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Introduction 
The purposes of this guide are to assist developers who are familiar with CUDA C/C++ 
development and want to port code to OpenCL, and to assist developers who want to use CUDA 
C/C++ now in a fashion that provides the easiest transition later to OpenCL. 

Examples and explanations are provided to illustrate implementation of a simple GPU-accelerated 
application using CUDA C/C++ compute kernels and the CUDA Driver API, with direct 
comparison to the OpenCL implementation.  A summary is also provided for the most significant 
CUDA C/C++ capabilities that are not supported in OpenCL (or may not be supported in all 
vendors implementations of OpenCL). 

Overview 

OpenCL (Open Compute Language) is an open standard for parallel programming of 
heterogeneous systems, managed by the Khronos Group.  OpenCL supports a wide range of 
applications, from embedded and consumer software to HPC solutions, through a low-level, high-
performance, portable abstraction. By creating an efficient, close-to-the-metal programming 
interface, OpenCL will form the foundation layer of a parallel computing ecosystem of platform-
independent tools, middleware and applications. 

CUDA is NVIDIA's technology for GPU Computing.  With the CUDA architecture and tools, 
developers are achieving dramatic speedups in fields such as medical imaging and natural resource 
exploration, and creating breakthrough applications in areas such as image recognition and real-time 
HD video playback and encoding.  

Leveraging the massively parallel processing power of NVIDIA GPUs, OpenCL running on the 
CUDA architecture extends NVIDIA’s world-renowned graphics processor technology into the 
realm of parallel computing.  Applications that run on the CUDA architecture can take advantage of 
an installed base of over one hundred million CUDA-enabled GPUs in desktop and notebook 
computers, professional workstations, and supercomputer clusters. NVIDIA GPUs enable this 
unprecedented performance via standard APIs such as OpenCL and DirectX Compute, and high 
level programming languages such as C/C++, Fortran, Java, Python, and .NET. 

The NVIDIA CUDA Driver API and Runtime API are the original API’s that allowed 
programmers to develop applications for the CUDA architecture and are predecessors of OpenCL. 
The CUDA Driver API is very similar to OpenCL with a high correspondence between functions.  

 

Note: Developers interested in porting between CUDA API’s and OpenCL should focus upon the 
CUDA Driver API rather than the the CUDA Runtime API due to similarities between the CUDA 

Driver API and OpenCL.  Choosing the CUDA Driver API and the guidelines explained in this 

document will allow the smoothest transitions to/from OpenCL. 
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Getting Started 

To get started, follow the steps in the CUDA Quickstart Guide for your operating system, and read 
through the rest of this document.  CUDA Quickstart Guides are available at: 
  http://www.nvidia.com/object/cuda_develop.html 

Note: You must have a CUDA-enabled GPU in your system.  All recent NVIDIA GPUS have the 

necessary support, and a full list is available here: 

   http://www.nvidia.com/object/cuda_learn_products.html 

General Differences between 
OpenCL and the CUDA Driver 
API 

This section describes several key differences between the CUDA Driver API and OpenCL, as 
guidance to developers who plan to support both or port from one to the other.  These differences 
might shift over time as either OpenCL or the CUDA Driver API are revised.  Please also refer to 
the OpenCL Programming Guide, the OpenCL Specification v1.0 and the CUDA Programming 
Guide for additional details. 

 

C Language Integration 
CUDA C/C++ has features supported via a dedicated compiler that are not part of OpenCL. These 
provide features such offline compilation of host and device code from a single source file and 
sharing of user-defined types between the host and device.  The CUDA C/C++ language supports 
the C memory model in a manner C/C++ programmers will find very familiar, exposing device 
memory via a pointer rather than an opaque handle. This permits arbitrary pointer dereferencing, 
device memory pointer arithmetic on both the device and the host, and no requirement for address 
space typed pointers. 

