

GNU Emacs Manual

GNU Emacs Manual

Twelfth Edition, Updated for Emacs Version 19.34

Richard Stallman

Copyright c© 1985, 1986, 1987, 1993, 1994, 1995, 1996 Free Software Foun-
dation, Inc.

Twelfth Edition
Updated for Emacs Version 19.34,
August 1996

ISBN 1-882114-05-1

Published by the Free Software Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the sections
entitled “The GNU Manifesto”, “Distribution” and “GNU General Public
License” are included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except
that the sections entitled “The GNU Manifesto”, “Distribution” and “GNU
General Public License” may be included in a translation approved by the
Free Software Foundation instead of in the original English.

Cover art by Etienne Suvasa.

Preface 1

Preface

This manual documents the use and simple customization of the Emacs
editor. The reader is not expected to be a programmer; simple customiza-
tions do not require programming skill. But the user who is not interested
in customizing can ignore the scattered customization hints.

This is primarily a reference manual, but can also be used as a primer. For
complete beginners, it is a good idea to start with the on-line, learn-by-doing
tutorial, before reading the manual. To run the tutorial, start Emacs and
type C-h t. This way you can learn Emacs by using Emacs on a specially
designed file which describes commands, tells you when to try them, and
then explains the results you see.

On first reading, just skim chapters one and two, which describe the no-
tational conventions of the manual and the general appearance of the Emacs
display screen. Note which questions are answered in these chapters, so you
can refer back later. After reading chapter four you should practice the com-
mands there. The next few chapters describe fundamental techniques and
concepts that are used constantly. You need to understand them thoroughly,
experimenting with them if necessary.

Chapters 14 through 18 describe intermediate-level features that are use-
ful for all kinds of editing. Chapter 19 and following chapters describe fea-
tures that you may or may not want to use; read those chapters when you
need them

Read the Trouble chapter if Emacs does not seem to be working prop-
erly. It explains how to cope with some common problems (see Section 31.2
[Lossage], page 402), as well as when and how to report Emacs bugs (see
Section 31.3 [Bugs], page 406).

To find the documentation on a particular command, look in the index.
Keys (character commands) and command names have separate indexes.
There is also a glossary, with a cross reference for each term.

This manual is available as a printed book and also as an Info file. The
Info file is for on-line perusal with the Info program, which will be the
principle way of viewing documentation on-line in the GNU system. Both
the Info file and the Info program itself are distributed along with GNU
Emacs. The Info file and the printed book contain substantially the same
text and are generated from the same source files, which are also distributed
along with GNU Emacs.

GNU Emacs is a member of the Emacs editor family. There are many
Emacs editors, all sharing common principles of organization. For informa-
tion on the underlying philosophy of Emacs and the lessons learned from its
development, write for a copy of AI memo 519a, “Emacs, the Extensible,
Customizable Self-Documenting Display Editor”, to Publications Depart-
ment, Artificial Intelligence Lab, 545 Tech Square, Cambridge, MA 02139,

2 GNU Emacs Manual

USA. At last report they charge $2.25 per copy. Another useful publication
is LCS TM-165, “A Cookbook for an Emacs”, by Craig Finseth, available
from Publications Department, Laboratory for Computer Science, 545 Tech
Square, Cambridge, MA 02139, USA. The price today is $3.

This edition of the manual is intended for use with GNU Emacs installed
on GNU and Unix systems. GNU Emacs can also be used on VMS, MS-DOS
(aka. MS-DOG), Windows NT, and Windows 95 systems. Those systems use
different file name syntax; in addition, VMS and MS-DOS do not support all
GNU Emacs features. We don’t try to describe VMS usage in this manual.
See Appendix C [MS-DOS], page 439, for information about using Emacs
on MS-DOS.

Distribution 3

Distribution

GNU Emacs is free software; this means that everyone is free to use it and
free to redistribute it on certain conditions. GNU Emacs is not in the public
domain; it is copyrighted and there are restrictions on its distribution, but
these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others
from further sharing any version of GNU Emacs that they might get from
you. The precise conditions are found in the GNU General Public License
that comes with Emacs and also appears following this section.

One way to get a copy of GNU Emacs is from someone else who has it.
You need not ask for our permission to do so, or tell any one else; just copy
it. If you have access to the Internet, you can get the latest distribution
version of GNU Emacs by anonymous FTP; see the file ‘etc/FTP’ in the
Emacs distribution for more information.

You may also receive GNU Emacs when you buy a computer. Computer
manufacturers are free to distribute copies on the same terms that apply
to everyone else. These terms require them to give you the full sources,
including whatever changes they may have made, and to permit you to
redistribute the GNU Emacs received from them under the usual terms of
the General Public License. In other words, the program must be free for
you when you get it, not just free for the manufacturer.

You can also order copies of GNU Emacs from the Free Software Founda-
tion, on various magnetic media or on CD-ROM. This is a convenient and
reliable way to get a copy; it is also a good way to help fund our work. (The
Foundation has always received most of its funds in this way.) An order
form is included at the end of manuals printed by the Foundation. It is
also included in the file ‘etc/ORDERS’ in the Emacs distribution. For further
information, write to

Free Software Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
USA

The income from distribution fees goes to support the foundation’s pur-
pose: the development of new free software, and improvements to our exist-
ing programs including GNU Emacs.

If you find GNU Emacs useful, please send a donation to the Free Software
Foundation to support our work. Donations to the Free Software Foundation
are tax deductible. If you use GNU Emacs at your workplace, suggest that
the company make a donation. If company policy is unsympathetic to the
idea of donating to charity, you might instead suggest ordering a CD-ROM
from the Foundation occasionally, or subscribing to periodic updates.

4 GNU Emacs Manual

Contributors to GNU Emacs include Per Abrahamsen, Jay K. Adams,
Joe Arceneaux, Boaz Ben-Zvi, Jim Blandy, Frank Bresz, Kevin Broadey,
Vincent Broman, David M. Brown, Hans Chalupsky, Bob Chassell, James
Clark, Mike Clarkson, Doug Cutting, Michael DeCorte, Gary Delp, Matthieu
Devin, Scott Draves, Viktor Dukhovni, Rolf Ebert, Torbjörn Einarsson,
Hans Henrik Eriksen, Michael Ernst, Ata Etemadi, Fred Fish, Karl Fo-
gel, Noah Friedman, Keith Gabryelski, Kevin Gallagher, Kevin Gallo,
Howard Gayle, Stephen Gildea, David Gillespie, Boris Goldowsky, Michael
Gschwind, Henry Guillaume, Doug Gwyn, Chris Hanson, K. Shane Hartman,
Markus Heritsch, Karl Heuer, Manabu Higashida, Anders Holst, Lars Inge-
brigtsen, Andrew Innes, Michael K. Johnson, Kyle Jones, Brewster Kahle,
David Kaufman, Henry Kautz, Howard Kaye, Michael Kifer, Richard King,
Larry K. Kolodney, Robert Krawitz, Sebastian Kremer, Geoff Kuenning,
David K̊agedal, Daniel LaLiberte, Aaron Larson, James R. Larus, Lars Lind-
berg, Neil M. Mager, Ken Manheimer, Bill Mann, Brian Marick, Simon Mar-
shall, Bengt Martensson, Charlie Martin, Thomas May, Roland McGrath,
David Megginson, Richard Mlynarik, Keith Moore, Erik Naggum, Thomas
Neumann, Mike Newton, Jurgen Nickelsen, Jeff Norden, Jeff Peck, Damon
Anton Permezel, Tom Perrine, Daniel Pfeiffer, Fred Pierresteguy, Christian
Plaunt, Francesco A. Potorti, Michael D. Prange, Ashwin Ram, Eric S. Ray-
mond, Paul Reilly, Edward M. Reingold, Rob Riepel, Roland B. Roberts,
John Robinson, William Rosenblatt, Guillermo J. Rozas, Wolfgang Rup-
precht, James B. Salem, Masahiko Sato, William Schelter, Gregor Schmid,
Michael Schmidt, Ronald S. Schnell, Philippe Schnoebelen, Stephen Schoef,
Randal Schwartz, Mark Shapiro, Olin Shivers, Espen Skoglund, Rick Slad-
key, Lynn Slater, Chris Smith, David Smith, William Sommerfeld, Ake Sten-
hoff, Jonathan Stigelman, Steve Strassman, Spencer Thomas, Jim Thomp-
son, Masanobu Umeda, Geoffrey Voelker, Johan Vromans, Barry Warsaw,
Morten Welinder, Joseph Brian Wells, Ed Wilkinson, Mike Williams, Steven
A. Wood, Dale R. Worley, Felix S. T. Wu, Tom Wurgler, Eli Zaretskii, Jamie
Zawinski, and Neal Ziring.

GNU GENERAL PUBLIC LICENSE 5

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation’s software and to any other
program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free software.
If the software is modified by someone else and passed on, we want its recip-
ients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

6 GNU Emacs Manual

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will in-
dividually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modifica-
tion follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed un-
der the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copy-
right law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute
such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any

GNU GENERAL PUBLIC LICENSE 7

part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such in-
teractive use in the most ordinary way, to print or display an an-
nouncement including an appropriate copyright notice and a notice
that there is no warranty (or else, saying that you provide a war-
ranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume
of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sec-
tions 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physi-
cally performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

8 GNU Emacs Manual

c. Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special ex-
ception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to copy
the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense or distribute the Program is void, and will au-
tomatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise)

GNU GENERAL PUBLIC LICENSE 9

that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to sat-
isfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consis-
tent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and condi-
tions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number
of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask

10 GNU Emacs Manual

for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 11

How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it free
software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright” line
and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the ap-
propriate parts of the General Public License. Of course, the commands you
use may be called something other than ‘show w’ and ‘show c’; they could
even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

12 GNU Emacs Manual

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

Introduction 13

Introduction

You are reading about GNU Emacs, the GNU incarnation of the ad-
vanced, self-documenting, customizable, extensible real-time display editor
Emacs. (The ‘G’ in ‘GNU’ is not silent.)

We say that Emacs is a display editor because normally the text being
edited is visible on the screen and is updated automatically as you type your
commands. See Chapter 1 [Screen], page 15.

We call it a real-time editor because the display is updated very fre-
quently, usually after each character or pair of characters you type. This
minimizes the amount of information you must keep in your head as you
edit. See Chapter 4 [Basic Editing], page 29.

We call Emacs advanced because it provides facilities that go beyond
simple insertion and deletion: controlling subprocesses; automatic indenta-
tion of programs; viewing two or more files at once; editing formatted text;
and dealing in terms of characters, words, lines, sentences, paragraphs, and
pages, as well as expressions and comments in several different programming
languages.

Self-documenting means that at any time you can type a special charac-
ter, Control-h, to find out what your options are. You can also use it to
find out what any command does, or to find all the commands that pertain
to a topic. See Chapter 7 [Help], page 49.

Customizable means that you can change the definitions of Emacs com-
mands in little ways. For example, if you use a programming language in
which comments start with ‘<**’ and end with ‘**>’, you can tell the Emacs
comment manipulation commands to use those strings (see Section 21.7
[Comments], page 228). Another sort of customization is rearrangement
of the command set. For example, if you prefer the four basic cursor motion
commands (up, down, left and right) on keys in a diamond pattern on the
keyboard, you can rebind the keys that way. See Chapter 30 [Customiza-
tion], page 371.

Extensible means that you can go beyond simple customization and write
entirely new commands, programs in the Lisp language to be run by Emacs’s
own Lisp interpreter. Emacs is an “on-line extensible” system, which means
that it is divided into many functions that call each other, any of which can
be redefined in the middle of an editing session. Almost any part of Emacs
can be replaced without making a separate copy of all of Emacs. Most of the
editing commands of Emacs are written in Lisp already; the few exceptions
could have been written in Lisp but are written in C for efficiency. Although
only a programmer can write an extension, anybody can use it afterward.

When run under the X Window System, Emacs provides its own menus
and convenient bindings to mouse buttons. But Emacs can provide many of

14 GNU Emacs Manual

the benefits of a window system on a text-only terminal. For instance, you
can look at or edit several files at once, move text between them, and edit
files at the same time as you run shell commands.

Chapter 1: The Organization of the Screen 15

1 The Organization of the Screen

On a text-only terminal, the Emacs display occupies the whole screen.
On the X Window System, Emacs creates its own X windows to use. We use
the term frame to mean an entire text-only screen or an entire X window
used by Emacs. Emacs uses both kinds of frames in the same way to display
your editing. Emacs normally starts out with just one frame, but you can
create additional frames if you wish. See Chapter 17 [Frames], page 155.

When you start Emacs, the entire frame except for the last line is devoted
to the text you are editing. This area is called window. The last line is a
special echo area or minibuffer window where prompts appear and where you
can enter responses. You can subdivide the large text window horizontally
or vertically into multiple text windows, each of which can be used for a
different file (see Chapter 16 [Windows], page 149). In this manual, the
word “window” always refers to the subdivisions of a frame within Emacs.

The window that the cursor is in is the selected window, in which editing
takes place. Most Emacs commands implicitly apply to the text in the
selected window (though mouse commands generally operate on whatever
window you click them in, whether selected or not). The other windows
display text for reference only, unless/until you select them. If you use
multiple frames under the X Window System, then giving the input focus
to a particular frame selects a window in that frame.

Each window’s last line is a mode line which describes what is going on
in that window. It appears in inverse video if the terminal supports that,
and contains text that starts like ‘-----Emacs: something ’. Its purpose is
to indicate what buffer is being displayed above it in the window; what
major and minor modes are in use; and whether the buffer contains unsaved
changes.

1.1 Point

Within Emacs, the terminal’s cursor shows the location at which editing
commands will take effect. This location is called point. Many Emacs com-
mands move point through the text, so that you can edit at different places
in it. You can also place point by clicking mouse button 1.

While the cursor appears to point at a character, you should think of
point as between two characters; it points before the character that appears
under the cursor. For example, if your text looks like ‘frob’ with the cursor
over the ‘b’, then point is between the ‘o’ and the ‘b’. If you insert the
character ‘!’ at that position, the result is ‘fro!b’, with point between the
‘!’ and the ‘b’. Thus, the cursor remains over the ‘b’, as before.

16 GNU Emacs Manual

Sometimes people speak of “the cursor” when they mean “point”, or
speak of commands that move point as “cursor motion” commands.

Terminals have only one cursor, and when output is in progress it must
appear where the typing is being done. This does not mean that point is
moving. It is only that Emacs has no way to show you the location of point
except when the terminal is idle.

If you are editing several files in Emacs, each in its own buffer, each
buffer has its own point location. A buffer that is not currently displayed
remembers where point is in case you display it again later.

When there are multiple windows in a frame, each window has its own
point location. The cursor shows the location of point in the selected window.
This also is how you can tell which window is selected. If the same buffer
appears in more than one window, each window has its own position for
point in that buffer.

When there are multiple frames, each frame can display one cursor. The
cursor in the selected frame is solid; the cursor in other frames is a hollow
box, and appears in the window that would be selected if you give the input
focus to that frame.

The term ‘point’ comes from the character ‘.’, which was the command in
TECO (the language in which the original Emacs was written) for accessing
the value now called ‘point’.

1.2 The Echo Area

The line at the bottom of the frame (below the mode line) is the echo
area. It is used to display small amounts of text for several purposes.

Echoing means displaying the characters that you type. Outside Emacs,
the operating system normally echoes all your input. Emacs handles echoing
differently.

Single-character commands do not echo in Emacs, and multi-character
commands echo only if you pause while typing them. As soon as you pause
for more than a second in the middle of a command, Emacs echoes all the
characters of the command so far. This is to prompt you for the rest of
the command. Once echoing has started, the rest of the command echoes
immediately as you type it. This behavior is designed to give confident
users fast response, while giving hesitant users maximum feedback. You can
change this behavior by setting a variable (see Section 11.7 [Display Vars],
page 82).

If a command cannot be executed, it may print an error message in the
echo area. Error messages are accompanied by a beep or by flashing the
screen. Also, any input you have typed ahead is thrown away when an error
happens.

Chapter 1: The Organization of the Screen 17

Some commands print informative messages in the echo area. These
messages look much like error messages, but they are not announced with
a beep and do not throw away input. Sometimes the message tells you
what the command has done, when this is not obvious from looking at the
text being edited. Sometimes the sole purpose of a command is to print a
message giving you specific information—for example, C-x = prints a message
describing the character position of point in the text and its current column
in the window. Commands that take a long time often display messages
ending in ‘...’ while they are working, and add ‘done’ at the end when they
are finished.

Echo area informative messages are saved in an editor buffer named
‘*Messages*’. (We have not explained buffers yet; see Chapter 15 [Buffers],
page 141, for more information about them.) If you miss a message that
appears briefly on the screen, you can switch to the ‘*Messages*’ buffer to
see it again. Successive progress messages are often collapsed into one.

The size of ‘*Messages*’ is limited to a certain number of lines. The
variable message-log-max specifies how many lines. Once the buffer has
that many lines, each line added at the end deletes one line from the begin-
ning. See Section 30.2 [Variables], page 373, for how to set variables such as
message-log-max.

The echo area is also used to display the minibuffer, a window that is
used for reading arguments to commands, such as the name of a file to be
edited. When the minibuffer is in use, the echo area begins with a prompt
string that usually ends with a colon; also, the cursor appears in that line
because it is the selected window. You can always get out of the minibuffer
by typing C-g. See Chapter 5 [Minibuffer], page 39.

1.3 The Mode Line

Each text window’s last line is a mode line which describes what is going
on in that window. When there is only one text window, the mode line
appears right above the echo area. The mode line is in inverse video if the
terminal supports that, it starts and ends with dashes, and it contains text
like ‘Emacs: something ’.

A few special editing modes, such as Dired and Rmail, display something
else in place of ‘Emacs: something ’. The rest of the mode line still has the
usual meaning.

Normally, the mode line looks like this:

--ch-Emacs: buf (major minor)--line--pos------

This gives information about the buffer being displayed in the window: the
buffer’s name, what major and minor modes are in use, whether the buffer’s

18 GNU Emacs Manual

text has been changed, and how far down the buffer you are currently look-
ing.

ch contains two stars ‘**’ if the text in the buffer has been edited (the
buffer is “modified”), or ‘--’ if the buffer has not been edited. For a read-only
buffer, it is ‘%*’ if the buffer is modified, and ‘%%’ otherwise.

buf is the name of the window’s buffer. In most cases this is the same as
the name of a file you are editing. See Chapter 15 [Buffers], page 141.

The buffer displayed in the selected window (the window that the cursor
is in) is also Emacs’s selected buffer, the one that editing takes place in.
When we speak of what some command does to “the buffer”, we are talking
about the currently selected buffer.

line is ‘L’ followed by the current line number of point. This is present
when Line Number mode is enabled (which it normally is). You can option-
ally display the current column number too, by turning on Column Number
mode (which is not enabled by default because it is somewhat slower). See
Section 11.6 [Optional Mode Line], page 81.

pos tells you whether there is additional text above the top of the window,
or below the bottom. If your buffer is small and it is all visible in the window,
pos is ‘All’. Otherwise, it is ‘Top’ if you are looking at the beginning of the
buffer, ‘Bot’ if you are looking at the end of the buffer, or ‘nn%’, where nn
is the percentage of the buffer above the top of the window.

major is the name of the major mode in effect in the buffer. At any time,
each buffer is in one and only one of the possible major modes. The ma-
jor modes available include Fundamental mode (the least specialized), Text
mode, Lisp mode, C mode, Texinfo mode, and many others. See Chapter 18
[Major Modes], page 173, for details of how the modes differ and how to
select one.

