenced. The
imaginary parts of the diagonal elements need not be set; they are
assumed to be zero.

leading dimension of A; Ida must be at least k + 1.
single-precision complex array of length at least
(1+(n-1)*abs(incx)).

storage spacing between elements of X; incx must not be zero.
single-precision complex scalar multiplier applied to vector y.
single-precision complex array of length at least

(1+(n-1)*abs(incy)). If beta is zero, y is not read.

storage spacing between elements of y; incy must not be zero.

Output

y

updated according to y = alpha*A*x+beta*y.

Reference: http://www.netlib.org/blas/chbmv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE ifk<0,n<0, incx==0, or

incy ==

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Function cublasChemv()
void
cublasChemv (char uplo, int n, cuComplex alpha,
const cuComplex *A, int lda,
const cuComplex *x, int incx,
cuComplex beta, cuComplex *y, int incy)

performs the matrix-vector operation
y = alpha*A*x+beta*y,

where alpha and beta are single-precision complex scalars, and x and
y are n-element single-precision complex vectors. A is a Hermitian nxn
matrix that consists of single-precision complex elements and is stored
in either upper or lower storage mode.

Input

uplo specifies whether the upper or lower triangular part of the array A is
referenced. If uplo == "U" or "u”, the Hermitian matrix A is stored in
upper storage mode; that is, only the upper triangular part of A is
referenced while the lower triangular part of A is inferred. If uplo ==
"L" or 17, the Hermitian matrix A is stored in lower storage mode;
that is, only the lower triangular part of A is referenced while the upper
triangular part of A is inferred.

n specifies the number of rows and the number of columns of the
symmetric matrix A; N must be at least zero.

alpha single-precision complex scalar multiplier applied to A * x.

A single-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u”, the leading nxn upper triangular part of the array A must
contain the upper triangular part of the Hermitian matrix, and the
strictly lower triangular part of A is not referenced. If uplo == "L" or
"17, the leading nxn lower triangular part of the array A must contain
the lower triangular part of the Hermitian matrix, and the strictly
upper triangular part of A is not referenced. The imaginary parts of the
diagonal elements need not be set; they are assumed to be zero.

Ida leading dimension of A; Ida must be at least max(1, n).
X single-precision complex array of length at least
(1+(n-1)*abs(incx)).

incx storage spacing between elements of X; incx must not be zero.

PG-05326-032_V02 115
NVIDIA

CUDA

CUBLAS Library

Input (continued)

beta single-precision complex scalar multiplier applied to vector y.
y single-precision complex array of length at least
(1+(n-1)*abs(incy)). If beta is zero, y is not read.

incy storage spacing between elements of y; incy must not be zeto.

Output

y updated according to y = alpha*A*x+beta*y.

Reference: http://www.netlib.org/blas/chemv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0, incx ==0, or incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCher()

116

void

cublasCher (char uplo, int n, float alpha,
const cuComplex *x, int incx, cuComplex *A,
int 1da)

performs the Hermitian rank 1 operation
A = alpha*x*x"+A,

where alpha is a single-precision scalar, x is an n-element single-
precision complex vector, and A is an nxn Hermitian matrix consisting
of single-precision complex elements. A is stored in column-major
format, and Idais the leading dimension of the two-dimensional array
containing A.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u®, only the upper
triangular part of A is referenced. If uplo == "L" or 17, only the
lower triangular part of A is referenced.

n the number of rows and columns of matrix A; n must be at least zero.

PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

Input (continued)

alpha

incx

Ida

single-precision scalar multiplier applied to

x * xH.

single-precision complex array of length at least
(1+(n-1)*abs(incx)).

the storage spacing between elements of X; incx must not be zero.
single-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u", A contains the upper triangular part of the Hermitian
matrix, and the strictly lower triangular part is not referenced. If uplo
== "L" or 17, A contains the lower triangular part of the Hermitian
matrix, and the strictly upper triangular part is not referenced. The

imaginary parts of the diagonal elements need not be set, they are
assumed to be zero, and on exit they are set to zero.

leading dimension of the two-dimensional array containing A;
Ida must be at least max (1, n).

Output

updated according to
A = alpha*x*xH+A.

Reference: http://www.netlib.org/blas/cher.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if n<0or incx ==

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCher2()

void

cublasCher2 (char uplo, int n, cuComplex alpha,

const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int lda)

performs the Hermitian rank 2 operation

A::ahma*x*yH+auma*y*xH+A,

PG-05326-032_V02

117
NVIDIA

CUDA

118

CUBLAS Library

where alpha is a single-precision complex scalar, x and y are n-
element single-precision complex vectors, and A is an nxn Hermitian
matrix consisting of single-precision complex elements.

Input

uplo

alpha

incx

incy

Ida

specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u®, only the upper
triangular part of A may be referenced and the lower triangular part of
Ais inferred. If uplo == "L" or " 1", only the lower triangular part of
A may be referenced and the upper triangular part of A is inferred.
the number of rows and columns of matrix A; n must be at least zero.
single-precision complex scalar multiplier applied to

X* yH and whose conjugate is applied to y * x".

single-precision array of length at least (1 +(n-1)* abs(incx)).
the storage spacing between elements of X; incx must not be zero.
single-precision array of length at least (1 +(n-1)* abs(incy)).
the storage spacing between elements of y; incy must not be zero.
single-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u”, A contains the upper triangular part of the Hermitian
matrix, and the strictly lower triangular part is not referenced. If uplo
== "L" or "1", A contains the lower triangular part of the Hermitian
matrix, and the strictly upper triangular part is not referenced. The
imaginary parts of the diagonal elements need not be set, they are
assumed to be zero, and on exit they are set to zeto.

leading dimension of A; Ida must be at least max (1, n).

Output

updated according to

A= alpha*x*yH+alpha*y*xH+A

Reference: http://www.netlib.org/blas/cher2.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if n<0, incx ==0, or incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Function cublasChpmv()

void

cublasChpmv (char uplo, int n, cuComplex alpha,
const cuComplex *AP, const cuComplex *x,
int incx, cuComplex beta, cuComplex *y,
int incy)

performs the matrix-vector operation

y = alpha*A*x+beta*y,

where alpha and beta are single-precision complex scalars, and x and
y are n-element single-precision complex vectors. A is a Hermitian nxn
matrix that consists of single-precision complex elements and is
supplied in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array AP. If uplo == "U" or "u”, the upper triangular
part of Ais supplied in AP. If uplo == "L " or "I 7, the lower triangular
part of A is supplied in AP.

n the number of rows and columns of matrix A; n must be at least zero.

alpha single-precision complex scalar multiplier applied to A * x.

AP single-precision complex array with at least (n* (n+1))/2 elements.
If uplo == "U" or "u", array AP contains the upper triangular part of
the Hermitian matrix A, packed sequentially, column by column; that

is, if # <= j, A[1,]J] is stored in AP[i+(J *(J +1)/2)]. Ifuplo ==
"L" or 17, the array AP contains the lower triangular part of the
Hermitian matrix A, packed sequentially, column by column; that is, if

i>=j,A[i,j]isstoredin AP[i+((2*n-j+1)*j)/2]. The
imaginary parts of the diagonal elements need not be set; they are
assumed to be zero.

X single-precision complex array of length at least
(1+(n-1)*abs(incx)).

incx storage spacing between elements of X; incx must not be zero.

beta single-precision scalar multiplier applied to vector y.

y single-precision array of length at least (1 + (n-1) * abs(incy)).
If beta is zero, y is not read.

incy storage spacing between elements of y; incy must not be zero.

PG-05326-032_V02 119
NVIDIA

CUDA

CUBLAS Library

Output

y updated according to y = alpha*A*x+beta*y.

Reference: http://www.netlib.org/blas/chpmv.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if n <0, incx ==0, or incy ==

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasChpr()

120

void
cublasChpr (char uplo, int n, float alpha,
const cuComplex *x, int incx, cuComplex *AP)

performs the Hermitian rank 1 operation

A = alpha*x*x"+A,

where alpha is a single-precision scalar, x is an n-element single-
precision complex vector, and A is an nxn Hermitian matrix consisting
of single-precision complex elements that is supplied in packed form.
Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array AP. If uplo == "U~ or "u”, the upper triangular
part of Ais supplied in AP. If uplo == "L~ or "I 7, the lower triangular
part of A is supplied in AP.

n the number of rows and columns of matrix A; n must be at least zero.

alpha single-precision scalar multiplier applied to x * xH.

X single-precision complex array of length at least
(1+(n-1)*abs(incx)).

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Input (continued)

incX the storage spacing between elements of X; incx must not be zero.

AP single-precision complex array with at least (n* (n+1))/2 elements.

If uplo == "U" or "u", array AP contains the upper triangular part of
the Hermitian matrix A, packed sequentially, column by column; that
is, if # <= j, A[1,]J] is stored in AP[i+(J *(J +1)/2)]. Ifuplo ==
"L" or 17, the array AP contains the lower triangular part of the
Hermitian matrix A, packed sequentially, column by column; that is, if
i>=j,A[i,j]isstoredin AP[I+((2*n-j+1)*j)/2].The
imaginary parts of the diagonal elements need not be set; they are
assumed to be zero, and on exit they are set to zero.

Output
A

updated according to A = alpha* x> x"H+A.

Reference: http://www.netlib.org/blas/chpr.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0orincx ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasChpr2()
void
cublasChpr2 (char uplo, int n, cuComplex alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy, cuComplex *AP)

performs the Hermitian rank 2 operation
A= alpha*x*yH+aIpha*y*xH+A,

where alpha is a single-precision complex scalar, x and y are n-
element single-precision complex vectors, and A is an nxn Hermitian

PG-05326-032_V02 121
NVIDIA

CUDA

122

CUBLAS Library

matrix consisting of single-precision complex elements that is supplied
in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u”, only the upper
triangular part of A may be referenced and the lower triangular part of
Ais inferred. If uplo == "L" or "I ", only the lower triangular part of
A may be referenced and the upper triangular part of A is inferred.

n the number of rows and columns of matrix A; n must be at least zero.

alpha single-precision complex scalar multiplier applied to
x *y" and whose conjugate is applied to y * x".

X single-precision complex array of length at least
(1+(n-1)*abs(incx)).

incx the storage spacing between elements of X; incx must not be zero.

y single-precision complex array of length at least
(1+(n-1)*abs(incy)).

incy the storage spacing between elements of y; incy must not be zero.

AP single-precision complex array with at least (n*(n+1))/2 elements.

If uplo == "U" or "u", array AP contains the upper triangular part of
the Hermitian matrix A, packed sequentially, column by column; that
is, if i <= j, A[i,] is stored in AP[i +(j * (j + 1)/2)]. If uplo ==
"L" or 17, the array AP contains the lower triangular part of the
Hermitian matrix A, packed sequentially, column by column; that is, if
i >= j, A[i,j] is stored in AP[i +((2*n—j +1)* j)/2]. The
imaginary parts of the diagonal elements need not be set; they are
assumed to be zero, and on exit they are set to zero.

Output
A

updated according to A = alpha* x> yH +alpha*y>* x+ A

Reference: http://www.netlib.org/blas/chpr2.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if n <0, incx == 0, or incy ==
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

Function cublasCtbmv()

void

cublasCtbmv (char uplo, char trans, char diag, int n,

int k, const cuComplex *A, int lda,
cuComplex *x, Int incx)

performs one of the matrix-vector operations
x = op(A) *x,
where op(A) = A, op(A) = AT, or op(A) = AH;

x is an n-element single-precision complex vector, and A is an nxn, unit
or non-unit, upper or lower, triangular band matrix consisting of
single-precision complex elements.

Input

uplo

trans

PG-05326-032_V02

specifies whether the matrix A is an upper or lower triangular band
matrix. If uplo == "U" or "u®, Ais an upper triangular band matrix. If
uplo=="L" or "I", Ais a lower triangular band matrix.
specifies op(A). If trans == "N" or "n", op(A) = A.

If trans == "T" or "t", op(A) = AT.

If trans == "C", or "c", op(A) = AM,

specifies whether or not matrix A is unit triangular. If diag == "U" or
"u®, Ais assumed to be unit triangular. If diag == "N" or "n®, Ais
not assumed to be unit triangular.

specifies the number of rows and columns of the matrix A; n must be
at least zero.

specifies the number of superdiagonals or subdiagonals. If uplo ==
"U” or "u”, k specifies the number of superdiagonals. If uplo == "L"
or """ Kk specifies the number of subdiagonals; k must at least be zero.

123
NVIDIA

CUDA

124

CUBLAS Library

Input (continued)

A

Ida

incx

single-precision complex array of dimension (lda, n). If uplo ==
"U" or "u”, the leading (k+1)%n part of the array A must contain the
upper triangular band matrix, supplied column by column, with the
leading diagonal of the matrix in row K+1 of the array, the first
superdiagonal starting at position 2 in row K, and so on. The top left
kxk triangle of the array A is not referenced. If uplo == "L" or "1°7,
the leading (k+1)xn part of the array A must contain the lower
triangular band matrix, supplied column by column, with the leading
diagonal of the matrix in row 1 of the array, the first subdiagonal
starting at position 1 in row 2, and so on. The bottom right kxk
triangle of the array is not referenced.

is the leading dimension of A; Ida must be at least k+1.

single-precision complex array of length at least
(1+(n-1)*abs(incx)).

On entry, X contains the source vector. On exit, X is overwritten with
the result vector.

specifies the storage spacing for elements of X; incx must not be zero.

Output

X

updated according to X = op(A) * X.

Reference: http://www.netlib.org/blas/ctbmv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED ifC[HHQ%Shbﬁwyvmsnothﬂdﬂﬁed
CUBLAS_STATUS_INVALID_VALUE if incx==0,k<0,0rn<0
CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough

internal scratch vector memory

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Function cublasCtbsv()
void
cublasCtbsv (char uplo, char trans, char diag, int n,
int k, const cuComplex *A, int lda,
cuComplex *X, Int incx)

solves one of the systems of equations

op(A) *x = b,

where op(A) = A, op(A) = AT, or op(A) = AH;
b and x are n-element vectors, and A is an nxn, unit or non-unit, upper
or lower, triangular band matrix with k+1 diagonals.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

Input

uplo specifies whether the matrix is an upper or lower triangular band
matrix. If uplo == "U* or "u®, Ais an upper triangular band matrix. If
uplo=="L" or "I", Ais a lower triangular band matrix.

trans gpecifies op(A). If trans == "N or "n”, op(A) = A.
If trans=="T" or "t", op(A) = AT.
If trans == "C", or "c", op(A) = AH,

diag specifies whether A is unit triangular. If diag == "U” or "u”, A is
assumed to be unit triangular; that is, diagonal elements are not read

and are assumed to be unity. If diag == "N" or "n~, A is not assumed
to be unit triangular.

n the number of rows and columns of matrix A; n must be at least zero.
k specifies the number of superdiagonals or subdiagonals.
If uplo == "U" or "u", k specifies the number of superdiagonals. If

uplo == "L" or "I7, k specifies the number of subdiagonals; k must
be at least zero.

PG-05326-032_V02 125
NVIDIA

CUDA CUBLAS Library

Input (continued)

A single-precision complex array of dimension (lda, n). If uplo ==
"U" or "u", the leading (k+1)%n part of the array A must contain the
upper triangular band matrix, supplied column by column, with the
leading diagonal of the matrix in row K+1 of the array, the first
superdiagonal starting at position 2 in row K, and so on. The top left
kxk triangle of the array A is not referenced. If uplo == "L" or "1°7,
the leading (k+1)xn part of the array A must contain the lower
triangular band matrix, supplied column by column, with the leading
diagonal of the matrix in row 1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom right kxk
triangle of the array is not referenced.

X single-precision complex array of length at least
(1+(n-1)*abs(incx)).

incX storage spacing between elements of X; incx must not be zeto.

Output
X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www.netlib.org/blas/ctbsv.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if incx==0o0rn<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCtpmv()
void
cublasCtpmv (char uplo, char trans, char diag, int n,
const cuComplex *AP, cuComplex *x, int incx)

performs one of the matrix-vector operations
x = op(A) *x,
where op(A) = A, op(A) = AT, or op(A) = AH;

126 PG-05326-032_V02
NVIDIA

CHAPTER 3

Single-Precision BLAS2 Functions

x is an n-element single-precision complex vector, and A is an nxn, unit
or non-unit, upper or lower, triangular matrix consisting of single-
precision complex elements.

Input

uplo specifies whether the matrix A is an upper or lower triangular matrix.
If uplo == "U" or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais a lower triangular matrix.

trans gpecifies op(A). If trans == "N or "n”, op(A) = A.
Iftrans=="T" or "t", op(A) = AT.
If trans == "C",or "¢, op(A) = AH,

diag specifies whether or not matrix A is unit triangular.
If diag == "U" or "u", A is assumed to be unit triangular.
If diag == "N" or "n", A is not assumed to be unit triangular.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

AP single-precision complex array with at least (n*(n+1))/2 elements.

Ifuplo == "U" or "u”, the array AP contains the upper triangular part
of the symmetric matrix A, packed sequentially, column by column;
that is, if § <= j, A[i,J] is stored in AP[i+(J *(J +1)/2)].If
uplo == "L" or " 17, array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i >= j, A[i,j] is stored in AP[i +((2*n-j +1)*j)/2].

X single-precision complex array of length at least
(1+(n-1)*abs(incx)). On entry, X contains the source vector.
On exit, X is overwritten with the result vector.

incX specifies the storage spacing for elements of X; incx must not be zeto.

Output

X updated according to x = op(A) * X.

Reference: http://www .netlib.org/blas/ctpmv.f
Error status for this function can be retrieved via cublasGetError().

Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifincx==0o0rn<0

PG-05326-032_V02 127

NVIDIA

CUDA

CUBLAS Library

Error Status (continued)

CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough

internal scratch vector memory

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCtpsv()

128

void

cublasCtpsv (char uplo, char trans, char diag, int n,

const cuComplex *AP, cuComplex *X, Int Incx)

solves one of the systems of equations
op(A) *x = b,
where op(A) = A, op(A) = AT, or op(A) = AH;

b and x are n-element complex vectors, and A is an nxn, unit or non-
unit, upper or lower, triangular matrix.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

Input

uplo specifies whether the matrix is an upper or lower triangular matrix. If
uplo == "U" or "u”, Ais an upper triangular matrix. If uplo == "L*"
or 17, Ais alower triangular matrix.

trans gpecifies op(A). If trans == "N” or "n”, op(A) = A.
Iftrans == "T" or "t", op(A) = AT.
If trans == "C",or "¢, op(A) = AH,

diag specifies whether A is unit triangular. If diag == "U" or "u", A s
assumed to be unit triangular; that is, diagonal elements are not read
and are assumed to be unity. If diag == "N" or "n*", Ais not assumed
to be unit triangular.

n

specifies the number of rows and columns of the matrix A; n must be
at least zero.

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Input (continued)
AP

single-precision complex array with at least (n*(n+1))/2 elements.
If uplo == "U" or "u", array AP contains the upper triangular matrix
A, packed sequentially, column by column; that is, if § <= j, A[i,j] is
stored in AP[i+(J *(J +1)/2)].Ifuplo=="L" or "I, array AP
contains the lower triangular matrix A, packed sequentially, column by
column; that is, if 1 >= j, A[i,]j] is stored in

AP[i +((2*n—j+1)*j)/2]. When diag == "U" or "u", the
diagonal elements of A are not referenced and are assumed to be unity.
X single-precision complex array of length at least
(1+(n-1)*abs(incx)).

incX storage spacing between elements of X; incx must not be zero.

Output
X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www.netlib.org/blas/ctpsv.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if incx==0o0rn<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCtrmv()
void
cublasCtrmv (char uplo, char trans, char diag, int n,

const cuComplex *A, int lda, cuComplex *x,
int incx)

performs one of the matrix-vector operations
X = op(A) *x,
where op(A) = A, op(A) = AT, or op(A) = AR;
x is an n-element single-precision complex vector; and A is an nxn, unit

or non-unit, upper or lower, triangular matrix consisting of single-
precision complex elements.

PG-05326-032_V02 129
NVIDIA

CUDA

130

CUBLAS Library

Input

uplo specifies whether the matrix A is an upper or lower triangular matrix.
If uplo == "U" or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais an lower triangular matrix.

trans gspecifies op(A). If trans == "N” or "n”, op(A) = A.

If trans=="T" or "t", op(A) = AT.
If trans == "C~ or "c", op(A) = AH.

diag specifies whether or not A is a unit triangular matrix. If diag == "U"
or "u”, Ais assumed to be unit triangular. If diag == *N" or "n", Ais
not assumed to be unit triangular.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

A single-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u", the leading nxn upper triangular part of the array A must
contain the upper triangular matrix, and the strictly lower triangular
part of A is not referenced. If uplo == "L" or "I, the leading nxn
lower triangular part of the array A must contain the lower triangular
matrix, and the strictly upper triangular part of A is not referenced.
When diag == "U" or "u®, the diagonal elements of A are not
referenced either, but are assumed to be unity.

Ida leading dimension of A; lda must be at least max (1, n).

X single-precision complex array of length at least
(1+(n-1)*abs(incx)). On entry, X contains the source vector.
On exit, X is overwritten with the result vector.

incx the storage spacing between elements of X; incx must not be zero.

Output

X

updated according to X = op(A) * x.

Reference: http://www .netlib.org/blas/ctrmv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifincx==0o0rn<0

PG-05326-032_V02
NVIDIA

CHAPTER 3 Single-Precision BLAS2 Functions

Error Status (continued)

CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough
internal scratch vector memory

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCtrsv()
void
cublasCtrsv (char uplo, char trans, char diag, int n,

const cuComplex *A, int lda, cuComplex *x,
int incx)

solves a system of equations

op(A) *x = b,

where op(A) = A, op(A) = AT, or op(A) = AY;
b and x are n-element single-precision complex vectors, and A is an
nxn, unit or non-unit, upper or lower, triangular matrix consisting of
single-precision elements. Matrix A is stored in column-major format,

and lda is the leading dimension of the two-dimensional array
containing A.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u”, only the upper
triangular part of A may be referenced. If uplo == "L" or "17, only
the lower triangular part of A may be referenced.

trans gpecifies op(A). If trans == "N" or "n", op(A) = A.
Iftrans == "T" or "t", op(A) = AT.
If trans == "C" or "c", op(A) = AH,

diag specifies whether or not A is a unit triangular matrix.
If diag == "U” or "u”, A is assumed to be unit triangular.
If diag == "N” or "n", A is not assumed to be unit triangular.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

PG-05326-032_V02 131
NVIDIA

CUDA

132

CUBLAS Library

Input (continued)

A single-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u®, A contains the upper triangular part of the symmetric
matrix, and the strictly lower triangular part is not referenced. If uplo
== "L" or "17, A contains the lower triangular part of the symmetric
matrix, and the strictly upper triangular part is not referenced.

Ida leading dimension of the two-dimensional array containing A;

Ida must be at least max(d, n).

X single-precision complex array of length at least
(1+(n-1)*abs(incx)). On entry, X contains the n-element, right-
hand-side vector b. On exit, it is overwritten with solution vector X.

incX the storage spacing between elements of X; incx must not be zero.

Output
X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www .netlib.org/blas/ctrsv.f
Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE ifincx==0o0rn<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

o CHAPTER

Double-Precision BLAS2
Functions

The Level 2 Basic Linear Algebra Subprograms (BLAS2) are functions
that perform matrix-vector operations. The CUBLAS implementations
of double-precision BLAS2 functions are described in these sections:

0 “Double-Precision BLAS2 Functions” on page 134
0 “Double-Precision Complex BLAS2 functions” on page 158

PG-05326-032_V02 133
NVIDIA

CUDA

Double-Precision BLAS2 Functions

134

CUBLAS Library

Note: Double-precision functions are only supported on GPUs with double-

precision hardware.