Pointer Traversal 
Multiple pointer traversals must be avoided on OpenCL, the behavior of such operations is 
undefined in the specification. Pointer traversals are allowed with CUDA C/C++. 

struct Node { Node* next; } 

n = n->next; // undefined operation in OpenCL, 

   // since ‘n’ here is a kernel input 

 

To do this on OpenCL, pointers must be converted to be relative to the buffer base pointer and 
only refer to data within the buffer itself (no pointers between OpenCL buffers are allowed). 

struct Node { unsigned int next; } 

… 

n = bufBase + n; // pointer arithmetic is fine, bufBase is 

                 // a kernel input param to the buffer’s beginning 
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Kernel Programs 
Using CUDA C/C++, kernel programs are precompiled into a binary format and there are function 
calls for dealing with module and function loading. In OpenCL, the compiler is built into the 
runtime and can be invoked on the raw text or a binary can be built and saved for later load. There 
are slight differences in keywords and syntax of the languages used for kernels. 

 

Kernel Invocation Memory Offsets 
The current version of OpenCL does not support stream offsets at the API/kernel invocation level. 
Offsets must be passed in as a parameter to the kernel and the address of the memory computed 
inside it. CUDA kernels may be started at offsets within buffers at the API/kernel invocation level. 

 

C++  
CUDA C/C++ allows C++ constructs in device/kernel code including Default Parameters, 
Operator Overloading, Namespaces and Function Templates.  These aren’t presently supported by 
OpenCL. 

 

Automatic Demotion for Devices without native Double Precision  
With CUDA C/C++, when compiling for devices without native double-precision floating-point 
support (such as devices of compute capability 1.2 and lower), double variables get converted to 
single-precision floating-point format (but retain their size of 64 bits) and double-precision floating-
point arithmetic gets demoted to single-precision floating-point arithmetic. Current OpenCL 
compilers do not implement this automatic double-to-float demotion.  
 

Multiple Device support 
OpenCL allows multiple device management from within one context using multiple command 
queues.   CUDA C/C++ supports multiple devices using multiple contexts, with one context per 
device.  

 

API Command ordering 
OpenCL supports explicit ordering of API commands within a command queue using event 
dependencies.  CUDA C/C++ enforces API command order as-issued within a stream. 

 

Thread Safety 
Applications using OpenCL should not rely on the drivers being thread-safe at present.  The 
OpenCL v1.0 specification does not require vendor implementations to be thread-safe, and there are 
no conformance tests that verify thread-safety of any particular implementation.   

Debugging 
CUDA C/C++ allows debugging in device code from Visual Studio, so a developer can set 
breakpoints and use other debugger features to interactively debug kernels.  At this time, NVIDIA’s  
OpenCL implementation and associated tools don’t provide for this. 
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Libraries 
Several highly-optimized libraries are available for use with CUDA C/C++, including cublas, cufft, 
cuddp, npp, nvcuvid, MAGMA, CULA and GPU-VSIPL.  Equivalent libraries compatible with 
existing OpenCL implementations may become available in the future but aren’t available at present. 

 

Advanced Features 
CUDA C/C++ has more extensive support at present for some advanced features such as linear-
memory-bound 1D texture fetches from kernel and warp vote functions from kernel code.  Over 
time, such features in CUDA C/C++ can reasonably be expected to be available in extensions in 
NVIDIA’s OpenCL implementation or in future versions of the OpenCL specification.  NVIDIA is 
actively working with the Khronos organization on future versions of OpenCL. 

Vector Addition Example 
Here we show the differences between CUDA C/C++ and OpenCL implementations of vector 
addition.  The program adds two arrays of floats. The basic components of this program are 
identical in CUDA C/C++ and OpenCL: 

• A compute kernel, which will be executed in a massively parallel fashion on the compute 
device (GPU).  Each thread (also known as work item) executes the same kernel computation 
on different data, adding an element from each of input arrays a and b and placing the result 
in a corresponding element of array c. 

• A host application drives the kernel execution.  

 

CUDA C/C++ Kernel Code: 
__global__ void 

vectorAdd(const float * a, const float * b, float * c) 

{ 

    // Vector element index 

    int nIndex = blockIdx.x * blockDim.x + threadIdx.x; 

    c[nIndex] = a[nIndex] + b[nIndex]; 

} 

 

OpenCL Kernel Code 
__kernel void  

vectorAdd(__global const float * a,  

          __global const float * b,  

          __global       float * c) 

{ 

    // Vector element index 

    int nIndex = get_global_id(0); 

    c[nIndex] = a[nIndex] + b[nIndex]; 

} 
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As can be seen from the kernel code, both languages are conceptually very similar. For this program, 
the differences are mostly in the syntax.  Let’s look at these differences in detail. 