Some major modes display additional information after the major mode
name. For example, Rmail buffers display the current message number and
the total number of messages. Compilation buffers and Shell buffers display
the status of the subprocess.

minor is a list of some of the minor modes that are turned on at the
moment in the window’s chosen buffer. For example, ‘Fill’ means that
Auto Fill mode is on. ‘Abbrev’ means that Word Abbrev mode is on. ‘Ovwrt’
means that Overwrite mode is on. See Section 30.1 [Minor Modes], page 371,
for more information. ‘Narrow’ means that the buffer being displayed has
editing restricted to only a portion of its text. This is not really a minor
mode, but is like one. See Section 29.7 [Narrowing], page 362. ‘Def’ means
that a keyboard macro is being defined. See Section 30.3 [Keyboard Macros],
page 380.

In addition, if Emacs is currently inside a recursive editing level, square
brackets (‘[. . .]’) appear around the parentheses that surround the modes. If
Emacs is in one recursive editing level within another, double square brackets

Chapter 1: The Organization of the Screen 19

appear, and so on. Since recursive editing levels affect Emacs globally, not
just one buffer, the square brackets appear in every window’s mode line or
not in any of them. See Section 29.11 [Recursive Edit], page 365.

See Section 11.6 [Optional Mode Line], page 81, for features that add
other handy information to the mode line, such as the current line number
of point, the current time, and whether new mail for you has arrived.

20 GNU Emacs Manual

Chapter 2: Characters, Keys and Commands 21

2 Characters, Keys and Commands

This chapter explains the character sets used by Emacs for input com-
mands and for the contents of files, and also explains the concepts of keys and
commands which are fundamental for understanding how Emacs interprets
your keyboard and mouse input.

2.1 Kinds of User Input

GNU Emacs uses an extension of the ASCII character set for keyboard
input; it also accepts non-character input events including function keys and
mouse button actions.

ASCII consists of 128 character codes. Some of these codes are assigned
graphic symbols such as ‘a’ and ‘=’; the rest are control characters, such as
Control-a (usually written C-a for short). C-a gets its name from the fact
that you type it by holding down the 〈CTRL〉 key while pressing a.

Some control characters have special names, and special keys you can
type them with: for example, 〈RET〉, 〈TAB〉, 〈LFD〉, 〈DEL〉 and 〈ESC〉. The space
character is usually referred to below as 〈SPC〉, even though strictly speaking
it is a graphic character whose graphic happens to be blank.

On ASCII terminals, there are only 32 possible control characters. These
are the control variants of letters and ‘@[]\^_’. In addition, the shift key is
meaningless with control characters: C-a and C-A are the same character,
and Emacs cannot distinguish them.

But the Emacs character set has room for control variants of all char-
acters, and for distinguishing between C-a and C-A. X Windows makes it
possible to enter all these characters. For example, C-- (that’s Control-
Minus) and C-5 are meaningful Emacs commands under X.

Another Emacs character set extension is that characters have additional
modifier bits. Only one modifier bit is commonly used; it is called Meta.
Every character has a Meta variant; examples include Meta-a (normally
written M-a, for short), M-A (not the same character as M-a, but those two
characters normally have the same meaning in Emacs), M-〈RET〉, and M-
C-a. For reasons of tradition, we usually write C-M-a rather than M-C-a;
logically speaking, the order in which the modifier keys 〈CTRL〉 and 〈META〉

are mentioned does not matter.

Some terminals have a 〈META〉 key, and allow you to type Meta characters
by holding this key down. Thus, Meta-a is typed by holding down 〈META〉

and pressing a. The 〈META〉 key works much like the 〈SHIFT〉 key. Such a
key is not always labeled 〈META〉, however, as this function is often a special
option for a key with some other primary purpose.

22 GNU Emacs Manual

If there is no 〈META〉 key, you can still type Meta characters using two-
character sequences starting with 〈ESC〉. Thus, to enter M-a, you could type
〈ESC〉 a. To enter C-M-a, you would type 〈ESC〉 C-a. 〈ESC〉 is allowed on
terminals with 〈META〉 keys, too, in case you have formed a habit of using it.

X Windows provides several other modifier keys that can be applied to
any input character. These are called 〈SUPER〉, 〈HYPER〉 and 〈ALT〉. We write
‘s-’, ‘H-’ and ‘A-’ to say that a character uses these modifiers. Thus, s-
H-C-x is short for Super-Hyper-Control-x. Not all X terminals actually
provide keys for these modifier flags—in fact, many terminals have a key
labeled 〈ALT〉 which is really a 〈META〉 key. The standard key bindings of
Emacs do not include any characters with these modifiers. But you can
assign them meanings of your own by customizing Emacs.

Keyboard input includes keyboard keys that are not characters at all: for
example function keys and arrow keys. Mouse buttons are also outside the
gamut of characters. You can modify these events with the modifier keys
〈CONTROL〉, 〈META〉, 〈SUPER〉, 〈HYPER〉 and 〈ALT〉 like keyboard characters.

Input characters and non-character inputs are collectively called input
events. See section “Input Events” in The Emacs Lisp Manual, for more
information. If you are not doing Lisp programming, but simply want to
redefine the meaning of some characters or non-character events, see Chap-
ter 30 [Customization], page 371.

ASCII terminals cannot really send anything to the computer except
ASCII characters. These terminals use a sequence of characters to represent
each function key. But that is invisible to the Emacs user, because the
keyboard input routines recognize these special sequences and convert them
to function key events before any other part of Emacs gets to see them.

2.2 Keys

A key sequence (key, for short) is a sequence of input events that are
meaningful as a unit—as “a single command.” Some Emacs command se-
quences are just one character or one event; for example, just C-f is enough
to move forward one character. But Emacs also has commands that take
two or more events to invoke.

If a sequence of events is enough to invoke a command, it is a complete
key. Examples of complete keys include C-a, X, 〈RET〉, 〈NEXT〉 (a function
key), 〈DOWN〉 (an arrow key), C-x C-f and C-x 4 C-f. If it isn’t long enough
to be complete, we call it a prefix key. The above examples show that C-x
and C-x 4 are prefix keys. Every key sequence is either a complete key or a
prefix key.

Most single characters constitute complete keys in the standard Emacs
command bindings. A few of them are prefix keys. A prefix key combines

Chapter 2: Characters, Keys and Commands 23

with the following input event to make a longer key sequence, which may
itself be complete or a prefix. For example, C-x is a prefix key, so C-x and
the next input event combine to make a two-character key sequence. Most
of these key sequences are complete keys, including C-x C-f and C-x b. A
few, such as C-x 4 and C-x r, are themselves prefix keys that lead to three-
character key sequences. There’s no limit to the length of a key sequence,
but in practice people rarely use sequences longer than four events.

By contrast, you can’t add more events onto a complete key. For ex-
ample, the two-character sequence C-f C-k is not a key, because the C-f
is a complete key in itself. It’s impossible to give C-f C-k an independent
meaning as a command. C-f C-k is two key sequences, not one.

All told, the prefix keys in Emacs are C-c, C-h, C-x, C-x C-a, C-x n,
C-x r, C-x v, C-x 4, C-x 5, C-x 6, and 〈ESC〉. But this is not cast in concrete;
it is just a matter of Emacs’s standard key bindings. If you customize Emacs,
you can make new prefix keys, or eliminate these. See Section 30.4 [Key
Bindings], page 383.

If you do make or eliminate prefix keys, that changes the set of possible
key sequences. For example, if you redefine C-f as a prefix, C-f C-k au-
tomatically becomes a key (complete, unless you define it too as a prefix).
Conversely, if you remove the prefix definition of C-x 4, then C-x 4 f (or C-x
4 anything) is no longer a key.

Typing the help character (C-h or 〈F1〉) after a prefix character displays
a list of the commands starting with that prefix. There are a few prefix
characters for which C-h does not work—for historical reasons, they have
other meanings for C-h which are not easy to change. But 〈F1〉 should work
for all prefix characters.

2.3 Keys and Commands

This manual is full of passages that tell you what particular keys do.
But Emacs does not assign meanings to keys directly. Instead, Emacs as-
signs meanings to named commands, and then gives keys their meanings by
binding them to commands.

Every command has a name chosen by a programmer. The name is
usually made of a few English words separated by dashes; for example, next-
line or forward-word. A command also has a function definition which is
a Lisp program; this is what makes the command do what it does. In Emacs
Lisp, a command is actually a special kind of Lisp function; one which
specifies how to read arguments for it and call it interactively. For more
information on commands and functions, see section “What Is a Function”
in The Emacs Lisp Reference Manual. (The definition we use in this manual
is simplified slightly.)

24 GNU Emacs Manual

The bindings between keys and commands are recorded in various tables
called keymaps. See Section 30.4.1 [Keymaps], page 384.

When we say that “C-n moves down vertically one line” we are gloss-
ing over a distinction that is irrelevant in ordinary use but is vital in un-
derstanding how to customize Emacs. It is the command next-line that
is programmed to move down vertically. C-n has this effect because it is
bound to that command. If you rebind C-n to the command forward-word
then C-n will move forward by words instead. Rebinding keys is a common
method of customization.

In the rest of this manual, we usually ignore this subtlety to keep things
simple. To give the information needed for customization, we state the name
of the command which really does the work in parentheses after mentioning
the key that runs it. For example, we will say that “The command C-n
(next-line) moves point vertically down,” meaning that next-line is a
command that moves vertically down and C-n is a key that is standardly
bound to it.

While we are on the subject of information for customization only, it’s a
good time to tell you about variables. Often the description of a command
will say, “To change this, set the variable mumble-foo.” A variable is a
name used to remember a value. Most of the variables documented in this
manual exist just to facilitate customization: some command or other part
of Emacs examines the variable and behaves differently according to the
value that you set. Until you are interested in customizing, you can ignore
the information about variables. When you are ready to be interested, read
the basic information on variables, and then the information on individual
variables will make sense. See Section 30.2 [Variables], page 373.

2.4 Character Set for Text

Emacs buffers use an 8-bit character set, because bytes have 8 bits. ASCII
graphic characters in Emacs buffers are displayed with their graphics. The
newline character (which has the same character code as 〈LFD〉) is displayed
by starting a new line. The tab character is displayed by moving to the
next tab stop column (normally every 8 columns). Other control characters
are displayed as a caret (‘^’) followed by the non-control version of the
character; thus, C-a is displayed as ‘^A’. Non-ASCII characters 128 and up
are displayed with octal escape sequences; thus, character code 243 (octal)
is displayed as ‘\243’.

You can customize the display of these character codes (or ASCII char-
acters) by creating a display table. See section “Display Tables” in The
Emacs Lisp Reference Manual. This is useful for editing files that use 8-bit
European character sets. See Section 11.4 [European Display], page 79.

Chapter 3: Entering and Exiting Emacs 25

3 Entering and Exiting Emacs

The usual way to invoke Emacs is with the shell command ‘emacs’. Emacs
clears the screen and then displays an initial help message and copyright
notice. Some operating systems discard all type-ahead when Emacs starts
up; they give Emacs no way to prevent this. Therefore, it is advisable to
wait until Emacs clears the screen before typing your first editing command.

If you run Emacs from a shell window under the X Window System, run
it in the background with ‘emacs&’. This way, Emacs does not tie up the
shell window, so you can use that to run other shell commands while Emacs
operates its own X windows. You can begin typing Emacs commands as
soon as you direct your keyboard input to the Emacs frame.

When Emacs starts up, it makes a buffer named ‘*scratch*’. That’s the
buffer you start out in. The ‘*scratch*’ buffer uses Lisp Interaction mode;
you can use it to type Lisp expressions and evaluate them, or you can ignore
that capability and simply doodle. (You can specify a different major mode
for this buffer by setting the variable initial-major-mode in your init file.
See Section 30.7 [Init File], page 395.)

It is possible to specify files to be visited, Lisp files to be loaded, and
functions to be called, by giving Emacs arguments in the shell command
line. See Appendix A [Command Arguments], page 417. But we don’t
recommend doing this. The feature exists mainly for compatibility with
other editors.

Many other editors are designed to be started afresh each time you want
to edit. You edit one file and then exit the editor. The next time you want
to edit either another file or the same one, you must run the editor again.
With these editors, it makes sense to use a command line argument to say
which file to edit.

But starting a new Emacs each time you want to edit a different file does
not make sense. For one thing, this would be annoyingly slow. For another,
this would fail to take advantage of Emacs’s ability to visit more than one
file in a single editing session. And it would lose the other accumulated
context, such as registers, undo history, and the mark ring.

The recommended way to use GNU Emacs is to start it only once, just
after you log in, and do all your editing in the same Emacs session. Each
time you want to edit a different file, you visit it with the existing Emacs,
which eventually comes to have many files in it ready for editing. Usually
you do not kill the Emacs until you are about to log out. See Chapter 14
[Files], page 107, for more information on visiting more than one file.

3.1 Exiting Emacs

26 GNU Emacs Manual

There are two commands for exiting Emacs because there are two kinds
of exiting: suspending Emacs and killing Emacs.

Suspending means stopping Emacs temporarily and returning control to
its parent process (usually a shell), allowing you to resume editing later in
the same Emacs job, with the same buffers, same kill ring, same undo history,
and so on. This is the usual way to exit.

Killing Emacs means destroying the Emacs job. You can run Emacs
again later, but you will get a fresh Emacs; there is no way to resume the
same editing session after it has been killed.

C-z Suspend Emacs (suspend-emacs) or iconify a frame (iconify-
or-deiconify-frame).

C-x C-c Kill Emacs (save-buffers-kill-emacs).

To suspend Emacs, type C-z (suspend-emacs). This takes you back to
the shell from which you invoked Emacs. You can resume Emacs with the
shell command ‘%emacs’ in most common shells.

On systems that do not support suspending programs, C-z starts an
inferior shell that communicates directly with the terminal. Emacs waits
until you exit the subshell. (The way to do that is probably with C-d or
‘exit’, but it depends on which shell you use.) The only way on these
systems to get back to the shell from which Emacs was run (to log out, for
example) is to kill Emacs.

Suspending also fails if you run Emacs under a shell that doesn’t support
suspending programs, even if the system itself does support it. In such a
case, you can set the variable cannot-suspend to a non-nil value to force
C-z to start an inferior shell. (One might also describe Emacs’s parent shell
as “inferior” for failing to support job control properly, but that is a matter
of taste.)

When Emacs communicates directly with an X server and creates its own
dedicated X windows, C-z has a different meaning. Suspending an applica-
tions that uses its own X windows is not meaningful or useful. Instead, C-z
runs the command iconify-or-deiconify-frame, which temporarily closes
up the selected Emacs frame (see Chapter 17 [Frames], page 155). The way
to get back to a shell window is with the window manager.

To kill Emacs, type C-x C-c (save-buffers-kill-emacs). A two-
character key is used for this to make it harder to type. This command first
offers to save any modified file-visiting buffers. If you do not save them all,
it asks for reconfirmation with yes before killing Emacs, since any changes
not saved will be lost forever. Also, if any subprocesses are still running,
C-x C-c asks for confirmation about them, since killing Emacs will kill the
subprocesses immediately.

Chapter 3: Entering and Exiting Emacs 27

There is no way to restart an Emacs session once you have killed it. You
can, however, arrange for Emacs to record certain session information, such
as which files are visited, when you kill it, so that the next time you restart
Emacs it will try to visit the same files and so on. See Section 29.10 [Saving
Emacs Sessions], page 364.

The operating system usually listens for certain special characters whose
meaning is to kill or suspend the program you are running. This operating
system feature is turned off while you are in Emacs. The meanings of
C-z and C-x C-c as keys in Emacs were inspired by the use of C-z and
C-c on several operating systems as the characters for stopping or killing
a program, but that is their only relationship with the operating system.
You can customize these keys to run any commands of your choice (see
Section 30.4.1 [Keymaps], page 384).

28 GNU Emacs Manual

Chapter 4: Basic Editing Commands 29

4 Basic Editing Commands

We now give the basics of how to enter text, make corrections, and save
the text in a file. If this material is new to you, you might learn it more
easily by running the Emacs learn-by-doing tutorial. To use the tutorial,
run Emacs and type Control-h t (help-with-tutorial).

To clear the screen and redisplay, type C-l (recenter).

4.1 Inserting Text

To insert printing characters into the text you are editing, just type them.
This inserts the characters you type into the buffer at the cursor (that is, at
point; see Section 1.1 [Point], page 15). The cursor moves forward, and any
text after the cursor moves forward too. If the text in the buffer is ‘FOOBAR’,
with the cursor before the ‘B’, then if you type XX, you get ‘FOOXXBAR’, with
the cursor still before the ‘B’.

To delete text you have just inserted, use 〈DEL〉. 〈DEL〉 deletes the character
before the cursor (not the one that the cursor is on top of or under; that is
the character after the cursor). The cursor and all characters after it move
backwards. Therefore, if you type a printing character and then type 〈DEL〉,
they cancel out.

To end a line and start typing a new one, type 〈RET〉. This inserts a
newline character in the buffer. If point is in the middle of a line, 〈RET〉

splits the line. Typing 〈DEL〉 when the cursor is at the beginning of a line
deletes the preceding newline, thus joining the line with the preceding line.

Emacs can split lines automatically when they become too long, if you
turn on a special minor mode called Auto Fill mode. See Section 20.5 [Fill-
ing], page 186, for how to use Auto Fill mode.

If you prefer to have text characters replace (overwrite) existing text
rather than shove it to the right, you can enable Overwrite mode, a minor
mode. See Section 30.1 [Minor Modes], page 371.

Direct insertion works for printing characters and 〈SPC〉, but other char-
acters act as editing commands and do not insert themselves. If you need
to insert a control character or a character whose code is above 200 octal,
you must quote it by typing the character Control-q (quoted-insert) first.
(This character’s name is normally written C-q for short.) There are two
ways to use C-q:

• C-q followed by any non-graphic character (even C-g) inserts that char-
acter.

• C-q followed by three octal digits inserts the character with the specified
character code.

30 GNU Emacs Manual

A numeric argument to C-q specifies how many copies of the quoted character
should be inserted (see Section 4.10 [Arguments], page 37).

Customization information: 〈DEL〉 in most modes runs the command
delete-backward-char; 〈RET〉 runs the command newline, and self-
inserting printing characters run the command self-insert, which inserts
whatever character was typed to invoke it. Some major modes rebind 〈DEL〉

to other commands.

4.2 Changing the Location of Point

To do more than insert characters, you have to know how to move point
(see Section 1.1 [Point], page 15). The simplest way to do this is with arrow
keys, or by clicking the left mouse button where you want to move to.

There are also control and meta characters for cursor motion. Some are
equivalent to the arrow keys (these date back to the days before terminals
had arrow keys, and are usable on terminals which don’t have them). Others
do more sophisticated things.

C-a Move to the beginning of the line (beginning-of-line).

C-e Move to the end of the line (end-of-line).

