
BufferBandwidth 1 of 4

SAMPLE

BufferBandwidth

1 Overview

1.1 Location $(AMDAPPSDKSAMPLESROOT)\samples\opencl\cl\app

1.2 How to Run See the Getting Started guide for how to build samples. You first must compile the sample.

Use the command line to change to the directory where the executable is located. The pre-
compiled sample executable is at $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86\ for
32-bit builds, and $(AMDAPPSDKSAMPLESROOT)\samples\opencl\bin\x86_64\ for 64-bit builds.

Type the following command(s).

1. BufferBandwidth
This runs the program with the default options: -T 0, -i 1,-r 1, -k 10, -x 1048576 (1MB), -s 0,
-w 7, -I 0, -O 0, -C 5, -C 0.

2. BufferBandwidth -h
This prints the help file.

1.3 Command
Line Options

Table 1 lists, and briefly describes, the command line options.

Table 1 Command Line Options

Short Form Long Form Description

-h --help Shows all command options and their respective meaning.

--device Devices on which the program is to be run. Acceptable values are cpu or
gpu.

-q --quiet Quiet mode. Suppresses all text output.

-e --verify Verify results against reference implementation.

-t --timing Print timing.

--dump Dump binary image for all devices.

--load Load binary image and execute on device.

-d --deviceId Select deviceId to be used (0 to N-1, where N is the number of available
devices).

--flags Specify compiler flags to build the kernel.

-p --platformId Select platformId to be used (0 to N-1, where N is the number of available
platform).

-x --size Size in bytes.

-i --iterations Number of timing loops.

-s --skip Skip the first n interations for average.

-k --kernelLoops Number of loops in the kernel.

2 of 4 BufferBandwidth

2 Introduction
This sample measures a complete round trip loop of data transfer steps to, and from, an OpenCL
device. It also assesses the bandwidth characteristics of a given system, including GPU memory
and interconnect (for example: PCIe) bandwidth, achievable in OpenCL.

It can run the following tests:

• Create a simple baseline for host memory read and write performance. This can be used to
ensure sanity of device buffer access performance numbers created by the other tests.

• Benchmark a round-trip chain of synchronous, serialized transfer steps between the host and
the device.

• The sample can create a log over many iterations to locate one-time effects or variations over
time.

The following transfer paths can be tested via command line option:

clEnqueueMap/UnmapBuffer
clEnqueueRead/WriteBuffer
clEnqueueCopyBuffer

This sample allows selection of any of the various CL buffer creation attributes for the source and
destination buffers of the transfer chain.

3 Implementation Details
The following are experiments that can be done with this sample.

1. Interconnect (for example: PCIe) bandwidth achievable at application level

-w --wavefronts Number of wavefronts per compute unit.

-I --inMemFlag Memory flags for the input buffer.
0 CL_MEM_READ_ONLY
1 CL_MEM_WRITE_ONLY
2 CL_MEM_READ_WRITE
3 CL_MEM_USE_HOST_PTR
4 CL_MEM_COPY_HOST_PTR
5 CL_MEM_ALLOC_HOST_PTR
6 CL_MEM_USE_PERSISTENT_MEM_AMD

-r --repeats Repeat each timing n times.

-T --TypeOfTest Type of test.
0 clEnqueue[Map,Unmap]
1 clEnqueue[Read/Write]
2 clEnqueueCopy

-O --outMemFlag Memory flags for the output buffer. Values are the same as for option -I.

-C --copyMemFlag Memory flags for the copy buffer. Values are the same as for option -I.

-m --mapping Always maps as MAP_READ | MAP_WRITE.

-D --disable Disable host mem bandwidth baseline.

-l --log Prints complete timing log.

Short Form Long Form Description

BufferBandwidth 3 of 4

The bandwidth reported by clEnqueueUnmapMemObject() on a regular device buffer that was
mapped as CL_MAP_WRITE usually is very close to the interconnect peak bandwidth to the
GPU. Similarly, the bandwidth reported for clEnqueueMapBuffer (CL_MAP_READ) of a device
buffer usually is very close to the interconnect peak bandwidth from the GPU. Running
BufferBandwidth without command line arguments shows both.

2. Optimized paths for CL_MAP_WRITE and CL_MAP_READ

The CL runtime tries to omit unnecessary copies between host and device when buffers are
mapped as either CL_MAP_READ or CL_MAP_WRITE, but not both. A buffer mapped as
CL_MAP_WRITE is transferred at clEnqueueUnmapMemObject() time. A buffer mapped as
CL_MAP_READ is transferred at clEnqueueMapBuffer() time.

