

Info

The

On-line, Menu-driven

GNU Documentation System

Copyright c© 1989, 1992, 1993 Free Software Foundation, Inc.

Published by the Free Software Foundation
675 Massachusetts Avenue,
Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 1: Getting Started 1

1 Getting Started

This first part of the Info manual describes how to get around inside of Info. The second
part of the manual describes various advanced Info commands, and how to write an Info as
distinct from a Texinfo file. The third part is about how to generate Info files from Texinfo
files.

This manual is primarily designed for use on a computer, so that you can try Info
commands while reading about them. Reading it on paper is less effective, since you must
take it on faith that the commands described really do what the manual says. By all means
go through this manual now that you have it; but please try going through the on-line
version as well.

There are two ways of looking at the online version of this manual:

1. Type info at your shell’s command line. This approach uses a stand-alone program
designed just to read Info files.

2. Type emacs at the command line; then type C-h i (Control h, followed by i). This
approach uses the Info mode of the Emacs program, an editor with many other capa-
bilities.

In either case, then type mInfo (just the letters), followed by 〈RET〉—the “Return” or
“Enter” key. At this point, you should be ready to follow the instructions in this manual
as you read them on the screen.

1.1 Starting Info on a Small Screen

(In Info, you only see this section if your terminal has a small number of lines; most
readers pass by it without seeing it.)

Since your terminal has an unusually small number of lines on its screen, it is necessary
to give you special advice at the beginning.

If you see the text ‘--All----’ at near the bottom right corner of the screen, it means
the entire text you are looking at fits on the screen. If you see ‘--Top----’ instead, it means
that there is more text below that does not fit. To move forward through the text and see
another screen full, press the Space bar, 〈SPC〉. To move back up, press the key labeled
‘Delete’ or 〈DEL〉.

1.2 How to use Info

You are talking to the program Info, for reading documentation.

Right now you are looking at one Node of Information. A node contains text describing
a specific topic at a specific level of detail. This node’s topic is “how to use Info”.

The top line of a node is its header. This node’s header (look at it now) says that it is
the node named ‘Help’ in the file ‘info’. It says that the ‘Next’ node after this one is the

2 Info 1.0

node called ‘Help-P’. An advanced Info command lets you go to any node whose name you
know.

Besides a ‘Next’, a node can have a ‘Previous’ or an ‘Up’. This node has a ‘Previous’
which is ‘Help-Small-Screen’, and an ‘Up’ which is ‘Getting Started’. Some nodes have
no ‘Previous’ and some have no ‘Up’.

Now it is time to move on to the ‘Next’ node, named ‘Help-P’.

>> Type ‘n’ to move there. Type just one character;
do not type the quotes and do not type a 〈RET〉 afterward.

‘>>’ in the margin means it is really time to try a command.

1.3 Returning to the Previous node

This node is called ‘Help-P’. The ‘Previous’ node, as you see, is ‘Help’, which is the
one you just came from using the n command. Another n command now would take you to
the next node, ‘Help-^L’.

>> But do not do that yet. First, try the p command, which takes
you to the ‘Previous’ node. When you get there, you can do an
n again to return here.

This all probably seems insultingly simple so far, but do not be led into skimming.
Things will get more complicated soon. Also, do not try a new command until you are
told it is time to. Otherwise, you may make Info skip past an important warning that was
coming up.

>> Now do an n to get to the node ‘Help-^L’ and learn more.

1.4 The Space, Delete, B and ^L commands.

This node’s header tells you that you are now at node ‘Help-^L’, and that p would get
you back to ‘Help-P’. The node’s title is underlined; it says what the node is about (most
nodes have titles).

This is a big node and it does not all fit on your display screen. You can tell that
there is more that is not visible because you can see the string ‘--Top-----’ rather than
‘--All----’ near the bottom right corner of the screen.

The Space, Delete and B commands exist to allow you to “move around” in a node that
does not all fit on the screen at once. Space moves forward, to show what was below the
bottom of the screen. Delete moves backward, to show what was above the top of the screen
(there is not anything above the top until you have typed some spaces).

>> Now try typing a Space (afterward, type a Delete to return here).

When you type the space, the two lines that were at the bottom of the screen appear at
the top, followed by more lines. Delete takes the two lines from the top and moves them to
the bottom, usually, but if there are not a full screen’s worth of lines above them they may
not make it all the way to the bottom.

Chapter 1: Getting Started 3

Space and Delete scroll through all the nodes in an Info file as a single logical sequence.
In this sequence, a node’s subnodes appear following their parent. If a node’s menu is on
the screen, Space takes you into the subnodes listed in the menu, one by one. Once you
reach the end of a node, Space takes you to the next node or back to the parent node.

If your screen is ever garbaged, you can tell Info to print it out again by typing C-l

(Control-L, that is—hold down “Control” and type an 〈L〉 or l).

>> Type C-l now.

To move back to the beginning of the node you are on, you can type a lot of Deletes.
You can also type simply b for beginning.

>> Try that now. (We have put in enough verbiage to push this past
the first screenful, but screens are so big nowadays that perhaps it
isn’t enough. You may need to shrink your Emacs or Info window.)
Then come back, with Spaces.

If your screen is very tall, all of this node might fit at once. In that case, "b" won’t do
anything. Sorry; what can we do?

You have just learned a considerable number of commands. If you want to use one
but have trouble remembering which, you should type a 〈?〉 which prints out a brief list of
commands. When you are finished looking at the list, make it go away by typing a 〈SPC〉.

>> Type a 〈?〉 now. After it finishes, type a 〈SPC〉.

(If you are using the standalone Info reader, type ‘l’ to return here.)

From now on, you will encounter large nodes without warning, and will be expected to
know how to use Space and Delete to move around in them without being told. Since not
all terminals have the same size screen, it would be impossible to warn you anyway.

>> Now type n to see the description of the m command.

1.5 Menus

Menus and the m command

With only the n and p commands for moving between nodes, nodes are restricted to a
linear sequence. Menus allow a branching structure. A menu is a list of other nodes you
can move to. It is actually just part of the text of the node formatted specially so that Info
can interpret it. The beginning of a menu is always identified by a line which starts with ‘*
Menu:’. A node contains a menu if and only if it has a line in it which starts that way. The
only menu you can use at any moment is the one in the node you are in. To use a menu in
any other node, you must move to that node first.

After the start of the menu, each line that starts with a ‘*’ identifies one subtopic. The
line usually contains a brief name for the subtopic (followed by a ‘:’), the name of the node
that talks about that subtopic, and optionally some further description of the subtopic.
Lines in the menu that do not start with a ‘*’ have no special meaning—they are only for
the human reader’s benefit and do not define additional subtopics. Here is an example:

* Foo: FOO’s Node This tells about FOO

4 Info 1.0

The subtopic name is Foo, and the node describing it is ‘FOO’s Node’. The rest of the
line is just for the reader’s Information. [[But this line is not a real menu item, simply
because there is no line above it which starts with ‘* Menu:’.]]