C-f Move forward one character (forward-char).

C-b Move backward one character (backward-char).

M-f Move forward one word (forward-word).

M-b Move backward one word (backward-word).

C-n Move down one line, vertically (next-line). This command
attempts to keep the horizontal position unchanged, so if you
start in the middle of one line, you end in the middle of the
next. When on the last line of text, C-n creates a new line and
moves onto it.

C-p Move up one line, vertically (previous-line).

M-r Move point to left margin, vertically centered in the window
(move-to-window-line). Text does not move on the screen.

A numeric argument says which screen line to place point on. It
counts screen lines down from the top of the window (zero for
the top line). A negative argument counts lines from the bottom
(−1 for the bottom line).

M-< Move to the top of the buffer (beginning-of-buffer). With
numeric argument n, move to n/10 of the way from the top.
See Section 4.10 [Arguments], page 37, for more information on
numeric arguments.

Chapter 4: Basic Editing Commands 31

M-> Move to the end of the buffer (end-of-buffer).

M-x goto-char
Read a number n and move point to character number n. Posi-
tion 1 is the beginning of the buffer.

M-x goto-line
Read a number n and move point to line number n. Line 1 is
the beginning of the buffer.

C-x C-n Use the current column of point as the semipermanent goal col-
umn for C-n and C-p (set-goal-column). Henceforth, those
commands always move to this column in each line moved into,
or as close as possible given the contents of the line. This goal
column remains in effect until canceled.

C-u C-x C-n
Cancel the goal column. Henceforth, C-n and C-p once again
try to stick to a fixed horizontal position, as usual.

If you set the variable track-eol to a non-nil value, then C-n and C-
p when at the end of the starting line move to the end of another line.
Normally, track-eol is nil. See Section 30.2 [Variables], page 373, for how
to set variables such as track-eol.

Normally, C-n on the last line of a buffer appends a newline to it. If the
variable next-line-add-newlines is nil, then C-n gets an error instead
(like C-p on the first line).

4.3 Erasing Text

〈DEL〉 Delete the character before point (delete-backward-char).

C-d Delete the character after point (delete-char).

C-k Kill to the end of the line (kill-line).

M-d Kill forward to the end of the next word (kill-word).

M-〈DEL〉 Kill back to the beginning of the previous word (backward-
kill-word).

You already know about the 〈DEL〉 key which deletes the character before
point (that is, before the cursor). Another key, Control-d (C-d for short),
deletes the character after point (that is, the character that the cursor is
on). This shifts the rest of the text on the line to the left. If you type C-d
at the end of a line, it joins together that line and the next line.

To erase a larger amount of text, use the C-k key, which kills a line at
a time. If you type C-k at the beginning or middle of a line, it kills all the

32 GNU Emacs Manual

text up to the end of the line. If you type C-k at the end of a line, it joins
that line and the next line.

See Section 9.1 [Killing], page 63, for more flexible ways of killing text.

4.4 Undoing Changes

You can undo all the recent changes in the buffer text, up to a certain
point. Each buffer records changes individually, and the undo command
always applies to the current buffer. Usually each editing command makes
a separate entry in the undo records, but some commands such as query-
replace make many entries, and very simple commands such as self-inserting
characters are often grouped to make undoing less tedious.

C-x u Undo one batch of changes—usually, one command worth
(undo).

C-_ The same.

The command C-x u or C-_ is how you undo. The first time you give
this command, it undoes the last change. Point moves back to where it was
before the command that made the change.

Consecutive repetitions of C-_ or C-x u undo earlier and earlier changes,
back to the limit of the undo information available. If all recorded changes
have already been undone, the undo command prints an error message and
does nothing.

Any command other than an undo command breaks the sequence of undo
commands. Starting from that moment, the previous undo commands be-
come ordinary changes that you can undo. Thus, to redo changes you have
undone, type C-f or any other command that will harmlessly break the
sequence of undoing, then type more undo commands.

If you notice that a buffer has been modified accidentally, the easiest way
to recover is to type C-_ repeatedly until the stars disappear from the front
of the mode line. At this time, all the modifications you made have been
canceled. Whenever an undo command makes the stars disappear from the
mode line, it means that the buffer contents are the same as they were when
the file was last read in or saved.

If you do not remember whether you changed the buffer deliberately,
type C-_ once. When you see the last change you made undone, you will see
whether it was an intentional change. If it was an accident, leave it undone.
If it was deliberate, redo the change as described above.

Not all buffers record undo information. Buffers whose names start with
spaces don’t; these buffers are used internally by Emacs and its extensions
to hold text that users don’t normally look at or edit.

Chapter 4: Basic Editing Commands 33

You cannot undo mere cursor motion; only changes in the buffer contents
save undo information. However, some cursor motion commands set the
mark, so if you use these commands from time to time, you can move back
to the neighborhoods you have moved through by popping the mark ring
(see Section 8.5 [Mark Ring], page 61).

When the undo information for a buffer becomes too large, Emacs dis-
cards the oldest undo information from time to time (during garbage collec-
tion). You can specify how much undo information to keep by setting two
variables: undo-limit and undo-strong-limit. Their values are expressed
in units of bytes of space.

The variable undo-limit sets a soft limit: Emacs keeps undo data for
enough commands to reach this size, and perhaps exceed it, but does not
keep data for any earlier commands beyond that. Its default value is 20000.
The variable undo-strong-limit sets a stricter limit: the command which
pushes the size past this amount is itself forgotten. Its default value is 30000.

Regardless of the values of those variables, the most recent change is never
discarded, so there is no danger that garbage collection occurring right after
an unintentional large change might prevent you from undoing it.

The reason the undo command has two keys, C-x u and C-_, set up to
run it is that it is worthy of a single-character key, but on some keyboards
it is not obvious how to type C-_. C-x u is an alternative you can type
straightforwardly on any terminal.

4.5 Files

The commands described above are sufficient for creating and altering
text in an Emacs buffer; the more advanced Emacs commands just make
things easier. But to keep any text permanently you must put it in a file.
Files are named units of text which are stored by the operating system for
you to retrieve later by name. To look at or use the contents of a file in any
way, including editing the file with Emacs, you must specify the file name.

Consider a file named ‘/usr/rms/foo.c’. In Emacs, to begin editing this
file, type

C-x C-f /usr/rms/foo.c 〈RET〉

Here the file name is given as an argument to the command C-x C-f (find-
file). That command uses the minibuffer to read the argument, and you
type 〈RET〉 to terminate the argument (see Chapter 5 [Minibuffer], page 39).

Emacs obeys the command by visiting the file: creating a buffer, copying
the contents of the file into the buffer, and then displaying the buffer for you
to edit. If you alter the text, you can save the new text in the file by typing
C-x C-s (save-buffer). This makes the changes permanent by copying the

34 GNU Emacs Manual

altered buffer contents back into the file ‘/usr/rms/foo.c’. Until you save,
the changes exist only inside Emacs, and the file ‘foo.c’ is unaltered.

To create a file, just visit the file with C-x C-f as if it already existed.
This creates an empty buffer in which you can insert the text you want to
put in the file. The file is actually created when you save this buffer with
C-x C-s.

Of course, there is a lot more to learn about using files. See Chapter 14
[Files], page 107.

4.6 Help

If you forget what a key does, you can find out with the Help character,
which is C-h (or 〈F1〉, which is an alias for C-h). Type C-h k followed by
the key you want to know about; for example, C-h k C-n tells you all about
what C-n does. C-h is a prefix key; C-h k is just one of its subcommands (the
command describe-key). The other subcommands of C-h provide different
kinds of help. Type C-h twice to get a description of all the help facilities.
See Chapter 7 [Help], page 49.

4.7 Blank Lines

Here are special commands and techniques for putting in and taking out
blank lines.

C-o Insert one or more blank lines after the cursor (open-line).

C-x C-o Delete all but one of many consecutive blank lines (delete-
blank-lines).

When you want to insert a new line of text before an existing line, you
can do it by typing the new line of text, followed by 〈RET〉. However, it
may be easier to see what you are doing if you first make a blank line and
then insert the desired text into it. This is easy to do using the key C-o
(open-line), which inserts a newline after point but leaves point in front of
the newline. After C-o, type the text for the new line. C-o F O O has the
same effect as F O O 〈RET〉, except for the final location of point.

You can make several blank lines by typing C-o several times, or by
giving it a numeric argument to tell it how many blank lines to make. See
Section 4.10 [Arguments], page 37, for how. If you have a fill prefix, then
C-o command inserts the fill prefix on the new line, when you use it at the
beginning of a line. See Section 20.5.3 [Fill Prefix], page 189.

The easy way to get rid of extra blank lines is with the command C-x
C-o (delete-blank-lines). C-x C-o in a run of several blank lines deletes

Chapter 4: Basic Editing Commands 35

all but one of them. C-x C-o on a solitary blank line deletes that blank line.
When point is on a nonblank line, C-x C-o deletes any blank lines following
that nonblank line.

4.8 Continuation Lines

If you add too many characters to one line without breaking it with 〈RET〉,
the line will grow to occupy two (or more) lines on the screen, with a ‘\’
at the extreme right margin of all but the last of them. The ‘\’ says that
the following screen line is not really a distinct line in the text, but just the
continuation of a line too long to fit the screen. Continuation is also called
line wrapping.

Sometimes it is nice to have Emacs insert newlines automatically when a
line gets too long. Continuation on the screen does not do that. Use Auto
Fill mode (see Section 20.5 [Filling], page 186) if that’s what you want.

As an alternative to continuation, Emacs can display long lines by trun-
cation. This means that all the characters that do not fit in the width of
the screen or window do not appear at all. They remain in the buffer, tem-
porarily invisible. ‘$’ is used in the last column instead of ‘\’ to inform you
that truncation is in effect.

Truncation instead of continuation happens whenever horizontal scrolling
is in use, and optionally in all side-by-side windows (see Chapter 16 [Win-
dows], page 149). You can enable truncation for a particular buffer by setting
the variable truncate-lines to non-nil in that buffer. (See Section 30.2
[Variables], page 373.) Altering the value of truncate-lines makes it local
to the current buffer; until that time, the default value is in effect. The
default is initially nil. See Section 30.2.4 [Locals], page 376.

See Section 11.7 [Display Vars], page 82, for additional variables that
affect how text is displayed.

4.9 Cursor Position Information

Here are commands to get information about the size and position of
parts of the buffer, and to count lines.

M-x what-page
Print page number of point, and line number within page.

M-x what-line
Print line number of point in the buffer.

M-x line-number-mode
Toggle automatic display of current line number.

36 GNU Emacs Manual

M-= Print number of lines in the current region (count-lines-
region). See Chapter 8 [Mark], page 57, for information about
the region.

C-x = Print character code of character after point, character position
of point, and column of point (what-cursor-position).

There are two commands for working with line numbers. M-x what-line
computes the current line number and displays it in the echo area. To go to
a given line by number, use M-x goto-line; it prompts you for the number.
These line numbers count from one at the beginning of the buffer.

You can also see the current line number in the mode line; See Section 1.3
[Mode Line], page 17. If you narrow the buffer, then the line number in the
mode line is relative to the accessible portion (see Section 29.7 [Narrowing],
page 362). By contrast, what-line shows both the line number relative to
the narrowed region and the line number relative to the whole buffer.

By contrast, M-x what-page counts pages from the beginning of the file,
and counts lines within the page, printing both numbers. See Section 20.4
[Pages], page 185.

While on this subject, we might as well mention M-= (count-lines-
region), which prints the number of lines in the region (see Chapter 8
[Mark], page 57). See Section 20.4 [Pages], page 185, for the command
C-x l which counts the lines in the current page.

The command C-x = (what-cursor-position) can be used to find out
the column that the cursor is in, and other miscellaneous information about
point. It prints a line in the echo area that looks like this:

Char: c (0143, 99, 0x63) point=21044 of 26883(78%) column 53

(In fact, this is the output produced when point is before the ‘column’ in
the example.)

The two values after ‘Char:’ describe the character that follows point,
first by showing it and second by giving its octal character code.

‘point=’ is followed by the position of point expressed as a character
count. The front of the buffer counts as position 1, one character later as
2, and so on. The next, larger number is the total number of characters
in the buffer. Afterward in parentheses comes the position expressed as a
percentage of the total size.

‘column’ is followed by the horizontal position of point, in columns from
the left edge of the window.

If the buffer has been narrowed, making some of the text at the beginning
and the end temporarily inaccessible, C-x = prints additional text describing
the currently accessible range. For example, it might display this:

Char: C (0103, 67, 0x43) point=22015 of 26889(82%) <21660 - 22099> col-

umn 0

Chapter 4: Basic Editing Commands 37

where the two extra numbers give the smallest and largest character position
that point is allowed to assume. The characters between those two positions
are the accessible ones. See Section 29.7 [Narrowing], page 362.

If point is at the end of the buffer (or the end of the accessible part),
C-x = omits any description of the character after point. The output might
look like this:

point=26957 of 26956(100%) column 0

4.10 Numeric Arguments

In mathematics and computer usage, the word argument means “data
provided to a function or operation.” You can give any Emacs command a
numeric argument (also called a prefix argument). Some commands interpret
the argument as a repetition count. For example, C-f with an argument of
ten moves forward ten characters instead of one. With these commands, no
argument is equivalent to an argument of one. Negative arguments tell most
such commands to move or act in the opposite direction.

If your terminal keyboard has a 〈META〉 key, the easiest way to specify a
numeric argument is to type digits and/or a minus sign while holding down
the the 〈META〉 key. For example,

M-5 C-n

would move down five lines. The characters Meta-1, Meta-2, and so on, as
well as Meta--, do this because they are keys bound to commands (digit-
argument and negative-argument) that are defined to contribute to an
argument for the next command. Digits and - modified with Control, or
Control and Meta, also specify numeric arguments.

Another way of specifying an argument is to use the C-u (universal-
argument) command followed by the digits of the argument. With C-u, you
can type the argument digits without holding down modifier keys; C-u works
on all terminals. To type a negative argument, type a minus sign after C-u.
Just a minus sign without digits normally means −1.

C-u followed by a character which is neither a digit nor a minus sign has
the special meaning of “multiply by four”. It multiplies the argument for the
next command by four. C-u twice multiplies it by sixteen. Thus, C-u C-u
C-f moves forward sixteen characters. This is a good way to move forward
“fast”, since it moves about 1/5 of a line in the usual size screen. Other
useful combinations are C-u C-n, C-u C-u C-n (move down a good fraction
of a screen), C-u C-u C-o (make “a lot” of blank lines), and C-u C-k (kill
four lines).

Some commands care only about whether there is an argument, and not
about its value. For example, the command M-q (fill-paragraph) with
no argument fills text; with an argument, it justifies the text as well. (See

38 GNU Emacs Manual

Section 20.5 [Filling], page 186, for more information on M-q.) Plain C-u is
a handy way of providing an argument for such commands.

Some commands use the value of the argument as a repeat count, but do
something peculiar when there is no argument. For example, the command
C-k (kill-line) with argument n kills n lines, including their terminating
newlines. But C-k with no argument is special: it kills the text up to the
next newline, or, if point is right at the end of the line, it kills the newline
itself. Thus, two C-k commands with no arguments can kill a nonblank line,
just like C-k with an argument of one. (See Section 9.1 [Killing], page 63,
for more information on C-k.)

A few commands treat a plain C-u differently from an ordinary argument.
A few others may treat an argument of just a minus sign differently from
an argument of −1. These unusual cases are described when they come up;
they are always for reasons of convenience of use of the individual command.

You can use a numeric argument to insert multiple copies of a character.
This is straightforward unless the character is a digit; for example, C-u 6 4
a inserts 64 copies of the character ‘a’. But this does not work for inserting
digits; C-u 6 4 1 specifies an argument of 641, rather than inserting anything.
To separate the digit to insert from the argument, type another C-u; for
example, C-u 6 4 C-u 1 does insert 64 copies of the character ‘1’.

We use the term “prefix argument” as well as “numeric argument” to em-
phasize that you type the argument before the command, and to distinguish
these arguments from minibuffer arguments that come after the command.

Chapter 5: The Minibuffer 39

5 The Minibuffer

The minibuffer is the facility used by Emacs commands to read arguments
more complicated than a single number. Minibuffer arguments can be file
names, buffer names, Lisp function names, Emacs command names, Lisp
expressions, and many other things, depending on the command reading the
argument. You can use the usual Emacs editing commands in the minibuffer
to edit the argument text.

When the minibuffer is in use, it appears in the echo area, and the ter-
minal’s cursor moves there. The beginning of the minibuffer line displays a
prompt which says what kind of input you should supply and how it will be
used. Often this prompt is derived from the name of the command that the
argument is for. The prompt normally ends with a colon.

Sometimes a default argument appears in parentheses after the colon;
it too is part of the prompt. The default will be used as the argument
value if you enter an empty argument (e.g., just type 〈RET〉). For example,
commands that read buffer names always show a default, which is the name
of the buffer that will be used if you type just 〈RET〉.

The simplest way to enter a minibuffer argument is to type the text you
want, terminated by 〈RET〉 which exits the minibuffer. You can cancel the
command that wants the argument, and get out of the minibuffer, by typing
C-g.

Since the minibuffer uses the screen space of the echo area, it can conflict
with other ways Emacs customarily uses the echo area. Here is how Emacs
handles such conflicts:

• If a command gets an error while you are in the minibuffer, this does
not cancel the minibuffer. However, the echo area is needed for the
error message and therefore the minibuffer itself is hidden for a while.
It comes back after a few seconds, or as soon as you type anything.

• If in the minibuffer you use a command whose purpose is to print a
message in the echo area, such as C-x =, the message is printed normally,
and the minibuffer is hidden for a while. It comes back after a few
seconds, or as soon as you type anything.

• Echoing of keystrokes does not take place while the minibuffer is in use.

5.1 Minibuffers for File Names

Sometimes the minibuffer starts out with text in it. For example, when
you are supposed to give a file name, the minibuffer starts out containing
the default directory, which ends with a slash. This is to inform you which
directory the file will be found in if you do not specify a directory.

40 GNU Emacs Manual

For example, the minibuffer might start out with these contents:

Find File: /u2/emacs/src/

where ‘Find File: ’ is the prompt. Typing buffer.c specifies the file
‘/u2/emacs/src/buffer.c’. To find files in nearby directories, use
..; thus, if you type ../lisp/simple.el, you will get the file named
‘/u2/emacs/lisp/simple.el’. Alternatively, you can kill with M-〈DEL〉 the
directory names you don’t want (see Section 20.1 [Words], page 181).

If you don’t want any of the default, you can kill it with C-a C-k. But you
don’t need to kill the default; you can simply ignore it. Insert an absolute file
name, one starting with a slash or a tilde, after the default directory. For
example, to specify the file ‘/etc/termcap’, just insert that name, giving
these minibuffer contents:

Find File: /u2/emacs/src//etc/termcap

Two slashes in a row are not normally meaningful in a file name, but they are
allowed in GNU Emacs. They mean, “ignore everything before the second
slash in the pair.” Thus, ‘/u2/emacs/src/’ is ignored in the example above,
and you get the file ‘/etc/termcap’.

If you set insert-default-directory to nil, the default directory is
not inserted in the minibuffer. This way, the minibuffer starts out empty.
But the name you type, if relative, is still interpreted with respect to the
same default directory.