The double-precision BLAS2 functions are as follows:

o000 0000000000 OO

“Function cublasDgbmv()” on page 135
“Function cublasDgemv()” on page 136
“Function cublasDger()” on page 138
“Function cublasDsbmv()” on page 139
“Function cublasDspmv()” on page 141
“Function cublasDspr()” on page 142
“Function cublasDspr2()” on page 143
“Function cublasDsymv()” on page 144
“Function cublasDsyr()” on page 146
“Function cublasDsyr2()” on page 147
“Function cublasDtbmv()” on page 148
“Function cublasDtbsv()” on page 150
“Function cublasDtpmv()” on page 152
“Function cublasDtpsv()” on page 153
“Function cublasDtrmv()” on page 154
“Function cublasDtrsv()” on page 156

NVIDIA

PG-05326-032_V02

CHAPTER 4

Double-Precision BLAS2 Functions

Function cublasDgbmv()

void

cublasDgbmv (char trans, int m, int n, int kl, int ku,
double alpha, const double *A, int lda,
const double *x, int incx, double beta,
double *y, int incy)

performs one of the matrix-vector operations
y = alpha*op(A) *x+beta*y,
where op(A) = A or op(A) = AT,
alpha and beta are double-precision scalars, and x and y are double-

precision vectors. A is an mxn band matrix consisting of double-
precision elements with kl subdiagonals and ku superdiagonals.

Input

trans gpecifies op(A). If trans == "N” or "n”, op(A) = A.
Iftrans=="T", "t", "C", or "c", op(A) = AT.
specifies the number of rows of matrix A; m must be at least zero.
specifies the number of columns of matrix A; n must be at least zero.

Kkl specifies the number of subdiagonals of matrix A; kI must be at least
zero.

ku specifies the number of superdiagonals of matrix A; Ku must be at
least zero.

alpha double-precision scalar multiplier applied to op(A).

A double-precision array of dimensions (lda, n). The leading
(kl+ku+1)xn part of the array A must contain the band matrix A,
supplied column by column, with the leading diagonal of the matrix in
row (ku+1) of the array, the first superdiagonal starting at position 2 in
row ku, the first subdiagonal starting at position 1 in row (ku+2), and
so on. Elements in the array A that do not correspond to elements in
the band matrix (such as the top left kuxku triangle) are not

referenced.
Ida leading dimension A; Ida must be at least (k1+ku+1).
X double-precision array of length at least (1 +(n—-1)* abs(incx)) if

trans == "N" or "n", else at least (1 +(m-1) * abs(incx)).

incX specifies the increment for the elements of x; incx must not be zero.

PG-05326-032_V02 135

NVIDIA

CUDA

CUBLAS Library

Input (continued)

beta double-precision scalar multiplier applied to vector y. If beta is zero,
y is not read.

y double-precision array of length at least (1 +(m—-1)* abs(incy)) if
trans == "N" or "n", else at least (1 +(n-1) *abs(incy)). If
beta is zero, y is not read.

incy on entry, incy specifies the increment for the elements of y; incy
must not be zero.

Output

y updated according to y = alpha > op(A) *x +beta*y.

Reference: http://www.netlib.org/blas/dgbmv.f
Error status for this function can be retrieved via cublasGetError().

Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0, or
incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDgemv()

136

void

cublasDgemv (char trans, int m, int n, double alpha,
const double *A, int lda, const double *x,
int incx, double beta, double *y, int incy)

performs one of the matrix-vector operations
y = alpha*op(A) *x+beta*vy,
where op(A) = A or op(A) = AT,

alpha and beta are double-precision scalars, and x and y are double-
precision vectors. A is an mxn matrix consisting of double-precision

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

elements. Matrix A is stored in column-major format, and Ida is the
leading dimension of the two-dimensional array in which A is stored.

Input

trans gpecifies op(A). If trans == "N or "n”, op(A) = A.
If trans=="T", "t", "C", or "c", op(A) = AT,
m specifies the number of rows of matrix A; m must be at least zero.
n specifies the number of columns of matrix A; n must be at least zero.
alpha double-precision scalar multiplier applied to op(A).

A double-precision array of dimensions (lda, n) if trans == "*N" or
"n*, of dimensions (Ida, m) otherwise; lda must be at least
max (1, m) if trans == "N" or "n" and at least max(1, n) otherwise.

Ida leading dimension of two-dimensional array used to store matrix A.

X double-precision array of length at least (1 +(n—-1)* abs(incx)) if
trans == "N*" or "n®, else at least (1 +(m—-1)* abs(incx)).

incx specifies the storage spacing for elements of X; incx must not be zero.

beta double-precision scalar multiplier applied to vector y. If beta is zero,
y is not read.

y double-precision array of length at least (1 +(m—-1)* abs(incy)) if
trans == "N" or "n", else at least (1 +(n-1) * abs(incy)).

incy the storage spacing between elements of y; incy must not be zero.

Output

y updated according to y = alpha > op(A) *x +beta*y.

Reference: http://www .netlib.org/blas/dgemv.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx ==0, or
incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02 137

NVIDIA

CUDA

CUBLAS Library

Function cublasDger()

138

void

cublasDger (int m, int n, double alpha, const double *x,
int incx, const double *y, int incy,
double *A, int lda)

performs the symmetric rank 1 operation
A = alpha * x * yT + A,

where alpha is a double-precision scalar, x is an m-element double-
precision vector, y is an n-element double-precision vector, and A is an
mxn matrix consisting of double-precision elements. Matrix A is stored
in column-major format, and lda is the leading dimension of the two-
dimensional array used to store A.

Input

m specifies the number of rows of the matrix A; m must be at least zero.
n specifies the number of columns of matrix A; n must be at least zero.
alpha double-precision scalar multiplier applied to x * yT.

X

double-precision array of length at least (1 +(m—-1)* abs(incx)).

incX the storage spacing between elements of X; Incx must not be zero.

y double-precision array of length at least (1 +(n—1)* abs(incy)).
incy the storage spacing between elements of y; incy must not be zero.
A double-precision array of dimensions (lda, n).

Ida leading dimension of two-dimensional array used to store matrix A.
Output

A

updated according to A = alpha*x*yT+A.

Reference: http://www.netlib.org/blas/dger.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx ==0, or
incy ==

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Error Status (continued)

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that
does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDsbmv()

void

cublasDsbmv (char uplo, int n, int k, double alpha,
const double *A, int lda, const double *x,
int incx, double beta, double *y, iInt incy)

performs the matrix-vector operation
y = alpha*A*x+beta*y,

where alpha and beta are double-precision scalars, and x and y are
n-element double-precision vectors. Ais an nxn symmetric band matrix
consisting of double-precision elements, with k superdiagonals and
the same number of subdiagonals.

Input

uplo specifies whether the upper or lower triangular part of the symmetric
band matrix A is being supplied. If uplo == "U" or "u*, the upper
triangular part is being supplied. If uplo == "L* or "1, the lower
triangular part is being supplied.

n specifies the number of rows and the number of columns of the
symmetric matrix A; N must be at least zero.

k specifies the number of superdiagonals of matrix A. Since the matrix is
symmetric, this is also the number of subdiagonals; k must be at least
Zero.

alpha double-precision scalar multiplier applied to A * x.

PG-05326-032_V02 139

NVIDIA

CUDA

CUBLAS Library

Input (continued)

A

Ida

incx
beta
y

incy

double-precision array of dimensions (Ida, n). When uplo == "U*"
or "u”, the leading (k+1)xn part of array A must contain the upper
triangular band of the symmetric matrix, supplied column by column,
with the leading diagonal of the matrix in row k+1 of the array, the
first superdiagonal starting at position 2 in row K, and so on. The top
left kxk triangle of the array A is not referenced. When uplo == "L*
or "1, the leading (k+1)xn part of the array A must contain the
lower triangular band part of the symmetric matrix, supplied column
by column, with the leading diagonal of the matrix in row 1 of the
array, the first subdiagonal starting at position 1 in row 2, and so on.
The bottom right kxk triangle of the array A is not referenced.

leading dimension of A; Ida must be at least k+1.

double-precision array of length at least (1 + (n—-1)* abs(incx)).
storage spacing between elements of X; incx must not be zero.
double-precision scalar multiplier applied to vector y.

double-precision array of length at least (1 + (n—-1)* abs(incy)).
If beta is zero, y is not read.

storage spacing between elements of y; incy must not be zero.

Output

y

updated according to y = alpha*A*x+beta*y.

Reference: http://www.netlib.org/blas/dsbmv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized

CUBLAS_STATUS_INVALID_VALUE ifk<0,n<0, incx==0, or
incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

140

PG-05326-032_V02
NVIDIA

CHAPTER 4 Double-Precision BLAS2 Functions

Function cublasDspmv()
void
cublasDspmv (char uplo, int n, double alpha,

const double *AP, const double *x, int Incx,
double beta, double *y, int incy)

performs the matrix-vector operation
y = alpha*A*x+beta*y,

where alpha and beta are double-precision scalars, and x and y are
n-element double-precision vectors. A is a symmetric nxn matrix that
consists of double-precision elements and is supplied in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array AP. If uplo == "U" or "u”, the upper triangular
part of Ais supplied in AP. If uplo == "L" or "I ", the lower triangular
part of A is supplied in AP.

n the number of rows and columns of matrix A; n must be at least zero.

alpha double-precision scalar multiplier applied to A * X.

AP double-precision array with at least (n *(n+1))/2 elements. If

uplo == "U" or "u*, array AP contains the upper triangular part of the
symmetric matrix A, packed sequentially, column by column,; that is, if

i <=]j,A[i,j]isstoredin AP[i+(J*(J+1)/2)].Ifuplo=="L"
or " 17, the array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column,; that is, if

i>=j A[i,jJ]isstoredin AP[I+((2*n-J+1)*j)/2].
X double-precision array of length at least (1 + (n—-1)* abs(incx)).
incx storage spacing between elements of x; incx must not be zero.
beta double-precision scalar multiplier applied to vector y.

y double-precision array of length at least (1 + (n—-1)* abs(incy)).
If beta is zero, y is not read.

incy storage spacing between elements of y; incy must not be zeto.

Output

y updated according to y = alpha*A*x+beta*y.

Reference: http://www .netlib.org/blas/dspmv.f

PG-05326-032_V02 141
NVIDIA

CUDA

CUBLAS Library

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE if n<0, incx ==0, or incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDspr()

142

void
cublasDspr (char uplo, int n, double alpha,
const double *x, int incx, double *AP)

performs the symmetric rank 1 operation
A = alpha*x*xT+A,
where alpha is a double-precision scalar, and x is an n-element

double-precision vector. A is a symmetric nxn matrix that consists of
double-precision elements and is supplied in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array AP. If uplo == "U® or "u®, the upper triangular
part of Ais supplied in AP. If uplo == "L" or " 1", the lower triangular
part of A is supplied in AP.

n the number of rows and columns of matrix A; n must be at least zero.

alpha Jouble-precision scalar multiplier applied to x * xT.

double-precision array of length at least (1 + (n—-1)* abs(incx)).

incx storage spacing between elements of x; incx must not be zero.

AP double-precision array with at least (n *(n+1))/2 elements. If

uplo == "U" or "u", array AP contains the upper triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i <= j,A[i,J] is stored in AP[i +(j * (j + 1)/2)]. Ifuplo == "L~
or 17, the array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i>=j,A[i,j]isstoredin AP[I+((2*n-J+1)*j)/2].

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Output
A

updated according to A = alpha* x> xT+A.

Reference: http://www.netlib.org/blas/dspr.f
Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<Oorincx==0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDspr2()

void

cublasDspr2 (char uplo, int n, double alpha,
const double *x, int incx, const double *y,
int incy, double *AP)

performs the symmetric rank 2 operation
A = alpha*x*yT+alpha*y*xT+A,

where alpha is a double-precision scalar, and x and y are n-element
double-precision vectors. A is a symmetric nxn matrix that consists of
double-precision elements and is supplied in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u”, only the upper
triangular part of A may be referenced and the lower triangular part of
Ais inferred. If uplo == "L" or "1", only the lower triangular part of
A may be referenced and the upper triangular part of A is inferred.

n the number of rows and columns of matrix A; n must be at least zero.

alpha double-precision scalar multiplier applied to x * yT and y * xT .

double-precision array of length at least (1 + (n—-1)* abs(incx)).

incX storage spacing between elements of X; incx must not be zero.

y double-precision array of length at least (1 +(n—1)* abs(incy)).

PG-05326-032_V02 143

NVIDIA

CUDA

CUBLAS Library

Input (continued)

incy storage spacing between elements of y; incy must not be zeto.

AP double-precision array with at least (n * (n+1))/2 elements. If

uplo == "U" or "u®, array AP contains the upper triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i <=]j,A[i,j]isstoredin AP[i+(J*(J+1)/2)].Ifuplo=="L"
or " 17, the array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column,; that is, if
i >= j, A[i,j] is stored in AP[i +((2*n-j +1)*j)/2].

Output
A

updated according to A = alpha*x*yT+alpha*y*xT+A.

Reference: http://www.netlib.org/blas/dspr2.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if n <0, incx == 0, or incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDsymv()

144

void

cublasDsymv (char uplo, int n, double alpha,
const double *A, int lda, const double *x,
int incx, double beta, double *y, int incy)

performs the matrix-vector operation
y = alpha*A*x+beta*y,

where alpha and beta are double-precision scalars, and x and y are
n-element double-precision vectors. A is a symmetric nxn matrix that

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

consists of double-precision elements and is stored in either upper or
lower storage mode.

Input

uplo

alpha

Ida

incx
beta
y

incy

specifies whether the upper or lower triangular part of the array A is
referenced. If uplo == "U" or "u”, the symmetric matrix A is stored in
upper storage mode; that is, only the upper triangular part of A is
referenced while the lower triangular part of A is inferred. If uplo ==
"L" or "I7, the symmetric matrix A is stored in lower storage mode;
that is, only the lower triangular part of A is referenced while the upper
triangular part of A is inferred.

specifies the number of rows and the number of columns of the
symmetric matrix A; n must be at least zero.

double-precision scalar multiplier applied to A * x.

double-precision array of dimensions (lda, n). If uplo == "U* or
"u”, the leading nxn upper triangular part of the array A must contain
the upper triangular part of the symmetric matrix, and the strictly
lower triangular part of A is not referenced. If uplo == "L or "I~,
the leading nxn lower triangular part of the array A must contain the
lower triangular part of the symmetric matrix, and the strictly upper
triangular part of A is not referenced.

leading dimension of A; Ida must be at least max(1, n).
double-precision array of length at least (1 + (n—-1)* abs(incx)).
storage spacing between elements of X; incx must not be zero.
double-precision scalar multiplier applied to vector y.
single-precision array of length at least (1 +(n-1)* abs(incy)).
If beta is zero, y is not read.

storage spacing between elements of y; incy must not be zero.

Output

y

updated according to y = alpha*A*x+beta*y.

Reference: http://www.netlib.org/blas/dsymv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0, incx==0,or incy == 0

PG-05326-032_V02

145
NVIDIA

CUDA

CUBLAS Library

Error Status (continued)

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that
does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDsyr()

146

void

cublasDsyr (char uplo, int n, double alpha,
const double *x, iInt incx, double *A,
int 1da)

performs the symmetric rank 1 operation
A = alpha*x*xT+A,

where alpha is a double-precision scalar, x is an n-element double-
precision vector, and A is an nxn symmetric matrix consisting of
double-precision elements. A is stored in column-major format, and
Ida is the leading dimension of the two-dimensional array
containing A.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u”, only the upper
triangular part of A is referenced. If uplo == "L" or "I ", only the
lower triangular part of A is referenced.

n the number of rows and columns of matrix A; n must be at least zero.

alpha {ouble-precision scalar multiplier applied to x * xT.

double-precision array of length at least (1 + (n—-1)* abs(incx)).

incX the storage spacing between elements of X; incx must not be zero.

A double-precision array of dimensions (lda, n). If uplo == "U* or
"u”, A contains the upper triangular part of the symmetric matrix, and
the strictly lower triangular part is not referenced. If uplo == "L* or
" 17, A contains the lower triangular part of the symmetric matrix, and
the strictly upper triangular part is not referenced.

Ida leading dimension of the two-dimensional array containing A;
Ida must be at least max (1, n).

PG-05326-032_V02
NVIDIA

CHAPTER 4 Double-Precision BLAS2 Functions

Output
A

updated according to A = alpha* x> xT+A.

Reference: http://www.netlib.org/blas/dsyr.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<Oorincx==0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDsyr2()
void
cublasDsyr2 (char uplo, int n, double alpha,

const double *x, int incx, const double *y,
int incy, double *A, int 1da)

performs the symmetric rank 2 operation
A = alpha*x*yT+alpha*y*xT+A,

where alpha is a double-precision scalar, x and y are n-element
double-precision vectors, and A is an nxn symmetric matrix consisting
of double-precision elements.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u®, only the upper
triangular part of A is referenced and the lower triangular part of A is
inferred. If uplo == "L" or "17, only the lower triangular part of A is
referenced and the upper triangular part of A is inferred.

n the number of rows and columns of matrix A; n must be at least zero.

alpha double-precision scalar multiplier applied to x * yT and y * xT .

double-precision array of length at least (1 + (n—-1)* abs(incx)).

incX storage spacing between elements of X; incx must not be zero.

y double-precision array of length at least (1 +(n—1)* abs(incy)).

PG-05326-032_V02 147
NVIDIA

CUDA

CUBLAS Library

Input (continued)

incy storage spacing between elements of y; incy must not be zeto.

A double-precision array of dimensions (lda, n). If uplo == "U* or
"u”, A contains the upper triangular part of the symmetric matrix, and
the strictly lower triangular part is not referenced. If uplo == "L* or
17, A contains the lower triangular part of the symmetric matrix, and
the strictly upper triangular part is not referenced.

Ida leading dimension of A; 1da must be at least max(1, n).

Output
A

updated according to A = alpha*x*yT+alpha*y*xT+A.

Reference: http://www.netlib.org/blas/dsyr2.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0,incx==0, or incy ==0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDtbmv()

148

void

cublasDtbmv (char uplo, char trans, char diag, int n,
int k, const double *A, int lda, double *x,
int incx)

performs one of the matrix-vector operations
x = op(A) *Xx,
where op(A) = A or op(A) = AT,
x is an n-element double-precision vector, and A is an nxn, unit or non-

unit, upper or lower, triangular band matrix consisting of double-
precision elements.

PG-05326-032_V02
NVIDIA

CHAPTER 4

Input

Double-Precision BLAS2 Functions

uplo

trans

diag

Ida

incx

specifies whether the matrix A is an upper or lower triangular band
matrix. If uplo == "U" or "u”, Ais an upper triangular band matrix. If
uplo=="L" or "1, Ais alower triangular band matrix.

specifies op(A). If trans == "N" or "n", op(A) = A.

If trans=="T", "t", "C", or "c", op(A) = AT,

specifies whether or not matrix A is unit triangular. If diag == "U" or
"u®, Ais assumed to be unit triangular. If diag == "N" or "n", Ais
not assumed to be unit triangular.

specifies the number of rows and columns of the matrix A; n must be
at least zero.

specifies the number of superdiagonals or subdiagonals. If uplo ==
"U" or "u”, k specifies the number of superdiagonals. If uplo == "L*"
or """ k specifies the number of subdiagonals; k must at least be zero.

double-precision array of dimension (lda, n). If uplo == "U* or
"u”, the leading (k+1)xn part of the array A must contain the upper
triangular band matrix, supplied column by column, with the leading
diagonal of the matrix in row k+1 of the array, the first superdiagonal
starting at position 2 in row K, and so on. The top left kxk triangle of
the array A is not referenced. If uplo == "L" or " 17, the leading
(k+1)xn part of the array A must contain the lower triangular band
matrix, supplied column by column, with the leading diagonal of the
matrix in row 1 of the array, the first subdiagonal starting at position 1
in row 2, and so on. The bottom right kxk triangle of the array is not
referenced.

is the leading dimension of A; Ida must be at least k+1.
double-precision array of length at least (1 + (n—-1)* abs(incx)).

On entry, X contains the source vector. On exit, X is overwritten with
the result vector.

specifies the storage spacing for elements of X; incx must not be zero.

Output

X

updated according to x = op(A) * x.

Reference: http://www.netlib.org/blas/dtbmv.f

PG-05326-032_V02

149
NVIDIA

CUDA

CUBLAS Library

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized

CUBLAS_STATUS_INVALID_VALUE ifincx==0,k<0,0rn<0

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that
does not support double precision

CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough

internal scratch vector memory
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDtbsv()

150

void

cublasDtbsv (char uplo, char trans, char diag, int n,
int k, const double *A, int lda, double *X,
int incx)

solves one of the systems of equations

op(A) *x = b,

where op(A) = A or op(A) = AT,
b and x are n-element vectors, and A is an nxn, unit or non-unit, upper
or lower, triangular band matrix with k+1 diagonals.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

Input

uplo specifies whether the matrix is an upper or lower triangular band
matrix: If uplo == "U" or "u®, Ais an upper triangular band matrix. If

uplo=="L" or "I", Ais a lower triangular band matrix.

trans gspecifies op(A). If trans == "N or "n”, op(A) = A.
If trans=="T", "t", "C", or "c", op(A) = AT,

diag specifies whether A is unit triangular. If diag == "U” or "u”, A is
assumed to be unit triangular; that is, diagonal elements are not read

and are assumed to be unity. If diag == "N" or "n~, A is not assumed
to be unit triangular.

n the number of rows and columns of matrix A; n must be at least zero.

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Input (continued)

k

X

incx

specifies the number of superdiagonals or subdiagonals.

If uplo == "U" or "u", k specifies the number of superdiagonals. If
uplo=="L" or "I7, k specifies the number of subdiagonals; k must
be at least zero.

double-precision array of dimension (lda, n). If uplo == "U* ot
"u”, the leading (k+1)xn part of the array A must contain the upper
triangular band matrix, supplied column by column, with the leading
diagonal of the matrix in row k+1 of the atray, the first superdiagonal
starting at position 2 in row K, and so on. The top left kxk triangle of
the array A is not referenced. If uplo == "L~ or " I*, the leading
(k+1)xn part of the array A must contain the lower triangular band
matrix, supplied column by column, with the leading diagonal of the
matrix in row 1 of the array, the first sub-diagonal starting at position
1in row 2, and so on. The bottom right kxk triangle of the array is not
referenced.

double-precision array of length at least (1 + (n—-1)* abs(incx)).

storage spacing between elements of X; incx must not be zero.

Output

X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www.netlib.org/blas/dtbsv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE ifincx==0o0rn<0

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02

151
NVIDIA

CUDA

CUBLAS Library

Function cublasDtpmv()

152

void

cublasDtpmv (char uplo, char trans, char diag, int n,

const double *AP, double *x, int iIncx)

performs one of the matrix-vector operations
x = op(A) * X,
where op(A) = A or op(A) = AT,

x is an n-element double-precision vector, and A is an nxn, unit or non-
unit, upper or lower, triangular matrix consisting of double-precision

elements.
Input
uplo specifies whether the matrix A is an upper or lower triangular matrix.

trans

diag

AP

incx

If uplo == "U~ or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais a lower triangular matrix.
specifies op(A). If trans == *N" or "n", op(A) = A.
If trans == "T", "t", "C", or "c", op(A) = AT,
specifies whether or not matrix A is unit triangular.

If diag == "U" or "u", A is assumed to be unit triangular.
If diag == "N or "n", A is not assumed to be unit triangulat.

specifies the number of rows and columns of the matrix A; n must be
at least zero.
double-precision array with at least (n* (n+1))/2 elements. If

uplo == "U" or "u", the array AP contains the upper triangular part of
the symmetric matrix A, packed sequentially, column by column; that
is, if i <= j, A[i,j] is stored in AP[i + (j * (j +1)/2)]. If uplo ==
"L" or 17, array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if
i >= j, A[i,j] is stored in AP[i +((2*n—j +1)*j)/2].

double-precision array of length at least (1 + (n—-1)* abs(incx)).
On entry, X contains the source vector. On exit, X is overwritten with
the result vector.

specifies the storage spacing for elements of X; incx must not be zero.