When you use a menu to go to another node (in a way that will be described soon), what
you specify is the subtopic name, the first thing in the menu line. Info uses it to find the
menu line, extracts the node name from it, and goes to that node. The reason that there is
both a subtopic name and a node name is that the node name must be meaningful to the
computer and may therefore have to be ugly looking. The subtopic name can be chosen
just to be convenient for the user to specify. Often the node name is convenient for the user
to specify and so both it and the subtopic name are the same. There is an abbreviation for
this:

* Foo:: This tells about FOO

This means that the subtopic name and node name are the same; they are both ‘Foo’.

>> Now use Spaces to find the menu in this node, then come back to
the front with a b and some Spaces. As you see, a menu is
actually visible in its node. If you cannot find a menu in a node
by looking at it, then the node does not have a menu and the
m command is not available.

The command to go to one of the subnodes is m—but do not do it yet! Before you use
m, you must understand the difference between commands and arguments. So far, you have
learned several commands that do not need arguments. When you type one, Info processes
it and is instantly ready for another command. The m command is different: it is incomplete
without the name of the subtopic. Once you have typed m, Info tries to read the subtopic
name.

Now look for the line containing many dashes near the bottom of the screen. There is
one more line beneath that one, but usually it is blank. If it is empty, Info is ready for a
command, such as n or b or Space or m. If that line contains text ending in a colon, it mean
Info is trying to read the argument to a command. At such times, commands do not work,
because Info tries to use them as the argument. You must either type the argument and
finish the command you started, or type Control-g to cancel the command. When you
have done one of those things, the line becomes blank again.

The command to go to a subnode via a menu is m. After you type the m, the line at the
bottom of the screen says ‘Menu item: ’. You must then type the name of the subtopic you
want, and end it with a 〈RET〉.

You can abbreviate the subtopic name. If the abbreviation is not unique, the first
matching subtopic is chosen. Some menus put the shortest possible abbreviation for each
subtopic name in capital letters, so you can see how much you need to type. It does not
matter whether you use upper case or lower case when you type the subtopic. You should
not put any spaces at the end, or inside of the item name, except for one space where a
space appears in the item in the menu.

You can also use the completion feature to help enter the subtopic name. If you type
the Tab key after entering part of a name, it will magically fill in more of the name—as
much as follows uniquely from what you have entered.

If you move the cursor to one of the menu subtopic lines, then you do not need to type
the argument: you just type a Return, and it stands for the subtopic of the line you are on.

Chapter 1: Getting Started 5

Here is a menu to give you a chance to practice.

>> Now type just an m and see what happens:

Now you are “inside” an m command. Commands cannot be used now; the next thing
you will type must be the name of a subtopic.

You can change your mind about doing the m by typing Control-g.

>> Try that now; notice the bottom line clear.

>> Then type another m.

>> Now type ‘BAR’ item name. Do not type Return yet.

While you are typing the item name, you can use the Delete key to cancel one character
at a time if you make a mistake.

>> Type one to cancel the ‘R’. You could type another ‘R’ to
replace it. You do not have to, since ‘BA’ is a valid abbreviation.

>> Now you are ready to go. Type a 〈RET〉.

After visiting Help-FOO, you should return here.

>> Type n to see more commands.

1.5.1 The u command

Congratulations! This is the node ‘Help-FOO’. Unlike the other nodes you have seen,
this one has an ‘Up’: ‘Help-M’, the node you just came from via the m command. This is the
usual convention—the nodes you reach from a menu have ‘Up’ nodes that lead back to the
menu. Menus move Down in the tree, and ‘Up’ moves Up. ‘Previous’, on the other hand,
is usually used to “stay on the same level but go backwards”

You can go back to the node ‘Help-M’ by typing the command u for “Up”. That puts
you at the front of the node—to get back to where you were reading you have to type some
〈SPC〉s.

>> Now type u to move back up to ‘Help-M’.

1.6 Some advanced Info commands

The course is almost over, so please stick with it to the end.

If you have been moving around to different nodes and wish to retrace your steps, the
l command (l for last) will do that, one node-step at a time. As you move from node to
node, Info records the nodes where you have been in a special history list. The l command
revisits nodes in the history list; each successive l command moves one step back through
the history.

If you have been following directions, an l command now will get you back to ‘Help-M’.
Another l command would undo the u and get you back to ‘Help-FOO’. Another l would
undo the m and get you back to ‘Help-M’.

6 Info 1.0

>> Try typing three l’s, pausing in between to see what each
l does.

Then follow directions again and you will end up back here.

Note the difference between l and p: l moves to where you last were, whereas p al-
ways moves to the node which the header says is the ‘Previous’ node (from this node, to
‘Help-M’).

The ‘d’ command gets you instantly to the Directory node. This node, which is the first
one you saw when you entered Info, has a menu which leads (directly, or indirectly through
other menus), to all the nodes that exist.

>> Try doing a ‘d’, then do an l to return here (yes,
do return).

Sometimes, in Info documentation, you will see a cross reference. Cross references look
like this: See [Help-Cross], page 6. That is a real, live cross reference which is named
‘Cross’ and points at the node named ‘Help-Cross’.

If you wish to follow a cross reference, you must use the ‘f’ command. The ‘f’ must be
followed by the cross reference name (in this case, ‘Cross’). While you enter the name, you
can use the Delete key to edit your input. If you change your mind about following any
reference, you can use Control-g to cancel the command.

Completion is available in the ‘f’ command; you can complete among all the cross
reference names in the current node by typing a Tab.

>> Type ‘f’, followed by ‘Cross’, and a 〈RET〉.

To get a list of all the cross references in the current node, you can type ? after an ‘f’.
The ‘f’ continues to await a cross reference name even after printing the list, so if you don’t
actually want to follow a reference, you should type a Control-g to cancel the ‘f’.

>> Type "f?" to get a list of the cross references in this node. Then
type a Control-g and see how the ‘f’ gives up.

>> Now type n to see the last node of the course.

The node reached by the cross reference in Info

This is the node reached by the cross reference named ‘Cross’.

While this node is specifically intended to be reached by a cross reference, most cross
references lead to nodes that “belong” someplace else far away in the structure of Info. So
you cannot expect the footnote to have a ‘Next’, ‘Previous’ or ‘Up’ pointing back to where
you came from. In general, the l (el) command is the only way to get back there.

>> Type l to return to the node where the cross reference was.

1.7 Quitting Info

To get out of Info, back to what you were doing before, type q for Quit.

Chapter 1: Getting Started 7

This is the end of the course on using Info. There are some other commands that are
meant for experienced users; they are useful, and you can find them by looking in the
directory node for documentation on Info. Finding them will be a good exercise in using
Info in the usual manner.