Kernel declaration specifier  

CUDA C/C++ kernel functions are declared using the “__global__” function modifier, 
while OpenCL kernel functions are declared using “__kernel”. 

Pointer declaration specifiers 

With OpenCL, it is mandatory to specify the address space for any pointers passed as 
arguments to kernel functions.  This kernel has three parameters a, b, and c that are pointers 
to global device memory. These arrays must be declared using the __global specifier in 
OpenCL.  

Global thread index computation  

In CUDA C/C++, all index and threadblock size information is available to kernels in three 
structures: threadIdx.{x|y|z}, blockIdx.{x|y|z}, blockDim.{x|y|z} and 
gridDim.{x|y|z}.  The kernel developer is responsible for implementing the index 
computations necessary for the kernel to operate on its data. 

 

In contrast, OpenCL provides basic index information to kernels via functions. OpenCL also 

provides several functions to access derived information such as get_global_id().  This 
function computes a global work item index from work group index, work group size and thread 
index.   OpenCL also provides the function get_local_id() to query the id inside the work group, 
get_work_dim() to query the number of dimension of the work group launched for the kernel 
and the get_global_size() function to query the size of the work group. 

 

CUDA Driver API Host Code: 
The vectorAdd example is a very basic CUDA C/C++ program that adds two arrays together.  The 
CUDA driver API is a lower level API that offers a better level of control for CUDA applications.  
It is language independent since it can deal directly with PTX or CUBIN objects.  PTX or CUBIN 
files generated by NVCC.EXE can be loaded using the CUDA Driver API. 

This example assumes that the CUDA C/C++ kernel previously shown has been successfully 
compiled via NVCC.exe into a CUBIN file named “vectorAdd.cubin”. 

 

// Kernel launch configuration  

const unsigned int cnBlockSize = 512; 

const unsigned int cnBlocks    = 3; 

const unsigned int cnDimension = cnBlocks * cnBlockSize; 

 

CUdevice    hDevice; 

CUcontext   hContext; 

CUmodule    hModule; 

CUfunction  hFunction; 

     

// create CUDA device & context, and load the kernel 

cuInit(0); 

cuDeviceGet(&hContext, 0); // pick first device 

cuCtxCreate(&hContext, 0, hDevice)); 

cuModuleLoad(&hModule, “vectorAdd.cubin”); 

cuModuleGetFunction(&hFunction, hModule, "vectorAdd"); 



   NVIDIA OpenCL JumpStart Guide 

 

  6 
 www.nvidia.com 

 

 

// allocate host vectors 

float * pA = new float[cnDimension]; 

float * pB = new float[cnDimension]; 

float * pC = new float[cnDimension]; 

 

// initialize host memory (using helper C function called “randomInit”) 

randomInit(pA, cnDimension); 

randomInit(pB, cnDimension); 

 

// allocate memory on the device  

CUdeviceptr pDeviceMemA, pDeviceMemB, pDeviceMemC; 

cuMemAlloc(&pDeviceMemA, cnDimension * sizeof(float)); 

cuMemAlloc(&pDeviceMemB, cnDimension * sizeof(float));  

cuMemAlloc(&pDeviceMemC, cnDimension * sizeof(float)); 

 

// copy host vectors to device 

cuMemcpyHtoD(pDeviceMemA, pA, cnDimension * sizeof(float)); 

cuMemcpyHtoD(pDeviceMemB, pB, cnDimension * sizeof(float)); 

 

// setup parameter values 

cuFuncSetBlockShape(hFunction, cnBlockSize, 1, 1); 

cuParamSeti(hFunction, 0, pDeviceMemA); 

cuParamSeti(hFunction, 4, pDeviceMemB); 

cuParamSeti(hFunction, 8, pDeviceMemC); 

cuParamSetSize(hFunction, 12); 

     