5.2 Editing in the Minibuffer

The minibuffer is an Emacs buffer (albeit a peculiar one), and the usual
Emacs commands are available for editing the text of an argument you are
entering.

Since 〈RET〉 in the minibuffer is defined to exit the minibuffer, you can’t
use it to insert a newline in the minibuffer. To do that, type C-o or C-q
〈LFD〉. (Recall that a newline is really the 〈LFD〉 character.)

The minibuffer has its own window which always has space on the screen
but acts as if it were not there when the minibuffer is not in use. When
the minibuffer is in use, its window is just like the others; you can switch to
another window with C-x o, edit text in other windows and perhaps even
visit more files, before returning to the minibuffer to submit the argument.
You can kill text in another window, return to the minibuffer window, and
then yank the text to use it in the argument. See Chapter 16 [Windows],
page 149.

There are some restrictions on the use of the minibuffer window, how-
ever. You cannot switch buffers in it—the minibuffer and its window are
permanently attached. Also, you cannot split or kill the minibuffer window.
But you can make it taller in the normal fashion with C-x ^. If you enable

Chapter 5: The Minibuffer 41

Resize-Minibuffer mode, then the minibuffer window expands vertically as
necessary to hold the text that you put in the minibuffer. Use M-x resize-
minibuffer-mode to enable or disable this minor mode (see Section 30.1
[Minor Modes], page 371).

If while in the minibuffer you issue a command that displays help text of
any sort in another window, you can use the C-M-v command while in the
minibuffer to scroll the help text. This lasts until you exit the minibuffer.
This feature is especially useful if a completing minibuffer gives you a list of
possible completions. See Section 16.3 [Other Window], page 150.

Emacs normally disallows most commands that use the minibuffer while
the minibuffer is selected. This rule is to prevent recursive minibuffers from
confusing novice users. If you want to be able to use such commands in the
minibuffer, set the variable enable-recursive-minibuffers to a non-nil
value.

5.3 Completion

For certain kinds of arguments, you can use completion to enter the
argument value. Completion means that you type part of the argument,
then Emacs visibly fills in the rest, or as much as can be determined from
the part you have typed.

When completion is available, certain keys—〈TAB〉, 〈RET〉, and 〈SPC〉—are
rebound to complete the text present in the minibuffer into a longer string
that it stands for, by matching it against a set of completion alternatives
provided by the command reading the argument. ? is defined to display a
list of possible completions of what you have inserted.

For example, when M-x uses the minibuffer to read the name of a com-
mand, it provides a list of all available Emacs command names to complete
against. The completion keys match the text in the minibuffer against all
the command names, find any additional name characters implied by the
ones already present in the minibuffer, and add those characters to the ones
you have given. This is what makes it possible to type M-x ins 〈SPC〉 b 〈RET〉

instead of M-x insert-buffer 〈RET〉 (for example).

Case is normally significant in completion, because it is significant in most
of the names that you can complete (buffer names, file names and command
names). Thus, ‘fo’ does not complete to ‘Foo’. Completion does ignore case
distinctions for certain arguments in which case does not matter.

5.3.1 Completion Example

A concrete example may help here. If you type M-x au 〈TAB〉, the 〈TAB〉

looks for alternatives (in this case, command names) that start with ‘au’.

42 GNU Emacs Manual

There are only two: auto-fill-mode and auto-save-mode. These are the
same as far as auto-, so the ‘au’ in the minibuffer changes to ‘auto-’.

If you type 〈TAB〉 again immediately, there are multiple possibilities for
the very next character—it could be ‘s’ or ‘f’—so no more characters are
added; instead, 〈TAB〉 displays a list of all possible completions in another
window.

If you go on to type f 〈TAB〉, this 〈TAB〉 sees ‘auto-f’. The only command
name starting this way is auto-fill-mode, so completion fills in the rest of
that. You now have ‘auto-fill-mode’ in the minibuffer after typing just au
〈TAB〉 f 〈TAB〉. Note that 〈TAB〉 has this effect because in the minibuffer it is
bound to the command minibuffer-complete when completion is available.

5.3.2 Completion Commands

Here is a list of the completion commands defined in the minibuffer when
completion is available.

〈TAB〉 Complete the text in the minibuffer as much as possible
(minibuffer-complete).

〈SPC〉 Complete the minibuffer text, but don’t go beyond one word
(minibuffer-complete-word).

〈RET〉 Submit the text in the minibuffer as the argument, possibly com-
pleting first as described below (minibuffer-complete-and-
exit).

? Print a list of all possible completions of the text in the mini-
buffer (minibuffer-list-completions).

〈SPC〉 completes much like 〈TAB〉, but never goes beyond the next hyphen
or space. If you have ‘auto-f’ in the minibuffer and type 〈SPC〉, it finds that
the completion is ‘auto-fill-mode’, but it stops completing after ‘fill-’.
This gives ‘auto-fill-’. Another 〈SPC〉 at this point completes all the way
to ‘auto-fill-mode’. 〈SPC〉 in the minibuffer when completion is available
runs the command minibuffer-complete-word.

Here are some commands you can use to choose a completion from a
window that displays a list of completions:

Mouse-2 Clicking mouse button 2 on a completion in the list of pos-
sible completions chooses that completion (mouse-choose-
completion). You normally use this command while point is
in the minibuffer; but you must click in the list of completions,
not in the minibuffer itself.

〈PRIOR〉

M-v Typing 〈PRIOR〉 or 〈PAGE-UP〉, or M-v, while in the minibuffer,
selects the window showing the completion list buffer (switch-

Chapter 5: The Minibuffer 43

to-completions). This paves the way for using the commands
below. (Selecting that window in the usual ways has the same
effect, but this way is more convenient.)

〈RET〉 Typing 〈RET〉 in the completion list buffer chooses the completion
that point is in or next to (choose-completion). To use this
command, you must first switch windows to the window that
shows the list of completions.

〈RIGHT〉 Typing the right-arrow key 〈RIGHT〉 in the completion list buffer
moves point to the following completion (next-completion).

〈LEFT〉 Typing the left-arrow key 〈LEFT〉 in the completion list buffer
moves point toward the beginning of the buffer, to the previous
completion (previous-completion).

5.3.3 Strict Completion

There are three different ways that 〈RET〉 can work in completing mini-
buffers, depending on how the argument will be used.

• Strict completion is used when it is meaningless to give any argument
except one of the known alternatives. For example, when C-x k reads
the name of a buffer to kill, it is meaningless to give anything but the
name of an existing buffer. In strict completion, 〈RET〉 refuses to exit if
the text in the minibuffer does not complete to an exact match.

• Cautious completion is similar to strict completion, except that 〈RET〉

exits only if the text was an exact match already, not needing comple-
tion. If the text is not an exact match, 〈RET〉 does not exit, but it does
complete the text. If it completes to an exact match, a second 〈RET〉

will exit.

Cautious completion is used for reading file names for files that must
already exist.

• Permissive completion is used when any string whatever is meaningful,
and the list of completion alternatives is just a guide. For example,
when C-x C-f reads the name of a file to visit, any file name is allowed,
in case you want to create a file. In permissive completion, 〈RET〉 takes
the text in the minibuffer exactly as given, without completing it.

The completion commands display a list of all possible completions in
a window whenever there is more than one possibility for the very next
character. Also, typing ? explicitly requests such a list. If the list of comple-
tions is long, you can scroll it with C-M-v (see Section 16.3 [Other Window],
page 150).

44 GNU Emacs Manual

5.3.4 Completion Options

When completion is done on file names, certain file names are usually
ignored. The variable completion-ignored-extensions contains a list of
strings; a file whose name ends in any of those strings is ignored as a pos-
sible completion. The standard value of this variable has several elements
including ".o", ".elc", ".dvi" and "~". The effect is that, for example,
‘foo’ can complete to ‘foo.c’ even though ‘foo.o’ exists as well. However,
if all the possible completions end in “ignored” strings, then they are not ig-
nored. Ignored extensions do not apply to lists of completions—those always
mention all possible completions.

Normally, a completion command that finds the next character is un-
determined automatically displays a list of all possible completions. If the
variable completion-auto-help is set to nil, this does not happen, and
you must type ? to display the possible completions.

The complete library implements a more powerful kind of completion
that can complete multiple words at a time. For example, it can complete
the command name abbreviation p-b into print-buffer, because no other
command starts with two words whose initials are ‘p’ and ‘b’. To use this
library, put (load "complete") in your ‘~/.emacs’ file (see Section 30.7
[Init File], page 395).

Icomplete mode presents a constantly-updated display that tells you what
completions are available for the text you’ve entered so far. The command
to enable or disable this minor mode is M-x icomplete-mode.

5.4 Minibuffer History

Every argument that you enter with the minibuffer is saved on a mini-
buffer history list so that you can use it again later in another argument.
Special commands load the text of an earlier argument in the minibuffer.
They discard the old minibuffer contents, so you can think of them as mov-
ing through the history of previous arguments.

M-p Move to the next earlier argument string saved in the minibuffer
history (previous-history-element).

M-n Move to the next later argument string saved in the minibuffer
history (next-history-element).

M-r regexp 〈RET〉

Move to an earlier saved argument in the minibuffer history
that has a match for regexp (previous-matching-history-
element).

Chapter 5: The Minibuffer 45

M-s regexp 〈RET〉

Move to a later saved argument in the minibuffer history that
has a match for regexp (next-matching-history-element).

The simplest way to reuse the saved arguments in the history list is to
move through the history list one element at a time. While in the minibuf-
fer, type M-p (previous-history-element) to “move to” the next earlier
minibuffer input, and use M-n (next-history-element) to “move to” the
next later input.

The previous input that you fetch from the history entirely replaces the
contents of the minibuffer. To use it as the argument, exit the minibuffer as
usual with 〈RET〉. You can also edit the text before you reuse it; this does not
change the history element that you “moved” to, but your new argument
does go at the end of the history list in its own right.

There are also commands to search forward or backward through the
history. As of this writing, they search for history elements that match a
regular expression that you specify with the minibuffer. M-r (previous-
matching-history-element) searches older elements in the history, while
M-s (next-matching-history-element) searches newer elements. By spe-
cial dispensation, these commands can use the minibuffer to read their argu-
ments even though you are already in the minibuffer when you issue them.

All uses of the minibuffer record your input on a history list, but there are
separate history lists for different kinds of arguments. For example, there is
a list for file names, used by all the commands that read file names. There
is a list for arguments of commands like query-replace. There are several
very specific history lists, including one for command names read by 〈M-x〉

and one for compilation commands read by compile. Finally, there is one
“miscellaneous” history list that most minibuffer arguments use.

5.5 Repeating Minibuffer Commands

Every command that uses the minibuffer at least once is recorded on a
special history list, together with the values of its arguments, so that you
can repeat the entire command. In particular, every use of M-x is recorded
there, since M-x uses the minibuffer to read the command name.

C-x 〈ESC〉 〈ESC〉

Re-execute a recent minibuffer command (repeat-complex-
command).

M-x list-command-history
Display the entire command history, showing all the commands
C-x 〈ESC〉 〈ESC〉 can repeat, most recent first.

46 GNU Emacs Manual

C-x 〈ESC〉 〈ESC〉 is used to re-execute a recent minibuffer-using command.
With no argument, it repeats the last such command. A numeric argu-
ment specifies which command to repeat; one means the last one, and larger
numbers specify earlier ones.

C-x 〈ESC〉 〈ESC〉 works by turning the previous command into a Lisp ex-
pression and then entering a minibuffer initialized with the text for that
expression. If you type just 〈RET〉, the command is repeated as before. You
can also change the command by editing the Lisp expression. Whatever
expression you finally submit is what will be executed. The repeated com-
mand is added to the front of the command history unless it is identical to
the most recently executed command already there.

Even if you don’t understand Lisp syntax, it will probably be obvious
which command is displayed for repetition. If you do not change the text,
it will repeat exactly as before.

Once inside the minibuffer for C-x 〈ESC〉 〈ESC〉, you can use the minibuffer
history commands (M-p, M-n, M-r, M-s; see Section 5.4 [Minibuffer History],
page 44) to move through the history list of saved entire commands. After
finding the desired previous command, you can edit its expression as usual
and then resubmit it by typing 〈RET〉 as usual.

The list of previous minibuffer-using commands is stored as a Lisp list
in the variable command-history. Each element is a Lisp expression which
describes one command and its arguments. Lisp programs can reexecute a
command by calling eval with the command-history element.

Chapter 6: Running Commands by Name 47

6 Running Commands by Name

The Emacs commands that are used often or that must be quick to type
are bound to keys—short sequences of characters—for convenient use. Other
Emacs commands that do not need to be brief are not bound to keys; to run
them, you must refer to them by name.

A command name is, by convention, made up of one or more words,
separated by hyphens; for example, auto-fill-mode or manual-entry. The
use of English words makes the command name easier to remember than a
key made up of obscure characters, even though it is more characters to
type.

The way to run a command by name is to start with M-x, type the
command name, and finish it with 〈RET〉. M-x uses the minibuffer to read
the command name. 〈RET〉 exits the minibuffer and runs the command. The
string ‘M-x’ appears at the beginning of the minibuffer as a prompt to remind
you to enter the name of a command to be run. See Chapter 5 [Minibuffer],
page 39, for full information on the features of the minibuffer.

You can use completion to enter the command name. For example, the
command forward-char can be invoked by name by typing

M-x forward-char 〈RET〉

or

M-x forw 〈TAB〉 c 〈RET〉

Note that forward-char is the same command that you invoke with the key
C-f. You can run any Emacs command by name using M-x, whether or not
any keys are bound to it. If you use M-x to run a command which also has a
key binding, it displays a message to tell you about the key binding, before
running the command. (You can turn off this notification feature by setting
the variable suggest-key-bindings to nil.)

If you type C-g while the command name is being read, you cancel the
M-x command and get out of the minibuffer, ending up at top level.

To pass a numeric argument to the command you are invoking with M-x,
specify the numeric argument before the M-x. M-x passes the argument along
to the command it runs. The argument value appears in the prompt while
the command name is being read.

If the command you type has a key binding of its own, Emacs mentions
this in the echo area before it runs the command. For example, if you type
M-x forward-word, the message says that you can run the same command
more easily by typing M-f. You can turn off these messages by setting
suggest-key-bindings to nil. If suggest-key-bindings is a number, it
says how long to show the message before proceeding with the command.

Normally, when describing a command that is run by name, we omit the
〈RET〉 that is needed to terminate the name. Thus we might speak of M-x

48 GNU Emacs Manual

auto-fill-mode rather than M-x auto-fill-mode 〈RET〉. We mention the
〈RET〉 only when there is a need to emphasize its presence, such as when we
show the command together with following arguments.

M-x works by running the command execute-extended-command, which
is responsible for reading the name of another command and invoking it.

Chapter 7: Help 49

7 Help

Emacs provides extensive help features accessible through a single char-
acter, C-h. C-h is a prefix key that is used only for documentation-printing
commands. The characters that you can type after C-h are called help op-
tions. One help option is C-h; that is how you ask for help about using C-h.
To cancel, type C-g. The function key 〈F1〉 is equivalent to C-h.

C-h C-h (help-for-help) displays a list of the possible help options, each
with a brief description. Before you type a help option, you can use 〈SPC〉 or
〈DEL〉 to scroll through the list.

C-h or 〈F1〉 means “help” in various other contexts as well. For example,
in query-replace, it describes the options available. After a prefix key, it
displays a list of the alternatives that can follow the prefix key. (A few prefix
keys don’t support this because they define other meanings for C-h.)

Most help buffers use a special major mode, Help mode, which lets you
scroll conveniently with 〈SPC〉 and 〈DEL〉.

Here is a summary of the defined help commands.

C-h a regexp 〈RET〉

Display list of commands whose names match regexp (apropos-
command).

C-h b Display a table of all key bindings in effect now, in this order:
minor mode bindings, major mode bindings, and global bindings
(describe-bindings).

C-h c key Print the name of the command that key runs (describe-key-
briefly). Here c stands for ‘character’. For more extensive
information on key, use C-h k.

C-h f function 〈RET〉

Display documentation on the Lisp function named function
(describe-function). Since commands are Lisp functions, a
command name may be used.

C-h i Run Info, the program for browsing documentation files (info).
The complete Emacs manual is available on-line in Info.

C-h k key Display name and documentation of the command that key runs
(describe-key).

C-h l Display a description of the last 100 characters you typed (view-
lossage).

C-h m Display documentation of the current major mode (describe-
mode).

50 GNU Emacs Manual

C-h n Display documentation of Emacs changes, most recent first
(view-emacs-news).

C-h p Find packages by topic keyword (finder-by-keyword).

C-h s Display current contents of the syntax table, plus an explana-
tion of what they mean (describe-syntax). See Section 30.6
[Syntax], page 395.

C-h t Enter the Emacs interactive tutorial (help-with-tutorial).

C-h v var 〈RET〉

Display the documentation of the Lisp variable var (describe-
variable).

C-h w command 〈RET〉

Print which keys run the command named command (where-
is).

C-h C-f function 〈RET〉

Enter Info and go to the node documenting the Emacs function
function (Info-goto-emacs-command-node).

C-h C-k key
Enter Info and go to the node where the key sequence key is
documented (Info-goto-emacs-key-command-node).

C-h C-c Display the copying conditions for GNU Emacs.

C-h C-d Display information about getting new versions of GNU Emacs.

C-h C-p Display information about the GNU Project.

7.1 Documentation for a Key

The most basic C-h options are C-h c (describe-key-briefly) and
C-h k (describe-key). C-h c key prints in the echo area the name of
the command that key is bound to. For example, C-h c C-f prints
‘forward-char’. Since command names are chosen to describe what the
commands do, this is a good way to get a very brief description of what key
does.

C-h k key is similar but gives more information: it displays the docu-
mentation string of the command as well as its name. This is too big for the
echo area, so a window is used for the display.

C-h c and C-h k work for any sort of key sequences, including function
keys and mouse events.

Chapter 7: Help 51

7.2 Help by Command or Variable Name

C-h f (describe-function) reads the name of a Lisp function using the
minibuffer, then displays that function’s documentation string in a window.
Since commands are Lisp functions, you can use this to get the documenta-
tion of a command that you know by name. For example,

C-h f auto-fill-mode 〈RET〉

displays the documentation of auto-fill-mode. This is the only way to get
the documentation of a command that is not bound to any key (one which
you would normally run using M-x).

C-h f is also useful for Lisp functions that you are planning to use in a
Lisp program. For example, if you have just written the expression (make-
vector len) and want to check that you are using make-vector properly,
type C-h f make-vector 〈RET〉. Because C-h f allows all function names, not
just command names, you may find that some of your favorite abbreviations
that work in M-x don’t work in C-h f. An abbreviation may be unique
among command names yet fail to be unique when other function names are
allowed.

The function name for C-h f to describe has a default which is used if you
type 〈RET〉 leaving the minibuffer empty. The default is the function called by
the innermost Lisp expression in the buffer around point, provided that is a
valid, defined Lisp function name. For example, if point is located following
the text ‘(make-vector (car x)’, the innermost list containing point is the
one that starts with ‘(make-vector’, so the default is to describe the function
make-vector.