>> Type ‘d’ to go to the Info directory node; then type
‘mInfo’ and Return, to get to the node about Info and
see what other help is available.

8 Info 1.0

Chapter 2: Info for Experts 9

2 Info for Experts

This chapter describes various advanced Info commands, and how to write an Info as
distinct from a Texinfo file. (However, in most cases, writing a Texinfo file is better, since
you can use it both to generate an Info file and to make a printed manual. See section
“Overview of Texinfo” in Texinfo: The GNU Documentation Format.)

2.1 Advanced Info Commands

g, s, 1, – 9, and e

If you know a node’s name, you can go there by typing g, the name, and 〈RET〉. Thus,
gTop〈RET〉 would go to the node called ‘Top’ in this file (its directory node). gExpert〈RET〉

would come back here.

Unlike m, g does not allow the use of abbreviations.

To go to a node in another file, you can include the filename in the node name by putting
it at the front, in parentheses. Thus, g(dir)Top〈RET〉 would go to the Info Directory node,
which is node ‘Top’ in the file ‘dir’.

The node name ‘*’ specifies the whole file. So you can look at all of the current file by
typing g*〈RET〉 or all of any other file with g(FILENAME)〈RET〉.

The s command allows you to search a whole file for a string. It switches to the next node
if and when that is necessary. You type s followed by the string to search for, terminated
by 〈RET〉. To search for the same string again, just s followed by 〈RET〉 will do. The file’s
nodes are scanned in the order they are in in the file, which has no necessary relationship
to the order that they may be in in the tree structure of menus and ‘next’ pointers. But
normally the two orders are not very different. In any case, you can always do a b to find
out what node you have reached, if the header is not visible (this can happen, because s

puts your cursor at the occurrence of the string, not at the beginning of the node).

Meta-s is equivalent to s. That is for compatibility with other GNU packages that use
M-s for a similar kind of search command.

If you grudge the system each character of type-in it requires, you might like to use the
commands 1, 2, 3, 4, ... 9. They are short for the m command together with an argument.
1 goes through the first item in the current node’s menu; 2 goes through the second item,
etc.

If your display supports multiple fonts, and you are using Emacs’ Info mode to read Info
files, the ‘*’ for the fifth menu item is underlined, and so is the ‘*’ for the ninth item; these
underlines make it easy to see at a glance which number to use for an item.

On ordinary terminals, you won’t have underlining. If you need to actually count items,
it is better to use m instead, and specify the name.

The Info command e changes from Info mode to an ordinary Emacs editing mode, so
that you can edit the text of the current node. Type C-c C-c to switch back to Info. The
e command is allowed only if the variable Info-enable-edit is non-nil.

10 Info 1.0

2.2 Adding a new node to Info

To add a new topic to the list in the Info directory, you must:

1. Create some nodes, in some file, to document that topic.

2. Put that topic in the menu in the directory. See Section 2.3 [Menus], page 11.

Usually, the way to create the nodes is with Texinfo see section “Overview of Texinfo”
in Texinfo: The GNU Documentation Format); this has the advantage that you can also
make a printed manual from them. However, if you want to edit an Info file, here is how.

The new node can live in an existing documentation file, or in a new one. It must have
a 〈̂ 〉 character before it (invisible to the user; this node has one but you cannot see it),
and it ends with either a 〈̂ 〉, a 〈̂ L〉, or the end of file. Note: If you put in a 〈̂ L〉 to end a
new node, be sure that there is a 〈̂ 〉 after it to start the next one, since 〈̂ L〉 cannot start
a node. Also, a nicer way to make a node boundary be a page boundary as well is to put a
〈̂ L〉 right after the 〈̂ 〉.

The 〈̂ 〉 starting a node must be followed by a newline or a 〈̂ L〉 newline, after which
comes the node’s header line. The header line must give the node’s name (by which Info
finds it), and state the names of the ‘Next’, ‘Previous’, and ‘Up’ nodes (if there are any). As
you can see, this node’s ‘Up’ node is the node ‘Top’, which points at all the documentation
for Info. The ‘Next’ node is ‘Menus’.

The keywords Node, Previous, Up, and Next, may appear in any order, anywhere in the
header line, but the recommended order is the one in this sentence. Each keyword must be
followed by a colon, spaces and tabs, and then the appropriate name. The name may be
terminated with a tab, a comma, or a newline. A space does not end it; node names may
contain spaces. The case of letters in the names is insignificant.

A node name has two forms. A node in the current file is named by what appears after
the ‘Node: ’ in that node’s first line. For example, this node’s name is ‘Add’. A node in
another file is named by ‘(filename)node-within-file’, as in ‘(info)Add’ for this node. If the
file name starts with “./”, then it is relative to the current directory; otherwise, it is relative
starting from the standard Info file directory of your site. The name ‘(filename)Top’ can be
abbreviated to just ‘(filename)’. By convention, the name ‘Top’ is used for the “highest”
node in any single file—the node whose ‘Up’ points out of the file. The Directory node
is ‘(dir)’. The ‘Top’ node of a document file listed in the Directory should have an ‘Up:
(dir)’ in it.

The node name * is special: it refers to the entire file. Thus, g* shows you the whole
current file. The use of the node * is to make it possible to make old-fashioned, unstructured
files into nodes of the tree.

The ‘Node:’ name, in which a node states its own name, must not contain a filename,
since Info when searching for a node does not expect one to be there. The ‘Next’, ‘Previous’
and ‘Up’ names may contain them. In this node, since the ‘Up’ node is in the same file, it
was not necessary to use one.

Note that the nodes in this file have a file name in the header line. The file names are
ignored by Info, but they serve as comments to help identify the node for the user.

Chapter 2: Info for Experts 11

2.3 How to Create Menus

Any node in the Info hierarchy may have a menu—a list of subnodes. The m command
searches the current node’s menu for the topic which it reads from the terminal.

A menu begins with a line starting with ‘* Menu:’. The rest of the line is a comment.
After the starting line, every line that begins with a ‘* ’ lists a single topic. The name of the
topic–the argument that the user must give to the m command to select this topic—comes
right after the star and space, and is followed by a colon, spaces and tabs, and the name
of the node which discusses that topic. The node name, like node names following ‘Next’,
‘Previous’ and ‘Up’, may be terminated with a tab, comma, or newline; it may also be
terminated with a period.

If the node name and topic name are the same, then rather than giving the name twice,
the abbreviation ‘* NAME::’ may be used (and should be used, whenever possible, as it
reduces the visual clutter in the menu).

It is considerate to choose the topic names so that they differ from each other very near
the beginning—this allows the user to type short abbreviations. In a long menu, it is a
good idea to capitalize the beginning of each item name which is the minimum acceptable
abbreviation for it (a long menu is more than 5 or so entries).