Output

X

updated according to X = op(A) * x.

PG-05326-032_V02
NVIDIA

CHAPTER 4 Double-Precision BLAS2 Functions

Reference: http://www.netlib.org/blas/dtpmv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifincx==0o0rn<0

CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough
internal scratch vector memory

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDtpsv()
void
cublasDtpsv (char uplo, char trans, char diag, int n,
const double *AP, double *X, int iIncx)

solves one of the systems of equations

op(A) *x = b,

where op(A) = A or op(A) = AT,
b and x are n-element vectors, and A is an nxn, unit or non-unit, upper
or lower, triangular matrix.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

Input

uplo specifies whether the matrix is an upper or lower triangular matrix. If
uplo == "U" or "u", Ais an upper triangular matrix. If uplo == "L*
or "I", Ais a lower triangular matrix.

trans gpecifies op(A). If trans == "N or "n”, op(A) = A.
If trans=="T", "t", "C", or "c", op(A) = AT,

diag specifies whether A is unit triangular. If diag == "U" or "u", A s
assumed to be unit triangular; that is, diagonal elements are not read

and are assumed to be unity. If diag == "N" or "n*", Ais not assumed
to be unit triangular.

PG-05326-032_V02 153
NVIDIA

CUDA

CUBLAS Library

Input (continued)

n

AP

X

incx

specifies the number of rows and columns of the matrix A; n must be
at least zero.

double-precision array with at least (n * (n+1))/2 elements. If
uplo == "U" or "u", array AP contains the upper triangular matrix A,
packed sequentially, column by column; that is, if § <= j, A[i,J] is
stored in AP[i1+(J *(J +1)/2)]. Ifuplo=="L" or "I", array AP
contains the lower triangular matrix A, packed sequentially, column by
column; that is, if i >= j, A[i,j] is stored in

AP[i+((2*n-j+1)* j)/2]. When diag == "U" or "u", the
diagonal elements of A are not referenced and are assumed to be unity.
double-precision array of length at least (1 + (n—-1)* abs(incx)).

storage spacing between elements of X; Incx must not be zero.

Output

X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www.netlib.org/blas/dtpsv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifincx==0o0orn<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDtrmv()

154

void
cublasDtrmv (char uplo, char trans, char diag, int n,

const double *A, int lda, double *x,
int incx)

performs one of the matrix-vector operations

x = op(A) * X,
where op(A) = A or op(A) = AT,

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

x is an n-element double-precision vector, and A is an nxn, unit or non-
unit, upper or lower, triangular matrix consisting of double-precision
elements.

Input

uplo specifies whether the matrix A is an upper or lower triangular matrix.
If uplo == "U" or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais an lower triangular matrix.

trans gspecifies op(A). If trans == "N” or "n", op(A) = A.
Iftrans=="T", "t", "C", or "c", op(A) = AT.
diag specifies whether or not A is a unit triangular matrix. If diag == "U~

or "u”, Ais assumed to be unit triangular. If diag == "N" or "n", Ais
not assumed to be unit triangular.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

A double-precision array of dimensions (lda, n). If uplo == "U* or
"u”, the leading nxn upper triangular part of the array A must contain
the upper triangular matrix, and the strictly lower triangular part of A is
not referenced. If uplo == "L" or "17, the leading nxn lower
triangular part of the array A must contain the lower triangular matrix,
and the strictly upper triangular part of A is not referenced. When
diag == "U" or "u", the diagonal elements of A are not referenced
cither, but are assumed to be unity.

Ida leading dimension of A; Ida must be at least max(1, n).

double-precision array of length at least (1 + (n—-1)* abs(incx)).

On entry, X contains the source vector. On exit, X is overwritten with
the result vector.

incx the storage spacing between elements of X; incx must not be zero.

Output

2 updated according to X = op(A) * X.

Reference: http://www.netlib.org/blas/dtrmv.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifincx==0o0rn<0

PG-05326-032_V02 155

NVIDIA

CUDA

CUBLAS Library

Error Status (continued)

CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough
internal scratch vector memory
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDtrsv()

156

void
cublasDtrsv (char uplo, char trans, char diag, int n,
const double *A, int lda, double *x,
int incx)
solves a system of equations
op(A) *x = b,
where op(A) = A or op(A) = AT,

b and x are n-element double-precision vectors, and A is an nxn, unit or
non-unit, upper or lower, triangular matrix consisting of double-
precision elements. Matrix A is stored in column-major format, and
Ida is the leading dimension of the two-dimensional array

containing A.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u®, only the upper
triangular part of A may be referenced. If uplo == "L" or "1*, only
the lower triangular part of A may be referenced.

trans gpecifies op(A). If trans == "N” or "n", op(A) = A.
Iftrans=="T", "t", "C", or "c", op(A) = AT.
diag specifies whether or not A is a unit triangular matrix.

If diag == "U" or "u", A is assumed to be unit triangular.
If diag == "N" or "n", A is not assumed to be unit triangular.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Input (continued)

A

Ida

incx

double-precision array of dimensions (lda, n). If uplo == "U" or
"u”, A contains the upper triangular part of the symmetric matrix, and
the strictly lower triangular part is not referenced. If uplo == "L " or
17, A contains the lower triangular part of the symmetric matrix, and
the strictly upper triangular part is not referenced.

leading dimension of the two-dimensional array containing A;
Ida must be at least max(d, n).
double-precision array of length at least (1 + (n—-1)* abs(incx)).

On entry, X contains the n-element, right-hand-side vector b. On exit,
it is overwritten with the solution vector X.

the storage spacing between elements of X; incx must not be zero.

Output

X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www.netlib.org/blas/dtrsv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifincx==00rn<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02

157
NVIDIA

CUDA

CUBLAS Library

Double-Precision Complex BLAS2 functions

158

Note: Double-precision functions are only supported on GPUs with double-

precision hardware.

Two double-precision complex BLAS2 functions are implemented:

o 000000000 D0 D0 D O DO

“Function cublasZgbmv()” on page 159
“Function cublasZgemv()” on page 161
“Function cublasZgerc()” on page 162
“Function cublasZgeru()” on page 163
“Function cublasZhbmv()” on page 165
“Function cublasZhemv()” on page 167
“Function cublasZher()” on page 168
“Function cublasZher2()” on page 170
“Function cublasZhpmv()” on page 171
“Function cublasZhpr()” on page 173
“Function cublasZhpr2()” on page 174
“Function cublasZtbmv()” on page 175
“Function cublasZtbsv()” on page 177
“Function cublasZtpmv()” on page 179
“Function cublasZtpsv()” on page 180
“Function cublasZtrmv()” on page 182
“Function cublasZtrsv()” on page 183

NVIDIA

PG-05326-032_V02

CHAPTER 4 Double-Precision BLAS2 Functions

Function cublaszgbmv()

void

cublaszgbmv (char trans, int m, int n, int kl, int ku,
cubDoubleComplex alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int iIncx,
cuDoubleComplex beta, cuDoubleComplex *y,
int incy)

performs one of the matrix-vector operations

y = alpha*op(A) * x + beta*y, where

op(A) = A, op(A) = AT, or op(A) = A";
alpha and beta are double-precision complex scalars, and x and y are
double-precision complex vectors. A is an mxn band matrix consisting

of double-precision complex elements with kl subdiagonals and ku
superdiagonals.

Input

trans gpecifies op(A). If trans == "N” or "n”, op(A) = A.
If trans == "T" or "t", op(A) = AT.
If trans == "C", or "c", op(A) = AM,

m specifies the number of rows of matrix A; m must be at least zero.
specifies the number of columns of matrix A; n must be at least zero.

Kkl specifies the number of subdiagonals of matrix A; KI must be at least
Zero.

ku specifies the number of superdiagonals of matrix A; Ku must be at
least zero.

alpha double-precision complex scalar multiplier applied to op(A).

A double-precision complex array of dimensions (lda, n). The leading
(kI+ku+1)xn part of the array A must contain the band matrix A,
supplied column by column, with the leading diagonal of the matrix in
row (Ku+1) of the array, the first superdiagonal starting at position 2 in
row Kku, the first subdiagonal starting at position 1 in row (ku+2), and
so on. Elements in the array A that do not correspond to elements in
the band matrix (such as the top left kuxku triangle) are not
referenced.

Ida leading dimension A; lda must be at least (k1+ku+1).

PG-05326-032_V02 159
NVIDIA

CUDA

160

CUBLAS Library

Input (continued)

X double-precision complex array of length at least
(1+(n-1)*abs(incx)) if trans == "N" or "n", else at least
(1+(m-1)*abs(incx)).

incx specifies the increment for the elements of x; incx must not be zero.

beta double-precision complex scalar multiplier applied to vector y. If beta
is zero, y is not read.

y double-precision complex array of length at least
(1+(m-1)*abs(incy)) if trans == "N" or "n", else at least
(1+(n-1)*abs(incy)). If betais zero, y is not read.

incy on entry, incy specifies the increment for the elements of y; incy
must not be zero.

Output

y updated according to y = alpha > op(A) *x +beta*y.

Reference: http://www.netlib.org/blas/zgbmv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0, or
incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 4 Double-Precision BLAS2 Functions

Function cublasZzgemv()

void

cublaszgemv (char trans, int m, int n,
cubDoubleComplex alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int iIncx,
cuDoubleComplex beta, cuDoubleComplex *y,
int incy)

performs one of the matrix-vector operations

y = alpha*op(A) *x+beta*y,

where op(A) = A, op(A) = AT, or op(A) = AF;
alpha and beta are double-precision complex scalars; and x and y are
double-precision complex vectors. A is an mxn matrix consisting of
double-precision complex elements. Matrix A is stored in column-

major format, and Ida is the leading dimension of the two-
dimensional array in which A is stored.

Input

trans gpecifies op(A). If trans == "N” or "n", op(A) = A.
If trans=="T" or "t", op(A) = AT.
If trans == "C* or "c”, op(A) = AH.

m specifies the number of rows of matrix A; m must be at least zero.
n specifies the number of columns of matrix A; n must be at least zero.
alpha double-precision complex scalar multiplier applied to op(A).

A double-precision complex array of dimensions (lda, n) if trans ==
N or "n", of dimensions (Ida, m) otherwise; lda must be at least
max (1, m) if trans == "N” or "n" and at least max(1, n) otherwise.

Ida leading dimension of two-dimensional array used to store matrix A.

X double-precision complex array of length at least
(1+(n-1)*abs(incx)) if trans == "N" or "n", else at least
(1+(m-1)*abs(incx)).

incx specifies the storage spacing for elements of X; incx must not be zero.

beta double-precision complex scalar multiplier applied to vector y. If beta
is zero, y is not read.

PG-05326-032_V02 161
NVIDIA

CUDA

CUBLAS Library

Input (continued)

y double-precision complex array of length at least
(1+(m=1)*abs(incy)) if trans == "N" or "n", else at least
(1+(n-1)*abs(incy)).

incy the storage spacing between elements of y; incy must not be zero.

Output

y updated according to y = alpha* op(A) *x+beta*y.

Reference: http://www.netlib.org/blas/zgemv.f

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0,or
incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZgerc()

162

void

cublaszZgerc (int m, int n, cuDoubleComplex alpha,
const cuDoubleComplex *x, int iIncx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int 1da)

performs the symmetric rank 1 operation
A = alpha * x * yH + A,

where alpha is a double-precision complex scalar, x is an m-element
double-precision complex vector, y is an n-element double-precision
complex vector, and A is an mxn matrix consisting of double-precision
complex elements. Matrix A is stored in column-major format, and Ida
is the leading dimension of the two-dimensional array used to store A.

PG-05326-032_V02
NVIDIA

CHAPTER 4

Input

Double-Precision BLAS2 Functions

alpha

incx
y

incy
A
lda

specifies the number of rows of the matrix A; m must be at least zero.
specifies the number of columns of matrix A; n must be at least zero.
double-precision complex scalar multiplier applied to x * yM.
double-precision complex array of length at least
(L+(m-1)*abs(incx)).

the storage spacing between elements of X; incx must not be zero.
double-precision complex array of length at least
(1+(n-1)*abs(incy)).

the storage spacing between elements of y; incy must not be zero.
double-precision complex array of dimensions (lda, n).

leading dimension of two-dimensional array used to store matrix A.

Output

A

updated according to A = alpha*x*yH+A.

Reference: http://www.netlib.org/blas/zgerc.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx==0, or
incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZgeru()

void

cublasZgeru (int m, int n, cuDoubleComplex alpha,

const cuDoubleComplex *x, int iIncx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int 1da)

performs the symmetric rank 1 operation

A =

PG-05326-032_V02

alpha * x * yT + A,

163
NVIDIA

CUDA CUBLAS Library

where alpha is a double-precision complex scalar, x is an m-element
double-precision complex vector, y is an n-element double-precision
complex vector, and A is an mxn matrix consisting of double-precision
complex elements. Matrix A is stored in column-major format, and lda
is the leading dimension of the two-dimensional array used to store A.

Input

m specifies the number of rows of the matrix A; m must be at least zero.
n specifies the number of columns of matrix A; n must be at least zero.
alpha double-precision complex scalar multiplier applied to x * yT.

X double-precision complex array of length at least

(1+(m-1)*abs(incx)).
incx the storage spacing between elements of X; incx must not be zero.

y double-precision complex array of length at least
(1+(n-1)*abs(incy)).

incy the storage spacing between elements of y; incy must not be zero.

A double-precision complex array of dimensions (lda, n).

Ida leading dimension of two-dimensional array used to store matrix A.
Output

A

updated according to A = alpha*x*yT+A.

Reference: http://www.netlib.org/blas/zgeru.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifm<0,n<0, incx ==0, or
incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

164 PG-05326-032_V02
NVIDIA

CHAPTER 4 Double-Precision BLAS2 Functions

Function cublaszhbmv()

void

cublaszhbmv (char uplo, int n, int k,
cubDoubleComplex alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int iIncx,
cuDoubleComplex beta, cuDoubleComplex *y,
int incy)

performs the matrix-vector operation

y = alpha*A*x+beta*y,

where alpha and beta are double-precision complex scalars, and x
and y are n-element double-precision complex vectors. A is a
Hermitian nxn band matrix that consists of double-precision complex
elements, with k superdiagonals and the same number of
subdiagonals.

Input

uplo specifies whether the upper or lower triangular part of the Hermitian
band matrix A is being supplied. If uplo == "U" or "u®, the upper
triangular part is being supplied. If uplo == "L*" or "17, the lower
triangular part is being supplied.

n specifies the number of rows and the number of columns of the
symmetric matrix A; N must be at least zero.

k specifies the number of superdiagonals of matrix A. Since the matrix is
Hermitian, this is also the number of subdiagonals; k must be at least
zeto.

alpha double-precision complex scalar multiplier applied to A * X.

PG-05326-032_V02 165
NVIDIA

CUDA CUBLAS Library

Input (continued)

A double-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u”, the leading (k + 1)xn part of array A must contain the
upper triangular band of the Hermitian matrix, supplied column by
column, with the leading diagonal of the matrix in row K + 1 of the
array, the first superdiagonal starting at position 2 in row K, and so on.
The top left kxk triangle of array A is not referenced. When uplo ==
"L" or 17, the leading (K + 1)xn part of array A must contain the
lower triangular band part of the Hermitian matrix, supplied column
by column, with the leading diagonal of the matrix in row 1 of the
array, the first subdiagonal starting at position 1 in row 2, and so on.
The bottom right kxk triangle of array A is not referenced. The
imaginary parts of the diagonal elements need not be set; they are
assumed to be zero.

Ida leading dimension of A; Ida must be at least k + 1.

X double-precision complex array of length at least
(1+(n-1)*abs(incx)).

incx storage spacing between elements of X; incx must not be zeto.

beta double-precision complex scalar multiplier applied to vector .

y double-precision complex array of length at least

(1+(n-1)*abs(incy)). If beta is zero, y is not read.

incy storage spacing between elements of y; incy must not be zero.

Output

y updated according to y = alpha*A*x+beta*y.

Reference: http://www.netlib.org/blas/zhbmv.f
Error status for this function can be retrieved via cublasGetError().

Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifk<0,n<0, incx==0, or
incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

166 PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Function cublasZzhemv()

void

cublaszhemv (char uplo, int n, cuDoubleComplex alpha,

const cuDoubleComplex *A, int lda,

const cuDoubleComplex *x, int Incx,
cuDoubleComplex beta, cuDoubleComplex *y,
int incy)

performs the matrix-vector operation

y = alpha*A*x+beta*y,

where alpha and beta are double-precision complex scalars, and x
and y are n-element double-precision complex vectors. A is a
Hermitian nxn matrix that consists of double-precision complex
elements and is stored in either upper or lower storage mode.

Input

uplo

alpha

Ida

incx

PG-05326-032_V02

specifies whether the upper or lower triangular part of the array A is
referenced. If uplo == "U" or "u”, the Hermitian matrix A is stored in
upper storage mode; that is, only the upper triangular part of A is
referenced while the lower triangular part of A is inferred. If uplo ==
"L" or "I7, the Hermitian matrix A is stored in lower storage mode;
that is, only the lower triangular part of A is referenced while the upper
triangular part of A is inferred.

specifies the number of rows and the number of columns of the
symmetric matrix A; n must be at least zero.

double-precision complex scalar multiplier applied to A * x.

double-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u”, the leading nxn upper triangular part of the array A must
contain the upper triangular part of the Hermitian matrix, and the
strictly lower triangular part of A is not referenced. If uplo == "L~ or
17, the leading nxn lower triangular part of the array A must contain
the lower triangular part of the Hermitian matrix, and the strictly
upper triangular part of A is not referenced. The imaginary parts of the
diagonal elements need not be set; they are assumed to be zero.

leading dimension of A; Ida must be at least max(1, n).
double-precision complex array of length at least
(1+(n-1)*abs(incx)).

storage spacing between elements of X; incx must not be zero.

167
NVIDIA

CUDA

CUBLAS Library

Input (continued)

beta double-precision complex scalar multiplier applied to vector .
y double-precision complex array of length at least
(1+(n-1)*abs(incy)). If beta is zero, y is not read.

incy storage spacing between elements of y; incy must not be zeto.

Output

y updated according to y = alpha*A*x+beta*y.

Reference: http://www.netlib.org/blas/zhemv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0,incx==0, or incy ==0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZher()

168

void

cublaszher (char uplo, int n, double alpha,
const cuDoubleComplex *x, int iIncx,
cuDoubleComplex *A, int 1da)

performs the Hermitian rank 1 operation
A = alpha*x*xH+A,

where alphais a double-precision scalar, x is an n-element double-
precision complex vector, and A is an nxn Hermitian matrix consisting
of double-precision complex elements. A is stored in column-major
format, and Ida is the leading dimension of the two-dimensional array
containing A.

PG-05326-032_V02
NVIDIA

CHAPTER 4

Input

Double-Precision BLAS2 Functions

uplo

alpha

incx

Ida

specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u®, only the upper
triangular part of A is referenced. If uplo == "L" or 17, only the
lower triangular part of A is referenced.

the number of rows and columns of matrix A; n must be at least zero.
double-precision scalar multiplier applied to x * xH.
double-precision complex array of length at least
(1+(n-1)*abs(incx)).

the storage spacing between elements of X; incx must not be zero.

double-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u", A contains the upper triangular part of the Hermitian
matrix, and the strictly lower triangular part is not referenced. If uplo
== "L" or "1", A contains the lower triangular part of the Hermitian
matrix, and the strictly upper triangular part is not referenced. The
imaginary parts of the diagonal elements need not be set, they are

assumed to be zero, and on exit they are set to zero.

leading dimension of the two-dimensional array containing A;
Ida must be at least max(d, n).

Output

A

updated according to A = alpha*x* x"+A.

Reference: http://www.netlib.org/blas/zher.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0orincx ==

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02

169
NVIDIA

CUDA

CUBLAS Library

Function cublaszZher2()

void

cublaszher2 (char uplo, int n, cuDoubleComplex alpha,

const cuDoubleComplex *x, iInt iIncx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int 1da)

performs the Hermitian rank 2 operation

A::ahma*x*yH+auma*y*xH+A,

where alpha is a double-precision complex scalar, x and y are n-
element double-precision complex vectors, and A is an nxn Hermitian
matrix consisting of double-precision complex elements.

Input

uplo

alpha

incx

incy

Ida

specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u”, only the upper
triangular part of A may be referenced and the lower triangular part of
A is inferred. If uplo == "L" or "1 7, only the lower triangular part of
A may be referenced and the upper triangular part of A is inferred.
the number of rows and columns of matrix A; n must be at least zero.

double-precision complex scalar multiplier applied to

X * yH and whose conjugate is applied to y * x".

double-precision array of length at least (1 + (n—-1)* abs(incx)).
the storage spacing between elements of X; incx must not be zero.
double-precision array of length at least (1 + (n—-1)* abs(incy)).

the storage spacing between elements of y; incy must not be zero.

double-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u", A contains the upper triangular part of the Hermitian
matrix, and the strictly lower triangular part is not referenced. If uplo
== "L" or 17, A contains the lower triangular part of the Hermitian
matrix, and the strictly upper triangular part is not referenced. The
imaginary parts of the diagonal elements need not be set, they are
assumed to be zero, and on exit they are set to zero.

leading dimension of A; Ida must be at least max(1, n).

170

PG-05326-032_V02
NVIDIA

CHAPTER 4 Double-Precision BLAS2 Functions

Output
A

updated according to A = alpha* x> yH +alpha*y™* x+ A

Reference: http://www.netlib.org/blas/zher2.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE if n<0, incx==0, or incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZhpmv()
void
cublaszhpmv (char uplo, int n, cuDoubleComplex alpha,
const cuDoubleComplex *AP,
const cuDoubleComplex *x, Int iIncx,
cuDoubleComplex beta,
cuDoubleComplex *y, Int incy)

performs the matrix-vector operation
y = alpha*A*x+beta*y,

where alpha and beta are double-precision complex scalars, and x
and y are n-element double-precision complex vectors. A is a
Hermitian nxn matrix that consists of double-precision complex
elements and is supplied in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array AP. If uplo == "U~ or "u", the upper triangular
part of Ais supplied in AP. If uplo == "L~ or "I 7, the lower triangular
part of A is supplied in AP.

n the number of rows and columns of matrix A; n must be at least zero.

alpha double-precision complex scalar multiplier applied to A * X.

PG-05326-032_V02 171
NVIDIA

CUDA

172

CUBLAS Library

Input (continued)

AP double-precision complex array with atleast (n *(n +1))/2 elements.
If uplo == "U" or "u", array AP contains the upper triangular part of
the Hermitian matrix A, packed sequentially, column by column; that
is, if i <= j, A[i,] is stored in AP[i +(j * (j + 1)/2)]. If uplo ==
"L" or 17, the array AP contains the lower triangular part of the
Hermitian matrix A, packed sequentially, column by column; that is, if
i >= j, A[i,J] is stored in AP[i +((2*n—j +1)* j)/2]. The
imaginary parts of the diagonal elements need not be set; they are
assumed to be zero.

X double-precision complex array of length at least
(1+(n-1)*abs(incx)).

incX storage spacing between elements of X; incx must not be zeto.

beta double-precision scalar multiplier applied to vector y.

y double-precision array of length at least (1 + (n—1)* abs(incy)).
If beta is zero, y is not read.

incy storage spacing between elements of y; incy must not be zeto.

Output

y updated according to y = alpha*A*x +beta*y.

Reference: http://www.netlib.org/blas/zhpmv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0, incx ==0, or incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Function cublaszhpr()

void

cublaszhpr (char uplo, int n, double alpha,
const cuDoubleComplex *x, iInt iIncx,
cuDoubleComplex *AP)

performs the Hermitian rank 1 operation
A = alpha*x*x"+A,
where alpha is a double-precision scalar, x is an n-element double-

precision complex vector, and A is an nxn Hermitian matrix consisting
of double-precision complex elements that is supplied in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array AP. If uplo == "U" or "u”, the upper triangular
part of Ais supplied in AP. If uplo == "L" or "1 7, the lower triangular
part of A is supplied in AP.

n the number of rows and columns of matrix A; n must be at least zero.

alpha Jouble-precision scalar multiplier applied to x * x*.