C-h f is often useful just to verify that you have the right spelling for
the function name. If C-h f mentions a name from the buffer as the default,
that name must be defined as a Lisp function. If that is all you want to
know, just type C-g to cancel the C-h f command, then go on editing.

C-h w command 〈RET〉 tells you what keys are bound to command. It
prints a list of the keys in the echo area. If it says the command is not on
any key, you must use M-x to run it. C-h w runs the command where-is.

C-h v (describe-variable) is like C-h f but describes Lisp variables
instead of Lisp functions. Its default is the Lisp symbol around or before
point, but only if that is the name of a known Lisp variable. See Section 30.2
[Variables], page 373.

7.3 Apropos

A more sophisticated sort of question to ask is, “What are the commands
for working with files?” To ask this question, type C-h a file 〈RET〉, which

52 GNU Emacs Manual

displays a list of all command names that contain ‘file’, including copy-
file, find-file, and so on. With each command name appears a brief
description of how to use the command, and what keys you can currently
invoke it with. For example, it would say that you can invoke find-file
by typing C-x C-f. The a in C-h a stands for ‘Apropos’; C-h a runs the
command apropos-command. This command does not check user variables
by default; specify a numeric argument if you want it to check them.

Because C-h a looks only for functions whose names contain the string
which you specify, you must use ingenuity in choosing the string. If you
are looking for commands for killing backwards and C-h a kill-backwards
〈RET〉 doesn’t reveal any, don’t give up. Try just kill, or just backwards,
or just back. Be persistent. Also note that you can use a regular expression
as the argument, for more flexibility (see Section 12.5 [Regexps], page 90).

Here is a set of arguments to give to C-h a that covers many classes of
Emacs commands, since there are strong conventions for naming the stan-
dard Emacs commands. By giving you a feel for the naming conventions,
this set should also serve to aid you in developing a technique for picking
apropos strings.

char, line, word, sentence, paragraph, region, page, sexp, list, defun,
rect, buffer, frame, window, face, file, dir, register, mode, beginning,
end, forward, backward, next, previous, up, down, search, goto, kill,
delete, mark, insert, yank, fill, indent, case, change, set, what, list,
find, view, describe, default.

To list all Lisp symbols that contain a match for a regexp, not just the
ones that are defined as commands, use the command M-x apropos instead
of C-h a. This command does not check key bindings by default; specify a
numeric argument if you want it to check them.

The apropos-documentation command is like apropos except that it
searches documentation strings as well as symbol names for matches for the
specified regular expression.

The apropos-value command is like apropos except that it searches
symbols’ values for matches for the specified regular expression. This com-
mand does not check function definitions or property lists by default; specify
a numeric argument if you want it to check them.

If you want more information about a function definition, variable or
symbol property listed in the Apropos buffer, you can click on it with Mouse-
2 or move there and type 〈RET〉.

7.4 Keyword Search for Lisp Libraries

The C-h p command lets you search the standard Emacs Lisp libraries
by topic keywords. Here is a partial list of keywords you can use:

Chapter 7: Help 53

‘abbrev’ Abbreviation handling, typing shortcuts, macros.

‘bib’ Support for the bibliography processor bib.

‘c’ C and C++ language support.

‘calendar’
Calendar and time management support.

‘comm’ Communications, networking, remote access to files.

‘data’ Support for editing files of data.

‘docs’ Support for Emacs documentation.

‘emulations’
Emulations of other editors.

‘extensions’
Emacs Lisp language extensions.

‘faces’ Support for using faces (fonts and colors; see Section 17.12
[Faces], page 164).

‘frames’ Support for Emacs frames and window systems.

‘games’ Games, jokes and amusements.

‘hardware’
Support for interfacing with exotic hardware.

‘help’ Support for on-line help systems.

‘hypermedia’
Support for links within text, or other media types.

‘i18n’ Internationalization and alternate character-set support.

‘internal’
Code for Emacs internals, build process, defaults.

‘languages’
Specialized modes for editing programming languages.

‘lisp’ Support for using Lisp (including Emacs Lisp).

‘local’ Libraries local to your site.

‘maint’ Maintenance aids for the Emacs development group.

‘mail’ Modes for electronic-mail handling.

‘matching’
Searching and matching.

‘news’ Support for netnews reading and posting.

54 GNU Emacs Manual

‘non-text’
Support for editing files that are not ordinary text.

‘oop’ Support for object-oriented programming.

‘outlines’
Hierarchical outlining.

‘processes’
Process, subshell, compilation, and job control support.

‘terminals’
Support for terminal types.

‘tex’ Support for the TEX formatter.

‘tools’ Programming tools.

‘unix’ Front-ends/assistants for, or emulators of, Unix features.

‘vms’ Support code for VMS.

‘wp’ Word processing.

7.5 Other Help Commands

C-h i (info) runs the Info program, which is used for browsing through
structured documentation files. The entire Emacs manual is available within
Info. Eventually all the documentation of the GNU system will be available.
Type h after entering Info to run a tutorial on using Info.

There are two special help commands for accessing Emacs documen-
tation through Info. C-h C-f function 〈RET〉 enters Info and goes straight
to the documentation of the Emacs function function. C-h C-k key enters
Info and goes straight to the documentation of the key key. These two
keys run the commands Info-goto-emacs-command-node and Info-goto-
emacs-key-command-node.

If something surprising happens, and you are not sure what commands
you typed, use C-h l (view-lossage). C-h l prints the last 100 command
characters you typed in. If you see commands that you don’t know, you can
use C-h c to find out what they do.

Emacs has numerous major modes, each of which redefines a few keys and
makes a few other changes in how editing works. C-h m (describe-mode)
prints documentation on the current major mode, which normally describes
all the commands that are changed in this mode.

C-h b (describe-bindings) and C-h s (describe-syntax) present other
information about the current Emacs mode. C-h b displays a list of all the
key bindings now in effect; the local bindings defined by the current minor

Chapter 7: Help 55

modes first, then the local bindings defined by the current major mode,
and finally the global bindings (see Section 30.4 [Key Bindings], page 383).
C-h s displays the contents of the syntax table, with explanations of each
character’s syntax (see Section 30.6 [Syntax], page 395).

You can get a similar list for a particular prefix key by typing C-h after
the prefix key. (There are a few prefix keys for which this does not work—
those that provide their own bindings for C-h. One of these is 〈ESC〉, because
〈ESC〉 C-h is actually C-M-h, which marks a defun.)

The other C-h options display various files of useful information. C-h
C-w displays the full details on the complete absence of warranty for GNU
Emacs. C-h n (view-emacs-news) displays the file ‘emacs/etc/NEWS’, which
contains documentation on Emacs changes arranged chronologically. C-h t
(help-with-tutorial) displays the learn-by-doing Emacs tutorial. C-h C-
c (describe-copying) displays the file ‘emacs/etc/COPYING’, which tells
you the conditions you must obey in distributing copies of Emacs. C-h C-
d (describe-distribution) displays the file ‘emacs/etc/DISTRIB’, which
tells you how you can order a copy of the latest version of Emacs. C-h C-p
(describe-project) displays general information about the GNU Project.

56 GNU Emacs Manual

Chapter 8: The Mark and the Region 57

8 The Mark and the Region

Many Emacs commands operate on an arbitrary contiguous part of the
current buffer. To specify the text for such a command to operate on, you
set the mark at one end of it, and move point to the other end. The text
between point and the mark is called the region. Emacs highlights the region
whenever there is one, if you enable Transient Mark mode (see Section 8.2
[Transient Mark], page 58).

You can move point or the mark to adjust the boundaries of the region.
It doesn’t matter which one is set first chronologically, or which one comes
earlier in the text. Once the mark has been set, it remains where you put it
until you set it again at another place. Each Emacs buffer has its own mark,
so that when you return to a buffer that had been selected previously, it has
the same mark it had before.

Many commands that insert text, such as C-y (yank) and M-x insert-
buffer, position point and the mark at opposite ends of the inserted text,
so that the region contains the text just inserted.

Aside from delimiting the region, the mark is also useful for remembering
a spot that you may want to go back to. To make this feature more useful,
each buffer remembers 16 previous locations of the mark in the mark ring.

8.1 Setting the Mark

Here are some commands for setting the mark:

C-〈SPC〉 Set the mark where point is (set-mark-command).

C-@ The same.

C-x C-x Interchange mark and point (exchange-point-and-mark).

Drag-Mouse-1
Set point and the mark around the text you drag across.

Mouse-3 Set the mark where point is, then move point to where you click
(mouse-save-then-kill).

For example, suppose you wish to convert part of the buffer to all upper-
case, using the C-x C-u (upcase-region) command which operates on the
text in the region. You can first go to the beginning of the text to be
capitalized, type C-〈SPC〉 to put the mark there, move to the end, and then
type C-x C-u. Or, you can set the mark at the end of the text, move to the
beginning, and then type C-x C-u.

The most common way to set the mark is with the C-〈SPC〉 command
(set-mark-command). This sets the mark where point is. Then you can
move point away, leaving the mark behind.

58 GNU Emacs Manual

There are two ways to set the mark with the mouse. You can drag mouse
button one across a range of text; that puts point where you release the
mouse button, and sets the mark at the other end of that range. Or you
can click mouse button three, which sets the mark at point (like C-〈SPC〉)
and them moves point (like Mouse-1). Both of these methods copy the
region into the kill ring in addition to setting the mark; that gives behavior
consistent with other window-driven applications, but if you don’t want to
modify the kill ring, you must use keyboard commands to set the mark. See
Section 17.1 [Mouse Commands], page 155.

Ordinary terminals have only one cursor, so there is no way for Emacs
to show you where the mark is located. You have to remember. The usual
solution to this problem is to set the mark and then use it soon, before
you forget where it is. Alternatively, you can see where the mark is with
the command C-x C-x (exchange-point-and-mark) which puts the mark
where point was and point where the mark was. The extent of the region is
unchanged, but the cursor and point are now at the previous position of the
mark. In Transient Mark mode, this command reactivates the mark.

C-x C-x is also useful when you are satisfied with the position of point
but want to move the mark; do C-x C-x to put point at that end of the
region, and then move it. A second use of C-x C-x, if necessary, puts the
mark at the new position with point back at its original position.

There is no such character as C-〈SPC〉 in ASCII; when you type 〈SPC〉

while holding down 〈CTRL〉, what you get on most ordinary terminals is the
character C-@. This key is actually bound to set-mark-command. But unless
you are unlucky enough to have a terminal where typing C-〈SPC〉 does not
produce C-@, you might as well think of this character as C-〈SPC〉. Under
X, C-〈SPC〉 is actually a distinct character, but its binding is still set-mark-
command.

8.2 Transient Mark Mode

Emacs can highlight the current region, using X Windows. But normally
it does not. Why not?

Highlighting the region doesn’t work well ordinarily in Emacs, because
once you have set a mark, there is always a region (in that buffer). And
highlighting the region all the time would be a nuisance.

You can turn on region highlighting by enabling Transient Mark mode.
This is a more rigid mode of operation in which the region “lasts” only
temporarily, so you must set up a region for each command that uses one.
In Transient Mark mode, most of the time there is no region; therefore,
highlighting the region when it exists is convenient.

Chapter 8: The Mark and the Region 59

To enable Transient Mark mode, type M-x transient-mark-mode. This
command toggles the mode, so you can repeat the command to turn off the
mode.

Here are the details of Transient Mark mode:

• To set the mark, type C-〈SPC〉 (set-mark-command). This makes the
mark active; as you move point, you will see the region highlighting
change in extent.

• The mouse commands for specifying the mark also make it active. So
do keyboard commands whose purpose is to specify a region, including
M-@, C-M-@, M-h, C-M-h, C-x C-p, and C-x h.

• When the mark is active, you can execute commands that operate on
the region, such as killing, indentation, or writing to a file.

• Any change to the buffer, such as inserting or deleting a character, de-
activates the mark. This means any subsequent command that operates
on a region will get an error and refuse to operate. You can make the
region active again by typing C-x C-x.

• Commands like M-> and C-s that “leave the mark behind” in addition
to some other primary purpose do not activate the new mark. You can
activate the new region by executing C-x C-x (exchange-point-and-
mark).

• C-s when the mark is active does not alter the mark.

• Quitting with C-g deactivates the mark.

Transient Mark mode is also sometimes known as “Zmacs mode” because
the Zmacs editor on the MIT Lisp Machine handled the mark in a similar
way.

When multiple windows show the same buffer, they can have different re-
gions, because they can have different values of point (though they all share
common one mark position). In Transient Mark mode, each window high-
lights its own region. The part that is highlighted in the selected window is
the region that editing commands use. See Chapter 16 [Windows], page 149.

When Transient Mark mode is not enabled, every command that sets the
mark also activates it, and nothing ever deactivates it.

If the variable mark-even-if-inactive is non-nil in Transient Mark
mode, then commands can use the mark and the region even when it is
inactive. Region highlighting appears and disappears just as it normally
does in Transient Mark mode, but the mark doesn’t really go away when
the highlighting disappears.

8.3 Operating on the Region

60 GNU Emacs Manual

Once you have a region and the mark is active, here are some of the ways
you can operate on the region:

• Kill it with C-w (see Section 9.1 [Killing], page 63).

• Save it in a register with C-x r s (see Chapter 10 [Registers], page 73).

• Save it in a buffer or a file (see Section 9.3 [Accumulating Text], page 68).

• Convert case with C-x C-l or C-x C-u (see Section 20.6 [Case],
page 190).

• Indent it with C-x 〈TAB〉 or C-M-\ (see Chapter 19 [Indentation],
page 177).

• Fill it as text with M-x fill-region (see Section 20.5 [Filling],
page 186).

• Print hardcopy with M-x print-region (see Section 29.4 [Hardcopy],
page 357).

• Evaluate it as Lisp code with M-x eval-region (see Section 22.5 [Lisp
Eval], page 269).

Most commands that operate on the text in the region have the word
region in their names.

8.4 Commands to Mark Textual Objects

Here are the commands for placing point and the mark around a textual
object such as a word, list, paragraph or page.

M-@ Set mark after end of next word (mark-word). This command
and the following one do not move point.

C-M-@ Set mark after end of next Lisp expression (mark-sexp).

M-h Put region around current paragraph (mark-paragraph).

C-M-h Put region around current Lisp defun (mark-defun).

C-x h Put region around entire buffer (mark-whole-buffer).

C-x C-p Put region around current page (mark-page).

M-@ (mark-word) puts the mark at the end of the next word, while C-M-@
(mark-sexp) puts it at the end of the next Lisp expression. These commands
handle arguments just like M-f and C-M-f.

Other commands set both point and mark, to delimit an object in the
buffer. For example, M-h (mark-paragraph) moves point to the beginning
of the paragraph that surrounds or follows point, and puts the mark at the
end of that paragraph (see Section 20.3 [Paragraphs], page 184). It prepares
the region so you can indent, case-convert, or kill a whole paragraph.

Chapter 8: The Mark and the Region 61

C-M-h (mark-defun) similarly puts point before and the mark after the
current or following defun (see Section 21.4 [Defuns], page 214). C-x C-p
(mark-page) puts point before the current page, and mark at the end (see
Section 20.4 [Pages], page 185). The mark goes after the terminating page
delimiter (to include it), while point goes after the preceding page delimiter
(to exclude it). A numeric argument specifies a later page (if positive) or an
earlier page (if negative) instead of the current page.

Finally, C-x h (mark-whole-buffer) sets up the entire buffer as the re-
gion, by putting point at the beginning and the mark at the end.

In Transient Mark mode, all of these commands activate the mark.

8.5 The Mark Ring

Aside from delimiting the region, the mark is also useful for remembering
a spot that you may want to go back to. To make this feature more use-
ful, each buffer remembers 16 previous locations of the mark, in the mark
ring. Commands that set the mark also push the old mark onto this ring.
To return to a marked location, use C-u C-〈SPC〉 (or C-u C-@); this is the
command set-mark-command given a numeric argument. It moves point to
where the mark was, and restores the mark from the ring of former marks.
Thus, repeated use of this command moves point to all of the old marks on
the ring, one by one. The mark positions you move through in this way are
not lost; they go to the end of the ring.

Each buffer has its own mark ring. All editing commands use the current
buffer’s mark ring. In particular, C-u C-〈SPC〉 always stays in the same buffer.

Many commands that can move long distances, such as M-< (beginning-
of-buffer), start by setting the mark and saving the old mark on the mark
ring. This is to make it easier for you to move back later. Searches set
the mark if they move point. You can tell when a command sets the mark
because it displays ‘Mark Set’ in the echo area.

If you want to move back to the same place over and over, the mark
ring may not be convenient enough. If so, you can record the position in a
register for later retrieval (see Section 10.1 [RegPos], page 73).

The variable mark-ring-max specifies the maximum number of entries to
keep in the mark ring. If that many entries exist and another one is pushed,
the last one in the list is discarded. Repeating C-u C-〈SPC〉 circulates through
the positions currently in the ring.

The variable mark-ring holds the mark ring itself, as a list of marker
objects in the order most recent first. This variable is local in every buffer.

8.6 The Global Mark Ring

62 GNU Emacs Manual

In addition to the ordinary mark ring that belongs to each buffer, Emacs
has a single global mark ring. It records a sequence of buffers in which you
have recently set the mark, so you can go back to those buffers.

Setting the mark always makes an entry on the current buffer’s mark
ring. If you have switched buffers since the previous mark setting, the new
mark position makes an entry on the global mark ring also. The result is
that the global mark ring records a sequence of buffers that you have been
in, and, for each buffer, a place where you set the mark.

The command C-x C-〈SPC〉 (pop-global-mark) jumps to the buffer and
position of the latest entry in the global ring. It also rotates the ring, so
that successive uses of C-x C-〈SPC〉 take you to earlier and earlier buffers.

Chapter 9: Killing and Moving Text 63

9 Killing and Moving Text

Killing means erasing text and copying it into the kill ring, from which it
can be retrieved by yanking it. Some systems use the terms “cutting” and
“pasting” for these operations.

The commonest way of moving or copying text within Emacs is to kill it
and later yank elsewhere it in one or more places. This is very safe because
Emacs remembers several recent kills, not just the last one. It is versatile,
because the many commands for killing syntactic units can also be used for
moving those units. But there are other ways of copying text for special
purposes.

Emacs has only one kill ring for all buffers, so you can kill text in one
buffer and yank it in another buffer.

9.1 Deletion and Killing

Most commands which erase text from the buffer save it in the kill ring so
that you can move or copy it to other parts of the buffer. These commands
are known as kill commands. The rest of the commands that erase text
do not save it in the kill ring; they are known as delete commands. (This
distinction is made only for erasure of text in the buffer.) If you do a kill
or delete command by mistake, you can use the C-x u (undo) command to
undo it (see Section 4.4 [Undo], page 32).

The delete commands include C-d (delete-char) and 〈DEL〉 (delete-
backward-char), which delete only one character at a time, and those com-
mands that delete only spaces or newlines. Commands that can destroy
significant amounts of nontrivial data generally kill. The commands’ names
and individual descriptions use the words ‘kill’ and ‘delete’ to say which
they do.

9.1.1 Deletion

C-d Delete next character (delete-char).

〈DEL〉 Delete previous character (delete-backward-char).