The nodes listed in a node’s menu are called its “subnodes”, and it is their “superior”.
They should each have an ‘Up:’ pointing at the superior. It is often useful to arrange all or
most of the subnodes in a sequence of ‘Next’ and ‘Previous’ pointers so that someone who
wants to see them all need not keep revisiting the Menu.

The Info Directory is simply the menu of the node ‘(dir)Top’—that is, node ‘Top’ in
file ‘.../info/dir’. You can put new entries in that menu just like any other menu. The
Info Directory is not the same as the file directory called ‘info’. It happens that many of
Info’s files live on that file directory, but they do not have to; and files on that directory
are not automatically listed in the Info Directory node.

Also, although the Info node graph is claimed to be a “hierarchy”, in fact it can be any
directed graph. Shared structures and pointer cycles are perfectly possible, and can be used
if they are appropriate to the meaning to be expressed. There is no need for all the nodes
in a file to form a connected structure. In fact, this file has two connected components.
You are in one of them, which is under the node ‘Top’; the other contains the node ‘Help’
which the h command goes to. In fact, since there is no garbage collector, nothing terrible
happens if a substructure is not pointed to, but such a substructure is rather useless since
nobody can ever find out that it exists.

2.4 Creating Cross References

A cross reference can be placed anywhere in the text, unlike a menu item which must
go at the front of a line. A cross reference looks like a menu item except that it has ‘*note’
instead of *. It cannot be terminated by a ‘)’, because ‘)’’s are so often part of node names.
If you wish to enclose a cross reference in parentheses, terminate it with a period first. Here
are two examples of cross references pointers:

12 Info 1.0

*Note details: commands. (See *note 3: Full Proof.)

They are just examples. The places they “lead to” do not really exist!

2.5 Tags Tables for Info Files

You can speed up the access to nodes of a large Info file by giving it a tags table. Unlike
the tags table for a program, the tags table for an Info file lives inside the file itself and is
used automatically whenever Info reads in the file.

To make a tags table, go to a node in the file using Emacs Info mode and type M-x

Info-tagify. Then you must use C-x C-s to save the file.

Once the Info file has a tags table, you must make certain it is up to date. If, as a result
of deletion of text, any node moves back more than a thousand characters in the file from
the position recorded in the tags table, Info will no longer be able to find that node. To
update the tags table, use the Info-tagify command again.

An Info file tags table appears at the end of the file and looks like this:

^_

Tag Table:
File: info, Node: Cross-refs^?21419
File: info, Node: Tags^?22145
^_
End Tag Table

Note that it contains one line per node, and this line contains the beginning of the node’s
header (ending just after the node name), a Delete character, and the character position in
the file of the beginning of the node.

2.6 Checking an Info File

When creating an Info file, it is easy to forget the name of a node when you are making
a pointer to it from another node. If you put in the wrong name for a node, this is not
detected until someone tries to go through the pointer using Info. Verification of the Info
file is an automatic process which checks all pointers to nodes and reports any pointers
which are invalid. Every ‘Next’, ‘Previous’, and ‘Up’ is checked, as is every menu item and
every cross reference. In addition, any ‘Next’ which does not have a ‘Previous’ pointing
back is reported. Only pointers within the file are checked, because checking pointers to
other files would be terribly slow. But those are usually few.

To check an Info file, do M-x Info-validate while looking at any node of the file with
Emacs Info mode.

2.7 Emacs Info-mode Variables

Chapter 2: Info for Experts 13

The following variables may modify the behaviour of Info-mode in Emacs; you may wish
to set one or several of these variables interactively, or in your ‘~/.emacs’ init file. See
section “Examining and Setting Variables” in The GNU Emacs Manual.

Info-enable-edit

Set to nil, disables the ‘e’ (Info-edit) command. A non-nil value enables it.
See Section 2.2 [Add], page 10.

Info-enable-active-nodes

When set to a non-nil value, allows Info to execute Lisp code associated with
nodes. The Lisp code is executed when the node is selected.

Info-directory-list

The list of directories to search for Info files. Each element is a string (directory
name) or nil (try default directory).

Info-directory

The standard directory for Info documentation files. Only used when the func-
tion Info-directory is called.

14 Info 1.0

Chapter 3: Creating an Info File from a Makeinfo file 15

3 Creating an Info File from a Makeinfo file

makeinfo is a utility that converts a Texinfo file into an Info file; texinfo-format-

region and texinfo-format-buffer are GNU Emacs functions that do the same.

See section “Creating an Info File” in the Texinfo Manual, to learn how to create an
Info file from a Texinfo file.

See section “Overview of Texinfo” in Texinfo: The GNU Documentation Format, to
learn how to write a Texinfo file.

16 Info 1.0

Chapter 4: Using the Stand-alone Info Reader 17

4 Using the Stand-alone Info Reader

What is Info?

This text documents the use of the GNU Info program, version 2.10.

Info is a program which is used to view info files on an ASCII terminal. info files are the
result of processing texinfo files with the program makeinfo or with the Emacs command
M-x texinfo-format-buffer. Finally, texinfo is a documentation language which allows a
printed manual and online documentation (an info file) to be produced from a single source
file.

4.1 Command Line Options

GNU Info accepts several options to control the initial node being viewed, and to specify
which directories to search for info files. Here is a template showing an invocation of GNU
Info from the shell:

info [--option-name option-value] menu-item. . .

The following option-names are available when invoking Info from the shell:

--directory directory-path
-d directory-path

Adds directory-path to the list of directory paths searched when Info needs to
find a file. You may issue --directory multiple times; once for each directory
which contains info files. Alternatively, you may specify a value for the envi-
ronment variable INFOPATH; if --directory is not given, the value of INFOPATH
is used. The value of INFOPATH is a colon separated list of directory names. If
you do not supply INFOPATH or --directory-path a default path is used.

--file filename
-f filename

Specifies a particular info file to visit. Instead of visiting the file dir, Info will
start with (filename)Top as the first file and node.

--node nodename
-n nodename

Specifies a particular node to visit in the initial file loaded. This is especially
useful in conjunction with --file1. You may specify --node multiple times;
for an interactive Info, each nodename is visited in its own window, for a non-
interactive Info (such as when --output is given) each nodename is processed
sequentially.

1 Of course, you can specify both the file and node in a --node command; but don’t
forget to escape the open and close parentheses from the shell as in: info --node

’(emacs)Buffers’

18 Info 1.0

--output filename
-o filename

Specify filename as the name of a file to output to. Each node that Info visits
will be output to filename instead of interactively viewed. A value of - for
filename specifies the standard output.

--subnodes

This option only has meaning when given in conjunction with --output. It
means to recursively output the nodes appearing in the menus of each node
being output. Menu items which resolve to external info files are not output,
and neither are menu items which are members of an index. Each node is only
output once.