// execute kernel 

cuLaunchGrid(hFunction, cnBlocks, 1); 

 

// copy the result from device back to host 

cuMemcpyDtoH((void *) pC, pDeviceMemC, cnDimension * sizeof(float)); 

 

// cleanup 

delete[] pA; 

delete[] pB; 

delete[] pC; 

cuMemFree(pDeviceMemA); 

cuMemFree(pDeviceMemB); 

cuMemFree(pDeviceMemC); 

 

 

OpenCL Host Code:  
Let’s compare the Host Code from the CUDA Driver API to the OpenCL one below.  The code 
below assumes that the OpenCL kernel code from below is stored in a string named 
“sProgramSource”. 

 

// Kernel launch configuration  

const unsigned int cnBlockSize = 512; 

const unsigned int cnBlocks    = 3; 

const unsigned int cnDimension = cnBlocks * cnBlockSize; 

 

// Get OpenCL platform count  

cl_uint NumPlatforms; 

clGetPlatformIDs (0, NULL, &NumPlatforms); 
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// Get all OpenCL platform IDs 

cl_platform_id* PlatformIDs; 

PlatformIDs = new cl_platform_id[NumPlatforms]; 

clGetPlatformIDs(NumPlatforms, PlatformIDs, NULL); 

 

// Select NVIDIA platform (this example assumes it IS present) 

char cBuffer[1024]; 

cl_uint NvPlatform; 

for(cl_uint i = 0; i < NumPlatforms; ++i) 

{ 

  clGetPlatformInfo (PlatformIDs[i], CL_PLATFORM_NAME, 1024, cBuffer, NULL); 

  if(strstr(cBuffer, "NVIDIA") != NULL) 

  { 

    NvPlatform = i; 

    break; 

  } 

} 

 
// Get a GPU device on Platform (this example assumes one IS present) 

cl_device_id cdDevice;  

clGetDeviceIDs(PlatformIDs[NvPlatform], CL_DEVICE_TYPE_GPU, 1,  

  &cdDevice, NULL); 
 
// Create a context 
cl_context hContext; 

hContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, NULL); 

 

// Create a command queue for the device in the context 
cl_command_queue hCmdQueue; 

hCmdQueue = clCreateCommandQueue(hContext, cdDevice, 0, NULL); 

 

// Create & compile program 

cl_program hProgram; 

hProgram = clCreateProgramWithSource(hContext, 1, sProgramSource, 0, 0); 

clBuildProgram(hProgram, 0, 0, 0, 0, 0); 

 

// Create kernel instance 

cl_kernel hKernel; 

hKernel = clCreateKernel(hProgram, “vectorAdd”, 0); 

 

// Allocate host vectors 

float * pA = new float[cnDimension]; 

float * pB = new float[cnDimension]; 

float * pC = new float[cnDimension]; 

 

// Initialize host memory (using helper C function called “randomInit”) 

randomInit(pA, cnDimension); 

randomInit(pB, cnDimension); 

 

// Allocate device memory (and init hDeviceMemA and hDeviceMemB) 

cl_mem hDeviceMemA, hDeviceMemB, hDeviceMemC; 

hDeviceMemA = clCreateBuffer(hContext,  

                          CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 

                          cnDimension * sizeof(cl_float), pA, 0); 

hDeviceMemB = clCreateBuffer(hContext,  

                          CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 

                          cnDimension * sizeof(cl_float), pB, 0); 

hDeviceMemC = clCreateBuffer(hContext,  

                          CL_MEM_WRITE_ONLY, 

                          cnDimension * sizeof(cl_float), 0, 0); 
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// Setup parameter values 

clSetKernelArg(hKernel, 0, sizeof(cl_mem), (void *)&hDeviceMemA); 

clSetKernelArg(hKernel, 1, sizeof(cl_mem), (void *)&hDeviceMemB); 

clSetKernelArg(hKernel, 2, sizeof(cl_mem), (void *)&hDeviceMemC); 

 

// Launch kernel 

clEnqueueNDRangeKernel(hCmdQueue, hKernel, 1, 0, &cnDimension, 0, 0, 0, 0); 

 