M-\ Delete spaces and tabs around point (delete-horizontal-
space).

M-〈SPC〉 Delete spaces and tabs around point, leaving one space (just-
one-space).

C-x C-o Delete blank lines around the current line (delete-blank-
lines).

64 GNU Emacs Manual

M-^ Join two lines by deleting the intervening newline, along with
any indentation following it (delete-indentation).

The most basic delete commands are C-d (delete-char) and 〈DEL〉

(delete-backward-char). C-d deletes the character after point, the one
the cursor is “on top of”. This doesn’t move point. 〈DEL〉 deletes the char-
acter before the cursor, and moves point back. You can delete newlines like
any other characters in the buffer; deleting a newline joins two lines. Actu-
ally, C-d and 〈DEL〉 aren’t always delete commands; when given arguments,
they kill instead, since they can erase more than one character this way.

The other delete commands are those which delete only whitespace char-
acters: spaces, tabs and newlines. M-\ (delete-horizontal-space) deletes
all the spaces and tab characters before and after point. M-〈SPC〉 (just-one-
space) does likewise but leaves a single space after point, regardless of the
number of spaces that existed previously (even zero).

C-x C-o (delete-blank-lines) deletes all blank lines after the current
line. If the current line is blank, it deletes all blank lines preceding the
current line as well (leaving one blank line, the current line).

M-^ (delete-indentation) joins the current line and the previous line,
by deleting a newline and all surrounding spaces, usually leaving a single
space. See Chapter 19 [Indentation], page 177.

9.1.2 Killing by Lines

C-k Kill rest of line or one or more lines (kill-line).

The simplest kill command is C-k. If given at the beginning of a line, it
kills all the text on the line, leaving it blank. When used on a blank line,
it kills the whole line including its newline. To kill an entire non-blank line,
go to the beginning and type C-k twice.

More generally, C-k kills from point up to the end of the line, unless it
is at the end of a line. In that case it kills the newline following point, thus
merging the next line into the current one. Spaces and tabs that you can’t
see at the end of the line are ignored when deciding which case applies, so if
point appears to be at the end of the line, you can be sure C-k will kill the
newline.

When C-k is given a positive argument, it kills that many lines and the
newlines that follow them (however, text on the current line before point is
spared). With a negative argument −n, it kills n lines preceding the current
line (together with the text on the current line before point). Thus, C-u - 2
C-k at the front of a line kills the two previous lines.

C-k with an argument of zero kills the text before point on the current
line.

Chapter 9: Killing and Moving Text 65

If the variable kill-whole-line is non-nil, C-k at the very beginning
of a line kills the entire line including the following newline. This variable is
normally nil.

9.1.3 Other Kill Commands

C-w Kill region (from point to the mark) (kill-region).

M-d Kill word (kill-word). See Section 20.1 [Words], page 181.

M-〈DEL〉 Kill word backwards (backward-kill-word).

C-x 〈DEL〉 Kill back to beginning of sentence (backward-kill-sentence).
See Section 20.2 [Sentences], page 183.

M-k Kill to end of sentence (kill-sentence).

C-M-k Kill sexp (kill-sexp). See Section 21.2 [Lists], page 212.

M-z char Kill through the next occurrence of char (zap-to-char).

A kill command which is very general is C-w (kill-region), which kills
everything between point and the mark. With this command, you can kill
any contiguous sequence of characters, if you first set the region around
them.

A convenient way of killing is combined with searching: M-z (zap-to-
char) reads a character and kills from point up to (and including) the next
occurrence of that character in the buffer. A numeric argument acts as a
repeat count. A negative argument means to search backward and kill text
before point.

Other syntactic units can be killed: words, with M-〈DEL〉 and M-d (see
Section 20.1 [Words], page 181); sexps, with C-M-k (see Section 21.2 [Lists],
page 212); and sentences, with C-x 〈DEL〉 and M-k (see Section 20.2 [Sen-
tences], page 183).

You can use kill commands in read-only buffers. They don’t actually
change the buffer, and they beep to warn you of that, but they do copy the
text you tried to kill into the kill ring, so you can yank it into other buffers.
Most of the kill commands move point across the text they copy in this way,
so that successive kill commands build up a single kill ring entry as usual.

9.2 Yanking

Yanking means reinserting text previously killed. This is what some
systems call “pasting”. The usual way to move or copy text is to kill it and
then yank it elsewhere one or more times.

66 GNU Emacs Manual

C-y Yank last killed text (yank).

M-y Replace text just yanked with an earlier batch of killed text
(yank-pop).

M-w Save region as last killed text without actually killing it (kill-
ring-save).

C-M-w Append next kill to last batch of killed text (append-next-
kill).

9.2.1 The Kill Ring

All killed text is recorded in the kill ring, a list of blocks of text that have
been killed. There is only one kill ring, shared by all buffers, so you can kill
text in one buffer and yank it in another buffer. This is the usual way to
move text from one file to another. (See Section 9.3 [Accumulating Text],
page 68, for some other ways.)

The command C-y (yank) reinserts the text of the most recent kill. It
leaves the cursor at the end of the text. It sets the mark at the beginning
of the text. See Chapter 8 [Mark], page 57.

C-u C-y leaves the cursor in front of the text, and sets the mark after
it. This happens only if the argument is specified with just a C-u, precisely.
Any other sort of argument, including C-u and digits, specifies an earlier kill
to yank (see Section 9.2.3 [Earlier Kills], page 67).

To copy a block of text, you can use M-w (kill-ring-save), which copies
the region into the kill ring without removing it from the buffer. This is
approximately equivalent to C-w followed by C-x u, except that M-w does
not alter the undo history and does not temporarily change the screen.

9.2.2 Appending Kills

Normally, each kill command pushes a new entry onto the kill ring. How-
ever, two or more kill commands in a row combine their text into a single
entry, so that a single C-y yanks all the text as a unit, just as it was before
it was killed.

Thus, if you want to yank text as a unit, you need not kill all of it with
one command; you can keep killing line after line, or word after word, until
you have killed it all, and you can still get it all back at once.

Commands that kill forward from point add onto the end of the previ-
ous killed text. Commands that kill backward from point add text onto
the beginning. This way, any sequence of mixed forward and backward kill

Chapter 9: Killing and Moving Text 67

commands puts all the killed text into one entry without rearrangement. Nu-
meric arguments do not break the sequence of appending kills. For example,
suppose the buffer contains this text:

This is a line ?of sample text.

with point shown by ?. If you type M-d M-〈DEL〉 M-d M-〈DEL〉, killing alter-
nately forward and backward, you end up with ‘a line of sample’ as one
entry in the kill ring, and ‘This is text.’ in the buffer. (Note the double
space, which you can clean up with M-〈SPC〉 or M-q.)

Another way to kill the same text is to move back two words with M-b
M-b, then kill all four words forward with C-u M-d. This produces exactly
the same results in the buffer and in the kill ring. M-f M-f C-u M-〈DEL〉 kills
the same text, all going backward; once again, the result is the same. The
text in the kill ring entry always has the same order that it had in the buffer
before you killed it.

If a kill command is separated from the last kill command by other com-
mands (not just numeric arguments), it starts a new entry on the kill ring.
But you can force it to append by first typing the command C-M-w (append-
next-kill) right before it. The C-M-w tells the following command, if it is
a kill command, to append the text it kills to the last killed text, instead of
starting a new entry. With C-M-w, you can kill several separated pieces of
text and accumulate them to be yanked back in one place.

A kill command following M-w does not append to the text that M-w copied
into the kill ring.

9.2.3 Yanking Earlier Kills

To recover killed text that is no longer the most recent kill, use the M-y
command (yank-pop). It takes the text previously yanked and replaces it
with the text from an earlier kill. So, to recover the text of the next-to-the-
last kill, first use C-y to yank the last kill, and then use M-y to replace it
with the previous kill. M-y is allowed only after a C-y or another M-y.

You can understand M-y in terms of a “last yank” pointer which points at
an entry in the kill ring. Each time you kill, the “last yank” pointer moves
to the newly made entry at the front of the ring. C-y yanks the entry which
the “last yank” pointer points to. M-y moves the “last yank” pointer to a
different entry, and the text in the buffer changes to match. Enough M-y
commands can move the pointer to any entry in the ring, so you can get any
entry into the buffer. Eventually the pointer reaches the end of the ring; the
next M-y moves it to the first entry again.

M-y moves the “last yank” pointer around the ring, but it does not change
the order of the entries in the ring, which always runs from the most recent
kill at the front to the oldest one still remembered.

68 GNU Emacs Manual

M-y can take a numeric argument, which tells it how many entries to
advance the “last yank” pointer by. A negative argument moves the pointer
toward the front of the ring; from the front of the ring, it moves “around”
to the last entry and continues forward from there.

Once the text you are looking for is brought into the buffer, you can stop
doing M-y commands and it will stay there. It’s just a copy of the kill ring
entry, so editing it in the buffer does not change what’s in the ring. As long
as no new killing is done, the “last yank” pointer remains at the same place
in the kill ring, so repeating C-y will yank another copy of the same previous
kill.

If you know how many M-y commands it would take to find the text you
want, you can yank that text in one step using C-y with a numeric argument.
C-y with an argument restores the text the specified number of entries back
in the kill ring. Thus, C-u 2 C-y gets the next to the last block of killed text.
It is equivalent to C-y M-y. C-y with a numeric argument starts counting
from the “last yank” pointer, and sets the “last yank” pointer to the entry
that it yanks.

The length of the kill ring is controlled by the variable kill-ring-max;
no more than that many blocks of killed text are saved.

The actual contents of the kill ring are stored in a variable named kill-
ring; you can view the entire contents of the kill ring with the command
C-h v kill-ring.

9.3 Accumulating Text

Usually we copy or move text by killing it and yanking it, but there are
other methods convenient for copying one block of text in many places, or
for copying many scattered blocks of text into one place. To copy one block
to many places, store it in a register (see Chapter 10 [Registers], page 73).
Here we describe the commands to accumulate scattered pieces of text into
a buffer or into a file.

M-x append-to-buffer
Append region to contents of specified buffer.

M-x prepend-to-buffer
Prepend region to contents of specified buffer.

M-x copy-to-buffer
Copy region into specified buffer, deleting that buffer’s old con-
tents.

M-x insert-buffer
Insert contents of specified buffer into current buffer at point.

Chapter 9: Killing and Moving Text 69

M-x append-to-file
Append region to contents of specified file, at the end.

To accumulate text into a buffer, use M-x append-to-buffer. This reads
a buffer name, them inserts a copy of the region into the buffer specified. If
you specify a nonexistent buffer, append-to-buffer creates the buffer. The
text is inserted wherever point is in that buffer. If you have been using the
buffer for editing, the copied text goes into the middle of the text of the
buffer, wherever point happens to be in it.

Point in that buffer is left at the end of the copied text, so successive
uses of append-to-buffer accumulate the text in the specified buffer in the
same order as they were copied. Strictly speaking, append-to-buffer does
not always append to the text already in the buffer—only if point in that
buffer is at the end. However, if append-to-buffer is the only command
you use to alter a buffer, then point is always at the end.

M-x prepend-to-buffer is just like append-to-buffer except that point
in the other buffer is left before the copied text, so successive prependings
add text in reverse order. M-x copy-to-buffer is similar except that any
existing text in the other buffer is deleted, so the buffer is left containing
just the text newly copied into it.

To retrieve the accumulated text from another buffer, use M-x insert-
buffer; this too takes buffername as an argument. It inserts a copy of the
text in buffer buffername into the selected buffer. You can alternatively
select the other buffer for editing, then optionally move text from it by
killing. See Chapter 15 [Buffers], page 141, for background information on
buffers.

Instead of accumulating text within Emacs, in a buffer, you can append
text directly into a file with M-x append-to-file, which takes filename as
an argument. It adds the text of the region to the end of the specified file.
The file is changed immediately on disk.

You should use append-to-file only with files that are not being visited
in Emacs. Using it on a file that you are editing in Emacs would change the
file behind Emacs’s back, which can lead to losing some of your editing.

9.4 Rectangles

The rectangle commands operate on rectangular areas of the text: all
the characters between a certain pair of columns, in a certain range of lines.
Commands are provided to kill rectangles, yank killed rectangles, clear them
out, fill them with blanks or text, or delete them. Rectangle commands are
useful with text in multicolumn formats, and for changing text into or out
of such formats.

70 GNU Emacs Manual

When you must specify a rectangle for a command to work on, you do
it by putting the mark at one corner and point at the opposite corner. The
rectangle thus specified is called the region-rectangle because you control it
in about the same way the region is controlled. But remember that a given
combination of point and mark values can be interpreted either as a region
or as a rectangle, depending on the command that uses them.

If point and the mark are in the same column, the rectangle they de-
limit is empty. If they are in the same line, the rectangle is one line high.
This asymmetry between lines and columns comes about because point (and
likewise the mark) is between two columns, but within a line.

C-x r k Kill the text of the region-rectangle, saving its contents as the
“last killed rectangle” (kill-rectangle).

C-x r d Delete the text of the region-rectangle (delete-rectangle).

C-x r y Yank the last killed rectangle with its upper left corner at point
(yank-rectangle).

C-x r o Insert blank space to fill the space of the region-rectangle (open-
rectangle). This pushes the previous contents of the region-
rectangle rightward.

M-x clear-rectangle
Clear the region-rectangle by replacing its contents with spaces.

M-x string-rectangle 〈RET〉 string 〈RET〉

Insert string on each line of the region-rectangle.

The rectangle operations fall into two classes: commands deleting and
inserting rectangles, and commands for blank rectangles.

There are two ways to get rid of the text in a rectangle: you can discard
the text (delete it) or save it as the “last killed” rectangle. The commands
for these two ways are C-x r d (delete-rectangle) and C-x r k (kill-
rectangle). In either case, the portion of each line that falls inside the
rectangle’s boundaries is deleted, causing following text (if any) on the line
to move left into the gap.

Note that “killing” a rectangle is not killing in the usual sense; the rect-
angle is not stored in the kill ring, but in a special place that can only record
the most recent rectangle killed. This is because yanking a rectangle is so
different from yanking linear text that different yank commands have to be
used and yank-popping is hard to make sense of.

To yank the last killed rectangle, type C-x r y (yank-rectangle). Yank-
ing a rectangle is the opposite of killing one. Point specifies where to put
the rectangle’s upper left corner. The rectangle’s first line is inserted there,
the rectangle’s second line is inserted at a position one line vertically down,
and so on. The number of lines affected is determined by the height of the
saved rectangle.

Chapter 9: Killing and Moving Text 71

You can convert single-column lists into double-column lists using rect-
angle killing and yanking; kill the second half of the list as a rectangle and
then yank it beside the first line of the list. See Section 29.8 [Two-Column],
page 363, for another way to edit multi-column text.

You can also copy rectangles into and out of registers with C-x r r r and
C-x r i r. See Section 10.3 [Rectangle Registers], page 74.

There are two commands for making with blank rectangles: M-x clear-
rectangle to blank out existing text, and C-x r o (open-rectangle) to
insert a blank rectangle. Clearing a rectangle is equivalent to deleting it and
then inserting a blank rectangle of the same size.

The command M-x string-rectangle is similar to C-x r o, but it in-
serts a specified string instead of blanks. You specify the string with the
minibuffer. Since the length of the string specifies how many columns to
insert, the width of the region-rectangle does not matter for this command.
What does matter is the position of the left edge (which specifies the col-
umn position for the insertion in each line) and the range of lines that the
rectangle occupies. The previous contents of the text beyond the insertion
column are pushed rightward.

72 GNU Emacs Manual

Chapter 10: Registers 73

10 Registers

Emacs registers are places you can save text or positions for later use.
Once you save text or a rectangle in a register, you can copy it into the buffer
once or many times; you can move point to a position saved in a register
once or many times.

Each register has a name which is a single character. A register can
store a piece of text, a rectangle, a position, a window configuration, or a
file name, but only one thing at any given time. Whatever you store in a
register remains there until you store something else in that register. To see
what a register r contains, use M-x view-register.

M-x view-register 〈RET〉 r
Display a description of what register r contains.

10.1 Saving Positions in Registers

Saving a position records a place in a buffer so that you can move back
there later. Moving to a saved position switches to that buffer and moves
point to that place in it.

C-x r 〈SPC〉 r
Save position of point in register r (point-to-register).

C-x r j r Jump to the position saved in register r (jump-to-register).

To save the current position of point in a register, choose a name r and
type C-x r 〈SPC〉 r. The register r retains the position thus saved until you
store something else in that register.

The command C-x r j r moves point to the position recorded in register
r. The register is not affected; it continues to record the same position. You
can jump to the saved position any number of times.

10.2 Saving Text in Registers

When you want to insert a copy of the same piece of text several times,
it may be inconvenient to yank it from the kill ring, since each subsequent
kill moves that entry further down the ring. An alternative is to store the
text in a register and later retrieve it.

C-x r s r Copy region into register r (copy-to-register).

C-x r i r Insert text from register r (insert-register).

74 GNU Emacs Manual

C-x r s r stores a copy of the text of the region into the register named
r. Given a numeric argument, C-x r s r deletes the text from the buffer as
well.

C-x r i r inserts in the buffer the text from register r. Normally it leaves
point before the text and places the mark after, but with a numeric argument
(C-u) it puts point after the text and the mark before.

10.3 Saving Rectangles in Registers

A register can contain a rectangle instead of linear text. The rectangle
is represented as a list of strings. See Section 9.4 [Rectangles], page 69, for
basic information on how to specify a rectangle in the buffer.

C-x r r r Copy the region-rectangle into register r (copy-rectangle-to-
register). With numeric argument, delete it as well.

C-x r i r Insert the rectangle stored in register r (if it contains a rectangle)
(insert-register).

The C-x r i r command inserts a text string if the register contains one,
and inserts a rectangle if the register contains one.

See also the command sort-columns, which you can think of as sorting
a rectangle. See Section 29.6 [Sorting], page 359.

10.4 Saving Window Configurations in Registers

You can save the window configuration of the selected frame in a regis-
ter, or even the configuration of all windows in all frames, and restore the
configuration later.

C-x r w r Save the state of the selected frame’s windows in register r
(window-configuration-to-register).

C-x r f r Save the state of all frames, including all their windows, in reg-
ister r (frame-configuration-to-register).

Use C-x r j r to restore a window or frame configuration. This is the
same command used to restore a cursor position. When you restore a frame
configuration, any existing frames not included in the configuration become
invisible. If you wish to delete these frames instead, use C-u C-x r j r.

10.5 Keeping File Names in Registers

Chapter 10: Registers 75

If you visit certain file names frequently, you can visit them more conve-
niently if you put their names in registers. Here’s the Lisp code used to put
a file name in a register:

(set-register ?r ’(file . name))

For example,

(set-register ?z ’(file . "/gd/gnu/emacs/19.0/src/ChangeLog"))

puts the file name shown in register ‘z’.

To visit the file whose name is in register r, type C-x r j r. (This is the
same command used to jump to a position or restore a frame configuration.)

10.6 Bookmarks

Bookmarks are somewhat like registers in that they record positions you
can jump to. Unlike registers, they have long names, and they persist au-
tomatically from one Emacs session to the next. The prototypical use of
bookmarks is to record “where you were reading” in various files.