--help

-h Produces a relatively brief description of the available Info options.

--version

Prints the version information of Info and exits.

menu-item
Remaining arguments to Info are treated as the names of menu items. The first
argument would be a menu item in the initial node visited, while the second
argument would be a menu item in the first argument’s node. You can easily
move to the node of your choice by specifying the menu names which describe
the path to that node. For example,

info emacs buffers

first selects the menu item ‘Emacs’ in the node ‘(dir)Top’, and then selects the
menu item ‘Buffers’ in the node ‘(emacs)Top’.

4.2 Moving the Cursor

Many people find that reading screens of text page by page is made easier when one
is able to indicate particular pieces of text with some kind of pointing device. Since this
is the case, GNU Info (both the Emacs and standalone versions) have several commands
which allow you to move the cursor about the screen. The notation used in this manual
to describe keystrokes is identical to the notation used within the Emacs manual, and the
GNU Readline manual. See section “Character Conventions” in the GNU Emacs Manual,
if you are unfamiliar with the notation.

The following table lists the basic cursor movement commands in Info. Each entry
consists of the key sequence you should type to execute the cursor movement, the M-x2

command name (displayed in parentheses), and a short description of what the command
does. All of the cursor motion commands can take an numeric argument (see Section 4.9
[Miscellaneous Commands], page 28), to find out how to supply them. With a numeric
argument, the motion commands are simply executed that many times; for example, a

2 M-x is also a command; it invokes execute-extended-command. See section “Executing
an extended command” in the GNU Emacs Manual, for more detailed information.

Chapter 4: Using the Stand-alone Info Reader 19

numeric argument of 4 given to next-line causes the cursor to move down 4 lines. With
a negative numeric argument, the motion is reversed; an argument of -4 given to the next-

line command would cause the cursor to move up 4 lines.

C-n (next-line)
Moves the cursor down to the next line.

C-p (prev-line)
Move the cursor up to the previous line.

C-a (beginning-of-line)
Move the cursor to the start of the current line.

C-e (end-of-line)
Moves the cursor to the end of the current line.

C-f (forward-char)
Move the cursor forward a character.

C-b (backward-char)
Move the cursor backward a character.

M-f (forward-word)
Moves the cursor forward a word.

M-b (backward-word)
Moves the cursor backward a word.

M-< (beginning-of-node)
b Moves the cursor to the start of the current node.

M-> (end-of-node)
Moves the cursor to the end of the current node.

M-r (move-to-window-line)
Moves the cursor to a specific line of the window. Without a numeric argument,
M-r moves the cursor to the start of the line in the center of the window. With
a numeric argument of n, M-r moves the cursor to the start of the nth line in
the window.

4.3 Moving Text Within a Window

Sometimes you are looking at a screenful of text, and only part of the current paragraph
you are reading is visible on the screen. The commands detailed in this section are used to
shift which part of the current node is visible on the screen.

SPC (scroll-forward)
C-v Shift the text in this window up. That is, show more of the node which is

currently below the bottom of the window. With a numeric argument, show
that many more lines at the bottom of the window; a numeric argument of 4
would shift all of the text in the window up 4 lines (discarding the top 4 lines),
and show you four new lines at the bottom of the window. Without a numeric

20 Info 1.0

argument, 〈SPC〉 takes the bottom two lines of the window and places them at
the top of the window, redisplaying almost a completely new screenful of lines.

DEL (scroll-backward)
M-v Shift the text in this window down. The inverse of scroll-forward.

The scroll-forward and scroll-backward commands can also move forward and back-
ward through the node structure of the file. If you press 〈SPC〉 while viewing the end of a
node, or 〈DEL〉 while viewing the beginning of a node, what happens is controlled by the
variable scroll-behaviour. See Section 4.10 [Variables], page 30, for more information.

C-l (redraw-display)
Redraw the display from scratch, or shift the line containing the cursor to a
specified location. With no numeric argument, ‘C-l’ clears the screen, and then
redraws its entire contents. Given a numeric argument of n, the line containing
the cursor is shifted so that it is on the nth line of the window.

C-x w (toggle-wrap)
Toggles the state of line wrapping in the current window. Normally, lines which
are longer than the screen width wrap, i.e., they are continued on the next line.
Lines which wrap have a ‘\’ appearing in the rightmost column of the screen.
You can cause such lines to be terminated at the rightmost column by changing
the state of line wrapping in the window with C-x w. When a line which needs
more space than one screen width to display is displayed, a ‘$’ appears in the
rightmost column of the screen, and the remainder of the line is invisible.

4.4 Selecting a New Node

This section details the numerous Info commands which select a new node to view in
the current window.

The most basic node commands are ‘n’, ‘p’, ‘u’, and ‘l’.

When you are viewing a node, the top line of the node contains some Info pointers which
describe where the next, previous, and up nodes are. Info uses this line to move about the
node structure of the file when you use the following commands:

n (next-node)
Selects the ‘Next’ node.

p (prev-node)
Selects the ‘Prev’ node.

u (up-node)
Selects the ‘Up’ node.

You can easily select a node that you have already viewed in this window by using
the ‘l’ command – this name stands for "last", and actually moves through the list of
already visited nodes for this window. ‘l’ with a negative numeric argument moves forward
through the history of nodes for this window, so you can quickly step between two adjacent
(in viewing history) nodes.

Chapter 4: Using the Stand-alone Info Reader 21

l (history-node)
Selects the most recently selected node in this window.

Two additional commands make it easy to select the most commonly selected nodes;
they are ‘t’ and ‘d’.

t (top-node)
Selects the node ‘Top’ in the current info file.

d (dir-node)
Selects the directory node (i.e., the node ‘(dir)’).

Here are some other commands which immediately result in the selection of a different
node in the current window:

< (first-node)
Selects the first node which appears in this file. This node is most often ‘Top’,
but it doesn’t have to be.

> (last-node)
Selects the last node which appears in this file.

] (global-next-node)
Moves forward or down through node structure. If the node that you are
currently viewing has a ‘Next’ pointer, that node is selected. Otherwise, if this
node has a menu, the first menu item is selected. If there is no ‘Next’ and no
menu, the same process is tried with the ‘Up’ node of this node.

[(global-prev-node)
Moves backward or up through node structure. If the node that you are cur-
rently viewing has a ‘Prev’ pointer, that node is selected. Otherwise, if the
node has an ‘Up’ pointer, that node is selected, and if it has a menu, the last
item in the menu is selected.

You can get the same behaviour as global-next-node and global-prev-node while
simply scrolling through the file with 〈SPC〉 and 〈DEL〉; See Section 4.10 [Variables], page 30,
for more information.

g (goto-node)
Reads the name of a node and selects it. No completion is done while reading
the node name, since the desired node may reside in a separate file. The node
must be typed exactly as it appears in the info file. A file name may be included
as with any node specification, for example

g(emacs)Buffers

finds the node ‘Buffers’ in the info file ‘emacs’.

