
Binary Search 1 of 3

SAMPLE

Binary Search

1 Overview

1.1 Location $(AMDAPPSDKSAMPLESROOT)\samples\opencl\cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample.

Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86\ for
32-bit builds, and $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

Type the following command(s).

1. BinarySearch
This searches an element in an array of 64 elements.

2. BinarySearch -h
This prints the help file.

1.3 Command
Line Options

Table 1 lists, and briefly describes, the command line options.

Table 1 Command Line Options

Short Form Long Form Description

-h --help Shows all command options and their respective meaning.

--device Devices on which the program is to be run. Acceptable values are
cpu or gpu.

-q --quiet Quiet mode. Suppresses all text output.

-e --verify Verify results against reference implementation.

-t --timing Print timing.

--dump Dump binary image for all devices.

--load Load binary image and execute on device.

--flags Specify compiler flags to build kernel.

-p --platformId Select the platformId to be used (0 to N-1, where N is the number
of available platforms)

-d --deviceId Select deviceId to be used (0 to N-1, where N is the number of
available devices).

-x --length Length of the input array.

-f --find Element to be found.

-s --subdivisions Number of subdivisions.

-i --iterations Number of iterations for kernel execution.

2 of 3 Binary Search

2 Introduction
It finds the position of a given element in a sorted array. If the element is not present in the array
that is reported too. Instead of a binary search where the search space is halved every pass, we
divide it into N segments and call it N'ary search. While plain binary search has a computation
complexity of log to base 2, N'ary search is log to base N.

3 Implementation Details
This is an N'ary search algorithm. Consider 10000 (105) elements in sorted order in which an
element must be searched. First, we divide the array into 10 segments of 10000 (104) elements;
then, we find the segment to which the element belongs and further divide the segment into 10
segments of 1000 (103) elements. Thus, we narrow our search space by subdividing the array.

For example, assume your input array is 2, 4, ...2*105, and you are searching for 42:

The first pass consists of:

Thread 0: 2..2*104 lower, upper bounds: 0, 104

Thread 1: 2*104+2..3*104 lower, upper bounds: 104, 2*104

Thread 2: 3*104+2..4*104 lower, upper bounds: 2*104, 3*104

etc.

The value 42 is not between the lower-bound and upper-bound of any thread other than thread
0. Thus, only thread 0 writes to the output buffer. It writes its own lower bound, upper bound,
and, since 42 is not equal to the lower bound element (2), it writes 0 in the third element.

The output array is 0, 104, 0.

Similarly, the next pass has an output of 0, 103, 0. The pass after that has an output of 0, 102, 0.

Now the segment being searched in is 2, ... 200. Each segment is now 10 elements, so the
threads are:

Thread 0: 2..20

Thread 1: 22..40

Thread 3: 42..60

This time only thread 3 writes to the output, and the third element is 1, meaning that the element
is found.

The search is done, finding the index at which this element is present, and no further kernel calls
are made.

If instead of 42 we were searching for 43, the subdivisions would go one step further, and the
next pass would have 10 threads each being over a single element 42, 44, 46, etc.

Since 43 is not equal to any of them, and since the next subdivision's size is smaller than 1, we
can now say that the element is not present in the input array. So, no further kernel calls are
made; the element has not been found.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

3 of 3 Binary Search

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	Binary Search
	1 Overview
	Table 1 Command Line Options

	2 Introduction
	3 Implementation Details