X double-precision complex array of length at least
(1+(n-1)*abs(incx)).
incX the storage spacing between elements of X; incx must not be zero.

AP double-precision complex array with atleast (n* (n + 1))/2 elements.
If uplo == "U" or "u", array AP contains the upper triangular part of
the Hermitian matrix A, packed sequentially, column by column; that
is, if # <= j, A[1,]J] is stored in AP[i+(J *(J +1)/2)]. Ifuplo ==
"L" or 17, the array AP contains the lower triangular part of the
Hermitian matrix A, packed sequentially, column by column; that is, if
i>=j,A[i,j]isstoredin AP[I+((2*n-j+1)*j)/2].The
imaginary parts of the diagonal elements need not be set; they are
assumed to be zero, and on exit they are set to zero.

Output

A updated according to A = alpha* x> x"H+A.

Reference: http://www.netlib.org/blas/zhpr.f

PG-05326-032_V02 173

NVIDIA

CUDA CUBLAS Library

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0orincx ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZhpr2()
void
cublaszhpr2 (char uplo, int n, cuDoubleComplex alpha,
const cuDoubleComplex *x, int iIncx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *AP)

performs the Hermitian rank 2 operation
A= alpha*x*yH+aIpha*y*xH+A,

where alpha is a double-precision complex scalar, x and y are n-
element double-precision complex vectors, and A is an nxn Hermitian
matrix consisting of double-precision complex elements that is
supplied in packed form.

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u”, only the upper
triangular part of A may be referenced and the lower triangular part of
A is inferred. If uplo == "L" or "1 7, only the lower triangular part of
A may be referenced and the upper triangular part of A is inferred.

n the number of rows and columns of matrix A; n must be at least zetro.
alpha double-precision complex scalar multiplier applied to
x *y" and whose conjugate is applied to y * x™.
X double-precision complex array of length at least
(1+(n-1)*abs(incx)).
incX the storage spacing between elements of X; incx must not be zero.

y double-precision complex array of length at least
(1+(n-1)*abs(incy)).

174 PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Input (continued)

incy
AP

the storage spacing between elements of y; incy must not be zero.

double-precision complex array with atleast (n* (n +1))/2 elements.
If uplo == "U" or "u", array AP contains the upper triangular part of
the Hermitian matrix A, packed sequentially, column by column; that
is, if # <= j, A[1,]J] is stored in AP[i+(J *(J +1)/2)]. Ifuplo ==
"L" or 17, the array AP contains the lower triangular part of the
Hermitian matrix A, packed sequentially, column by column; that is, if
i>=j,A[i,j]isstoredin AP[I+((2*n-j+1)*j)/2].The
imaginary parts of the diagonal elements need not be set; they are
assumed to be zero, and on exit they are set to zero.

Output

A

updated according to A = alpha*x*yH + alpha”‘y”‘xH +A

Reference: http://www.netlib.org/blas/zhpr2.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0, incx ==0, or incy ==
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZtbmv()

void

cublasztbmv (char uplo, char trans, char diag, int n,

int k, const cuDoubleComplex *A, int lda,
cubDoubleComplex *x, int incx)

performs one of the matrix-vector operations
X = op(A) *x,
where op(A) = A, op(A) = AT, or op(A) = AH;

PG-05326-032_V02

175
NVIDIA

CUDA

176

CUBLAS Library

x is an n-element double-precision complex vector, and A is an nxn,
unit or non-unit, upper or lower, triangular band matrix consisting of
double-precision complex elements.

Input

uplo

trans

Ida

incx

specifies whether the matrix A is an upper or lower triangular band
matrix. If uplo == "U" or "u”, Ais an upper triangular band matrix. If
uplo=="L" or "1, Ais alower triangular band matrix.

specifies op(A). If trans == "N" or "n", op(A) = A.
Iftrans=="T" or "t", op(A) = AT.

If trans == "C",or "¢, op(A) = AH,

specifies whether or not matrix A is unit triangular. If diag == "U" or

"u®, Ais assumed to be unit triangular. If diag == "N" or "n", Ais
not assumed to be unit triangular.

specifies the number of rows and columns of the matrix A; n must be
at least zero.

specifies the number of superdiagonals or subdiagonals. If uplo ==
"U" or "u”, Kk specifies the number of superdiagonals. If uplo == "L*"
or " 1" k specifies the number of subdiagonals; k must at least be zero.

double-precision complex array of dimension (lda, n). If uplo ==
"U" or "u", the leading (k+1)%n part of the array A must contain the
upper triangular band matrix, supplied column by column, with the
leading diagonal of the matrix in row k+1 of the array, the first
superdiagonal starting at position 2 in row k, and so on. The top left
kxk triangle of the array A is not referenced. If uplo == "L" or "1°7,
the leading (k+1)xn part of the array A must contain the lower
triangular band matrix, supplied column by column, with the leading
diagonal of the matrix in row 1 of the array, the first subdiagonal
starting at position 1 in row 2, and so on. The bottom right kxk
triangle of the array is not referenced.

is the leading dimension of A; Ida must be at least k+1.

double-precision complex array of length at least
(1+(n-1)*abs(incx)).

On entry, X contains the source vector. On exit, X is overwritten with
the result vectot.

specifies the storage spacing for elements of X; incx must not be zero.

Output

updated according to x = op(A) * x.

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Reference: http://www.netlib.org/blas/ztbmv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE if incx==0,k<0,0rn<0

CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough
internal scratch vector memory

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZtbsv()

void

cublasztbsv (char uplo, char trans, char diag, int n,
int k, const cuDoubleComplex *A, int lda,
cuDoubleComplex *X, int incx)

solves one of the systems of equations

op(A) *x = b,

where op(A) = A, op(A) = AT, or op(A) = AH;
b and x are n-element vectors, and A is an nxn, unit or non-unit, upper
or lower, triangular band matrix with k+1 diagonals.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

Input

uplo specifies whether the matrix is an upper or lower triangular band
matrix: If uplo == "U* or "u®, Ais an upper triangular band matrix. If
uplo=="L" or "I", Ais a lower triangular band matrix.

trans gpecifies op(A). If trans == "N or "n”, op(A) = A.
If trans=="T" or "t", op(A) = AT.
If trans == "C", or "c", op(A) = AM,

PG-05326-032_V02 177

NVIDIA

CUDA

178

CUBLAS Library

Input (continued)

diag

incx

specifies whether A is unit triangular. If diag == "U" or "u", Ais
assumed to be unit triangular; that is, diagonal elements are not read
and are assumed to be unity. If diag == "N" or "n*", A is not assumed
to be unit triangular.

the number of rows and columns of matrix A; n must be at least zero.

specifies the number of superdiagonals or subdiagonals.

If uplo == "U" or "u", k specifies the number of superdiagonals. If
uplo=="L" or "I", k specifies the number of subdiagonals; k must
be at least zero.

double-precision complex array of dimension (lda, n). If uplo ==
"U" or "u", the leading (k+1)%n part of the array A must contain the
upper triangular band matrix, supplied column by column, with the
leading diagonal of the matrix in row k+1 of the array, the first
superdiagonal starting at position 2 in row k, and so on. The top left
kxk triangle of the array A is not referenced. If uplo == "L" or "1°7,
the leading (k+1)xn part of the array A must contain the lower
triangular band matrix, supplied column by column, with the leading
diagonal of the matrix in row 1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom right kxk
triangle of the array is not referenced.

double-precision complex array of length at least
(1+(n-1)*abs(incx)).

storage spacing between elements of X; incx must not be zero.

Output

X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www .netlib.org/blas/ztbsv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED ifC[HHQ%Shbﬂwyvmsnothﬂdﬂﬁed
CUBLAS_STATUS_INVALID_VALUE ifincx==0o0orn<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Function cublasZtpmv()

void

cublasztpmv (char uplo, char trans, char diag, int n,

const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

performs one of the matrix-vector operations
x = op(A) *x,
where op(A) = A, op(A) = AT, or op(A) = AH;

x is an n-element double-precision complex vector, and A is an nxn,
unit or non-unit, upper or lower, triangular matrix consisting of
double-precision complex elements.

Input

uplo

trans

diag

AP

incx

specifies whether the matrix A is an upper or lower triangular matrix.
If uplo == "U~ or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais a lower triangular matrix.

specifies op(A). If trans == *N" or "n", op(A) = A.

If trans=="T" or "t", op(A) = AT.

If trans == "C", or "c", op(A) = AH,

specifies whether or not matrix A is unit triangular.

If diag == "U" or "u", A is assumed to be unit triangular.

If diag == "N*" or "n", A is not assumed to be unit triangulat.

specifies the number of rows and columns of the matrix A; n must be
at least zero.

double-precision complex array with atleast (n * (n +1))/2 elements.
If uplo == "U" or "u”, the array AP contains the upper triangular part
of the symmetric matrix A, packed sequentially, column by column;
that is, if 1 <= j, A[i,J] is stored in AP[i +(J *(J +1)/2)].If

uplo == "L~ or " 17, array AP contains the lower triangular part of the
symmetric matrix A, packed sequentially, column by column; that is, if

i >= J, A[i,j] is stored in AP[i +((2*n—j+1)*j)/2].
double-precision complex array of length at least
(1+(n-1)*abs(incx)). On entry, X contains the source vector.
On exit, X is overwritten with the result vector.

specifies the storage spacing for elements of X; incx must not be zero.

PG-05326-032_V02

179
NVIDIA

CUDA

CUBLAS Library

Output

X updated according to x = op(A) * X.

Reference: http://www.netlib.org/blas/ztpmv.f
Error status for this function can be retrieved via cublasGetError().

Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifincx==0o0rn<0

CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough
internal scratch vector memory

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZtpsv()

180

void

cublasztpsv (char uplo, char trans, char diag, int n,
const cuDoubleComplex *AP,
cuDoubleComplex *X, int incx)

solves one of the systems of equations

op(A) *x = b,

where op(A) = A, op(A) = AT, or op(A) = AH;
b and x are n-element complex vectors, and A is an nxn, unit or non-
unit, upper or lower, triangular matrix.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

Input

uplo specifies whether the matrix is an upper or lower triangular matrix. If
uplo == "U" or "u", Ais an upper triangular matrix. If uplo == "L*
or "I", Ais a lower triangular matrix.

trans gpecifies op(A). If trans == "N or "n”, op(A) = A.
If trans=="T" or "t", op(A) = AT.
If trans == "C~, or "c", op(A) = AM,

PG-05326-032_V02
NVIDIA

CHAPTER 4

Double-Precision BLAS2 Functions

Input (continued)

diag

AP

incx

specifies whether A is unit triangular. If diag == "U" or "u", Ais
assumed to be unit triangular; that is, diagonal elements are not read
and are assumed to be unity. If diag == "N" or "n*", A is not assumed
to be unit triangular.

specifies the number of rows and columns of the matrix A; n must be
at least zero.

double-precision complex array with atleast (n *(n +1))/2 elements.
If uplo == "U" or "u", array AP contains the upper triangular matrix
A, packed sequentially, column by column; that is, if ¥ <= j, A[i,j] is
stored in AP[i+(J *(J +1)/2)].Ifuplo=="L" or "I ", array AP
contains the lower triangular matrix A, packed sequentially, column by
column; that is, if § >= j, A[1,j] is stored in
AP[i1+((2*n-j+1)*j)/2]. Whendiag == "U" or "u”, the
diagonal elements of A are not referenced and are assumed to be unity.
double-precision complex array of length at least
(1+(n-1)*abs(incx)).

storage spacing between elements of X; incx must not be zero.

Output

X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www.netlib.org/blas/ztpsv.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if incx==0o0rn<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02

181
NVIDIA

CUDA

CUBLAS Library

Function cublasZtrmv()

182

void

cublasztrmv (char uplo, char trans, char diag, int n,

const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

performs one of the matrix-vector operations
x = op(A) *x,
where op(A) = A, op(A) = AT, or op(A) = AR;

x is an n-element double-precision complex vector; and A is an nxn,
unit or non-unit, upper or lower, triangular matrix consisting of
double-precision complex elements.

Input

uplo

trans

diag

Ida

specifies whether the matrix A is an upper or lower triangular matrix.
If uplo == "U~ or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais an lower triangular matrix.

specifies op(A). If trans == *N" or "n*", op(A) = A.

If trans=="T" or "t", op(A) = AT.

If trans == "C~ or "c", op(A) = AH.

specifies whether or not A is a unit triangular matrix. If diag == "U*"

or "u”, Ais assumed to be unit triangular. If diag == "N or "n*, Ais
not assumed to be unit triangular.

specifies the number of rows and columns of the matrix A; n must be
at least zero.

double-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u”, the leading nxn upper triangular part of the array A must
contain the upper triangular matrix, and the strictly lower triangular
part of A is not referenced. If uplo == "L" or "I, the leading nxn
lower triangular part of the array A must contain the lower triangular
matrix, and the strictly upper triangular part of A is not referenced.
When diag == "U" or "u”, the diagonal elements of A are not
referenced either, but are assumed to be unity.

leading dimension of A; Ida must be at least max(1, n).

PG-05326-032_V02
NVIDIA

CHAPTER 4 Double-Precision BLAS2 Functions

Input (continued)

X double-precision complex array of length at least
(1+(n-1)*abs(incx)). On entry, X contains the source vectort.
On exit, X is overwritten with the result vector.

incx the storage spacing between elements of X; incx must not be zero.

Output
X

updated according to X = op(A) * X.

Reference: http://www .netlib.org/blas/ztrmv.f

Error status for this function can be retrieved via cublasGetError().
Error Status
CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized

CUBLAS_STATUS_INVALID_VALUE ifincx==0o0rn<0
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU
CUBLAS_STATUS_ALLOC_FAILED if function cannot allocate enough

internal scratch vector memory

Function cublasZtrsv()
void
cublasztrsv (char uplo, char trans, char diag, int n,

const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

solves a system of equations

op(A) *x = b,

where op(A) = A, op(A) = AT, or op(A) = AR;
b and x are n-element double-precision complex vectors, and A is an
nxn, unit or non-unit, upper or lower, triangular matrix consisting of
single-precision elements. Matrix A is stored in column-major format,

and lda is the leading dimension of the two-dimensional array
containing A.

No test for singularity or near-singularity is included in this function.
Such tests must be performed before calling this function.

PG-05326-032_V02 183
NVIDIA

CUDA

184

CUBLAS Library

Input

uplo specifies whether the matrix data is stored in the upper or the lower
triangular part of array A. If uplo == "U" or "u®, only the upper
triangular part of A may be referenced. If uplo == "L" or "1*, only
the lower triangular part of A may be referenced.

trans gspecifies op(A). If trans == "N” or "n”, op(A) = A.

If trans=="T" or "t", op(A) = AT.
If trans == "C~ or "c", op(A) = AH.
diag specifies whether or not A is a unit triangular matrix.
If diag == "U" or "u", A is assumed to be unit triangular.
If diag == "N or "n", A is not assumed to be unit triangular.

n specifies the number of rows and columns of the matrix A; n must be
at least zero.

A double-precision complex array of dimensions (lda, n). If uplo ==
"U" or "u", A contains the upper triangular part of the symmetric
matrix, and the strictly lower triangular part is not referenced. If uplo
== "L" or 17, A contains the lower triangular part of the symmetric
matrix, and the strictly upper triangular part is not referenced.

Ida leading dimension of the two-dimensional array containing A;

Ida must be at least max(1, n).

X double-precision complex array of length at least
(1+(n-1)*abs(incx)). On entry, X contains the n-element, right-
hand-side vector b. On exit, it is overwritten with solution vector X.

incx the storage spacing between elements of X; incx must not be zero.

Output

X

updated to contain the solution vector X that solves op(A) *x = b.

Reference: http://www .netlib.org/blas/ztrsv.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifincx==0o0rn<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER

BLAS3 Functions

Level 3 Basic Linear Algebra Subprograms (BLAS3) perform matrix-
matrix operations. The CUBLAS implementations are described in the
following sections:

0 “Single-Precision BLAS3 Functions” on page 186

Q “Single-Precision Complex BLAS3 Functions” on page 199

0 “Double-Precision BLAS3 Functions” on page 218

0 “Double-Precision Complex BLAS3 Functions” on page 231
PG-05326-032_V02 185

NVIDIA

CUDA CUBLAS Library

Single-Precision BLAS3 Functions
The single-precision BLAS3 functions are listed below:
“Function cublasSgemmy()” on page 187
“Function cublasSsymm()” on page 188
“Function cublasSsyrk()” on page 190

o
0
0
0 “Function cublasSsyr2k()” on page 192
0 “Function cublasStrmm()” on page 194
0

“Function cublasStrsm()” on page 196

186 PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Function cublasSgemm()
void
cublasSgemm (char transa, char transb, int m, int n,
int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta,
float *C, int ldc)
computes the product of matrix A and matrix B, multiplies the result
by scalar alpha, and adds the sum to the product of matrix C and
scalar beta. It performs one of the matrix-matrix operations:

C = alpha * op(A) * op(B) + beta * C,
where op(X) = X or op(X) = XT,

and alpha and beta are single-precision scalars. A, B, and C are
matrices consisting of single-precision elements, with op(A) an mxk
matrix, op(B) a kxn matrix, and C an mxn matrix. Matrices A, B, and C
are stored in column-major format, and Ida, Idb, and Idc are the
leading dimensions of the two-dimensional arrays containing A, B,
and C.
Input
transa gpecifies op(A). If transa == "N” or "n”, op(A) = A.

If transa=="T", "t", "C", or "c", op(A) = AT.
transb specifies op(B). If transb == *N* or *n*, op(B) = B.

If transb == "T", "t", "C", or "c", op(B) = BT.

m number of rows of matrix op(A) and rows of matrix C; m must be at
least zero.
n number of columns of matrix op(B) and number of columns of C;

n must be at least zero.

k number of columns of matrix op(A) and number of rows of op(B);
k must be at least zero.

alpha single-precision scalar multiplier applied to op(A) * op(B) .

A single-precision array of dimensions (lda, K) if transa == "N or
"n", and of dimensions (Ida, m) otherwise. If transa == "N" or
"n", Ida must be at least max(1, m); otherwise, da must be at least
max(1, K).

Ida leading dimension of two-dimensional array used to store matrix A.

PG-05326-032_V02 187
NVIDIA

CUDA

CUBLAS Library

Input (continued)

B single-precision array of dimensions (ldb, n) if transb == "N" or
"n*, and of dimensions (1db, k) otherwise. If transb == "N* or
"n*, Idb must be at least max(1, k); otherwise, Idb must be at least
max(1, n).

Idb leading dimension of two-dimensional array used to store matrix B.

beta single-precision scalar multiplier applied to C. If zero, C does not have
to be a valid input.

C single-precision array of dimensions (ldc, n); Idc must be at least
max (1, m).

Idc leading dimension of two-dimensional array used to store matrix C.

Output

C updated based on C = alpha * op(A) * op(B) + beta * C.

Reference: http://www.netlib.org/blas/sgemm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0,n<0,ork<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSsymm()

188

void

cublasSsymm (char side, char uplo, int m, int n,
float alpha, const float *A, int lda,
const float *B, int ldb, float beta,
float *C, int 1ldc)

performs one of the matrix-matrix operations

C = alpha*A*B+beta*C or C = alpha*B*A+beta*C,

where alpha and beta are single-precision scalars, A is a symmetric
matrix consisting of single-precision elements and is stored in either

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

lower or upper storage mode. B and C are mxn matrices consisting of
single-precision elements.

Input

side

uplo

alpha

Ida

PG-05326-032_V02

specifies whether the symmetric matrix A appears on the left-hand side
or right-hand side of matrix B.

Ifside=="L"or "1",C = alpha*A*B+beta*C.

If side=="R" or "r",C = alpha*B*A+beta*C.

specifies whether the symmetric matrix A is stored in upper or lower
storage mode. If uplo == "U*" or "u", only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L~ or "I, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the number of rows of matrix C, and the number of rows of
matrix B. It also specifies the dimensions of symmetric matrix A when
side == "L" or "I "; m must be at least zero.

specifies the number of columns of matrix C, and the number of
columns of matrix B. It also specifies the dimensions of symmetric
matrix A when side == "R” or "r"'; n must be at least zero.

single-precision scalar multiplier applied to A * B or B * A.

single-precision array of dimensions (lda, ka), where ka is m when
side == "L" or "1" and is n otherwise. If side == "L" or "I ", the
leading mxm part of array A must contain the symmetric matrix such
that when uplo == "U" or "u”, the leading mxm part stores the upper
triangular part of the symmetric matrix, and the strictly lower
triangular part of A is not referenced; and when uplo == "L" or "I~,
the leading mxm part stores the lower triangular part of the symmetric
matrix, and the strictly upper triangular part is not referenced. If
side == "R" or "r", the leading nxn part of array A must contain the
symmetric matrix such that when uplo == "U" or "u”, the leading
nxn part stores the upper triangular part of the symmetric matrix, and
the strictly lower triangular part of A is not referenced; and when
uplo == "L" or "I7, the leading nxn part stores the lower triangular
part of the symmetric matrix, and the strictly upper triangular part is
not referenced.

leading dimension of A. When side == "L" or " 1", it must be at least
max(1, m) and at least max(1, n) otherwise.

189
NVIDIA

CUDA

CUBLAS Library

Input (continued)

B single-precision array of dimensions (ldb, n). On entry, the leading
mxn part of the array contains the matrix B.

Idb leading dimension of B; Idb must be at least max (1, m).

beta single-precision scalar multiplier applied to C. If beta is zero, C does
not have to be a valid input.

C single-precision array of dimensions (ldc, n).

Idc leading dimension of C; 1dc must be at least max(1, m).
Output

C

updated according to C = alpha*A*B+beta™>C or
C = alpha*B*A+beta*C.

Reference: http://www.netlib.org/blas/ssymm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<Oorn<O

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSsyrk()

190

void

cublasSsyrk (char uplo, char trans, int n, int k,
float alpha, const float *A, int lda,
float beta, float *C, int Idc)

performs one of the symmetric rank k operations
C = alpha*A*AT+beta*C or C = alpha*AT*A+beta*C,

where alpha and beta are single-precision scalars. C is an nxn
symmetric matrix consisting of single-precision elements and is stored
in either lower or upper storage mode. A is a matrix consisting of
single-precision elements with dimensions of nxk in the first case and
kxn in the second case.

PG-05326-032_V02
NVIDIA

CHAPTER 5

Input

BLAS3 Functions

uplo

trans

alpha

Ida

beta

PG-05326-032_V02

specifies whether the symmetric matrix C is stored in upper or lower
storage mode. If uplo == "U" or "u", only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or " 17, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the operation to be performed. If trans == *N* or "n”,
C = alpha*A*AT+beta*C.Iftrans=="T", "t", "C", or "c",
C = alpha*AT*A+beta*C.

specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n", n specifies the number of rows of matrix A. If
trans == "T", "t", "C", or "c", n specifies the number of columns

of matrix A; n must be at least zero.

If trans == "N" or "n", K specifies the number of columns of
matrix A. If trans == "T", "t", "C", or "c", K specifies the number
of rows of matrix A; k must be at least zero.

single-precision scalar multiplier applied to A* AT or AT*A.
single-precision array of dimensions (lda, ka), where ka is k when
trans == "N" or "n" and is n otherwise. When trans == "N*" or
"n~, the leading nxk part of array A contains the matrix A; otherwise,
the leading kxn part of the array contains the matrix A.

leading dimension of A. When trans == "N or "n", Ida must be at
least max(1, n). Otherwise Ida must be at least max (1, k).

single-precision scalar multiplier applied to C.
If beta is zero, C is not read.