C-x k (kill-node)
Kills a node. The node name is prompted for in the echo area, with a default of
the current node. Killing a node means that Info tries hard to forget about it,
removing it from the list of history nodes kept for the window where that node
is found. Another node is selected in the window which contained the killed
node.

22 Info 1.0

C-x C-f (view-file)
Reads the name of a file and selects the entire file. The command

C-x C-f filename

is equivalent to typing

g(filename)*

C-x C-b (list-visited-nodes)
Makes a window containing a menu of all of the currently visited nodes. This
window becomes the selected window, and you may use the standard Info com-
mands within it.

C-x b (select-visited-node)
Selects a node which has been previously visited in a visible window. This is
similar to ‘C-x C-b’ followed by ‘m’, but no window is created.

4.5 Searching an Info File

GNU Info allows you to search for a sequence of characters throughout an entire info
file, search through the indices of an info file, or find areas within an info file which discuss
a particular topic.

s (search)
Reads a string in the echo area and searches for it.

C-s (isearch-forward)
Interactively searches forward through the info file for a string as you type it.

C-r (isearch-backward)
Interactively searches backward through the info file for a string as you type it.

i (index-search)
Looks up a string in the indices for this info file, and selects a node where the
found index entry points to.

, (next-index-match)
Moves to the node containing the next matching index item from the last ‘i’
command.

The most basic searching command is ‘s’ (search). The ‘s’ command prompts you for
a string in the echo area, and then searches the remainder of the info file for an occurrence
of that string. If the string is found, the node containing it is selected, and the cursor is left
positioned at the start of the found string. Subsequent ‘s’ commands show you the default
search string within ‘[’ and ‘]’; pressing 〈RET〉 instead of typing a new string will use the
default search string.

Incremental searching is similar to basic searching, but the string is looked up while you
are typing it, instead of waiting until the entire search string has been specified.

Chapter 4: Using the Stand-alone Info Reader 23

4.6 Selecting Cross References

We have already discussed the ‘Next’, ‘Prev’, and ‘Up’ pointers which appear at the top
of a node. In addition to these pointers, a node may contain other pointers which refer you
to a different node, perhaps in another info file. Such pointers are called cross references,
or xrefs for short.

4.6.1 Parts of an Xref

Cross references have two major parts: the first part is called the label; it is the name
that you can use to refer to the cross reference, and the second is the target; it is the full
name of the node that the cross reference points to.

The target is separated from the label by a colon ‘:’; first the label appears, and then the
target. For example, in the sample menu cross reference below, the single colon separates
the label from the target.

* Foo Label: Foo Target. More information about Foo.

Note the ‘.’ which ends the name of the target. The ‘.’ is not part of the target; it
serves only to let Info know where the target name ends.

A shorthand way of specifying references allows two adjacent colons to stand for a target
name which is the same as the label name:

* Foo Commands:: Commands pertaining to Foo.

In the above example, the name of the target is the same as the name of the label, in
this case Foo Commands.

You will normally see two types of cross references while viewing nodes: menu references,
and note references. Menu references appear within a node’s menu; they begin with a ‘*’ at
the beginning of a line, and continue with a label, a target, and a comment which describes
what the contents of the node pointed to contains.

Note references appear within the body of the node text; they begin with *Note, and
continue with a label and a target.

Like ‘Next’, ‘Prev’ and ‘Up’ pointers, cross references can point to any valid node. They
are used to refer you to a place where more detailed information can be found on a particular
subject. Here is a cross reference which points to a node within the Texinfo documentation:
See section “Writing an Xref” in the Texinfo Manual, for more information on creating your
own texinfo cross references.

4.6.2 Selecting Xrefs

The following table lists the Info commands which operate on menu items.

1 (menu-digit)
2 . . . 9 Within an Info window, pressing a single digit, (such as ‘1’), selects that menu

item, and places its node in the current window. For convenience, there is one
exception; pressing ‘0’ selects the last item in the node’s menu.

24 Info 1.0

0 (last-menu-item)
Select the last item in the current node’s menu.

m (menu-item)
Reads the name of a menu item in the echo area and selects its node. Comple-
tion is available while reading the menu label.

M-x find-menu

Moves the cursor to the start of this node’s menu.

This table lists the Info commands which operate on note cross references.

f (xref-item)
r Reads the name of a note cross reference in the echo area and selects its node.

Completion is available while reading the cross reference label.

Finally, the next few commands operate on menu or note references alike:

TAB (move-to-next-xref)
Moves the cursor to the start of the next nearest menu item or note reference
in this node. You can then use 〈RET〉 (select-reference-this-line to select
the menu or note reference.

M-TAB (move-to-prev-xref)
Moves the cursor the start of the nearest previous menu item or note reference
in this node.

RET (select-reference-this-line)
Selects the menu item or note reference appearing on this line.

4.7 Manipulating Multiple Windows

A window is a place to show the text of a node. Windows have a view area where the
text of the node is displayed, and an associated mode line, which briefly describes the node
being viewed.

GNU Info supports multiple windows appearing in a single screen; each window is sep-
arated from the next by its modeline. At any time, there is only one active window, that
is, the window in which the cursor appears. There are commands available for creating
windows, changing the size of windows, selecting which window is active, and for deleting
windows.

4.7.1 The Mode Line

A mode line is a line of inverse video which appears at the bottom of an info window.
It describes the contents of the window just above it; this information includes the name of
the file and node appearing in that window, the number of screen lines it takes to display
the node, and the percentage of text that is above the top of the window. It can also tell
you if the indirect tags table for this info file needs to be updated, and whether or not the
info file was compressed when stored on disk.

Chapter 4: Using the Stand-alone Info Reader 25

Here is a sample mode line for a window containing an uncompressed file named ‘dir’,
showing the node ‘Top’.

-----Info: (dir)Top, 40 lines --Top---------------------------------------
^^ ^ ^^^ ^^

(file)Node #lines where

When a node comes from a file which is compressed on disk, this is indicated in the
mode line with two small ‘z’’s. In addition, if the info file containing the node has been
split into subfiles, the name of the subfile containing the node appears in the modeline as
well:

--zz-Info: (emacs)Top, 291 lines --Top-- Subfile: emacs-1.Z---------------

When Info makes a node internally, such that there is no corresponding info file on disk,
the name of the node is surrounded by asterisks (‘*’). The name itself tells you what the
contents of the window are; the sample mode line below shows an internally constructed
node showing possible completions:

-----Info: *Completions*, 7 lines --All-----------------------------------

4.7.2 Window Commands

It can be convenient to view more than one node at a time. To allow this, Info can
display more than one window. Each window has its own mode line (see Section 4.7.1
[The Mode Line], page 24) and history of nodes viewed in that window (see Section 4.4
[history-node], page 20).