// Copy results from device back to host;  block until complete 

clEnqueueReadBuffer(hContext, hDeviceMemC, CL_TRUE, 0,  

                    cnDimension * sizeof(cl_float), pC, 0, 0, 0); 

 

// Cleanup 

delete[] pA; 

delete[] pB; 

delete[] pC; 

delete[] PlatformIDs; 

clReleaseKernel(hKernel); 

clReleaseProgram(hProgram); 

clReleaseMemObj(hDeviceMemA); 

clReleaseMemObj(hDeviceMemB); 

clReleaseMemObj(hDeviceMemC); 

clReleaseCommandQueue(hCmdQueue); 

clReleaseContext(hContext); 

 

 

 

API Differences 

Both CUDA C/C++ and OpenCL implementations perform the same steps conceptually.  The 
main differences are the naming schemes and how data gets passed to the API. Both OpenCL and 
the CUDA Driver API require the developer to manage the contexts and parameter passing.  

One noteworthy difference is that CUDA C/C++ programs are compiled with an external tool (the 
NVCC compiler) before executing on the final application. This compilation step is typically 
performed when the actual application is built.  Typically, the OpenCL compiler is invoked at 
runtime and the programmer needs to create or obtain the strings with the kernel programs. It is 
also possible to offline compile OpenCL source in a similar fashion to CUDA C/C++. 

The following sections cover the API differences per program section. 

Initialization, Context and Device Creation 
CUDA Driver API and OpenCL both have to concept of a “Context”. Any resources involved in 
executing compute code using either of the APIs will belong to a Context. One of the first steps for 
any compute program is to create such a context. 

Using the CUDA Driver API: 
Before any function calls to the CUDA driver API can be made, CUDA needs to be initialized with 
a call to cuInit(0); 

In future versions of CUDA, cuInit( ) will also include initialization flags as parameters. The 
current versions of CUDA require 0 (Zero) to be passed. 
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In CUDA a context is created for a specific device. The typical flow is to first query the CUDA 
devices available on a given system, get a handle to the device one wants to execute the CUDA 
C/C++ode on and create a context on that device. The vectorAdd sample uses a simplified version 
of this workflow and simply picks the first CUDA device (device 0): 

cuInit(0); 

cuDeviceGet(&hContext, 0); 

cuCtxCreate(&hContext, 0, hDevice)); 

 

Using OpenCL: 
OpenCL does not require global initialization of the library, but it does require a few additional 
setup steps due to the diverse scope of device types and driver implementations embraced by the 
OpenCL standard.  

Using OpenCL, one obtains the Platform ID and Device ID, and then creates a Context.  
Additionally, OpenCL introduces the concept of Command Queues. Commands launching kernels 
and reading or writing memory are always issued for a specific Command Queue. A Command 
Queue is created on a specific device in a context.  

 
// Get OpenCL platform count  

cl_uint NumPlatforms; 

clGetPlatformIDs (0, NULL, &NumPlatforms); 

 
// Get all OpenCL platform IDs 

cl_platform_id* PlatformIDs; 

PlatformIDs = new cl_platform_id[NumPlatforms]; 

clGetPlatformIDs (NumPlatforms, PlatformIDs, NULL); 

 

// Select NVIDIA platform (this example assumes it IS present) 

char cBuffer[1024]; 

cl_uint NvPlatform; 

for(cl_uint i = 0; i < NumPlatforms; ++i) 

{ 

  clGetPlatformInfo (PlatformIDs[i], CL_PLATFORM_NAME, 1024, cBuffer, NULL); 

  if(strstr(cBuffer, "NVIDIA") != NULL) 

  { 

    NvPlatform = i; 

    break; 

  } 

} 

 
//Get a GPU device on Platform (this example assumes one IS present) 

cl_device_id cdDevice;  

clGetDeviceIDs(PlatformIDs[NvPlatform], CL_DEVICE_TYPE_GPU, 1, cdDevice, NULL); 
 
//Create a context 
cl_context hContext; 

hContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, NULL); 

 

 

//Create a command queue for the device in the context 
cl_command_queue hCmdQueue; 

hCmdQueue = clCreateCommandQueue(hContext, cdDevice, 0, NULL); 

 

At this point, the CUDA Driver API and OpenCL programs are ready to create a compute kernel, 
upload data to the GPU device’s memory and process it by launching a compute kernel on the 
device. 
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Kernel Creation 
The following sections discuss how kernels are created using the CUDA Driver API and OpenCL. 