191
NVIDIA

CUDA

CUBLAS Library

Input (continued)

C single-precision array of dimensions (ldc, n). If uplo=="U" or "u”",
the leading nxn triangular part of the array C must contain the upper
triangular part of the symmetric matrix C, and the strictly lower
triangular part of C is not referenced. On exit, the upper triangular part
of C is overwritten by the upper triangular part of the updated matrix.
If uplo == "L" or " 17, the leading nxn triangular part of the array C
must contain the lower triangular part of the symmetric matrix C, and
the strictly upper triangular part of C is not referenced. On exit, the
lower triangular part of C is overwritten by the lower triangular part of
the updated matrix.

Idc leading dimension of C; Idc must be at least max(1, n).

Output
C

updated according to C = alpha*A* AT +beta>C or
C = alpha*AT*A+beta*C.

Reference: http://www .netlib.org/blas/ssyrk.f
Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE ifn<O0ork<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasSsyr2k()

192

void

cublasSsyr2k (char uplo, char trans, int n, int Kk,
float alpha, const float *A, int lda,
const float *B, int ldb, float beta,
float *C, int Idc)

performs one of the symmetric rank 2k operations
C = alpha*A*BT+alpha*B*AT +beta*C or
C = alpha*AT*B+alpha*BT*A+beta*C,
where alpha and beta are single-precision scalars. C is an nxn

symmetric matrix consisting of single-precision elements and is stored
in either lower or upper storage mode. A and B are matrices consisting

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

of single-precision elements with dimension of nxk in the first case and
kxn in the second case.

Input

uplo

trans

alpha

Ida

1db

beta

PG-05326-032_V02

specifies whether the symmetric matrix C is stored in upper or lower
storage mode. If uplo == "U" or "u”, only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or "17, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the operation to be performed. If trans == *N® or "n",

C = alpha*A*BT+alpha*B*AT+beta*C.If trans=="T",
"t","C",or "c",C = alpha*AT*B+alpha*BT*A+beta*C.
specifies the number of rows and the number columns of matrix C. If
trans == "N” or "n"', n specifies the number of rows of matrix A. If

trans == "T", "t", "C", or "Cc", n specifies the number of columns
of matrix A; n must be at least zero.

If trans == "N* or "n", k specifies the number of columns of matrix
A lftrans=="T", "t", "C", or "c", k specifies the number of rows
of matrix A; K must be at least zero.

single-precision scalar multiplier.

single-precision array of dimensions (lda, ka), where ka is k when
trans == "N" or "n" and is n otherwise. When trans == "N" or
"n*, the leading nxk part of array A must contain the matrix A,
otherwise the leading kxn part of the array must contain the matrix A.

leading dimension of A. When trans == "N* or "n", lda must be at
least max (1, n). Otherwise Ida must be at least max(1, k).

single-precision array of dimensions (Idb, kb), where kb = k when
trans == "N" or "n", and k = n otherwise. When trans == "N" or
"n*, the leading nxk part of array B must contain the matrix B,
otherwise the leading kxn part of the array must contain the matrix B.

leading dimension of B. When trans == *N" or "n~, Idb must be at
least max (1, n). Otherwise Idb must be at least max(1, k).

single-precision scalar multiplier applied to C. If beta is zero, C does
not have to be a valid input.

193
NVIDIA

CUDA

CUBLAS Library

Input (continued)

C single-precision array of dimensions (ldc, n). If uplo=="U" or "u”",
the leading nxn triangular part of the array C must contain the upper
triangular part of the symmetric matrix C, and the strictly lower
triangular part of C is not referenced. On exit, the upper triangular part
of C is overwritten by the upper triangular part of the updated matrix.
If uplo == "L" or " 17, the leading nxn triangular part of the array C
must contain the lower triangular part of the symmetric matrix C, and
the strictly upper triangular part of C is not referenced. On exit, the
lower triangular part of C is overwritten by the lower triangular part of
the updated matrix.

Idc leading dimension of C; idc must be at least max(1, n).
Output
C updated according to

C = alpha*A*BT+alpha*B*AT+beta*C or
C = alpha*AT*B+alpha*BT*A+beta*C.

Reference: http://www.netlib.org/blas/ssyr2k.f
Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE ifn<O0ork<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasStrmm()

194

void

cublasStrmm (char side, char uplo, char transa,
char diag, int m, int n, float alpha,
const float *A, int lda, const float *B,
int Idb)

performs one of the matrix-matrix operations
B = alpha*op(A) *B or B = alpha*B * op(A),
where op(A) = A or op(A) = AT,

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

alpha is a single-precision scalar, B is an mxn matrix consisting of
single-precision elements, and A is a unit or non-unit, upper or lower
triangular matrix consisting of single-precision elements.

Matrices A and B are stored in column-major format, and Ida and Idb
are the leading dimensions of the two-dimensional arrays that contain

A and B,

Input

respectively.

side

uplo

transa

alpha

Ida

PG-05326-032_V02

specifies whether op(A) multiplies B from the left or right.
If side=="L" or "1", B = alpha*op(A) *B.
If side == "R" or "r", B = alpha*B*op(A).

specifies whether the matrix A is an upper or lower triangular matrix.
If uplo == "U" or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais a lower triangular matrix.

specifies the form of op(A) to be used in the matrix multiplication.
If transa == "N" or "*n", op(A) = A.

If transa=="T", "t", "C", or "c", op(A) = AT.

specifies whether or not A is a unit triangular matrix. If diag == "U*"
or "u”, Ais assumed to be unit triangular. If diag == *N* or "n*, Ais
not assumed to be unit triangular.

the number of rows of matrix B; m must be at least zero.

the number of columns of matrix B; n must be at least zero.

single-precision scalar multiplier applied to op(A)*B or B*op(A),
respectively. If alpha is zero, no accesses are made to matrix A, and
no read accesses are made to matrix B.

single-precision array of dimensions (lda, k). If side == "L" or "1°7,
k=m. If side=="R" or "r",k=n.If uplo== "U" or "u”, the
leading kxk upper triangular part of the array A must contain the
upper triangular matrix, and the strictly lower triangular part of A is
not referenced. If uplo == "L" or "17, the leading kxk lower
triangular part of the array A must contain the lower triangular matrix,
and the strictly upper triangular part of A is not referenced. When
diag == "U" or "u”, the diagonal elements of A are not referenced
and are assumed to be unity.

leading dimension of A. When side == "L~ or "I, it must be at least
max (1, m) and at least max(1, n) otherwise.

195
NVIDIA

CUDA

CUBLAS Library

Input (continued)

B single-precision array of dimensions (ldb, n). On entry, the leading
mxn part of the array contains the matrix B. It is overwritten with the
transformed matrix on exit.

Idb leading dimension of B; Idb must be at least max(1, m).

Output

updated according to B = alpha* op(A) *B or
B = alpha*B*op(A).

Reference: http://www .netlib.org/blas/strmm.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE if m<O0orn<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasStrsm()

196

void
cublasStrsm (char side, char uplo, char transa,
char diag, int m, int n, float alpha,
const float *A, int lda, float *B, int ldb)

solves one of the matrix equations
op(A) *X =alpha*B or X*op(A) = alpha*B,
where op(A) = A or op(A) = AT,

alpha is a single-precision scalar, and X and B are mxn matrices that
consist of single-precision elements. A is a unit or non-unit, upper or
lower, triangular matrix.

The result matrix X overwrites input matrix B; that is, on exit the result
is stored in B. Matrices A and B are stored in column-major format, and
Ida and ldb are the leading dimensions of the two-dimensional arrays
that contain A and B, respectively.

PG-05326-032_V02
NVIDIA

CHAPTER 5

Input

BLAS3 Functions

side

uplo

transa

diag

alpha

Ida

1db

specifies whether op(A) appears on the left or right of X:

side == "L~ or "I " indicates solve op(A) * X = alpha*B;

side == "R" or "r" indicates solve X * op(A) = alpha *B.
specifies whether the matrix A is an upper or lower triangular matrix:
uplo == "U" or "u” indicates A is an upper triangular matrix;

uplo == "L" or "I~ indicates A is a lower triangular matrix.
specifies the form of op(A) to be used in matrix multiplication.

If transa == "N" or "n", op(A) = A.

If transa=="T", "t", "C", or "c", op(A) = AT.

specifies whether or not A is a unit triangular matrix.

If diag == "U” or "u”, A is assumed to be unit triangular.
If diag == "N” or "n", A is not assumed to be unit triangular.

specifies the number of rows of B; m must be at least zero.
specifies the number of columns of B; n must be at least zero.

single-precision scalar multiplier applied to B. When alpha is zero, A is
not referenced and B does not have to be a valid input.

single-precision array of dimensions (lda, k), where k is m when
side=="L" or 1" and is n when side == "R" or "r". If uplo ==
"U" or "u”, the leading kxk upper triangular part of the array A must
contain the upper triangular matrix, and the strictly lower triangular
matrix of A is not referenced. When uplo == "L~ or " 17, the leading
kxk lower triangular part of the array A must contain the lower
triangular matrix, and the strictly upper triangular part of A is not
referenced. Note that when diag == "U" or "u”, the diagonal
elements of A are not referenced and are assumed to be unity.

leading dimension of the two-dimensional array containing A.
When side == "L" or "1, Ida must be at least max (1, m).
When side == "R" or "r", Ida must be at least max(1, n).

single-precision array of dimensions (ldb, n); Idb must be at least
max(1, m). The leading mxn part of the array B must contain the right-
hand side matrix B. On exit B is overwritten by the solution matrix X.

leading dimension of the two-dimensional array containing B; Idb
must be at least max (1, m).

PG-05326-032_V02

197
NVIDIA

CUDA

198

CUBLAS Library

Output
B

contains the solution matrix X satisfying op(A) * X = alpha *B or
X*op(A) =alpha*B.

Reference: http://www.netlib.org/blas/strsm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<Oorn<O0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Single-Precision Complex BLAS3 Functions

These are the single-precision complex BLAS3 functions:
0 “Function cublasCgemm()” on page 200

0 “Function cublasChemm()” on page 201

0 “Function cublasCherk()” on page 203

0 “Function cublasCher2k()” on page 205

0 “Function cublasCsymm()” on page 207

0 “Function cublasCsyrk()” on page 209

0 “Function cublasCsyr2k()” on page 211

a “Function cublasCtrmm()” on page 213

0 “Function cublasCtrsm()” on page 215

PG-05326-032_V02 199
NVIDIA

CUDA CUBLAS Library

Function cublasCgemm()
void
cublasCgemm (char transa, char transb, int m, int n,
int k, cuComplex alpha, const cuComplex *A,
int Ida, const cuComplex *B, int Idb,
cuComplex beta, cuComplex *C, int ldc)

performs one of the matrix-matrix operations
C = alpha*op(A) *op(B) +bheta*C,
where op(X) = X, op(X) = XT, or op(X) = X";
and alpha and beta are single-precision complex scalars. A, B, and C

are matrices consisting of single-precision complex elements, with
op(A) an mxk matrix, op(B) a kxn matrix, and C an mxn matrix.

Input

transa gpecifies op(A). If transa == "N or "n”, op(A) = A.
If transa == "T" or "t", op(A) = AT.
If transa == "C” or "c", op(A) = AR,

transb specifies op(B). If transb == *N* or *n*, op(B) = B.
If transb == "T" or "t", op(B) = BT.
If transb == "C" or "c", op(B) = BH.

m number of rows of matrix op(A) and rows of mattix C;
m must be at least zero.

n number of columns of matrix op(B) and number of columns of C;
n must be at least zero.

k number of columns of matrix op(A) and number of rows of op(B);
k must be at least zero.

alpha single-precision complex scalar multiplier applied to op(A)*op(B).
A single-precision complex array of dimension (lda, k) if transa ==
"N" or "n", and of dimension (Ida, m) otherwise.

Ida leading dimension of A. When transa == "N* or "n*, it must be at
least max(1, m) and at least max (1, k) otherwise.

B single-precision complex array of dimension (ldb, n) if transb ==
N" or "n~, and of dimension (Idb, k) otherwise.

Idb leading dimension of B. When transb == *N" or "n", it must be at
least max (1, k) and at least max(1, n) otherwise.

200 PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Input (continued)

beta single-precision complex scalar multiplier applied to C. If beta is zero,
C does not have to be a valid input.

C single-precision array of dimensions (ldc, n).

Idc leading dimension of C; idc must be at least max(1, m).
Output

C

updated according to C = alpha* op(A) *op(B) +beta>C.

Reference: http://www.netlib.org/blas/cgemm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0,n<0,ork<0
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasChemm()
void
cublasChemm (char side, char uplo, int m, int n,
cuComplex alpha, const cuComplex *A,
int Ida, const cuComplex *B, int Idb,
cuComplex beta, cuComplex *C, int ldc)

performs one of the matrix-matrix operations
C = alpha*A*B+beta*C or C = alpha*B*A+beta*C,

where alpha and beta are single-precision complex scalars, A is a
Hermitian matrix consisting of single-precision complex elements and
is stored in either lower or upper storage mode. B and C are mxn
matrices consisting of single-precision complex elements.

PG-05326-032_V02 201
NVIDIA

CUDA

202

Input

CUBLAS Library

side

uplo

alpha

Ida

specifies whether the Hermitian matrix A appears on the left-hand side
or right-hand side of matrix B.

If side=="L" or "1",C = alpha*A*B+beta*C.

If side=="R" or "r*, C = alpha*B*A+beta*C.

specifies whether the Hermitian matrix A is stored in upper or lower
storage mode. If uplo == "U" or "u”, only the upper triangular part
of the Hermitian matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or "17, only the lower triangular part of the
Hermitian matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the number of rows of matrix C, and the number of rows of
matrix B. It also specifies the dimensions of Hermitian matrix A when
side == "L" or "I "; m must be at least zero.

specifies the number of columns of matrix C, and the number of
columns of matrix B. It also specifies the dimensions of Hermitian
matrix A when side == "R" or "r"'; n must be at least zero.

single-precision complex scalar multiplier applied to A * B or B * A.

single-precision complex array of dimensions (lda, ka), where ka is
m when side == "L" or "I" and is n otherwise. If side == "L" or
17, the leading mxm part of array A must contain the Hermitian
matrix such that when uplo == "U" or "u", the leading mxm part
stores the upper triangular part of the Hermitian matrix, and the
strictly lower triangular part of A is not referenced; and when uplo ==
"L" or "7, the leading mxm part stores the lower triangular part of the
Hermitian matrix, and the strictly upper triangular part is not
referenced. If side == "R" or "r", the leading nxn part of array A
must contain the Hermitian matrix such that when uplo == "U* or
"u”, the leading nxn part stores the upper triangular part of the
Hermitian matrix, and the strictly lower triangular part of A is not
referenced; and when uplo == "L" or " 17, the leading nxn part stores
the lower triangular part of the Hermitian matrix, and the strictly
upper triangular part is not referenced. The imaginary parts of the
diagonal elements need not be set; they are assumed to be zero.

leading dimension of A. When side == "L" or " 1", it must be at least
max(1, m) and at least max(1, n) otherwise.

PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Input (continued)

B single-precision complex array of dimensions (Idb, n). On entry, the
leading mxn part of the array contains the matrix B.

Idb leading dimension of B; Idb must be at least max (1, m).

beta single-precision complex scalar multiplier applied to C. If beta is zero,
C does not have to be a valid input.

C single-precision complex array of dimensions (ldc, n).
Idc leading dimension of C; Idc must be at least max(1, m).
Output

C updated according to C = alpha*A*B+beta™>C or

C = alpha*B*A+beta*C.

Reference: http://www.netlib.org/blas/chemm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<Oorn<O

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCherk()
void
cublasCherk (char uplo, char trans, int n, int k,
float alpha, const cuComplex *A,

int Ida, float beta, cuComplex *C,
int Idc)

performs one of the Hermitian rank k operations
C = alpha*A*AH+beta*C or C = alpha*AH*A+beta*C,

where alpha and beta are single-precision real scalars. C is an nxn
Hermitian matrix consisting of single-precision complex elements and
is stored in either lower or upper storage mode. A is a matrix consisting
of single-precision complex elements with dimensions of nxk in the
tirst case and kxn in the second case.

PG-05326-032_V02 203
NVIDIA

CUDA

Input

CUBLAS Library

uplo

trans

alpha

Ida

beta

204

specifies whether the Hermitian matrix C is stored in upper or lower
storage mode. If uplo == "U" or "u", only the upper triangular part
of the Hermitian matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or " 17, only the lower triangular part of the
Hermitian matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the operation to be performed. If trans == *N* or "n”,
C = alpha*A*AH+beta*C.Iftrans=="T", "t", "C", or "c",
C = alpha*A"f*A+beta*C.

specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n", n specifies the number of rows of matrix A. If
trans == "T", "t", "C", or "c", n specifies the number of columns

of matrix A; n must be at least zero.

If trans == "N" or "n", K specifies the number of columns of
matrix A. If trans == "T", "t", "C", or "c", K specifies the number
of rows of matrix A; k must be at least zero.

single-precision scalar multiplier applied to A* A or AH*A.

single-precision complex array of dimensions (lda, ka), where ka is
k when trans == *N*" or "n* and is n otherwise. When trans ==
"N" or "n", the leading nxk part of array A contains the matrix A;
otherwise, the leading kxn part of the array contains the matrix A.

leading dimension of A. When trans == "N or "n", Ida must be at
least max(1, n). Otherwise Ida must be at least max (1, k).
single-precision real scalar multiplier applied to C.

If beta is zero, C does not have to be a valid input.

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

Input (continued)

C

Idc

single-precision complex array of dimensions (ldc, n). If uplo ==
"U” or "u”, the leading nxn triangular part of the array C must contain
the upper triangular part of the Hermitian matrix C, and the strictly
lower triangular part of C is not referenced. On exit, the upper
triangular part of C is overwritten by the upper triangular part of the
updated matrix. If uplo == "L" or " 17, the leading nxn triangular
part of the array C must contain the lower triangular part of the
Hermitian matrix C, and the strictly upper triangular part of C is not
referenced. On exit, the lower triangular part of C is overwritten by the
lower triangular part of the updated matrix. The imaginary parts of the
diagonal elements need not be set; they are assumed to be zero, and on
exit they are set to zero.

leading dimension of C; Idc must be at least max (1, n).

Output

updated according to C = alpha*A™* Af + beta>C or
C = alpha*AH*A+beta*C.

Reference: http://www .netlib.org/blas/cherk.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<O0ork<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCher2k()

void

cublasCher2k (char uplo, char trans, int n, int Kk,

cuComplex alpha, const cuComplex *A,
int Ida, const cuComplex *B, int Idb,
float beta, cuComplex *C, int ldc)

performs one of the Hermitian rank 2k operations

C
C

PG-05326-032_V02

alpha*A*BH+alpha*B*AH+beta+C or
ahma*AH*B+ahma*BH*A+¢mta+C,

205
NVIDIA

CUDA

206

CUBLAS Library

where alpha is a single-precision complex scalar and beta is a single-
precision real scalar. C is an nxn Hermitian matrix consisting of single-
precision complex elements and is stored in either lower or upper
storage mode. A and B are matrices consisting of single-precision
complex elements with dimensions of nxk in the first case and kxn in
the second case.

Input

uplo

trans

alpha

Ida

1db

specifies whether the Hermitian matrix C is stored in upper or lower
storage mode. If uplo == "U" or "u", only the upper triangular part
of the Hermitian matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or " 17, only the lower triangular part of the
Hermitian matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the operation to be performed. If trans == "N* or "n”",
C = alpha*A*BH+aIpha*B*AH+beta+C.Iftrans =="T",
"t","C",or "c",C = alpha*AH*B+alpha*BH*A+beta+C.

specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n", n specifies the number of rows of matrices A
and B. If trans == "T", "t", "C", or "c", n specifies the number of
columns of matrices A and B; n must be at least zero.

If trans == "N" or "n", K specifies the number of columns of
matrices A and B. If trans == "T", "t", "C", or "c", K specifies the
number of rows of matrices A and B; k must be at least zero.

single-precision complex scalar multiplier.

single-precision complex array of dimensions (lda, ka), where ka is
k when trans == "*N*" or "n* and is n otherwise. When trans ==
"N" or "n", the leading nxk part of array A contains the matrix A;
otherwise, the leading kxn part of the array contains the matrix A.

leading dimension of A. When trans == "N or "n", Ida must be at
least max(1, n). Otherwise Ida must be at least max (1, k).

single-precision complex array of dimensions (ldb, kb), where kb is
k when trans == "N*" or "n" and is n otherwise. When trans ==
"N" or "n", the leading nxk part of array B contains the matrix B;
otherwise, the leading kxn part of the array contains the matrix B.

leading dimension of B. When trans == *N" or "n*", Idb must be at
least max(1, n). Otherwise Idb must be at least max (21, k).

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

Input (continued)

beta

Idc

single-precision real scalar multiplier applied to C.

If beta is zero, C does not have to be a valid input.

single-precision complex array of dimensions (ldc, n). If uplo ==
"U" or "u”, the leading nxn triangular part of the array C must contain
the upper triangular part of the Hermitian matrix C, and the strictly
lower triangular part of C is not referenced. On exit, the upper
triangular part of C is overwritten by the upper triangular part of the
updated matrix. If uplo == "L*" or "1 7, the leading nxn triangular
part of the array C must contain the lower triangular part of the
Hermitian matrix C, and the strictly upper triangular part of C is not
referenced. On exit, the lower triangular part of C is overwritten by the
lower triangular part of the updated matrix. The imaginary parts of the
diagonal elements need not be set; they are assumed to be zero, and on
exit they are set to zero.

leading dimension of C; ldc must be at least max(1, n).

Output

C

updated accordingto C = alpha* A* B" + alpha * B*A"+ beta*C

or C = alpha*AH*B+alpha *B"*A +beta *C.

Reference: http://www.netlib.org/blas/cher2k.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<Oork<O0
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCsymm()

void

cublasCsymm (char side, char uplo, int m, int n,

cuComplex alpha, const cuComplex *A,
int Ida, const cuComplex *B, int Idb,
cuComplex beta, cuComplex *C, int ldc)

performs one of the matrix-matrix operations

C = alpha*A*B+beta*C or C = alpha*B*A+beta*C,

PG-05326-032_V02

207
NVIDIA

CUDA

CUBLAS Library

where alpha and beta are single-precision complex scalars, A is a
symmetric matrix consisting of single-precision complex elements and
is stored in either lower or upper storage mode. B and C are mxn
matrices consisting of single-precision complex elements.

Input

side

uplo

alpha

208

specifies whether the symmetric matrix A appears on the left-hand side
or right-hand side of matrix B.

If side=="L" or "1*,C = alpha*A*B+beta*C.

If side=="R" or "r*, C = alpha*B*A+beta*C.

specifies whether the symmetric matrix A is stored in upper or lower
storage mode. If uplo == "U" or "u”, only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or "17, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the number of rows of matrix C, and the number of rows of
matrix B. It also specifies the dimensions of symmetric matrix A when
side == "L" or "I "; m must be at least zero.

specifies the number of columns of matrix C, and the number of
columns of matrix B. It also specifies the dimensions of symmetric
matrix A when side == "R" or "r"'; n must be at least zero.

single-precision complex scalar multiplier applied to A * B or B * A.

single-precision complex array of dimensions (lda, ka), where ka is
m when side == "L" or "I" and is n otherwise. If side == "L" or
17, the leading mxm part of array A must contain the symmetric
matrix such that when uplo == "U" or "u”, the leading mxm part
stores the upper triangular part of the symmetric matrix, and the
strictly lower triangular part of A is not referenced; and when uplo ==
"L" or "7, the leading mxm part stores the lower triangular part of the
symmetric matrix, and the strictly upper triangular part is not
referenced. If side == "R" or "r", the leading nxn part of array A
must contain the symmetric matrix such that when uplo == "U" or
"u”, the leading nxn part stores the upper triangular part of the
symmetric matrix, and the strictly lower triangular part of A is not
referenced; and when uplo == "L" or " 17, the leading nxn part stores
the lower triangular part of the symmetric matrix, and the strictly
upper triangular part is not referenced.

PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Input (continued)

Ida leading dimension of A. When side == "L" or " 1", it must be at least
max (1, m) and at least max(1, n) otherwise.

B single-precision complex array of dimensions (ldb, n). On entry, the
leading mxn part of the array contains the matrix B.

Idb leading dimension of B; 1db must be at least max(1, m).

beta single-precision complex scalar multiplier applied to C. If beta is zero,
C does not have to be a valid input.

C single-precision complex array of dimensions (ldc, n).
Idc leading dimension of C; Idc must be at least max(1, m).
Output

c updated according to C = alpha*A*B+beta*C or

C = alpha*B*A+beta*C.

Reference: http://www.netlib.org/blas/csymm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<Oorn<O
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCsyrk()
void
cublasCsyrk (char uplo, char trans, int n, int k,
cuComplex alpha, const cuComplex *A,

int Ida, cuComplex beta, cuComplex *C,
int Idc)

performs one of the symmetric rank k operations
C = alpha*A*AT+beta*C or C = alpha*AT*A+beta*C,

where alpha and beta are single-precision complex scalars. C is an
nxn symmetric matrix consisting of single-precision complex elements
and is stored in either lower or upper storage mode. A is a matrix
consisting of single-precision complex elements with dimensions of
nxk in the first case and kxn in the second case.

PG-05326-032_V02 209
NVIDIA

CUDA

Input

CUBLAS Library

uplo

trans

alpha

Ida

beta

210

specifies whether the symmetric matrix C is stored in upper or lower
storage mode. If uplo == "U" or "u", only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or " 17, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the operation to be performed. If trans == *N* or "n”,
C = alpha*A*AT+beta*C.Iftrans=="T", "t", "C", or "c",
C = alpha*AT*A+beta*C.

specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n", n specifies the number of rows of matrix A. If
trans == "T", "t", "C", or "c", n specifies the number of columns

of matrix A; n must be at least zero.

If trans == "N" or "n", K specifies the number of columns of
matrix A. If trans == "T", "t", "C", or "c", K specifies the number
of rows of matrix A; k must be at least zero.

single-precision complex scalar multiplier applied to A* AT or AT*A.

single-precision complex array of dimensions (lda, ka), where ka is
k when trans == *N*" or "n* and is n otherwise. When trans ==
"N" or "n", the leading nxk part of array A contains the matrix A;
otherwise, the leading kxn part of the array contains the matrix A.

leading dimension of A. When trans == "N or "n", Ida must be at
least max(1, n). Otherwise Ida must be at least max (1, k).
single-precision complex scalar multiplier applied to C.

If beta is zero, C is not read.

PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Input (continued)

C single-precision complex array of dimensions (ldc, n). If uplo ==
"U" or "u”, the leading nxn triangular part of the array C must contain
the upper triangular part of the symmetric matrix C, and the strictly
lower triangular part of C is not referenced. On exit, the upper
triangular part of C is overwritten by the upper triangular part of the
updated matrix. If uplo == "L" or " 17, the leading nxn triangular
part of the array C must contain the lower triangular part of the
symmetric matrix C, and the strictly upper triangular part of C is not
referenced. On exit, the lower triangular part of C is overwritten by the
lower triangular part of the updated matrix.

Idc leading dimension of C; Idc must be at least max(1, n).
Output
c updated according to C = alpha*A* AT +beta>C or

C = alpha*AT*A+beta*C.

Reference: http://www .netlib.org/blas/csyrk.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE ifn<O0ork<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCsyr2k()
void
cublasCsyr2k (char uplo, char trans, int n, int Kk,
cuComplex alpha, const cuComplex *A,
int Ida, const cuComplex *B, int Idb,
cuComplex beta, cuComplex *C, int ldc)

performs one of the symmetric rank 2k operations
C = alpha*A=* B + alpha *B*A'+beta*C or
C:aﬂpha*AT*B+ahma*BT*A+beta*C,

where alpha and beta are single-precision complex scalars. C is an

nxn symmetric matrix consisting of single-precision complex elements
and is stored in either lower or upper storage mode. A and B are

PG-05326-032_V02 211
NVIDIA

CUDA

212

CUBLAS Library

matrices consisting of single-precision complex elements with
dimensions of nxk in the first case and kxn in the second case.

Input

uplo specifies whether the symmetric matrix C is stored in upper or lower
storage mode. If uplo == "U" or "u”, only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or "17, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

trans specifies the operation to be performed. If trans == *N" or "n",
C = alpha*A~* B' + alpha *B*A'+beta*C. If trans == "T",
"t","C",or "c",C = alpha*AT* B +alpha* B'*A+beta*C.
n specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n", n specifies the number of rows of matrix A. If

trans == "T", "t", "C", or "c", n specifies the number of columns
of matrix A; n must be at least zero.

k If trans == "N" or "n", K specifies the number of columns of
matrix A. If trans == "T", "t", "C", or "c", k specifies the number
of rows of matrix A; k must be at least zero.

alpha single-precision complex scalar multipliet.

A single-precision complex array of dimensions (lda, ka), where ka is
k when trans == "N" or "n" and is n otherwise. When trans ==
"N" or "n”, the leading nxk part of array A contains the matrix A;
otherwise, the leading kxn part of the array contains the matrix A.

Ida leading dimension of A. When trans == "N* or "n", Ida must be at
least max (1, n). Otherwise 1da must be at least max (1, k).

B single-precision complex array of dimensions (ldb, kb), where kb is
k when trans == "N" or "n" and is n otherwise. When trans ==
"N" or "n”, the leading nxk part of array B contains the matrix B;
otherwise, the leading kxn part of the array contains the matrix B.

Idb leading dimension of B. When trans == "N” or "n~, Idb must be at
least max (1, n). Otherwise 1db must be at least max (1, k).

beta single-precision complex scalar multiplier applied to C.
If beta is zero, C does not have to be a valid input.

PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Input (continued)

C single-precision complex array of dimensions (ldc, n). If uplo ==
"U" or "u”, the leading nxn triangular part of the array C must contain
the upper triangular part of the symmetric matrix C, and the strictly
lower triangular part of C is not referenced. On exit, the upper
triangular part of C is overwritten by the upper triangular part of the
updated matrix. If uplo == "L" or " 17, the leading nxn triangular
part of the array C must contain the lower triangular part of the
symmetric matrix C, and the strictly upper triangular part of C is not
referenced. On exit, the lower triangular part of C is overwritten by the
lower triangular part of the updated matrix.

Idc leading dimension of C; Idc must be at least max(1, n).

Output
C

updated accordingto C = alpha* A* B' + alpha *B*A"+beta*C
or C = alpha*A' *B+alpha*B' *A+beta*C.

Reference: http://www.netlib.org/blas/csyr2k.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<Oork<O0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCtrmm()
void
cublasCtrmm (char side, char uplo, char transa,
char diag, int m, int n, cuComplex alpha,
const cuComplex *A, int lda,
const cuComplex *B, int Idb)

performs one of the matrix-matrix operations
B = alpha*op(A) *B or B = alpha*B*op(A),
where op(A) = A, op(A) = AT, or op(A) = AH;

alphais a single-precision complex scalar; B is an mxn matrix
consisting of single-precision complex elements; and A is a unit or non-

PG-05326-032_V02 213
NVIDIA

CUDA

214

CUBLAS Library

unit, upper or lower triangular matrix consisting of single-precision
complex elements.

Matrices A and B are stored in column-major format, and lda and Idb
are the leading dimensions of the two-dimensional arrays that contain

A and B,

Input

respectively.

side

uplo

transa

diag

alpha

Ida

specifies whether op(A) multiplies B from the left or right.

If side=="L" or "1", B = alpha*op(A) *B.

If side == "R" or "r*, B = alpha*B*op(A).

specifies whether the matrix A is an upper or lower triangular matrix.
If uplo == "U~ or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais a lower triangular matrix.

specifies op(A). If transa == "N" or "n", op(A) = A.

If transa=="T" or "t", op(A) = AT.

If transa == "C" or "c", op(A) = AH.

specifies whether or not A is a unit triangular matrix. If diag == "U*"
or "u”, Ais assumed to be unit triangular. If diag == "N or "n~", Ais
not assumed to be unit triangular.

the number of rows of matrix B; m must be at least zero.

the number of columns of matrix B; n must be at least zero.

single-precision complex scalar multiplier applied to op(A)*B or
B*op(A), respectively. If alpha is zero, no accesses are made to
matrix A, and no read accesses are made to matrix B.

single-precision complex array of dimensions (lda, k). If side ==
"L or "I", k=m. If side=="R" or "r*, k=n. Ifuplo=="U" or
"u”, the leading kxk upper triangular part of the array A must contain
the upper triangular matrix, and the strictly lower triangular part of A is
not referenced. If uplo == "L" or " 17, the leading kxk lower
triangular part of the array A must contain the lower triangular matrix,
and the strictly upper triangular part of A is not referenced. When
diag == "U" or "u”, the diagonal elements of A are not referenced
and are assumed to be unity.

leading dimension of A. When side == "L" or "I, it must be at least
max(1, m) and at least max(1, n) otherwise.

PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Input (continued)

B single-precision complex array of dimensions (Idb, n). On entry, the
leading mxn part of the array contains the matrix B. It is overwritten
with the transformed matrix on exit.

Idb leading dimension of B; Idb must be at least max(1, m).

Output

updated according to B = alpha* op(A) *B or
B = alpha*B*op(A).

Reference: http://www.netlib.org/blas/ctrmm.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_ INVALID_VALUE if m<O0orn<0

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasCtrsm()
void
cublasCtrsm (char side, char uplo, char transa,
char diag, int m, int n, cuComplex alpha,

const cuComplex *A, int lda, cuComplex *B,
int Idb)

solves one of the matrix equations
op(A) *X =alpha*B or X*op(A) = alpha*B,
where op(A) = A, op(A) = AT, or op(A) = AH;
alpha is a single-precision complex scalar, and X and B are mxn

matrices that consist of single-precision complex elements. A is a unit
or non-unit, upper or lower, triangular matrix.

The result matrix X overwrites input matrix B; that is, on exit the result
is stored in B. Matrices A and B are stored in column-major format, and

PG-05326-032_V02 215
NVIDIA

CUDA

216

CUBLAS Library

Ida and 1db are the leading dimensions of the two-dimensional arrays
that contain A and B, respectively.

Input

side

uplo

transa

diag

alpha

Ida

1db

specifies whether op(A) appears on the left or right of X:
side == "L" or "I" indicates solve op(A) * X = alpha*B;
side == "R" or "r" indicates solve X * op(A) = alpha*B.

specifies whether the matrix A is an upper or lower triangular matrix:
uplo == "U" or "u” indicates A is an upper triangular matrix;

uplo == "L" or "I" indicates A is a lower triangular matrix.
specifies op(A). If transa == "N" or "n", op(A) = A.

If transa=="T" or "t", op(A) = AT.

If transa == "C" or "c", op(A) = AH.

specifies whether or not A is a unit triangular matrix.
If diag == "U" or "u", A is assumed to be unit triangular.
If diag == "N or "n", A is not assumed to be unit triangulat.

specifies the number of rows of B; m must be at least zero.
specifies the number of columns of B; n must be at least zero.

single-precision complex scalar multiplier applied to B. When alpha is
zero, A is not referenced and B does not have to be a valid input.

single-precision complex array of dimensions (lda, k), where k is m
when side == "L" or "I" and is n when side == "R” or "r". If
uplo == "U" or "u”, the leading kxk upper triangular part of the array
A must contain the upper triangular matrix, and the strictly lower
triangular matrix of A is not referenced. When uplo == "L" or "I~
the leading kxk lower triangular part of the array A must contain the
lower triangular matrix, and the strictly upper triangular part of A is
not referenced. Note that when diag == "U" or "u®, the diagonal
elements of A are not referenced and are assumed to be unity.

leading dimension of the two-dimensional array containing A.
When side == "L" or "1", lda must be at least max(1, m).
When side == "R" or "r*", lda must be at least max(1, n).

single-precision complex array of dimensions (1db, n); Idb must be
at least max (1, m). The leading mxn part of the array B must contain

the right-hand side matrix B. On exit, B is overwritten by the solution
matrix X.

leading dimension of the two-dimensional array containing B; Idb
must be at least max(1, m).

PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Output
B

contains the solution matrix X satisfying op(A) * X = alpha *B or
X*op(A) =alpha*B.

Reference: http://www.netlib.org/blas/ctrsm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0 or n<O0
CUBLAS_STATUS_EXECUTION_FAILED

if function failed to launch on GPU

PG-05326-032_V02

217
NVIDIA

CUDA CUBLAS Library

Double-Precision BLAS3 Functions

Note: Double-precision functions are only supported on GPUs with double-
precision hardware.

The double-precision BLAS3 functions are listed below:
0 “Function cublasDgemm()” on page 219
0 “Function cublasDsymm()” on page 220
Q “Function cublasDsyrk()” on page 222

0 “Function cublasDsyr2k()” on page 224
0 “Function cublasDtrmm()” on page 226
a

“Function cublasDtrsm()” on page 228

218 PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Function cublasDgemm()
void
cublasDgemm (char transa, char transb, int m, int n,
int k, double alpha, const double *A,
int Ida, const double *B, int Idb,
double beta, double *C, int ldc)

computes the product of matrix A and matrix B, multiplies the result
by scalar alpha, and adds the sum to the product of matrix C and
scalar beta. It performs one of the matrix-matrix operations:

C = alpha * op(A) * op(B) + beta * C,
where op(X) = X or op(X) = XT,

and alpha and beta are double-precision scalars. A, B, and C are
matrices consisting of double-precision elements, with op(A) an mxk
matrix, op(B) a kxn matrix, and C an mxn matrix. Matrices A, B, and C
are stored in column-major format, and Ida, Idb, and Idc are the
leading dimensions of the two-dimensional arrays containing A, B,
and C.

Input

transa gpecifies op(A). If transa == "N" or "n", op(A) = A.
If transa == "T", "t", "C", or "c", op(A) = AT.

transb specifies op(B). If transb == "N* or "n~, op(B) = B.
If transb == "T", "t", "C", or "c", op(B) = BT.

m number of rows of matrix op(A) and rows of matrix C; m must be at
least zero.
n number of columns of matrix op(B) and number of columns of C;

N must be at least zero.

k number of columns of matrix op(A) and number of rows of op(B);
k must be at least zero.

alpha double-precision scalar multiplier applied to op(A) * op(B) .

A double-precision array of dimensions (lda, k) if transa == "N" or
"n*, and of dimensions (lda, m) otherwise. If transa == *N* or
"n*", Ida must be at least max(1, m); otherwise, lda must be at least
max(1, K).

Ida leading dimension of two-dimensional array used to store matrix A.

PG-05326-032_V02 219
NVIDIA

CUDA

CUBLAS Library

Input (continued)

B double-precision array of dimensions (ldb, n) if transb == "N* or
"n*, and of dimensions (1db, k) otherwise. If transb == "N* or
"n*, Idb must be at least max(1, k); otherwise, Idb must be at least
max(1, n).

Idb leading dimension of two-dimensional array used to store matrix B.

beta double-precision scalar multiplier applied to C. If zero, C does not have
to be a valid input.

C double-precision array of dimensions (ldc, n); ldc must be at least
max (1, m).

Idc leading dimension of two-dimensional array used to store matrix C.

Output

C updated based on C = alpha * op(A) * op(B) + beta * C.

Reference: http://www.netlib.org/blas/dgemm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0,n<0,ork<0

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that
does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDsymm()

220

void

cublasDsymm (char side, char uplo, int m, int n,
double alpha, const double *A, int lda,
const double *B, int Idb, double beta,
double *C, int ldc)

performs one of the matrix-matrix operations
C = alpha*A*B+beta*C or C = alpha*B*A+beta*C,

where alpha and beta are double-precision scalars, A is a symmetric
matrix consisting of double-precision elements and is stored in either

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

lower or upper storage mode. B and C are mxn matrices consisting of
double-precision elements.

Input

side

uplo

alpha

Ida

PG-05326-032_V02

specifies whether the symmetric matrix A appears on the left-hand side
or right-hand side of matrix B.

Ifside=="L"or "1",C = alpha*A*B+beta*C.

If side=="R" or "r",C = alpha*B*A+beta*C.

specifies whether the symmetric matrix A is stored in upper or lower
storage mode. If uplo == "U*" or "u", only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L~ or "I, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the number of rows of matrix C, and the number of rows of
matrix B. It also specifies the dimensions of symmetric matrix A when
side == "L" or "I "; m must be at least zero.

specifies the number of columns of matrix C, and the number of
columns of matrix B. It also specifies the dimensions of symmetric
matrix A when side == "R” or "r"'; n must be at least zero.

double-precision scalar multiplier applied to A* B or B * A,

double-precision array of dimensions (lda, ka), where ka is m when
side == "L" or "1" and is n otherwise. If side == "L" or "I ", the
leading mxm part of array A must contain the symmetric matrix such
that when uplo == "U" or "u”, the leading mxm part stores the upper
triangular part of the symmetric matrix, and the strictly lower
triangular part of A is not referenced; and when uplo == "L" or "I~,
the leading mxm part stores the lower triangular part of the symmetric
matrix, and the strictly upper triangular part is not referenced. If
side == "R" or "r", the leading nxn part of array A must contain the
symmetric matrix such that when uplo == "U" or "u”, the leading
nxn part stores the upper triangular part of the symmetric matrix, and
the strictly lower triangular part of A is not referenced; and when
uplo == "L" or "I7, the leading nxn part stores the lower triangular
part of the symmetric matrix, and the strictly upper triangular part is
not referenced.

leading dimension of A. When side == "L" or " 1", it must be at least
max(1, m) and at least max(1, n) otherwise.

221
NVIDIA

CUDA

CUBLAS Library

Input (continued)

B double-precision array of dimensions (ldb, n). On entry, the leading
mxn part of the array contains the matrix B.

Idb leading dimension of B; Idb must be at least max (1, m).

beta double-precision scalar multiplier applied to C. If beta is zero, C does
not have to be a valid input.

C double-precision array of dimensions (ldc, n).

Idc leading dimension of C; 1dc must be at least max(1, m).
Output

C updated according to C = alpha*A*B+beta™>C or

C = alpha*B*A+beta*C.

Reference: http://www.netlib.org/blas/dsymm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0,n<0,ork<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDsyrk()

222

void

cublasDsyrk (char uplo, char trans, int n, int k,
double alpha, const double *A, int lda,
double beta, double *C, int ldc)

performs one of the symmetric rank k operations
C = alpha*A*AT+beta*C or C = alpha*AT*A+beta*C,

where alpha and beta are double-precision scalars. C is an nxn
symmetric matrix consisting of double-precision elements and is
stored in either lower or upper storage mode. A is a matrix consisting
of double-precision elements with dimensions of nxk in the first case
and kxn in the second case.

PG-05326-032_V02
NVIDIA

CHAPTER 5

Input

BLAS3 Functions

uplo

trans

alpha

Ida

beta

PG-05326-032_V02

specifies whether the symmetric matrix C is stored in upper or lower
storage mode. If uplo == "U" or "u", only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or " 17, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the operation to be performed. If trans == *N* or "n”,
C = alpha*A*AT+beta*C.Iftrans=="T", "t", "C", or "c",
C = alpha*AT*A+beta*C.

specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n", n specifies the number of rows of matrix A. If
trans == "T", "t", "C", or "c", n specifies the number of columns

of matrix A; n must be at least zero.

If trans == "N" or "n", K specifies the number of columns of
matrix A. If trans == "T", "t", "C", or "c", K specifies the number
of rows of matrix A; k must be at least zero.

double-precision scalar multiplier applied to A* AT or AT*A.
double-precision array of dimensions (lda, ka), where ka is k when
trans == "N" or "n" and is n otherwise. When trans == "N*" or
"n~, the leading nxk part of array A contains the matrix A; otherwise,
the leading kxn part of the array contains the matrix A.

leading dimension of A. When trans == "N or "n", Ida must be at
least max(1, n). Otherwise Ida must be at least max (1, k).

double-precision scalar multiplier applied to C.
If beta is zero, C is not read.

223
NVIDIA

CUDA

CUBLAS Library

Input (continued)

C double-precision array of dimensions (ldc, n). If uplo == "U" or
"u”, the leading nxn triangular part of the array C must contain the
upper triangular part of the symmetric matrix C, and the strictly lower
triangular part of C is not referenced. On exit, the upper triangular part
of C is overwritten by the upper triangular part of the updated matrix.
If uplo == "L" or " 17, the leading nxn triangular part of the array C
must contain the lower triangular part of the symmetric matrix C, and
the strictly upper triangular part of C is not referenced. On exit, the
lower triangular part of C is overwritten by the lower triangular part of
the updated matrix.

Idc leading dimension of C; Idc must be at least max(1, n).

Output
C

updated according to C = alpha*A* AT +beta>C or
C = alpha*AT*A+beta*C.

Reference: http://www .netlib.org/blas/dsyrk.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0,n<0,ork<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDsyr2k()

224

void

cublasDsyr2k (char uplo, char trans, int n, int k,
double alpha, const double *A, int lda,
const double *B, int Idb, double beta,
double *C, int 1dc)

performs one of the symmetric rank 2k operations
C
C

alpha*A*BT+alpha*B*AT+beta*C or
alpha*AT*B+alpha*BT*A+beta*C,

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

where alpha and beta are double-precision scalars. C is an nxn
symmetric matrix consisting of double-precision elements and is
stored in either lower or upper storage mode. A and B are matrices
consisting of double-precision elements with dimension of nxk in the
first case and kxn in the second case.

Input

uplo

trans

alpha

Ida

1db

beta

PG-05326-032_V02

specifies whether the symmetric matrix C is stored in upper or lower
storage mode. If uplo == "U*" or "u", only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L~ or "I, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the operation to be performed. If trans == *N* or "n”",

C = alpha*A*BT+alpha*B*AT+beta*C.If trans=="T",
"t","C",or "c",C = alpha*AT*B+alpha*BT*A+beta*C.
specifies the number of rows and the number columns of matrix C. If
trans == "N or "n"', n specifies the number of rows of matrix A. If

trans == "T", "t", "C", or "c", n specifies the number of columns
of matrix A; n must be at least zero.

If trans == "N" or "n", Kk specifies the number of columns of matrix
A lftrans=="T", "t", "C", or "c", k specifies the number of rows
of matrix A; K must be at least zero.

double-precision scalar multiplier.

double-precision array of dimensions (lda, ka), where ka is k when
trans == "N" or "n" and is n otherwise. When trans == "N* or
"n", the leading nxk part of array A must contain the matrix A,
otherwise the leading kxn part of the array must contain the matrix A.

leading dimension of A. When trans == "N or "n", Ida must be at
least max(1, n). Otherwise Ida must be at least max (1, k).

double-precision array of dimensions (Idb, kb), where kb = k when
trans == "N” or "n", and k = n otherwise. When trans == "N* or
"n", the leading nxk part of array B must contain the matrix B,
otherwise the leading kxn part of the array must contain the matrix B.

leading dimension of B. When trans == *N" or "n*", Idb must be at
least max(1, n). Otherwise Idb must be at least max (1, k).

double-precision scalar multiplier applied to C. If beta is zero, C does
not have to be a valid input.

225
NVIDIA

CUDA

CUBLAS Library

Input (continued)

C double-precision array of dimensions (ldc, n). If uplo == "U" or
"u”, the leading nxn triangular part of the array C must contain the
upper triangular part of the symmetric matrix C, and the strictly lower
triangular part of C is not referenced. On exit, the upper triangular part
of C is overwritten by the upper triangular part of the updated matrix.
If uplo == "L" or " 17, the leading nxn triangular part of the array C
must contain the lower triangular part of the symmetric matrix C, and
the strictly upper triangular part of C is not referenced. On exit, the
lower triangular part of C is overwritten by the lower triangular part of
the updated matrix.