C-x o (next-window)
Selects the next window on the screen. Note that the echo area can only be
selected if it is already in use, and you have left it temporarily. Normally, ‘C-x o’
simply moves the cursor into the next window on the screen, or if you are already
within the last window, into the first window on the screen. Given a numeric
argument, ‘C-x o’ moves over that many windows. A negative argument causes
‘C-x o’ to select the previous window on the screen.

M-x prev-window

Selects the previous window on the screen. This is identical to ‘C-x o’ with a
negative argument.

C-x 2 (split-window)
Splits the current window into two windows, both showing the same node. Each
window is one half the size of the original window, and the cursor remains in
the original window. The variable automatic-tiling can cause all of the win-
dows on the screen to be resized for you automatically, please see Section 4.10
[automatic-tiling], page 30 for more information.

C-x 0 (delete-window)
Deletes the current window from the screen. If you have made too many win-
dows and your screen appears cluttered, this is the way to get rid of some of
them.

26 Info 1.0

C-x 1 (keep-one-window)
Deletes all of the windows excepting the current one.

ESC C-v (scroll-other-window)
Scrolls the other window, in the same fashion that ‘C-v’ might scroll the current
window. Given a negative argument, the "other" window is scrolled backward.

C-x ^ (grow-window)
Grows (or shrinks) the current window. Given a numeric argument, grows the
current window that many lines; with a negative numeric argument, the window
is shrunk instead.

C-x t (tile-windows)
Divides the available screen space among all of the visible windows. Each
window is given an equal portion of the screen in which to display its contents.
The variable automatic-tiling can cause tile-windows to be called when a
window is created or deleted. See Section 4.10 [automatic-tiling], page 30.

4.7.3 The Echo Area

The echo area is a one line window which appears at the bottom of the screen. It is used
to display informative or error messages, and to read lines of input from you when that
is necessary. Almost all of the commands available in the echo area are identical to their
Emacs counterparts, so please refer to that documentation for greater depth of discussion
on the concepts of editing a line of text. The following table briefly lists the commands that
are available while input is being read in the echo area:

C-f (echo-area-forward)
Moves forward a character.

C-b (echo-area-backward)
Moves backward a character.

C-a (echo-area-beg-of-line)
Moves to the start of the input line.

C-e (echo-area-end-of-line)
Moves to the end of the input line.

M-f (echo-area-forward-word)
Moves forward a word.

M-b (echo-area-backward-word)
Moves backward a word.

C-d (echo-area-delete)
Deletes the character under the cursor.

DEL (echo-area-rubout)
Deletes the character behind the cursor.

Chapter 4: Using the Stand-alone Info Reader 27

C-g (echo-area-abort)
Cancels or quits the current operation. If completion is being read, ‘C-g’ dis-
cards the text of the input line which does not match any completion. If the
input line is empty, ‘C-g’ aborts the calling function.

RET (echo-area-newline)
Accepts (or forces completion of) the current input line.

C-q (echo-area-quoted-insert)
Inserts the next character verbatim. This is how you can insert control charac-
ters into a search string, for example.

printing character (echo-area-insert)
Inserts the character.

M-TAB (echo-area-tab-insert)
Inserts a TAB character.

C-t (echo-area-transpose-chars)
Transposes the characters at the cursor.

The next group of commands deal with killing, and yanking text. For an in depth
discussion of killing and yanking, see section “Killing and Deleting” in the GNU Emacs
Manual

M-d (echo-area-kill-word)
Kills the word following the cursor.

M-DEL (echo-area-backward-kill-word)
Kills the word preceding the cursor.

C-k (echo-area-kill-line)
Kills the text from the cursor to the end of the line.

C-x DEL (echo-area-backward-kill-line)
Kills the text from the cursor to the beginning of the line.

C-y (echo-area-yank)
Yanks back the contents of the last kill.

M-y (echo-area-yank-pop)
Yanks back a previous kill, removing the last yanked text first.

Sometimes when reading input in the echo area, the command that needed input will
only accept one of a list of several choices. The choices represent the possible completions,
and you must respond with one of them. Since there are a limited number of responses you
can make, Info allows you to abbreviate what you type, only typing as much of the response
as is necessary to uniquely identify it. In addition, you can request Info to fill in as much
of the response as is possible; this is called completion.

The following commands are available when completing in the echo area:

TAB (echo-area-complete)
SPC Inserts as much of a completion as is possible.

28 Info 1.0

? (echo-area-possible-completions)
Displays a window containing a list of the possible completions of what you
have typed so far. For example, if the available choices are:

bar
foliate
food
forget

and you have typed an ‘f’, followed by ‘?’, the possible completions would
contain:

foliate
food
forget

i.e., all of the choices which begin with ‘f’. Pressing 〈SPC〉 or 〈TAB〉 would result
in ‘fo’ appearing in the echo area, since all of the choices which begin with
‘f’ continue with ‘o’. Now, typing ‘l’ followed by ‘TAB’ results in ‘foliate’
appearing in the echo area, since that is the only choice which begins with
‘fol’.

ESC C-v (echo-area-scroll-completions-window)
Scrolls the completions window, if that is visible, or the "other" window if not.

4.8 Printing Out Nodes

You may wish to print out the contents of a node as a quick reference document for later
use. Info provides you with a command for doing this. In general, we recommend that you
use TEX to format the document and print sections of it, by running tex on the texinfo
source file.

M-x print-node

Pipes the contents of the current node through the command in the environment
variable INFO_PRINT_COMMAND. If the variable doesn’t exist, the node is simply
piped to lpr.

4.9 Miscellaneous Commands

GNU Info contains several commands which self-document GNU Info:

M-x describe-command

Reads the name of an Info command in the echo area and then displays a brief
description of what that command does.

M-x describe-key

Reads a key sequence in the echo area, and then displays the name and docu-
mentation of the Info command that the key sequence invokes.

Chapter 4: Using the Stand-alone Info Reader 29

M-x describe-variable

Reads the name of a variable in the echo area and then displays a brief descrip-
tion of what the variable affects.

M-x where-is

Reads the name of an Info command in the echo area, and then displays a key
sequence which can be typed in order to invoke that command.

C-h (get-help-window)
? Creates (or moves into) the window displaying *Help*, and places a node con-

taining a quick reference card into it. This window displays the most concise
information about GNU Info available.

h (get-info-help-node)
Tries hard to visit the node (info)Help. The info file ‘info.texi’ distributed
with GNU Info contains this node. Of course, the file must first be processed
with makeinfo, and then placed into the location of your info directory.

Here are the commands for creating a numeric argument:

C-u (universal-argument)
Starts (or multiplies by 4) the current numeric argument. ‘C-u’ is a good way
to give a small numeric argument to cursor movement or scrolling commands;
‘C-u C-v’ scrolls the screen 4 lines, while ‘C-u C-u C-n’ moves the cursor down
16 lines.