Using the CUDA Driver API: 
CUDA kernel code is typically stored in a separate file and compiled to binary format (using the 
NVCC compiler).  This is similar to compiling a C file to object code. The result of this compilation 
step is a CUBIN file, which is loaded by an application at runtime using the cuModuleLoad() 
function.  

A handle to a specific kernel in a CUBIN module is obtained via a string lookup of the kernel 
function’s name.   The code for module loading and accessing the kernel function assumes that the 
vectorAdd.cu kernel code has been compiled to vectorAdd.cubin: 

 

CUmodule hModule; 

cuModuleLoad(&hModule, “vectorAdd.cubin”); 

cuModuleGetFunction(&hFunction, hModule, "vectorAdd"); 

 

Using OpenCL: 
OpenCL is different from CUDA C/C++ in that OpenCL does not provide a standalone compiler 
for creating device ready binary code. The OpenCL interface provides methods for compiling 
kernels given a string containing the kernel code (clCreateProgramWithSource()) at 
runtime. Once a kernel is compiled it can be launched on the device.  

Note: The OpenCL API also provides methods to access a program’s binaries after successful 

compilation, as well as methods to create program objects from such binaries. Using those 
methods, it is theoretically possible for a developer to re-create the tools for a workflow like 

the CUDA one using the OpenCL API, where a separate compile (implemented based on the 

OpenCL library) is used to compile binaries which the application loads during runtime.  This 
approach would allow applications to avoid lengthy compilations every time they are launched 

by caching the kernel binaries on disk and only recompiling if the binaries for a specific device 
are not already in cache. But it should be noted that NVIDIA’s OpenCL implementation does 

not currently support this. 

 

In summary, the most straight forward process is to compile the kernels at runtime and this is what 
the following code does: 

// create a program object and compile/build the device code 

cl_program hProgram; 

hProgram = clCreateProgramWithSource(hContext, 1, sProgramSource, 0, 0); 

clBuildProgram(hProgram, 0, 0, 0, 0, 0); 

 

// create a kernel instance 

cl_kernel hKernel; 

hKernel = clCreateKernel(hProgram, “vectorAdd”, 0); 

 

The clCreateProgramWithSource() function creates a program object. sProgramSource 
is a C string containing the kernel source code. clBuildProgram() compiles the kernel source 
into binary code suited for the context’s devices (it is possible to restrict compilation to a subset of a 
context’s devices by passing a non-zero pointer to a list of device descriptors).   
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clCreateKernel() returns a handle to an instance of the kernel given a string with the kernel 
function’s name within the program object that has been built.   

Device Memory Allocation 
This section covers how memory is allocated on the device. The vectorAdd example allocates arrays 
of float (in global device memory) for the three vectors (A, B, C) involved in the addition C = A+B.   

CUDA’s device memory for the Driver API’s management functions are modeled after the C 
runtime’s malloc(), free(), and memcpy() functions.  The following code allocates three buffers of 
appropriate size to hold the three arrays and fills the two input vectors (A, B) with data prepared on 
the host via a host-to-device copy. 

 

Using the CUDA Driver API: 
We use cuMemcpyHtoD() to copy data from host to device. 

 

CUdeviceptr pDeviceMemA, pDeviceMemB, pDeviceMemC; 

cuMemAlloc(&pDeviceMemA, cnDimension * sizeof(float)); 

cuMemAlloc(&pDeviceMemB, cnDimension * sizeof(float));  

cuMemAlloc(&pDeviceMemC, cnDimension * sizeof(float)); 

 

// copy host vectors to device 

cuMemcpyHtoD(pDeviceMemA, pA, cnDimension * sizeof(float)); 

cuMemcpyHtoD(pDeviceMemB, pB, cnDimension * sizeof(float)); 

 

Using OpenCL: 
OpenCL’s device memory is managed via “buffer objects”. Buffer objects are created via the 
clCreateBuffer() function, which offers a richer set of parameters than CUDA memory management 
functions: Buffer objects can be flagged as read and write-only, and it’s even possible to specify a 
host memory region to be used by the device directly. 