Idc leading dimension of C; idc must be at least max(1, n).
Output
C updated according to

C = alpha*A*BT+alpha*B*AT+beta*C or
C = alpha*AT*B+alpha*BT*A+beta*C.

Reference: http://www .netlib.org/blas/dsyr2k.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0,n<0,ork<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDtrmm()

226

void

cublasDtrmm (char side, char uplo, char transa,
char diag, int m, int n, double alpha,
const double *A, int lda, const double *B,
int Idb)

performs one of the matrix-matrix operations

B = alpha*op(A) *B or B
where op(A) = A or op(A)

alpha*B*op(A),
AT,

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

alphais a double-precision scalar, B is an mxn matrix consisting of
double-precision elements, and A is a unit or non-unit, upper or lower
triangular matrix consisting of double-precision elements.

Matrices A and B are stored in column-major format, and Ida and Idb
are the leading dimensions of the two-dimensional arrays that contain

A and B,

Input

respectively.

side

uplo

transa

alpha

Ida

PG-05326-032_V02

specifies whether op(A) multiplies B from the left or right.
If side=="L" or "1", B = alpha*op(A) *B.
If side == "R" or "r*, B = alpha*B*op(A).

specifies whether the matrix A is an upper or lower triangular matrix.
If uplo == "U" or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais a lower triangular matrix.

specifies the form of op(A) to be used in the matrix multiplication.
If transa == "N" or "n", op(A) = A.

If transa=="T", "t", "C", or "c", op(A) = AT.

specifies whether or not A is a unit triangular matrix. If diag == "U*"
or "u”, Ais assumed to be unit triangular. If diag == "N or "n~", Ais
not assumed to be unit triangular.

the number of rows of matrix B; m must be at least zero.
the number of columns of matrix B; n must be at least zero.

double-precision scalar multiplier applied to op(A)*B or B*op(A),
respectively. If al pha is zero, no accesses are made to matrix A, and
no read accesses are made to matrix B.

double-precision array of dimensions (lda, k). If side == "L~ or
"I", k=m.If side=="R" or "r",k=n. Ifuplo=="U" or "u®, the
leading kxk upper triangular part of the array A must contain the
upper triangular matrix, and the strictly lower triangular part of A is
not referenced. If uplo == "L" or " 17, the leading kxk lower
triangular part of the array A must contain the lower triangular matrix,
and the strictly upper triangular part of A is not referenced. When
diag == "U" or "u”, the diagonal elements of A are not referenced
and are assumed to be unity.

leading dimension of A. When side == "L" or " 17, it must be at least
max(1, m) and at least max(1, n) otherwise.

227
NVIDIA

CUDA

CUBLAS Library

Input (continued)

B double-precision array of dimensions (ldb, n). On entry, the leading
mxn part of the array contains the matrix B. It is overwritten with the
transformed matrix on exit.

Idb leading dimension of B; Idb must be at least max(1, m).

Output
B

updated according to B = alpha* op(A) *B or
B = alpha*B*op(A).

Reference: http://www .netlib.org/blas/dtrmm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0O,n<0,ork<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasDtrsm()

228

void

cublasDtrsm (char side, char uplo, char transa,
char diag, int m, int n, double alpha,
const double *A, int lda, double *B,
int Idb)

solves one of the matrix equations
op(A) *X =alpha*B or X*op(A) =alpha*B,
where op(A) = A or op(A) = AT,
alphais a double-precision scalar, and X and B are mxn matrices that

consist of double-precision elements. A is a unit or non-unit, upper or
lower, triangular matrix.

The result matrix X overwrites input matrix B; that is, on exit the result
is stored in B. Matrices A and B are stored in column-major format, and
Ida and Idb are the leading dimensions of the two-dimensional arrays
that contain A and B, respectively.

PG-05326-032_V02
NVIDIA

CHAPTER 5

Input

BLAS3 Functions

side

uplo

transa

diag

alpha

Ida

1db

specifies whether op(A) appears on the left or right of X:

side == "L~ or "I " indicates solve op(A) * X = alpha*B;

side == "R" or "r" indicates solve X * op(A) = alpha *B.
specifies whether the matrix A is an upper or lower triangular matrix:
uplo == "U" or "u” indicates A is an upper triangular matrix;

uplo == "L" or "I~ indicates A is a lower triangular matrix.
specifies the form of op(A) to be used in matrix multiplication.

If transa == "N" or "n", op(A) = A.

If transa=="T", "t", "C", or "c", op(A) = AT.

specifies whether or not A is a unit triangular matrix.

If diag == "U” or "u”, A is assumed to be unit triangular.
If diag == "N” or "n", A is not assumed to be unit triangular.

specifies the number of rows of B; m must be at least zero.
specifies the number of columns of B; n must be at least zero.

double-precision scalar multiplier applied to B. When alpha is zero, A
is not referenced and B does not have to be a valid input.

double-precision array of dimensions (lda, k), where k is m when
side=="L" or 1" and is n when side == "R" or "r". If uplo ==
"U" or "u”, the leading kxk upper triangular part of the array A must
contain the upper triangular matrix, and the strictly lower triangular
matrix of A is not referenced. When uplo == "L~ or " 17, the leading
kxk lower triangular part of the array A must contain the lower
triangular matrix, and the strictly upper triangular part of A is not
referenced. Note that when diag == "U" or "u”, the diagonal
elements of A are not referenced and are assumed to be unity.

leading dimension of the two-dimensional array containing A.
When side == "L" or "1, Ida must be at least max (1, m).
When side == "R" or "r", Ida must be at least max(1, n).

double-precision array of dimensions (lIdb, n); Idb must be at least
max(1, m). The leading mxn part of the array B must contain the right-
hand side matrix B. On exit, B is overwritten by the solution matrix X.

leading dimension of the two-dimensional array containing B; Idb
must be at least max (1, m).

PG-05326-032_V02

229
NVIDIA

CUDA CUBLAS Library

Output
B

contains the solution matrix X satisfying op(A) * X = alpha *B or
X*op(A) =alpha*B.

Reference: http://www.netlib.org/blas/dtrsm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0,n<0,ork<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

230 PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Double-Precision Complex BLAS3 Functions

Note: Double-precision functions are only supported on GPUs with double-
precision hardware.

Five double-precision complex BLAS3 functions are implemented:
“Function cublasZgemm()” on page 232
“Function cublasZhemm()” on page 233
“Function cublasZherk()” on page 235
“Function cublasZher2k()” on page 238

0

0

a

0

0 “Function cublasZsymm()” on page 240
Q “Function cublasZsyrk()” on page 242
0 “Function cublasZsyr2k()” on page 244
0 “Function cublasZtrmm()” on page 246
a

“Function cublasZtrsm()” on page 248

PG-05326-032_V02 231
NVIDIA

CUDA CUBLAS Library

Function cublaszZzgemm()

void

cublasZzgemm (char transa, char transb, int m, int n,
int k, cuDoubleComplex alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
cuDoubleComplex beta, cuDoubleComplex *C,
int Idc)

performs one of the matrix-matrix operations
C = alpha*op(A) *op(B) +bheta*C,
where op(X) = X, op(X) = XT, or op(X) = xH;
and alpha and beta are double-precision complex scalars. A, B, and C

are matrices consisting of double-precision complex elements, with
op(A) an mxk matrix, op(B) a kxn matrix, and C an mxn matrix.

Input

transa gpecifies op(A). If transa == "N or "n”, op(A) = A.
If transa == "T" or "t", op(A) = AT.
If transa == "C" or "c", op(A) = AR,

transb specifies op(B). If transb == *N* or *n*, op(B) = B.
If transb == "T" or "t", op(B) = BT.
If transb == "C" or "c", op(B) = BH.

m number of rows of matrix op(A) and rows of mattix C;
m must be at least zero.

n number of columns of matrix op(B) and number of columns of C;
n must be at least zero.

k number of columns of matrix op(A) and number of rows of op(B);
k must be at least zero.

alpha double-precision complex scalar multiplier applied to op(A)*op(B).

A double-precision complex array of dimension (lda, k) if transa ==
"N" or "n", and of dimension (Ida, m) otherwise.

Ida leading dimension of A. When transa == "N" or "n”, it must be at
least max(1, m) and at least max (1, k) otherwise.

B double-precision complex array of dimension (ldb, n) if transb ==
N" or "n~, and of dimension (Idb, k) otherwise.

232 PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Input (continued)

Idb leading dimension of B. When transb == *N" or "n", it must be at
least max (1, k) and at least max(1, n) otherwise.

beta double-precision complex scalar multiplier applied to C. If beta is
zero, C does not have to be a valid input.

C double-precision array of dimensions (ldc, n).

Idc leading dimension of C; idc must be at least max(1, m).
Output

C

updated according to C = alpha* op(A) * op(B) +beta*C.

Reference: http://www .netlib.org/blas/zgemm.f
Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0O,n<0,ork<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZhemm()
void
cublaszhemm (char side, char uplo, int m, int n,
cuDoubleComplex alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,

cuDoubleComplex beta, cuDoubleComplex *C,
int Idc)

performs one of the matrix-matrix operations

C = alpha*A*B+beta*C or C = alpha*B*A+beta*C,

where alpha and beta are double-precision complex scalars, A is a
Hermitian matrix consisting of double-precision complex elements

PG-05326-032_V02 233
NVIDIA

CUDA

CUBLAS Library

and is stored in either lower or upper storage mode. B and C are mxn
matrices consisting of double-precision complex elements.

Input

side

uplo

alpha

Ida

234

specifies whether the Hermitian matrix A appears on the left-hand side
or right-hand side of matrix B.

Ifside=="L"or "1",C = alpha*A*B+beta*C.

If side=="R" or "r",C = alpha*B*A+beta*C.

specifies whether the Hermitian matrix A is stored in upper or lower
storage mode. If uplo == "U*" or "u", only the upper triangular part
of the Hermitian matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L~ or "I, only the lower triangular part of the
Hermitian matrix is referenced, and the elements of the strictly uppet
triangular part are inferred from those in the lower triangular part.

specifies the number of rows of matrix C, and the number of rows of
matrix B. It also specifies the dimensions of Hermitian matrix A when
side == "L" or "I "; m must be at least zero.

specifies the number of columns of matrix C, and the number of
columns of matrix B. It also specifies the dimensions of Hermitian
matrix A when side == "R” or "r"'; n must be at least zero.

double-precision complex scalar multiplier applied to A* B or B * A,

double-precision complex array of dimensions (lda, ka), where ka is
m when side == "L" or "1" and is n otherwise. If side == "L" or

" 17, the leading mxm part of array A must contain the Hermitian
matrix such that when uplo == "U" or "u”, the leading mxm part
stores the upper triangular part of the Hermitian matrix, and the
strictly lower triangular part of A is not referenced; and when uplo ==
"L" or "7, the leading mxm part stores the lower triangular part of the
Hermitian matrix, and the strictly upper triangular part is not
referenced. If side == "R* or "r", the leading nxn part of array A
must contain the Hermitian matrix such that when uplo == "U* or
"u”, the leading nxn part stores the upper triangular part of the
Hermitian matrix, and the strictly lower triangular part of A is not
referenced; and when uplo == "L" or " 17, the leading nxn part stores
the lower triangular part of the Hermitian matrix, and the strictly
upper triangular part is not referenced. The imaginary parts of the
diagonal elements need not be set; they are assumed to be zero.

leading dimension of A. When side == "L" or " 1", it must be at least
max(1, m) and at least max(1, n) otherwise.

PG-05326-032_V02
NVIDIA

CHAPTER 5 BLAS3 Functions

Input (continued)

B double-precision complex array of dimensions (1db, n). On entry, the
leading mxn part of the array contains the matrix B.

Idb leading dimension of B; Idb must be at least max(1, m).

beta double-precision complex scalar multiplier applied to C. If beta is
zero, C does not have to be a valid input.

C double-precision complex array of dimensions (ldc, n).
Idc leading dimension of C; 1dc must be at least max(1, m).

Output

C updated according to C = alpha*A*B+beta™>C or

C = alpha*B*A+beta*C.

Reference: http://www.netlib.org/blas/zhemm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<Oorn<O
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublaszZherk()
void
cublaszherk (char uplo, char trans, int n, int k,
double alpha, const cuDoubleComplex *A,

int Ida, double beta, cuDoubleComplex *C,
int Idc)

performs one of the Hermitian rank k operations
C = alpha*A*A"+beta*C or C = alpha*A"*A+beta*C,
where alpha and beta are double-precision scalars. C is an nxn

Hermitian matrix consisting of double-precision complex elements
and is stored in either lower or upper storage mode. A is a matrix

PG-05326-032_V02 235
NVIDIA

CUDA

CUBLAS Library

consisting of double-precision complex elements with dimensions of
nxk in the first case and kxn in the second case.

Input

uplo

trans

alpha

Ida

beta

236

specifies whether the Hermitian matrix C is stored in upper or lower
storage mode. If uplo == "U" or "u”, only the upper triangular part
of the Hermitian matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or "17, only the lower triangular part of the
Hermitian matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the operation to be performed. If trans == "N or "n*,

C = alpha*A*A"f+beta*C.If trans=="T", "t", "C", or "C",
C = alpha*A"*A+beta*C.

specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n", n specifies the number of rows of matrix A. If

trans == "T", "t", "C", or "c", n specifies the number of columns
of matrix A; n must be at least zero.

>

If trans == "N" or "n", K specifies the number of columns of
matrix A. If trans == "T", "t", "C", or "c", k specifies the number
of rows of matrix A; k must be at least zero.

double-precision scalar multiplier applied to A* AH or AH* A,

double-precision complex array of dimensions (lda, ka), where ka is
k when trans == "N" or "n" and is n otherwise. When trans ==
"N" or "n”, the leading nxk part of array A contains the matrix A;
otherwise, the leading kxn part of the array contains the matrix A.

leading dimension of A. When trans == "N" or "n", Ida must be at
least max (1, n). Otherwise 1da must be at least max (1, k).

double-precision scalar multiplier applied to C.
If beta is zero, C does not have to be a valid input.

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

Input (continued)

C

Idc

double-precision complex array of dimensions (ldc, n). If uplo ==
"U” or "u”, the leading nxn triangular part of the array C must contain
the upper triangular part of the Hermitian matrix C, and the strictly
lower triangular part of C is not referenced. On exit, the upper
triangular part of C is overwritten by the upper triangular part of the
updated matrix. If uplo == "L" or " 17, the leading nxn triangular
part of the array C must contain the lower triangular part of the
Hermitian matrix C, and the strictly upper triangular part of C is not
referenced. On exit, the lower triangular part of C is overwritten by the
lower triangular part of the updated matrix. The imaginary parts of the
diagonal elements need not be set; they are assumed to be zero, and on
exit they are set to zero.

leading dimension of C; Idc must be at least max (1, n).

Output

updated according to C = alpha*A™* Af + beta>C or
C = alpha*AH*A+beta*C.

Reference: http://www .netlib.org/blas/zherk.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<O0ork<0

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

PG-05326-032_V02

237
NVIDIA

CUDA

CUBLAS Library

Function cublaszZher2k()

238

void

cublaszher2k (char uplo, char trans, int n, int k,

cuDoubleComplex alpha,

const cuDoubleComplex *A, int lda,

const cuDoubleComplex *B, int ldb,

double beta, cuDoubleComplex *C, int Idc)

performs one of the Hermitian rank 2k operations

C= alpha*A*BH+a|pha*B*AH+beta+C or
C = aIpha*AH*B+alpha*BH*A+beta+C,

where alpha is a double-precision complex scalar and betais a
double-precision real scalar. C is an nxn Hermitian matrix consisting of
double-precision complex elements and is stored in either lower or
upper storage mode. A and B are matrices consisting of double-
precision complex elements with dimensions of nxk in the first case
and kxn in the second case.

Input

uplo

trans

alpha

specifies whether the Hermitian matrix C is stored in upper or lower
storage mode. If uplo == "U" or "u”, only the upper triangular part
of the Hermitian matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or "17, only the lower triangular part of the
Hermitian matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the operation to be performed. If trans == "N or "n*,

C = alpha*A*B"+alpha*B*A"+beta+C. If trans == "T",
"t*,"C",or "c", C = alpha*A"*B+alpha*B"*A+beta+C.
specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n", n specifies the number of rows of matrix A. If

trans == "T", "t", "C", or "c", n specifies the number of columns
of matrix A; n must be at least zero.

If trans == *N" or "n*, k specifies the number of columns of
matrix A. If trans == "T", "t", "C", or "c", k specifies the number
of rows of matrix A; k must be at least zero.

double-precision complex multiplier.

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

Input (continued)

A

Ida

1db

beta

Idc

double-precision array of dimensions (lda, ka), where ka is k when
trans == "N" or "n" and is n otherwise. When trans == "N" or
"n~, the leading nxk part of array A contains the matrix A; otherwise,
the leading kxn part of the array contains the matrix A.

leading dimension of A. When trans == "N or "n", Ida must be at
least max(1, n). Otherwise Ida must be at least max (1, k).

double-precision array of dimensions (ldb, kb), where kb is k when
trans == "N" or "n" and is n otherwise. When trans == "N" or
"n~, the leading nxk part of array B contains the matrix B; otherwise,
the leading kxn part of the array contains the matrix B.

leading dimension of B. When trans == *N" or "n*", Idb must be at
least max(1, n). Otherwise Idb must be at least max (1, k).

double-precision real scalar multiplier applied to C.
If beta is zero, C does not have to be a valid input.

double-precision array of dimensions (ldc, n). If uplo == "U* or
"u”, the leading nxn triangular part of the array C must contain the
upper triangular part of the Hermitian matrix C, and the strictly lower
triangular part of C is not referenced. On exit, the upper triangular part
of C is overwritten by the upper triangular part of the updated matrix.
If uplo == "L" or " 17, the leading nxn triangular part of the array C
must contain the lower triangular part of the Hermitian matrix C, and
the strictly upper triangular part of C is not referenced. On exit, the
lower triangular part of C is overwritten by the lower triangular part of
the updated matrix. The imaginary parts of the diagonal elements
need not be set; they are assumed to be zero, and on exit they are set
to zero.

leading dimension of C; ldc must be at least max(1, n).

Output

updated accordingto C = alpha* A* B" + alpha * B*A"+ beta*C
or C = alpha”‘AH *B +alpha *B"*A +beta *C.

Reference: http://www.netlib.org/blas/zher2k.f

Error status for this function can be retrieved via cublasGetError().

Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<Oork<O0

PG-05326-032_V02

239
NVIDIA

CUDA

CUBLAS Library

Error Status (continued)

CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision

CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZsymm()

240

void

cublasZsymm (char side, char uplo, int m, int n,

cuDoubleComplex alpha,

const cuDoubleComplex *A,

int Ida, const cuDoubleComplex *B, int Idb,
cuDoubleComplex beta, cuDoubleComplex *C,
int 1dc)

performs one of the matrix-matrix operations

C = alpha*A*B+beta*C or C = alpha*B*A+beta*C,

where alpha and beta are double-precision complex scalars, A is a
symmetric matrix consisting of double-precision complex elements
and is stored in either lower or upper storage mode. B and C are mxn
matrices consisting of double-precision complex elements.

Input

side

uplo

specifies whether the symmetric matrix A appeats on the left-hand side
or right-hand side of matrix B.

If side=="L" or "1*,C = alpha*A*B+beta*C.

If side=="R" or "r*, C = alpha*B*A+beta*C.

specifies whether the symmetric matrix A is stored in upper or lower
storage mode. If uplo == "U" or "u”, only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or "17, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

specifies the number of rows of matrix C, and the number of rows of
matrix B. It also specifies the dimensions of symmetric matrix A when
side == "L" or "I "; m must be at least zero.

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

Input (continued)

n

alpha

Ida

1db
beta

Idc

specifies the number of columns of matrix C, and the number of
columns of matrix B. It also specifies the dimensions of symmetric
matrix A when side == "R" or "r"'; n must be at least zero.

double-precision complex scalar multiplier applied to A * B or B * A

double-precision complex array of dimensions (lda, ka), where ka is
m when side == "L" or "I" and is n otherwise. If side == "L" or
17, the leading mxm part of array A must contain the symmetric
matrix such that when uplo == "U" or "u", the leading mxm part
stores the upper triangular part of the symmetric matrix, and the
strictly lower triangular part of A is not referenced; and when uplo ==
"L" or "7, the leading mxm part stores the lower triangular part of the
symmetric matrix, and the strictly upper triangular part is not
referenced. If side == "R" or "r", the leading nxn part of array A
must contain the symmetric matrix such that when uplo == "U" or
"u”, the leading nxn part stores the upper triangular part of the
symmetric matrix, and the strictly lower triangular part of A is not
referenced; and when uplo == "L" or " 17, the leading nxn part stores
the lower triangular part of the symmetric matrix, and the strictly
upper triangular part is not referenced.

leading dimension of A. When side == "L" or " 1", it must be at least
max(1, m) and at least max(1, n) otherwise.

double-precision complex array of dimensions (1db, n). On entry, the
leading mxn part of the array contains the matrix B.

leading dimension of B; Idb must be at least max(1, m).

double-precision complex scalar multiplier applied to C. If beta is
zero, C does not have to be a valid input.

double-precision complex array of dimensions (ldc, n).

leading dimension of C; ldc must be at least max(1, m).

Output

updated according to C = alpha*A*B+beta™>C or
C = alpha*B*A+beta*C.

Reference: http://www.netlib.org/blas/zsymm.f

PG-05326-032_V02

241
NVIDIA

CUDA

CUBLAS Library

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<Oorn<O
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZsyrk()

242

void

cublaszZsyrk (char uplo, char trans, int n, int k,
cuDoubleComplex alpha,
const cuDoubleComplex *A, int lda,
cuDoubleComplex beta,
cuDoubleComplex *C, int Idc)

performs one of the symmetric rank k operations
C = alpha*A*AT+beta*C or C = alpha*AT*A+beta*C,

where alpha and beta are double-precision complex scalars. C is an
nxn symmetric matrix consisting of double-precision complex
elements and is stored in either lower or upper storage mode. Ais a
matrix consisting of double-precision complex elements with
dimensions of nxk in the first case and kxn in the second case.

Input

uplo specifies whether the symmetric matrix C is stored in upper or lower
storage mode. If uplo == "U*" or "u”, only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L" or "17, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

trans specifies the operation to be performed. If trans == *N" or "n",
C = alpha*A*AT+beta*C.If trans=="T", "t", "C", or "C",
C = alpha*AT*A+beta*C.

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

Input (continued)

n

alpha

Ida

beta

Idc

specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n", n specifies the number of rows of matrix A. If
trans=="T", "t", "C", or "c", n specifies the number of columns

of matrix A; n must be at least zero.

If trans == *N" or "n*, k specifies the number of columns of
matrix A. If trans == "T", "t", "C", or "c", k specifies the number
of rows of matrix A; k must be at least zero.

double-precision complex scalar multiplier applied to A* AT or
AT*A.

double-precision complex array of dimensions (lda, ka), where ka is
k when trans == "N" or "n" and is n otherwise. When trans ==
"N® or "n~, the leading nxk part of array A contains the matrix A;
otherwise, the leading kxn part of the array contains the matrix A.

leading dimension of A. When trans == "N* or "n", lda must be at
least max (1, n). Otherwise Ida must be at least max (1, k).

double-precision complex scalar multiplier applied to C.
If beta is zero, C is not read.

double-precision complex array of dimensions (ldc, n). If uplo ==
"U" or "u”, the leading nxn triangular part of the array C must contain
the upper triangular part of the symmetric matrix C, and the strictly
lower triangular part of C is not referenced. On exit, the upper
triangular part of C is overwritten by the upper triangular part of the
updated matrix. If uplo == "L" or " 17, the leading nxn triangular
part of the array C must contain the lower triangular part of the
symmetric matrix C, and the strictly upper triangular part of C is not
referenced. On exit, the lower triangular part of C is overwritten by the
lower triangular part of the updated matrix.

leading dimension of C; Idc must be at least max (1, n).