C-x r m 〈RET〉

Set the bookmark for the visited file, at point.

C-x r m bookmark 〈RET〉

Set the bookmark named bookmark at point (bookmark-set).

C-x r b bookmark 〈RET〉

Jump to the bookmark named bookmark (bookmark-jump).

C-x r l List all bookmarks (list-bookmarks).

M-x bookmark-save
Save all the current bookmark values in the default bookmark
file.

The prototypical use for bookmarks is to record one current position in
each of several files. So the command C-x r m, which sets a bookmark, uses
the visited file name as the default for the bookmark name. If you name
each bookmark after the file it points to, then you can conveniently revisit
any of those files with C-x r b, and move to the position of the bookmark
at the same time.

To display a list of all your bookmarks in a separate buffer, type C-x r l
(list-bookmarks). If you switch to that buffer, you can use it to edit your
bookmark definitions or annotate the bookmarks. Type C-h m in that buffer
for more information about its special editing commands.

When you kill Emacs, Emacs offers to save your bookmark values in
your default bookmark file, ‘~/.emacs.bmk’, if you have changed any book-

76 GNU Emacs Manual

mark values. You can also save the bookmarks at any time with the M-
x bookmark-save command. The bookmark commands load your default
bookmark file automatically. This saving and loading is how bookmarks
persist from one Emacs session to the next.

If you set the variable bookmark-save-flag to 1, then each command
that sets a bookmark will also save your bookmarks; this way, you don’t lose
any bookmark values even if Emacs crashes. (The value, if a number, says
how many bookmark modifications should go by between saving.)

Bookmark position values are saved with surrounding context, so that
bookmark-jump can find the proper position even if the file is modified
slightly. The variable bookmark-search-size says how many characters
of context to record, on each side of the bookmark’s position.

Here are some additional commands for working with bookmarks:

M-x bookmark-load 〈RET〉 filename 〈RET〉

Load a file named filename that contains a list of bookmark
values. You can use this command, as well as bookmark-write,
to work with other files of bookmark values in addition to your
default bookmark file.

M-x bookmark-write 〈RET〉 filename 〈RET〉

Save all the current bookmark values in the file filename.

M-x bookmark-delete 〈RET〉 bookmark 〈RET〉

Delete the bookmark named bookmark.

M-x bookmark-insert-location 〈RET〉 bookmark 〈RET〉

Insert in the buffer the name of the file that bookmark bookmark
points to.

M-x bookmark-insert 〈RET〉 bookmark 〈RET〉

Insert in the buffer the contents of the file that bookmark book-
mark points to.

Chapter 11: Controlling the Display 77

11 Controlling the Display

Since only part of a large buffer fits in the window, Emacs tries to show
the part that is likely to be interesting. The display control commands allow
you to specify which part of the text you want to see.

C-l Clear screen and redisplay, scrolling the selected window to cen-
ter point vertically within it (recenter).

C-v Scroll forward (a windowful or a specified number of lines)
(scroll-up).

〈NEXT〉 Likewise, scroll forward.

M-v Scroll backward (scroll-down).

〈PRIOR〉 Likewise, scroll backward.

arg C-l Scroll so point is on screen line arg (recenter).

C-x < Scroll text in current window to the left (scroll-left).

C-x > Scroll to the right (scroll-right).

C-x $ Make deeply indented lines invisible (set-selective-display).

The names of all scroll commands are based on the direction that the
text moves in the window. Thus, the command to scrolling forward is called
scroll-up, since the text moves up.

11.1 Scrolling

If a buffer contains text that is too large to fit entirely within a window
that is displaying the buffer, Emacs shows a contiguous portion of the text.
The portion shown always contains point.

Scrolling means moving text up or down in the window so that different
parts of the text are visible. Scrolling forward means that text moves up,
and new text appears at the bottom. Scrolling backward moves text down
and new text appears at the top.

Scrolling happens automatically if you move point past the bottom or top
of the window. You can also explicitly request scrolling with the commands
in this section.

The most basic scrolling command is C-l (recenter) with no argument.
It clears the entire screen and redisplays all windows. In addition, it scrolls
the selected window so that point is halfway down from the top of the win-
dow.

78 GNU Emacs Manual

The scrolling commands C-v and M-v let you move all the text in the
window up or down a few lines. C-v (scroll-up) with an argument shows
you that many more lines at the bottom of the window, moving the text and
point up together as C-l might. C-v with a negative argument shows you
more lines at the top of the window. M-v (scroll-down) is like C-v, but
moves in the opposite direction. The function keys 〈NEXT〉 and 〈PRIOR〉 are
equivalent to C-v and M-v.

To read the buffer a windowful at a time, use C-v with no argument. It
takes the last two lines at the bottom of the window and puts them at the
top, followed by nearly a whole windowful of lines not previously visible. If
point was in the text scrolled off the top, it moves to the new top of the
window. M-v with no argument moves backward with overlap similarly. The
number of lines of overlap across a C-v or M-v is controlled by the variable
next-screen-context-lines; by default, it is two.

Another way to do scrolling is with C-l with a numeric argument. C-l
does not clear the screen when given an argument; it only scrolls the selected
window. With a positive argument n, it repositions text to put point n lines
down from the top. An argument of zero puts point on the very top line.
Point does not move with respect to the text; rather, the text and point
move rigidly on the screen. C-l with a negative argument puts point that
many lines from the bottom of the window. For example, C-u - 1 C-l puts
point on the bottom line, and C-u - 5 C-l puts it five lines from the bottom.
Just C-u as argument, as in C-u C-l, scrolls point to the center of the screen.

The C-M-l command (reposition-window) scrolls the current window
heuristically in a way designed to get useful information onto the screen. For
example, in a Lisp file, this command tries to get the entire current defun
onto the screen if possible.

Scrolling happens automatically if point has moved out of the visible
portion of the text when it is time to display. Usually the scrolling is done
so as to put point vertically centered within the window. However, if the
variable scroll-step has a nonzero value, an attempt is made to scroll the
buffer by that many lines; if that is enough to bring point back into visibility,
that is what is done.

11.2 Horizontal Scrolling

The text in a window can also be scrolled horizontally. This means that
each line of text is shifted sideways in the window, and one or more characters
at the beginning of each line are not displayed at all. When a window
has been scrolled horizontally in this way, text lines are truncated rather
than continued (see Section 4.8 [Continuation Lines], page 35), with a ‘$’
appearing in the first column when there is text truncated to the left, and
in the last column when there is text truncated to the right.

Chapter 11: Controlling the Display 79

The command C-x < (scroll-left) scrolls the selected window to the
left by n columns with argument n. This moves part of the beginning of
each line off the left edge of the window. With no argument, it scrolls by
almost the full width of the window (two columns less, to be precise).

C-x > (scroll-right) scrolls similarly to the right. The window cannot
be scrolled any farther to the right once it is displayed normally (with each
line starting at the window’s left margin); attempting to do so has no effect.
This means that you don’t have to calculate the argument precisely for C-x >;
any sufficiently large argument will restore normally display.

11.3 Selective Display

Emacs has the ability to hide lines indented more than a certain number
of columns (you specify how many columns). You can use this to get an
overview of a part of a program.

To hide lines, type C-x $ (set-selective-display) with a numeric ar-
gument n. Then lines with at least n columns of indentation disappear from
the screen. The only indication of their presence is that three dots (‘. . .’)
appear at the end of each visible line that is followed by one or more hidden
ones.

The commands C-n and C-p move across the hidden lines as if they were
not there.

The hidden lines are still present in the buffer, and most editing com-
mands see them as usual, so you may find point in the middle of the hidden
text. When this happens, the cursor appears at the end of the previous line,
after the three dots. If point is at the end of the visible line, before the
newline that ends it, the cursor appears before the three dots.

To make all lines visible again, type C-x $ with no argument.

If you set the variable selective-display-ellipses to nil, the three
dots do not appear at the end of a line that precedes hidden lines. Then
there is no visible indication of the hidden lines. This variable becomes local
automatically when set.

11.4 European Character Set Display

Some European languages use accented letters and other special sym-
bols. The ISO 8859 Latin-1 character set defines character codes for many
European languages in the range 160 to 255.

Emacs can display those characters according to Latin-1, provided the ter-
minal or font in use supports them. The M-x standard-display-european

80 GNU Emacs Manual

command toggles European character display mode. With a numeric ar-
gument, M-x standard-display-european enables European character dis-
play if and only if the argument is positive. Load the library iso-syntax
to specify the correct syntactic properties and case conversion table for the
Latin-1 character set.

If your terminal does not support display of the Latin-1 character set,
Emacs can display these characters as ASCII sequences which at least give
you a clear idea of what the characters are. To do this, load the library
iso-ascii.

Some operating systems let you specify the language you are using by
setting a locale. Emacs handles one common special case of this: if your lo-
cale name for character types contains the string ‘8859-1’ or ‘88591’, Emacs
automatically enables European character display mode and its syntax.

There are three different ways you can enter Latin-1 characters:

• If your keyboard can generate character codes 128 and up, represent-
ing ISO Latin-1 characters, execute the following expression to enable
Emacs to understand them:

(set-input-mode (car (current-input-mode))
(nth 1 (current-input-mode))
0)

• You can load the library iso-transl to turn the key C-x 8 into a “com-
pose character” prefix for entry of the extra ISO Latin-1 printing char-
acters. C-x 8 is good for insertion (in the minibuffer as well as other
buffers), for searching, and in any other context where a key sequence
is allowed. The 〈ALT〉 modifier key, if you have one, serves the same
purpose as C-x 8; use 〈ALT〉 together with an accent character to modify
the following letter.

• You can use ISO Accents mode. This minor mode is convenient if
you enter non-ASCII ISO Latin-1 characters often. When this minor
mode is enabled, the characters ‘‘’, ‘’’, ‘"’, ‘^’, ‘/’ and ‘~’ modify the
following letter by adding the corresponding diacritical mark to it, if
possible. To enable or disable ISO Accents mode, use the command
M-x iso-accents-mode. This command affects only the current buffer.

To enter one of those six special characters while in ISO Accents mode,
type the character, followed by a space. Some of those characters have
a corresponding “dead key” accent character in the ISO Latin-1 charac-
ter set; to enter that character, type the corresponding ASCII character
twice. For example, ’’ enters the Latin-1 character acute-accent (char-
acter code 0264).

ISO Accents mode input is available whenever a key sequence is ex-
pected: for ordinary insertion, for searching, for the minibuffer, and for
certain command arguments.

Chapter 11: Controlling the Display 81

In addition to the accented letters, you can use these special sequences
in ISO Accents mode to enter certain other ISO Latin-1 characters:

/A ‘A’ with ring.

~C ‘C’ with cedilla.

~D ‘D’ with stroke.

/E ‘AE’ ligature.

/a ‘a’ with ring.

~c ‘c’ with cedilla.

~d ‘d’ with stroke.

/e ‘ae’ ligature.

"s German sharp ‘s’.

~< Left guillemot.

~> Right guillemot.

~! Inverted exclamation mark.

~? Inverted question mark.

11.5 Follow Mode

Follow mode is a minor mode which makes two windows showing the
same buffer scroll as one tall “virtual window.” To use Follow mode, go to a
frame with just one window, split it into two side-by-side windows using C-x
3, and then type M-x follow-mode. From then on, you can edit the buffer
in either of the two windows, or scroll either one; the other window follows
it.

To turn off Follow mode, type M-x follow-mode a second time.

11.6 Optional Mode Line Features

The current line number of point appears in the mode line when Line
Number mode is enabled. Use the command M-x line-number-mode to
turn this mode on and off; normally it is on. The line number appears
before the buffer percentage pos, with the letter ‘L’ to indicate what it is.
See Section 30.1 [Minor Modes], page 371, for more information about minor
modes and about how to use this command.

If the buffer is very large (larger than the value of line-number-display-
limit), then the line number doesn’t appear. Emacs doesn’t compute the

82 GNU Emacs Manual

line number when the buffer is large, because that would be too slow. If
you have narrowed the buffer (see Section 29.7 [Narrowing], page 362), the
displayed line number is relative to the accessible portion of the buffer.

You can also display the current column number by turning on Column
Number mode. It displays the current column number preceded by the letter
‘C’. Type M-x column-number-mode to toggle this mode.

Emacs can optionally display the time and system load in all mode lines.
To enable this feature, type M-x display-time. The information added to
the mode line usually appears after the buffer name, before the mode names
and their parentheses. It looks like this:

hh:mmpm l.ll

Here hh and mm are the hour and minute, followed always by ‘am’ or ‘pm’.
l.ll is the average number of running processes in the whole system recently.
(Some fields may be missing if your operating system cannot support them.)

The word ‘Mail’ appears after the load level if there is mail for you that
you have not read yet.

11.7 Variables Controlling Display

This section contains information for customization only. Beginning users
should skip it.

The variable mode-line-inverse-video controls whether the mode line
is displayed in inverse video (assuming the terminal supports it); nil means
don’t do so. See Section 1.3 [Mode Line], page 17. If you specify the fore-
ground color for the modeline face, and mode-line-inverse-video is non-
nil, then the default background color for that face is the usual foreground
color. See Section 17.12 [Faces], page 164.

If the variable inverse-video is non-nil, Emacs attempts to invert all
the lines of the display from what they normally are.

If the variable visible-bell is non-nil, Emacs attempts to make the
whole screen blink when it would normally make an audible bell sound. This
variable has no effect if your terminal does not have a way to make the screen
blink.

When you reenter Emacs after suspending, Emacs normally clears the
screen and redraws the entire display. On some terminals with more than
one page of memory, it is possible to arrange the termcap entry so that the
‘ti’ and ‘te’ strings (output to the terminal when Emacs is entered and
exited, respectively) switch between pages of memory so as to use one page
for Emacs and another page for other output. Then you might want to set
the variable no-redraw-on-reenter non-nil; this tells Emacs to assume,
when resumed, that the screen page it is using still contains what Emacs
last wrote there.

Chapter 11: Controlling the Display 83

The variable echo-keystrokes controls the echoing of multi-character
keys; its value is the number of seconds of pause required to cause echoing
to start, or zero meaning don’t echo at all. See Section 1.2 [Echo Area],
page 16.

If the variable ctl-arrow is nil, control characters in the buffer are
displayed with octal escape sequences, all except newline and tab. Altering
the value of ctl-arrow makes it local to the current buffer; until that time,
the default value is in effect. The default is initially t. See section “Display
Tables” in The Emacs Lisp Reference Manual.

Normally, a tab character in the buffer is displayed as whitespace which
extends to the next display tab stop position, and display tab stops come at
intervals equal to eight spaces. The number of spaces per tab is controlled
by the variable tab-width, which is made local by changing it, just like ctl-
arrow. Note that how the tab character in the buffer is displayed has nothing
to do with the definition of 〈TAB〉 as a command. The variable tab-width
must have an integer value between 1 and 1000, inclusive.

If the variable truncate-lines is non-nil, then each line of text gets just
one screen line for display; if the text line is too long, display shows only
the part that fits. If truncate-lines is nil, then long text lines display as
more than one screen line, enough to show the whole text of the line. See
Section 4.8 [Continuation Lines], page 35. Altering the value of truncate-
lines makes it local to the current buffer; until that time, the default value
is in effect. The default is initially nil.

If the variable truncate-partial-width-windows is non-nil, it forces
truncation rather than continuation in any window less than the full width
of the screen or frame, regardless of the value of truncate-lines. For
information about side-by-side windows, see Section 16.2 [Split Window],
page 150. See also section “Display” in The Emacs Lisp Reference Manual.

The variable baud-rate holds the the output speed of the terminal, as far
as Emacs knows. Setting this variable does not change the speed of actual
data transmission, but the value is used for calculations such as padding. It
also affects decisions about whether to scroll part of the screen or redraw
it instead—even when using a window system. (We designed it this way,
despite the fact that a window system has no true “output speed”, to give
you a way to tune these decisions.)

84 GNU Emacs Manual

Chapter 12: Searching and Replacement 85

12 Searching and Replacement

Like other editors, Emacs has commands for searching for occurrences of
a string. The principal search command is unusual in that it is incremental;
it begins to search before you have finished typing the search string. There
are also nonincremental search commands more like those of other editors.

Besides the usual replace-string command that finds all occurrences of
one string and replaces them with another, Emacs has a fancy replacement
command called query-replace which asks interactively which occurrences
to replace.

12.1 Incremental Search

An incremental search begins searching as soon as you type the first
character of the search string. As you type in the search string, Emacs
shows you where the string (as you have typed it so far) would be found.
When you have typed enough characters to identify the place you want, you
can stop. Depending on what you plan to do next, you may or may not need
to terminate the search explicitly with 〈RET〉.

C-s Incremental search forward (isearch-forward).

C-r Incremental search backward (isearch-backward).

C-s starts an incremental search. C-s reads characters from the keyboard
and positions the cursor at the first occurrence of the characters that you
have typed. If you type C-s and then F, the cursor moves right after the
first ‘F’. Type an O, and see the cursor move to after the first ‘FO’. After
another O, the cursor is after the first ‘FOO’ after the place where you started
the search. Meanwhile, the search string ‘FOO’ has been echoed in the echo
area.

If you make a mistake in typing the search string, you can cancel charac-
ters with 〈DEL〉. Each 〈DEL〉 cancels the last character of search string. This
does not happen until Emacs is ready to read another input character; first
it must either find, or fail to find, the character you want to erase. If you do
not want to wait for this to happen, use C-g as described below.

When you are satisfied with the place you have reached, you can type
〈RET〉, which stops searching, leaving the cursor where the search brought it.
Also, any command not specially meaningful in searches stops the searching
and is then executed. Thus, typing C-a would exit the search and then move
to the beginning of the line. 〈RET〉 is necessary only if the next command
you want to type is a printing character, 〈DEL〉, 〈RET〉, or another control
character that is special within searches (C-q, C-w, C-r, C-s, C-y, M-y, M-r,
or M-s).

86 GNU Emacs Manual

Sometimes you search for ‘FOO’ and find it, but not the one you expected
to find. There was a second ‘FOO’ that you forgot about, before the one
you were looking for. In this event, type another C-s to move to the next
occurrence of the search string. This can be done any number of times. If
you overshoot, you can cancel some C-s characters with 〈DEL〉.

After you exit a search, you can search for the same string again by typing
just C-s C-s: the first C-s is the key that invokes incremental search, and
the second C-s means “search again”.

To reuse earlier search strings, use the search ring. The commands M-
p and M-n move through the ring to pick a search string to reuse. These
commands leave the selected search ring element in the minibuffer, where
you can edit it. Type C-s or C-r to terminate editing the string and search
for it.

If your string is not found at all, the echo area says ‘Failing I-Search’.
The cursor is after the place where Emacs found as much of your string as
it could. Thus, if you search for ‘FOOT’, and there is no ‘FOOT’, you might
see the cursor after the ‘FOO’ in ‘FOOL’. At this point there are several things
you can do. If your string was mistyped, you can rub some of it out and
correct it. If you like the place you have found, you can type 〈RET〉 or some
other Emacs command to “accept what the search offered”. Or you can type
C-g, which removes from the search string the characters that could not be
found (the ‘T’ in ‘FOOT’), leaving those that were found (the ‘FOO’ in ‘FOOT’).
A second C-g at that point cancels the search entirely, returning point to
where it was when the search started.