OpenCL buffer creation also allows for passing a host pointer to the data to be copied into the new 
buffer, all in one call; the following code shows the buffer creation for the three device memory 
region for vector A, B, C. A and B are being filled with data from the host, pointed to by pA, and 
pB. Since vector C is there to receive the results, it is not getting prefilled with data. 

 

cl_mem hDeviceMemA, hDeviceMemB, hDeviceMemC; 

 

hDeviceMemA = clCreateBuffer(hContext,  

                             CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 

                             cnDimension * sizeof(cl_float), pA, 0); 

hDeviceMemB = clCreateBuffer(hContext,  

                             CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 

                             cnDimension * sizeof(cl_float), pB, 0); 

hDeviceMemC = clCreateBuffer(hContext,  

                             CL_MEM_WRITE_ONLY, 

                             cnDimension * sizeof(cl_float), 0, 0); 

 

 



   NVIDIA OpenCL JumpStart Guide 

 

  12 
 www.nvidia.com 

Kernel Parameter Specification 
The next step in preparing the kernels for launch is to establish a mapping between the kernels’ 
parameters, essentially pointers to the three vectors A, B and C, to the three device memory regions, 
which were allocated in the previous section. 

Parameter setting in both APIs is a pretty low-level affair. It requires knowledge of the total number, 
order, and types of a given kernel’s parameters. The order and types of the parameters are used to 
determine a specific parameter’s offset inside the data block made up of all parameters. The offset in 
bytes for the nth parameter is essentially the sum of the sizes of all (n-1) preceding parameters. 

 

Using the CUDA Driver API: 
In CUDA device pointers are represented as unsigned int and the CUDA Driver API has a 
dedicated method for setting that type. Here’s the code for setting the three parameters. Note how 
the offset is incrementally computed as the sum of the previous parameters’ sizes. 

 

cuParamSeti(hFunction, 0, pDeviceMemA); 

cuParamSeti(hFunction, 4, pDeviceMemB); 

cuParamSeti(hFunction, 8, pDeviceMemC); 

cuParamSetSize(hFunction, 12); 

 

Using OpenCL: 
In OpenCL parameter setting is done via a single function that takes a pointer to the location of the 
parameter to be set.  

clSetKernelArg(hKernel, 0, sizeof(cl_mem), (void *)&hDeviceMemA); 

clSetKernelArg(hKernel, 1, sizeof(cl_mem), (void *)&hDeviceMemB); 

clSetKernelArg(hKernel, 2, sizeof(cl_mem), (void *)&hDeviceMemC); 

 

Kernel Launch 
Launching a kernel requires the specification of the dimension and size of the “thread-grid”. The 
CUDA Programming Guide and the OpenCL specification contain details about the structure of 
those grids. For NVIDIA GPUs the permissible structures are the same for CUDA and OpenCL. 

For the vectorAdd sample we need to start one thread per vector-element (of the output vector). 
The number of elements in the vector is given in the cnDimension variable. It is defined to be 
cnDimension = cnBlockSize * cnBlocks. This means that cnDimension threads 
need to be executed. The threads are structured into cnBlocks one-dimensional thread blocks of 
size cnBlockSize. 

 

Using the CUDA Driver API: 
A kernel’s block size is specified in a call separate from the actual kernel launch using 
cuFunctSetBlockShape.  The kernel launching function cuLaunchGrid then only 
specifies the number of blocks to be launched. 

 
cuFuncSetBlockShape(hFunction, cnBlockSize, 1, 1); 

cuLaunchGrid       (hFunction, cnBlocks, 1); 
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Using OpenCL: 
The OpenCL equivalent of kernel launching is to “enqueue” a kernel for execution into a command 
queue. The enqueue function takes parameters for both the work group size (work group is the 
OpenCL equivalent of a CUDA thread-block), and the global work size, which is the size of the 
global array of threads.  