3. Zero copy buffers

If supported on the platform, the following two buffer types show zero copy behavior
(meaning they are not transferred without explicit request by the application):

CL_MEM_ALLOC_HOST_PTR

– Can be directly accessed across the interconnect bus by a GPU CL kernel.

– Can be directly accessed by the host at host memory bandwidth.

– Can be copied to, and from, a GPU device buffer at interconnect peak bandwidth through
clEnqueueCopyBuffers.

– Map and unmap are low cost.

Try this path using BufferBandwidth -I 5 -O 5

CL_MEM_USE_PERSISTENT_MEM_AMD

– Can be accessed by the GPU like a regular device buffer.

– Can be written to by the host at interconnect peak bandwidth.

– Can be directly read by the host, but typically at low bandwidth.

– Can be copied at high bandwidth from the device to the host through
clEnqueueCopyBuffer.

– Map and unmap are low cost.

Try this path using BufferBandwidth -I 6 -O 6

Zero copy buffers are useful for sparse accesses across the interconnect bus; they can be
used to get around DMA start-up latency. Zero copy buffers of type
CL_MEM_USE_PERSISTENT_MEM_AMD allow use of the CPU for transfer between the host and
the device; they also allow overlap transfers with GPU kernel execution. Zero copy buffers
of type CL_MEM_ALLOC_HOST_PTR type allow inclusion of transfer latency directly in the GPU
kernel execution, and use of the GPU shader engines to perform the transfer. If zero copy is
not supported, these buffers fall back to a meaningful, but lower-performing, default behavior.

4. Recommended fast paths

The recommended paths to achieve peak transfer bandwidth are:

– map and unmap of device buffers using CL_MAP_READ or CL_MAP_WRITE, as described in
2) above.

– clEnqueueCopyBuffers from a zero copy ALLOC_HOST_PTR buffer to a device buffer.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other
applications intended to support or sustain life, or in any other application in
which the failure of AMD’s product could create a situation where personal injury,
death, or severe property or environmental damage may occur. AMD reserves
the right to discontinue or make changes to its products at any time without
notice.
Copyright and Trademarks
© 2011 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow
logo, ATI, the ATI logo, Radeon, FireStream, and combinations thereof are trade-
marks of Advanced Micro Devices, Inc. OpenCL and the OpenCL logo are trade-
marks of Apple Inc. used by permission by Khronos. Other names are for infor-
mational purposes only and may be trademarks of their respective owners.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or
warranties with respect to the accuracy or completeness of the contents of
this publication and reserves the right to make changes to specifications and
product descriptions at any time without notice. The information contained
herein may be of a preliminary or advance nature and is subject to change
without notice. No license, whether express, implied, arising by estoppel or
otherwise, to any intellectual property rights is granted by this publication.
Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD
assumes no liability whatsoever, and disclaims any express or implied war-
ranty, relating to its products including, but not limited to, the implied war-
ranty of merchantability, fitness for a particular purpose, or infringement of
any intellectual property right.

Contact Advanced Micro Devices, Inc.
One AMD Place
P.O. Box 3453
Sunnyvale, CA, 94088-3453
Phone: +1.408.749.4000

4 of 4 BufferBandwidth

For AMD Accelerated Parallel Processing:
URL: developer.amd.com/appsdk
Developing: developer.amd.com/
Support: developer.amd.com/appsdksupport
Forum: developer.amd.com/openclforum

5. The -w option permits optimizing the bandwidth of the GPU read and write kernels on a given
platform.

4 Notes and Caveats
All transfer steps are executed synchronously to ensure accurate bandwidth measurement. The
application code should not follow this model, but submit as many commands to a CL queue as
possible before forcing the queue to drain.

• Do not run graphics applications while benchmarking compute or transfer operations.

• The -l option can be used to identify some of the one-time costs that exist for a given transfer
chain. For instance, during the first 1 or 2 iterations, the GPU and CPU achieve maximum
clock rates. Also, buffers are allocated and transported to their final location. These costs
show up as increased execution times for the first few OpenCL calls.

• The read and write GPU kernels are written for clarity, and should achieve around 85% of HW
peak with the right number of threads.

• The CPU baseline does not represent absolute host memory peak, as it is executed single
threaded.

• The data verification used is basic.

• The smallest supported buffer size in this sample is 1024 bytes, corresponding to a single
wave front. Buffer sizes supplied by -x are adjusted to a multiple of 1024 bytes.

http://developer.amd.com/appsdk
http://developer.amd.com/
http://developer.amd.com/appsdksupport
http://developer.amd.com/openclforum

	BufferBandwidth
	1 Overview
	Table 1 Command Line Options

	2 Introduction
	3 Implementation Details
	4 Notes and Caveats