Output

updated according to C = alpha*A* AT +beta>C or
C = alpha*AT*A+beta*C.

Reference: http://www .netlib.org/blas/zsyrk.f

PG-05326-032_V02

243
NVIDIA

CUDA

CUBLAS Library

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS libraty was not initialized
CUBLAS_STATUS_INVALID_VALUE ifn<0ork<O
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZsyr2k()

244

void

cublasZsyr2k (char uplo, char trans, int n, int Kk,
cuDoubleComplex alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
cuDoubleComplex beta,
cuDoubleComplex *C, int Idc)

performs one of the symmetric rank 2k operations
c
C

alpha*A*BT+alpha*B*AT +beta*C or
alpha*AT*B+alpha*BT *A+beta*C,

where alpha and beta are double-precision complex scalars. C is an
nxn symmetric matrix consisting of double-precision complex
elements and is stored in either lower or upper storage mode. A and B
are matrices consisting of double-precision complex elements with
dimension of nxk in the first case and kxn in the second case.

Input

uplo specifies whether the symmetric matrix C is stored in upper or lower
storage mode. If uplo == "U*" or "u", only the upper triangular part
of the symmetric matrix is referenced, and the elements of the strictly
lower triangular part are inferred from those in the upper triangular
part. If uplo == "L~ or "I, only the lower triangular part of the
symmetric matrix is referenced, and the elements of the strictly upper
triangular part are inferred from those in the lower triangular part.

trans specifies the operation to be performed. If trans == *N" or "n”,
C = alpha*A*BT+alpha*B*AT+beta*C.If trans=="T",
"t","C",or "c",C = alpha*AT*B+alpha*BT*A+beta*C.

PG-05326-032_V02
NVIDIA

CHAPTER 5

BLAS3 Functions

Input (continued)

n

alpha

Ida

1db

beta

Idc

specifies the number of rows and the number columns of matrix C. If
trans == "N" or "n"', n specifies the number of rows of matrices A
and B. If trans == "T", "t", "C", or "c", n specifies the number of
columns of matrices A and B; n must be at least zero.

If trans == *N" or "n*, k specifies the number of columns of
matrices A and B. If trans == "T", "t", "C", or "c", k specifies the
number of rows of matrices A and B; k must be at least zero.

double-precision scalar multiplier.

double-precision array of dimensions (lda, ka), where ka is k when
trans == "N" or "n" and is n otherwise. When trans == "N* or
"n*, the leading nxk part of array A must contain the matrix A,
otherwise the leading kxn part of the array must contain the matrix A.

leading dimension of A. When trans == "N* or "n", lda must be at
least max (1, n). Otherwise Ida must be at least max (1, k).

double-precision array of dimensions (ldb, kb), where kb = k when
trans == "N" or "n", and k = n otherwise. When trans == "N" or
"n*, the leading nxk part of array B must contain the matrix B,
otherwise the leading kxn part of the array must contain the matrix B.

leading dimension of B. When trans == *N" or "n", Idb must be at
least max (1, n). Otherwise Idb must be at least max (1, k).

double-precision scalar multiplier applied to C. If beta is zero, C does
not have to be a valid input.

double-precision array of dimensions (ldc, n). If uplo == "U" or
"u”, the leading nxn triangular part of the array C must contain the
upper triangular part of the symmetric matrix C, and the strictly lower
triangular part of C is not referenced. On exit, the upper triangular part
of C is overwritten by the upper triangular part of the updated matrix.
If uplo == "L" or " 17, the leading nxn triangular part of the array C
must contain the lower triangular part of the symmetric matrix C, and
the strictly upper triangular part of C is not referenced. On exit, the
lower triangular part of C is overwritten by the lower triangular part of
the updated matrix.

leading dimension of C; idc must be at least max (1, n).

PG-05326-032_V02

245
NVIDIA

CUDA

CUBLAS Library

Output

C updated according to
C = alpha*A*BT+alpha*B*AT+beta*C or
C = alpha*AT*B+alpha*BT*A+beta*C.

Reference: http://www.netlib.org/blas/zsyr2k.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<0,n<0,ork<0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZtrmm()

246

void

cublasztrmm (char side, char uplo, char transa,
char diag, int m, int n,
cuDoubleComplex alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb)

performs one of the matrix-matrix operations
B = alpha*op(A) *B or B = alpha*B * op(A),
where op(A) = A, op(A) = AT, or op(A) = AR;

alphais a double-precision complex scalar; B is an mxn matrix
consisting of double-precision complex elements; and A is a unit or
non-unit, upper or lower triangular matrix consisting of double-
precision complex elements.

Matrices A and B are stored in column-major format, and Ida and Idb
are the leading dimensions of the two-dimensional arrays that contain
A and B, respectively.

PG-05326-032_V02
NVIDIA

CHAPTER 5

Input

BLAS3 Functions

side

uplo

transa

alpha

Ida

1db

specifies whether op(A) multiplies B from the left or right.

If side=="L" or "1", B = alpha*op(A) *B.

If side == "R" or "r", B = alpha*B * op(A).

specifies whether the matrix A is an upper or lower triangular matrix.
If uplo == "U" or "u", Ais an upper triangular matrix.
Ifuplo=="L" or "17, Ais a lower triangular matrix.
specifies op(A). If transa == "N" or "n", op(A) = A.

If transa=="T" or "t", op(A) = AT.

If transa == "C" or "c", op(A) = A",

specifies whether or not A is a unit triangular matrix. If diag == "U*"
or "u”, Ais assumed to be unit triangular. If diag == "N or "n~", Ais
not assumed to be unit triangular.

the number of rows of matrix B; m must be at least zero.

the number of columns of matrix B; n must be at least zero.

double-precision complex scalar multiplier applied to op(A)*B or
B*op(A), respectively. If alpha is zero, no accesses are made to
matrix A, and no read accesses are made to matrix B.

double-precision complex array of dimensions (lda, k). If side ==
"L or "I", k=m. If side=="R" or "r*, k=n. Ifuplo=="U" or
"u”, the leading kxk upper triangular part of the array A must contain
the upper triangular matrix, and the strictly lower triangular part of A is
not referenced. If uplo == "L" or " 17, the leading kxk lower
triangular part of the array A must contain the lower triangular matrix,
and the strictly upper triangular part of A is not referenced. When
diag == "U" or "u”, the diagonal elements of A are not referenced
and are assumed to be unity.

leading dimension of A. When side == "L" or "I, it must be at least
max (1, m) and at least max(1, n) otherwise.

double-precision complex array of dimensions (1db, n). On entry, the
leading mxn part of the array contains the matrix B. It is overwritten
with the transformed matrix on exit.

leading dimension of B; 1db must be at least max(1, m).

PG-05326-032_V02

247
NVIDIA

CUDA

CUBLAS Library

Output
B

updated according to B = alpha* op(A) *B or
B = alpha*B*op(A).

Reference: http://www.netlib.org/blas/ztrmm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<Oorn<O0
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

Function cublasZtrsm()

248

void

cublasztrsm (char side, char uplo, char transa,
char diag, int m, int n,
cuDoubleComplex alpha,
const cuDoubleComplex *A, int lda,
cuDoubleComplex *B, int Idb)

solves one of the matrix equations
op(A) *X =alpha*B or X*op(A) = alpha*B,
where op(A) = A, op(A) = AT, or op(A) = Af;

alphais a double-precision complex scalar, and X and B are mxn
matrices that consist of double-precision complex elements. A is a unit
or non-unit, upper or lower, triangular matrix.

The result matrix X overwrites input matrix B; that is, on exit the result
is stored in B. Matrices A and B are stored in column-major format, and
Ida and ldb are the leading dimensions of the two-dimensional arrays
that contain A and B, respectively.

PG-05326-032_V02
NVIDIA

CHAPTER 5

Input

BLAS3 Functions

side

uplo

transa

alpha

Ida

1db

specifies whether op(A) appears on the left or right of X:
side == "L~ or "I " indicates solve op(A) * X = alpha*B;
side == "R" or "r" indicates solve X * op(A) = alpha *B.

specifies whether the matrix A is an upper or lower triangular matrix:
uplo == "U" or "u” indicates A is an upper triangular matrix;

uplo == "L" or "I~ indicates A is a lower triangular matrix.
specifies op(A). If transa == "N" or "n", op(A) = A.

If transa=="T" or "t", op(A) = AT.

If transa == "C" or "c", op(A) = AH.

specifies whether or not A is a unit triangular matrix.

If diag == "U” or "u”, A is assumed to be unit triangular.
If diag == "N” or "n", A is not assumed to be unit triangular.

specifies the number of rows of B; m must be at least zero.
specifies the number of columns of B; n must be at least zero.

double-precision complex scalar multiplier applied to B. When alpha
is zero, A is not referenced and B does not have to be a valid input.

double-precision complex array of dimensions (lda, k), where K is m
when side == "L" or "1" and is n when side == "R" or "r". If
uplo=="U" or "u”, the leading kxk upper triangular part of the array
A must contain the upper triangular matrix, and the strictly lower
triangular matrix of A is not referenced. When uplo == "L" or 17,
the leading kxk lower triangular part of the array A must contain the
lower triangular matrix, and the strictly upper triangular part of A is
not referenced. Note that when diag == "U" or "u”, the diagonal
elements of A are not referenced and are assumed to be unity.

leading dimension of the two-dimensional array containing A.
When side == "L~ or "1~ lda must be at least max(1, m).
When side == "R" or "r~, lda must be at least max(1, n).

double-precision complex array of dimensions (1db, n); Idb must be
at least max (1, m). The leading mxn part of the array B must contain
the right-hand side matrix B. On exit, B is overwritten by the solution
matrix X.

leading dimension of the two-dimensional array containing B; Idb
must be at least max(d1, m).

PG-05326-032_V02

249
NVIDIA

CUDA CUBLAS Library

Output
B

contains the solution matrix X satisfying op(A) * X = alpha *B or
X*op(A) =alpha*B.

Reference: http://www.netlib.org/blas/ztrsm.f

Error status for this function can be retrieved via cublasGetError().
Error Status

CUBLAS_STATUS_NOT_INITIALIZED if CUBLAS library was not initialized
CUBLAS_STATUS_INVALID_VALUE if m<O0 or n<O
CUBLAS_STATUS_ARCH_MISMATCH if function invoked on device that

does not support double precision
CUBLAS_STATUS_EXECUTION_FAILED if function failed to launch on GPU

250 PG-05326-032_V02
NVIDIA

-\

APPENDIX

CUBLAS Fortran Bindings

CUBLA is implemented using the C-based CUDA toolchain and thus
provides a C-style API. This makes interfacing to applications written
in C or C++ trivial. In addition, there are many applications
implemented in Fortran that would benefit from using CUBLAS.
CUBLAS uses 1-based indexing and Fortran-style column-major
storage for multidimensional data to simplify interfacing to Fortran
applications. Unfortunately, Fortran-to-C calling conventions are not
standardized and differ by platform and toolchain. In particular,
differences may exist in the following areas:

O symbol names (capitalization, name decoration)

0O argument passing (by value or reference)

O passing of string arguments (length information)

0O passing of pointer arguments (size of the pointer)

0O returning floating-point or compound data types (for example,
single-precision or complex data types)

To provide maximum flexibility in addressing those differences, the
CUBLAS Fortran interface is provided in the form of wrapper
functions, which are written in C and provided in two forms:

0 the thunking wrapper interface in the file fortran_thunking.c
0 the direct wrapper interface in the file fortran.c

PG-05326-032_V02 251
NVIDIA

CUDA

252

CUBLAS Library

The code of one of those two files must be compiled into an application
for it to call the CUBLAS API functions. Providing source code allows
users to make any changes necessary for a particular platform and
toolchain.

The code in those two C files has been used to demonstrate
interoperability with the compilers g77 3.2.3 and g95 0.91 on 32-bit
Linux, g77 3.4.5 and g95 0.91 on 64-bit Linux, Intel Fortran 9.0 and Intel
Fortran 10.0 on 32-bit and 64-bit Microsoft Windows XP, and g77 3.4.0
and g95 0.92 on Mac OS X.

Note that for g77, use of the compiler flag -fno-second-underscore
is required to use these wrappers as provided. Also, the use of the
default calling conventions with regard to argument and return value
passing is expected. Using the flag -fno-f2c changes the default
calling convention with respect to these two items.

The thunking wrappers allow interfacing to existing Fortran
applications without any changes to the application. During each call,
the wrappers allocate GPU memory, copy source data from CPU
memory space to GPU memory space, call CUBLAS, and finally copy
back the results to CPU memory space and deallocate the GPU
memory. As this process causes very significant call overhead, these
wrappers are intended for light testing, not for production code. To
use the thunking wrappers, the application needs to be compiled with
the file fortran_thunking.c.

The direct wrappers, intended for production code, substitute device
pointers for vector and matrix arguments in all BLAS functions. To use
these interfaces, existing applications must be modified slightly to
allocate and deallocate data structures in GPU memory space (using
CUBLAS_ALLOC and CUBLAS_FREE) and to copy data between GPU and
CPU memory space (with CUBLAS_SET_VECTOR, CUBLAS_GET_VECTOR,
CUBLAS_SET_MATRIX, and CUBLAS_GET_MATRIX). The sample
wrappers provided in fortran.c map device pointers to the
operating-system-dependent type size_t, which is 32 bits wide on 32-
bit platforms and 64 bits wide on a 64-bit platforms.

One approach to dealing with index arithmetic on device pointers in
Fortran code is to use C-style macros and to use the C preprocessor to
expand these, as shown below in Example A.2. On Linux and Mac OS
X, preprocessing can be done using the "-E -x f77-cpp-input”

PG-05326-032_V02
NVIDIA

CHAPTER A

CUBLAS Fortran Bindings

option with the g77 compiler, or simply using the "-cpp” option with
g95 or gfortran. On Windows platforms with Microsoft Visual C/C++,
using "cl -EP" achieves similar results.

When traditional fixed-form Fortran 77 code is ported to CUBLAS, line
length often increases when the BLAS calls are exchanged for CUBLAS
calls. Longer function names and possible macro expansion are
contributing factors. Inadvertently exceeding the maximum line
length can lead to run-time errors that are difficult to find, so care
should be taken not to exceed the 72-column limit if fixed form is
retained.

The following two examples show a small application implemented in
Fortran 77 on the host (Example A.1., “Fortran 77 Application
Executing on the Host” on page 254), and show the same application
using the non-thunking wrappers after it has been ported to use
CUBLAS (Example A.2., “Fortran 77 Application Ported to Use
CUBLAS” on page 254).

The second example should be compiled with ARCH_64 defined as 1 on
64-bit operating systems and as 0 on 32-bit operating systems. For
example, on g95 or gfortran it can be done directly on the command
line by using the option "-cpp -DARCH_64=1".

PG-05326-032_V02 253

NVIDIA

CUDA CUBLAS Library

Example A.1. Fortran 77 Application Executing on the Host

subroutine modify (m, ldm, n, p, q, alpha, beta)
implicit none

integer ldm, n, p,

real*4 m(ldm,*), alpha, beta

external sscal

call sscal (n-p+l1, alpha, m(p,q), 1dm)

call sscal (Idm-p+1, beta, m(p,q), 1)

return

end

program matrixmod
implicit none
integer M, N
parameter (M=6, N=5)
real*4 a(M,N)
integer i, j
doj =1, N
doi=1, M
a(i,j) = (i-1) * M+ j
enddo
enddo
call modify (a, M, N, 2, 3, 16.0, 12.0)
doj =1, N
doi=1, M
write(*,"(F7.0%)") a(i,j)
enddo
write (*,*) "
enddo
stop
end

Example A.2. Fortran 77 Application Ported to Use CUBLAS
#define IDX2F(i,j,1d) (((CG)-1)*(1d))+((i)-1))

subroutine modify (devPtrM, Idm, n, p, q, alpha, beta)

254 PG-05326-032_V02
NVIDIA

CHAPTER A CUBLAS Fortran Bindings

Example A.2. Fortran 77 Application Ported to Use CUBLAS (continued)

implicit none
integer sizeof_real
parameter (sizeof _real=4)
integer ldm, n, p,
#iT ARCH_64
integer*8 devPtrM
#else
integer devPtrM
#endif
real*4 alpha, beta
call cublas_sscal (n-p+1, alpha,

1 devPtrM+IDX2F(p,q, ldm)*sizeof_real,
2 1dm)

call cublas_sscal (ldm-p+1, beta,
1 devPtrM+IDX2F(p,q, ldm)*sizeof_real,
2 1)

return

end

program matrixmod
implicit none
integer M, N, sizeof _real
#iT ARCH_64
integer*8 devPtrA
#else
integer devPtrA
#endif
parameter (M=6, N=5, sizeof_real=4)
real*4 a(M,N)
integer i, j, stat
external cublas_init, cublas_set _matrix, cublas_get_matrix
external cublas_shutdown, cublas_alloc
integer cublas_alloc, cublas_set matrix, cublas_get matrix
do j =1, N
doi=1,M
a(i,j) = (i-1) * M + j

PG-05326-032_V02 255
NVIDIA

CUDA CUBLAS Library

Example A.2. Fortran 77 Application Ported to Use CUBLAS (continued)

enddo
enddo

call cublas_init
stat = cublas_alloc(M*N, sizeof _real, devPtrA)
if (stat _.NE. 0) then
write(*,*) '"device memory allocation failed"”
call cublas_shutdown
stop
endif
stat = cublas_set_matrix (M, N, sizeof _real, a, M, devPtrA, M)
if (stat _.NE. 0) then
call cublas_free (devPtrA)
write(*,*) "data download failed"
call cublas_shutdown
stop
endif
call modify (devPtrA, M, N, 2, 3, 16.0, 12.0)
stat = cublas_get_matrix (M, N, sizeof_real, devPtrA, M, a, M)
if (stat _.NE. 0) then
call cublas_free (devPtrA)
write(*,*) "data upload failed"
call cublas_shutdown
stop
endif
call cublas_free (devPtrA)
call cublas_shutdown

do j =1, N
doi1=1, M
write(*,"(F7.0%)") a(i,j)
enddo
write (*,*) "
enddo
stop
end
256 PG-05326-032_V02

NVIDIA

	CUBLAS Library
	Table of Contents

	The CUBLAS Library
	CUBLAS Types
	Type cublasStatus

	CUBLAS Helper Functions
	Function cublasInit()
	Function cublasShutdown()
	Function cublasGetError()
	Function cublasAlloc()
	Function cublasFree()
	Function cublasSetVector()
	Function cublasGetVector()
	Function cublasSetMatrix()
	Function cublasGetMatrix()
	Function cublasSetKernelStream()
	Function cublasSetVectorAsync()
	Function cublasGetVectorAsync()
	Function cublasSetMatrixAsync()
	Function cublasGetMatrixAsync()

	BLAS1 Functions
	Single-Precision BLAS1 Functions
	Function cublasIsamax()
	Function cublasIsamin()
	Function cublasSasum()
	Function cublasSaxpy()
	Function cublasScopy()
	Function cublasSdot()
	Function cublasSnrm2()
	Function cublasSrot()
	Function cublasSrotg()
	Function cublasSrotm()
	Function cublasSrotmg()
	Function cublasSscal()
	Function cublasSswap()

	Single-Precision Complex BLAS1 Functions
	Function cublasCaxpy()
	Function cublasCcopy()
	Function cublasCdotc()
	Function cublasCdotu()
	Function cublasCrot()
	Function cublasCrotg()
	Function cublasCscal()
	Function cublasCsrot()
	Function cublasCsscal()
	Function cublasCswap()
	Function cublasIcamax()
	Function cublasIcamin()
	Function cublasScasum()
	Function cublasScnrm2()

	Double-Precision BLAS1 Functions
	Function cublasIdamax()
	Function cublasIdamin()
	Function cublasDasum()
	Function cublasDaxpy()
	Function cublasDcopy()
	Function cublasDdot()
	Function cublasDnrm2()
	Function cublasDrot()
	Function cublasDrotg()
	Function cublasDrotm()
	Function cublasDrotmg()
	Function cublasDscal()
	Function cublasDswap()

	Double-Precision Complex BLAS1 functions
	Function cublasDzasum()
	Function cublasDznrm2()
	Function cublasIzamax()
	Function cublasIzamin()
	Function cublasZaxpy()
	Function cublasZcopy()
	Function cublasZdotc()
	Function cublasZdotu()
	Function cublasZdrot()
	Function cublasZdscal()
	Function cublasZrot()
	Function cublasZrotg()
	Function cublasZscal()
	Function cublasZswap()

	Single-Precision BLAS2 Functions
	Single-Precision BLAS2 Functions
	Function cublasSgbmv()
	Function cublasSgemv()
	Function cublasSger()
	Function cublasSsbmv()
	Function cublasSspmv()
	Function cublasSspr()
	Function cublasSspr2()
	Function cublasSsymv()
	Function cublasSsyr()
	Function cublasSsyr2()
	Function cublasStbmv()
	Function cublasStbsv()
	Function cublasStpmv()
	Function cublasStpsv()
	Function cublasStrmv()
	Function cublasStrsv()

	Single-Precision Complex BLAS2 Functions
	Function cublasCgbmv()
	Function cublasCgemv()
	Function cublasCgerc()
	Function cublasCgeru()
	Function cublasChbmv()
	Function cublasChemv()
	Function cublasCher()
	Function cublasCher2()
	Function cublasChpmv()
	Function cublasChpr()
	Function cublasChpr2()
	Function cublasCtbmv()
	Function cublasCtbsv()
	Function cublasCtpmv()
	Function cublasCtpsv()
	Function cublasCtrmv()
	Function cublasCtrsv()

	Double-Precision BLAS2 Functions
	Double-Precision BLAS2 Functions
	Function cublasDgbmv()
	Function cublasDgemv()
	Function cublasDger()
	Function cublasDsbmv()
	Function cublasDspmv()
	Function cublasDspr()
	Function cublasDspr2()
	Function cublasDsymv()
	Function cublasDsyr()
	Function cublasDsyr2()
	Function cublasDtbmv()
	Function cublasDtbsv()
	Function cublasDtpmv()
	Function cublasDtpsv()
	Function cublasDtrmv()
	Function cublasDtrsv()

	Double-Precision Complex BLAS2 functions
	Function cublasZgbmv()
	Function cublasZgemv()
	Function cublasZgerc()
	Function cublasZgeru()
	Function cublasZhbmv()
	Function cublasZhemv()
	Function cublasZher()
	Function cublasZher2()
	Function cublasZhpmv()
	Function cublasZhpr()
	Function cublasZhpr2()
	Function cublasZtbmv()
	Function cublasZtbsv()
	Function cublasZtpmv()
	Function cublasZtpsv()
	Function cublasZtrmv()
	Function cublasZtrsv()

	BLAS3 Functions
	Single-Precision BLAS3 Functions
	Function cublasSgemm()
	Function cublasSsymm()
	Function cublasSsyrk()
	Function cublasSsyr2k()
	Function cublasStrmm()
	Function cublasStrsm()

	Single-Precision Complex BLAS3 Functions
	Function cublasCgemm()
	Function cublasChemm()
	Function cublasCherk()
	Function cublasCher2k()
	Function cublasCsymm()
	Function cublasCsyrk()
	Function cublasCsyr2k()
	Function cublasCtrmm()
	Function cublasCtrsm()

	Double-Precision BLAS3 Functions
	Function cublasDgemm()
	Function cublasDsymm()
	Function cublasDsyrk()
	Function cublasDsyr2k()
	Function cublasDtrmm()
	Function cublasDtrsm()

	Double-Precision Complex BLAS3 Functions
	Function cublasZgemm()
	Function cublasZhemm()
	Function cublasZherk()
	Function cublasZher2k()
	Function cublasZsymm()
	Function cublasZsyrk()
	Function cublasZsyr2k()
	Function cublasZtrmm()
	Function cublasZtrsm()

	CUBLAS Fortran Bindings