M-1 (add-digit-to-numeric-arg)
M-2 . . . M-9

Adds the digit value of the invoking key to the current numeric argument.
Once Info is reading a numeric argument, you may just type the digits of
the argument, without the Meta prefix. For example, you might give ‘C-l’
a numeric argument of 32 by typing:

C-u 3 2 C-l

or

M-3 2 C-l

‘C-g’ is used to abort the reading of a multi-character key sequence, to cancel lengthy
operations (such as multi-file searches) and to cancel reading input in the echo area.

C-g (abort-key)
Cancels current operation.

The ‘q’ command of Info simply quits running Info.

q (quit) Exits GNU Info.

If the operating system tells GNU Info that the screen is 60 lines tall, and it is actually
only 40 lines tall, here is a way to tell Info that the operating system is correct.

M-x set-screen-height

Reads a height value in the echo area and sets the height of the displayed screen
to that value.

30 Info 1.0

Finally, Info provides a convenient way to display footnotes which might be associated
with the current node that you are viewing:

ESC C-f (show-footnotes)
Shows the footnotes (if any) associated with the current node in another win-
dow. You can have Info automatically display the footnotes associated with a
node when the node is selected by setting the variable automatic-footnotes.
See Section 4.10 [automatic-footnotes], page 30.

4.10 Manipulating Variables

GNU Info contains several variables whose values are looked at by various Info com-
mands. You can change the values of these variables, and thus change the behaviour of Info
to more closely match your environment and info file reading manner.

M-x set-variable

Reads the name of a variable, and the value for it, in the echo area and then sets
the variable to that value. Completion is available when reading the variable
name; often, completion is available when reading the value to give to the
variable, but that depends on the variable itself. If a variable does not supply
multiple choices to complete over, it expects a numeric value.

M-x describe-variable

Reads the name of a variable in the echo area and then displays a brief descrip-
tion of what the variable affects.

Here is a list of the variables that you can set in Info.

automatic-footnotes

When set to On, footnotes appear and disappear automatically. This variable
is On by default. When a node is selected, a window containing the footnotes
which appear in that node is created, and the footnotes are displayed within
the new window. The window that Info creates to contain the footnotes is
called ‘*Footnotes*’. If a node is selected which contains no footnotes, and a
‘*Footnotes*’ window is on the screen, the ‘*Footnotes*’ window is deleted.
Footnote windows created in this fashion are not automatically tiled so that
they can use as little of the display as is possible.

automatic-tiling

When set to On, creating or deleting a window resizes other windows. This
variable is Off by default. Normally, typing ‘C-x 2’ divides the current window
into two equal parts. When automatic-tiling is set to On, all of the windows
are resized automatically, keeping an equal number of lines visible in each win-
dow. There are exceptions to the automatic tiling; specifically, the windows
‘*Completions*’ and ‘*Footnotes*’ are not resized through automatic tiling;
they remain their original size.

visible-bell

When set to On, GNU Info attempts to flash the screen instead of ringing the
bell. This variable is Off by default. Of course, Info can only flash the screen if

Chapter 4: Using the Stand-alone Info Reader 31

the terminal allows it; in the case that the terminal does not allow it, the setting
of this variable has no effect. However, you can make Info perform quietly by
setting the errors-ring-bell variable to Off.

errors-ring-bell

When set to On, errors cause the bell to ring. The default setting of this variable
is On.

gc-compressed-files

When set to On, Info garbage collects files which had to be uncompressed. The
default value of this variable is Off. Whenever a node is visited in Info, the info
file containing that node is read into core, and Info reads information about
the tags and nodes contained in that file. Once the tags information is read by
Info, it is never forgotten. However, the actual text of the nodes does not need
to remain in core unless a particular info window needs it. For non-compressed
files, the text of the nodes does not remain in core when it is no longer in use.
But de-compressing a file can be a time consuming operation, and so Info tries
hard not to do it twice. gc-compressed-files tells Info it is okay to garbage
collect the text of the nodes of a file which was compressed on disk.

show-index-match

When set to On, the portion of the matched search string is highlighted in the
message which explains where the matched search string was found. The default
value of this variable is On. When Info displays the location where an index
match was found, (see Section 4.5 [next-index-match], page 22), the portion
of the string that you had typed is highlighted by displaying it in the inverse
case from its surrounding characters.

scroll-behaviour

Controls what happens when forward scrolling is requested at the end of a node,
or when backward scrolling is requested at the beginning of a node. The default
value for this variable is Continuous. There are three possible values for this
variable:

Continuous

Tries to get the first item in this node’s menu, or failing that, the
‘Next’ node, or failing that, the ‘Next’ of the ‘Up’. This behaviour
is identical to using the ‘]’ (global-next-node) and ‘[’ (global-
prev-node) commands.

Next Only Only tries to get the ‘Next’ node.

Page Only Simply gives up, changing nothing. If scroll-behaviour is Page

Only, no scrolling command can change the node that is being
viewed.

scroll-step

The number of lines to scroll when the cursor moves out of the window. Scrolling
happens automatically if the cursor has moved out of the visible portion of the
node text when it is time to display. Usually the scrolling is done so as to put
the cursor on the center line of the current window. However, if the variable

32 Info 1.0

scroll-step has a nonzero value, Info attempts to scroll the node text by that
many lines; if that is enough to bring the cursor back into the window, that is
what is done. The default value of this variable is 0, thus placing the cursor
(and the text it is attached to) in the center of the window. Setting this variable
to 1 causes a kind of "smooth scrolling" which some people prefer.

ISO-Latin

When set to On, Info accepts and displays ISO Latin-1 characters. By default,
Info assumes an ASCII character set. ISO-Latin tells Info that it is running
in an environment where the European standard character set is in use, and
allows you to input such characters to Info, as well as display them.

		Getting Started

		Starting Info on a Small Screen

		How to use Info

		Returning to the Previous node

		The Space, Delete, B and {mathaccent "705E }L commands.

		Menus

		The u command

		Some advanced Info commands

		The node reached by the cross reference in Info

		Quitting Info

		Info for Experts

		Advanced Info Commands

		Adding a new node to Info

		How to Create Menus

		Creating Cross References

		Tags Tables for Info Files

		Checking an Info File

		Emacs Info-mode Variables

		Creating an Info File from a Makeinfo file

		Using the Stand-alone Info Reader

		Command Line Options

		Moving the Cursor

		Moving Text Within a Window

		Selecting a New Node

		Searching an Info File

		Selecting Cross References

		Parts of an Xref

		Selecting Xrefs

		Manipulating Multiple Windows

		The Mode Line

		Window Commands

		The Echo Area

		Printing Out Nodes

		Miscellaneous Commands

		Manipulating Variables