Note: Where in CUDA the global work size is specified in terms of number of thread blocks, it is 

given in number of threads in OpenCL. 

Both work group size and global work size are potentially one, two, or three dimensional arrays. The 
function expects pointers of unsigned ints to be passed in the fourth and fifth parameters.  
For the vectorAdd example, work groups and total work size is a one-dimensional grid of threads.  

 

clEnqueueNDRangeKernel(hCmdQueue, hKernel, 1, 0,  

                       &cnDimension, &cnBlockSize, 0, 0, 0); 

 

The parameters of cnDimension and cnBlockSize must be pointers to unsigned int.  Work 
group sizes that are dimensions greater than 1, the parameters will be a pointer to arrays of sizes. 

 

Cleanup/Teardown 
The CUDA Driver API and OpenCL both provide teardown functions for  objects created in the 
application.  For OpenCL, there are a few additional objects to deallocate associated with platform  

Using the CUDA Driver API: 
// cleanup 

delete[] pA; 

delete[] pB; 

delete[] pC; 

cuMemFree(pDeviceMemA); 

cuMemFree(pDeviceMemB); 

cuMemFree(pDeviceMemC); 

 

Using OpenCL: 
 

// Cleanup 

delete[] pA; 

delete[] pB; 

delete[] pC; 

delete[] PlatformIDs; 

clReleaseKernel(hKernel); 

clReleaseProgram(hProgram); 

clReleaseMemObj(hDeviceMemA); 

clReleaseMemObj(hDeviceMemB); 

clReleaseMemObj(hDeviceMemC); 

clReleaseCommandQueue(hCmdQueue); 

clReleaseContext(hContext); 
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Retrieving Results to Host from Device 
Both kernel launch functions (CUDA and OpenCL) are asynchronous, i.e. they return immediately 
after scheduling the kernel to be executed on the GPU. In order for a copy operation that retrieves 
the result vector C (copy from device to host) to produce correct results in synchronization with the 
kernel completion needs to happen.   

CUDA memcpy functions automatically synchronize and complete any outstanding kernel launches 
proceeding.   Both API’s also provide a set of asynchronous memory transfer functions which 
allows a user to overlap memory transfers with computation to increase throughput. 

 

Using the CUDA Driver API: 
Use cuMemcpyDtoH() to copy results back to the host. 

cuMemcpyDtoH((void *)pC, pDeviceMemC, cnDimension * sizeof(float)); 

 

Using OpenCL: 
OpenCL’s clEnqueueReadBuffer() function allows the user to specify whether a read is to 
be synchronous or asynchronous (third argument). For the simple vectorAdd sample a 
synchronizing read is used, which results in the same behavior as the simple synchronous CUDA 
memory copy above: 

 

clEnqueueReadBuffer(hContext, hDeviceC, CL_TRUE, 0,  

                    cnDimension * sizeof(cl_float),  

                    pC, 0, 0, 0); 

 

When used for asynchronous reads, OpenCL has an event mechanism that allows the host 
application to query the status or wait for the completion of a given call. 
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Additional Resources 

 

Resource URL 

Khronos OpenCL Homepage http://www.khronos.org/opencl  

OpenCL 1.0 Specification http://www.khronos.org/registry/cl  

OpenCL at NVIDIA http://www.nvidia.com/object/cuda_opencl.html  

CUDA Driver http://www.nvidia.com/object/cuda_get.html 

CUDA Toolkit http://www.nvidia.com/object/cuda_get.html 

CUDA SDK http://www.nvidia.com/object/cuda_get.html 

CUDA Reference Guide http://www.nvidia.com/object/cuda_develop.html 

CUDA Programming Guide http://www.nvidia.com/object/cuda_develop.html 

CUDA Zone http://www.nvidia.com/cuda 

Developer Forums http://forums.nvidia.com/index.php?showforum=62 

CUDA Visual Profiler http://www.nvidia.com/object/cuda_get.html 

CUDA GDB http://www.nvidia.com/object/cuda_get.html 

NVIDIA Nexus http://developer.nvidia.com/object/nexus.html 

 

 

 

 

 

For more information about GPU Computing with OpenCL and other technologies, please visit www.nvidia.com/cuda. 
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