An upper-case letter in the search string makes the search case-sensitive.
If you delete the upper-case character from the search string, it ceases to
have this effect. See Section 12.6 [Search Case], page 94.

If a search is failing and you ask to repeat it by typing another C-s, it
starts again from the beginning of the buffer. Repeating a failing reverse
search with C-r starts again from the end. This is called wrapping around.
‘Wrapped’ appears in the search prompt once this has happened. If you
keep on going past the original starting point of the search, it changes to
‘Overwrapped’, which means that you are revisiting matches that you have
already seen.

The C-g “quit” character does special things during searches; just what
it does depends on the status of the search. If the search has found what
you specified and is waiting for input, C-g cancels the entire search. The
cursor moves back to where you started the search. If C-g is typed when
there are characters in the search string that have not been found—because
Emacs is still searching for them, or because it has failed to find them—then
the search string characters which have not been found are discarded from
the search string. With them gone, the search is now successful and waiting
for more input, so a second C-g will cancel the entire search.

Chapter 12: Searching and Replacement 87

To search for a newline, type 〈LFD〉 (also known as C-j). To search for
another control character such as control-S or carriage return, you must
quote it by typing C-q first. This function of C-q is analogous to its meaning
as an Emacs command: it causes the following character to be treated the
way a graphic character would normally be treated in the same context. You
can also specify a character by its octal code: enter C-q followed by three
octal digits.

You can change to searching backwards with C-r. If a search fails because
the place you started was too late in the file, you should do this. Repeated C-
r keeps looking for more occurrences backwards. A C-s starts going forwards
again. C-r in a search can be canceled with 〈DEL〉.

If you know initially that you want to search backwards, you can use C-r
instead of C-s to start the search, because C-r as a key runs a command
(isearch-backward) to search backward.

The characters C-y and C-w can be used in incremental search to grab text
from the buffer into the search string. This makes it convenient to search for
another occurrence of text at point. C-w copies the word after point as part
of the search string, advancing point over that word. Another C-s to repeat
the search will then search for a string including that word. C-y is similar
to C-w but copies all the rest of the current line into the search string. Both
C-y and C-w convert the text they copy to lower case if the search is current
not case-sensitive; this is so the search remains case-insensitive.

The character M-y copies text from the kill ring into the search string.
It uses the same text that C-y as a command would yank. See Section 9.2
[Yanking], page 65.

When you exit the incremental search, it sets the mark to where point
was, before the search. That is convenient for moving back there. In Tran-
sient Mark mode, incremental search sets the mark without activating it,
and does so only if the mark is not already active.

To customize the special characters that incremental search understands,
alter their bindings in the keymap isearch-mode-map. For a list of bind-
ings, look at the documentation of isearch-mode with C-h f isearch-mode
〈RET〉.

12.1.1 Slow Terminal Incremental Search

Incremental search on a slow terminal uses a modified style of display
that is designed to take less time. Instead of redisplaying the buffer at each
place the search gets to, it creates a new single-line window and uses that
to display the line that the search has found. The single-line window comes
into play as soon as point gets outside of the text that is already on the
screen.

88 GNU Emacs Manual

When you terminate the search, the single-line window is removed. Then
Emacs redisplays the window in which the search was done, to show its new
position of point.

The slow terminal style of display is used when the terminal baud rate is
less than or equal to the value of the variable search-slow-speed, initially
1200.

The number of lines to use in slow terminal search display is controlled
by the variable search-slow-window-lines. 1 is its normal value.

12.2 Nonincremental Search

Emacs also has conventional nonincremental search commands, which
require you to type the entire search string before searching begins.

C-s 〈RET〉 string 〈RET〉

Search for string.

C-r 〈RET〉 string 〈RET〉

Search backward for string.

To do a nonincremental search, first type C-s 〈RET〉. This enters the
minibuffer to read the search string; terminate the string with 〈RET〉, and
then the search takes place. If the string is not found, the search command
gets an error.

The way C-s 〈RET〉 works is that the C-s invokes incremental search,
which is specially programmed to invoke nonincremental search if the argu-
ment you give it is empty. (Such an empty argument would otherwise be
useless.) C-r 〈RET〉 also works this way.

However, nonincremental searches performed using C-s 〈RET〉 do not call
search-forward right away. The first thing done is to see if the next char-
acter is C-w, which requests a word search.

Forward and backward nonincremental searches are implemented by the
commands search-forward and search-backward. These commands may
be bound to keys in the usual manner. The feature that you can get to them
via the incremental search commands exists for historical reasons, and to
avoid the need to find suitable key sequences for them.

12.3 Word Search

Word search searches for a sequence of words without regard to how the
words are separated. More precisely, you type a string of many words, using
single spaces to separate them, and the string can be found even if there are
multiple spaces, newlines or other punctuation between the words.

Chapter 12: Searching and Replacement 89

Word search is useful for editing a printed document made with a text
formatter. If you edit while looking at the printed, formatted version, you
can’t tell where the line breaks are in the source file. With word search, you
can search without having to know them.

C-s 〈RET〉 C-w words 〈RET〉

Search for words, ignoring details of punctuation.

C-r 〈RET〉 C-w words 〈RET〉

Search backward for words, ignoring details of punctuation.

Word search is a special case of nonincremental search and is invoked with
C-s 〈RET〉 C-w. This is followed by the search string, which must always be
terminated with 〈RET〉. Being nonincremental, this search does not start until
the argument is terminated. It works by constructing a regular expression
and searching for that; see Section 12.4 [Regexp Search], page 89.

Use C-r 〈RET〉 C-w to do backward word search.

Forward and backward word searches are implemented by the commands
word-search-forward and word-search-backward. These commands may
be bound to keys in the usual manner. The feature that you can get to them
via the incremental search commands exists for historical reasons, and to
avoid the need to find suitable key sequences for them.

12.4 Regular Expression Search

A regular expression (regexp, for short) is a pattern that denotes a class
of alternative strings to match, possibly infinitely many. In GNU Emacs,
you can search for the next match for a regexp either incrementally or not.

Incremental search for a regexp is done by typing C-M-s (isearch-
forward-regexp). This command reads a search string incrementally just
like C-s, but it treats the search string as a regexp rather than looking for
an exact match against the text in the buffer. Each time you add text to the
search string, you make the regexp longer, and the new regexp is searched for.
To search backward in the buffer, use C-M-r (isearch-backward-regexp).

All of the control characters that do special things within an ordinary
incremental search have the same function in incremental regexp search.
Typing C-s or C-r immediately after starting the search retrieves the last
incremental search regexp used; that is to say, incremental regexp and non-
regexp searches have independent defaults. They also have separate search
rings that you can access with M-p and M-n.

If you type 〈SPC〉 in incremental regexp search, it matches any sequence
of whitespace characters, including newlines. If you want to match just a
space, type C-q 〈SPC〉.

90 GNU Emacs Manual

Note that adding characters to the regexp in an incremental regexp search
can make the cursor move back and start again. For example, if you have
searched for ‘foo’ and you add ‘\|bar’, the cursor backs up in case the first
‘bar’ precedes the first ‘foo’.

Nonincremental search for a regexp is done by the functions re-search-
forward and re-search-backward. You can invoke these with M-x, or bind
them to keys, or invoke them by way of incremental regexp search with
C-M-s 〈RET〉 and C-M-r 〈RET〉.

12.5 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special
constructs and the rest are ordinary. An ordinary character is a simple
regular expression which matches that same character and nothing else. The
special characters are ‘$’, ‘^’, ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’ and ‘\’. Any other
character appearing in a regular expression is ordinary, unless a ‘\’ precedes
it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore
‘f’ is a regular expression that matches the string ‘f’ and no other string.
(It does not match the string ‘ff’.) Likewise, ‘o’ is a regular expression that
matches only ‘o’. (When case distinctions are being ignored, these regexps
also match ‘F’ and ‘O’, but we consider this a generalization of “the same
string”, rather than an exception.)

Any two regular expressions a and b can be concatenated. The result is a
regular expression which matches a string if a matches some amount of the
beginning of that string and b matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and
‘o’ to get the regular expression ‘fo’, which matches only the string ‘fo’.
Still trivial. To do something nontrivial, you need to use one of the special
characters. Here is a list of them.

. (Period) is a special character that matches any single character except a
newline. Using concatenation, we can make regular expressions
like ‘a.b’ which matches any three-character string which begins
with ‘a’ and ends with ‘b’.

* is not a construct by itself; it is a postfix operator, which means
to match the preceding regular expression repetitively as many
times as possible. Thus, ‘o*’ matches any number of ‘o’s (in-
cluding no ‘o’s).

‘*’ always applies to the smallest possible preceding expression.
Thus, ‘fo*’ has a repeating ‘o’, not a repeating ‘fo’. It matches
‘f’, ‘fo’, ‘foo’, and so on.

Chapter 12: Searching and Replacement 91

The matcher processes a ‘*’ construct by matching, immediately,
as many repetitions as can be found. Then it continues with the
rest of the pattern. If that fails, backtracking occurs, discarding
some of the matches of the ‘*’-modified construct in case that
makes it possible to match the rest of the pattern. For example,
matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to
match all three ‘a’s; but the rest of the pattern is ‘ar’ and there
is only ‘r’ left to match, so this try fails. The next alternative
is for ‘a*’ to match only two ‘a’s. With this choice, the rest of
the regexp matches successfully.

+ is a postfix character, similar to ‘*’ except that it must match
the preceding expression at least once. So, for example, ‘ca+r’
matches the strings ‘car’ and ‘caaaar’ but not the string ‘cr’,
whereas ‘ca*r’ matches all three strings.

? is a postfix character, similar to ‘*’ except that it can match
the preceding expression either once or not at all. For example,
‘ca?r’ matches ‘car’ or ‘cr’; nothing else.

[. . .] is a character set, which begins with ‘[’ and is terminated by ‘]’.
In the simplest case, the characters between the two brackets are
what this set can match.

Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’
matches any string composed of just ‘a’s and ‘d’s (including
the empty string), from which it follows that ‘c[ad]*r’ matches
‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

You can also include character ranges a character set, by writing
two characters with a ‘-’ between them. Thus, ‘[a-z]’ matches
any lower-case letter. Ranges may be intermixed freely with
individual characters, as in ‘[a-z$%.]’, which matches any lower
case letter or ‘$’, ‘%’ or period.

Note that the usual regexp special characters are not special
inside a character set. A completely different set of special char-
acters exists inside character sets: ‘]’, ‘-’ and ‘^’.

To include a ‘]’ in a character set, you must make it the first
character. For example, ‘[]a]’ matches ‘]’ or ‘a’. To include a
‘-’, write ‘-’ as the first or last character of the set, or put it
after a range. Thus, ‘[]-]’ matches both ‘]’ and ‘-’.

To include ‘^’, make it other than the first character in the set.

[^ . . .] ‘[^’ begins a complemented character set, which matches any
character except the ones specified. Thus, ‘[^a-z0-9A-Z]’
matches all characters except letters and digits.

92 GNU Emacs Manual

‘^’ is not special in a character set unless it is the first character.
The character following the ‘^’ is treated as if it were first (‘-’
and ‘]’ are not special there).

A complemented character set can match a newline, unless new-
line is mentioned as one of the characters not to match. This is
in contrast to the handling of regexps in programs such as grep.

^ is a special character that matches the empty string, but only
at the beginning of a line in the text being matched. Otherwise
it fails to match anything. Thus, ‘^foo’ matches a ‘foo’ which
occurs at the beginning of a line.

$ is similar to ‘^’ but matches only at the end of a line. Thus,
‘xx*$’ matches a string of one ‘x’ or more at the end of a line.

\ has two functions: it quotes the special characters (including
‘\’), and it introduces additional special constructs.

Because ‘\’ quotes special characters, ‘\$’ is a regular expression
which matches only ‘$’, and ‘\[’ is a regular expression which
matches only ‘[’, etc.

Note: for historical compatibility, special characters are treated as or-
dinary ones if they are in contexts where their special meanings make no
sense. For example, ‘*foo’ treats ‘*’ as ordinary since there is no preceding
expression on which the ‘*’ can act. It is poor practice to depend on this
behavior; better to quote the special character anyway, regardless of where
it appears.

For the most part, ‘\’ followed by any character matches only that charac-
ter. However, there are several exceptions: two-character sequences starting
with ‘\’ which have special meanings. The second character in the sequence
is always an ordinary character on their own. Here is a table of ‘\’ constructs.

\| specifies an alternative. Two regular expressions a and b with
‘\|’ in between form an expression that matches anything that
either a or b matches.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other
string.

‘\|’ applies to the largest possible surrounding expressions. Only
a surrounding ‘\(. . . \)’ grouping can limit the scope of ‘\|’.

Full backtracking capability exists to handle multiple uses of
‘\|’.

\(. . . \) is a grouping construct that serves three purposes:

1. To enclose a set of ‘\|’ alternatives for other operations.
Thus, ‘\(foo\|bar\)x’ matches either ‘foox’ or ‘barx’.

Chapter 12: Searching and Replacement 93

2. To enclose a complicated expression for the postfix oper-
ators ‘*’, ‘+’ and ‘?’ to operate on. Thus, ‘ba\(na\)*’
matches ‘bananana’, etc., with any (zero or more) number
of ‘na’ strings.

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of a par-
enthetical grouping; it is a separate feature which is assigned as
a second meaning to the same ‘\(. . . \)’ construct. In prac-
tice there is no conflict between the two meanings. Here is an
explanation of this feature:

\d after the end of a ‘\(. . . \)’ construct, the matcher remembers
the beginning and end of the text matched by that construct.
Then, later on in the regular expression, you can use ‘\’ followed
by the digit d to mean “match the same text matched the dth
time by the ‘\(. . . \)’ construct.”

The strings matching the first nine ‘\(. . . \)’ constructs ap-
pearing in a regular expression are assigned numbers 1 through
9 in order that the open-parentheses appear in the regular ex-
pression. ‘\1’ through ‘\9’ refer to the text previously matched
by the corresponding ‘\(. . . \)’ construct.

For example, ‘\(.*\)\1’ matches any newline-free string that
is composed of two identical halves. The ‘\(.*\)’ matches the
first half, which may be anything, but the ‘\1’ that follows must
match the same exact text.

If a particular ‘\(. . . \)’ construct matches more than once
(which can easily happen if it is followed by ‘*’), only the last
match is recorded.

\‘ matches the empty string, provided it is at the beginning of the
buffer or string being matched against.

\’ matches the empty string, provided it is at the end of the buffer
or string being matched against.

\= matches the empty string, provided it is at point.

\b matches the empty string, provided it is at the beginning or end
of a word. Thus, ‘\bfoo\b’ matches any occurrence of ‘foo’ as
a separate word. ‘\bballs?\b’ matches ‘ball’ or ‘balls’ as a
separate word.

‘\b’ matches at the beginning or end of the buffer regardless of
what text appears next to it.

\B matches the empty string, provided it is not at the beginning or
end of a word.

94 GNU Emacs Manual

\< matches the empty string, provided it is at the beginning of
a word. ‘\<’ matches at the beginning of the buffer only if a
word-constituent character follows.

\> matches the empty string, provided it is at the end of a word.
‘\>’ matches at the end of the buffer only if the contents end
with a word-constituent character.

\w matches any word-constituent character. The syntax table de-
termines which characters these are. See Section 30.6 [Syntax],
page 395.

\W matches any character that is not a word-constituent.

\sc matches any character whose syntax is c. Here c is a character
which represents a syntax code: thus, ‘w’ for word constituent,
‘(’ for open-parenthesis, etc. Represent a character of whites-
pace (which can be a newline) by either ‘-’ or a space character.

\Sc matches any character whose syntax is not c.

The constructs that pertain to words and syntax are controlled by the
setting of the syntax table (see Section 30.6 [Syntax], page 395).

Here is a complicated regexp, used by Emacs to recognize the end of
a sentence together with any whitespace that follows. It is given in Lisp
syntax to enable you to distinguish the spaces from the tab characters. In
Lisp syntax, the string constant begins and ends with a double-quote. ‘\"’
stands for a double-quote as part of the regexp, ‘\\’ for a backslash as part
of the regexp, ‘\t’ for a tab and ‘\n’ for a newline.

"[.?!][]\"’)]*\\($\\|\t\\| \\)[\t\n]*"

This contains four parts in succession: a character set matching period,
‘?’, or ‘!’; a character set matching close-brackets, quotes, or parentheses,
repeated any number of times; an alternative in backslash-parentheses that
matches end-of-line, a tab, or two spaces; and a character set matching
whitespace characters, repeated any number of times.

To enter the same regexp interactively, you would type 〈TAB〉 to enter a
tab, and C-q C-j to enter a newline. You would also type single backslashes
as themselves, instead of doubling them for Lisp syntax.

12.6 Searching and Case

Incremental searches in Emacs normally ignore the case of the text they
are searching through, if you specify the text in lower case. Thus, if you
specify searching for ‘foo’, then ‘Foo’ and ‘foo’ are also considered a match.
Regexps, and in particular character sets, are included: ‘[ab]’ would match
‘a’ or ‘A’ or ‘b’ or ‘B’.

Chapter 12: Searching and Replacement 95

An upper-case letter in the incremental search string makes the search
case-sensitive. Thus, searching for ‘Foo’ does not find ‘foo’ or ‘FOO’. This
applies to regular expression search as well as to string search. The effect
ceases if you delete the upper-case letter from the search string.

If you set the variable case-fold-search to nil, then all letters must
match exactly, including case. This is a per-buffer variable; altering the
variable affects only the current buffer, but there is a default value which
you can change as well. See Section 30.2.4 [Locals], page 376. This variable
applies to nonincremental searches also, including those performed by the
replace commands (see Section 12.7 [Replace], page 95).

12.7 Replacement Commands

Global search-and-replace operations are not needed as often in Emacs as
they are in other editors1, but they are available. In addition to the simple M-
x replace-string command which is like that found in most editors, there
is a M-x query-replace command which asks you, for each occurrence of
the pattern, whether to replace it.

The replace commands all replace one string (or regexp) with one re-
placement string. It is possible to perform several replacements in parallel
using the command expand-region-abbrevs. See Section 23.3 [Expanding
Abbrevs], page 274.

12.7.1 Unconditional Replacement

M-x replace-string 〈RET〉 string 〈RET〉 newstring 〈RET〉

Replace every occurrence of string with newstring.

M-x replace-regexp 〈RET〉 regexp 〈RET〉 newstring 〈RET〉

Replace every match for regexp with newstring.

To replace every instance of ‘foo’ after point with ‘bar’, use the command
M-x replace-string with the two arguments ‘foo’ and ‘bar’. Replacement
happens only in the text after point, so if you want to cover the whole buffer
you must go to the beginning first. All occurrences up to the end of the buffer
are replaced; to limit replacement to part of the buffer, narrow to that part
of the buffer before doing the replacement (see Section 29.7 [Narrowing],
page 362).

1 In some editors, search-and-replace operations are the only convenient
way to make a single change in the text.

96 GNU Emacs Manual

When replace-string exits, it leaves point at the last occurrence re-
placed. It sets the mark to the prior position of point (where the replace-
string command was issued); use C-u C-〈SPC〉 to move back there.

A numeric argument restricts replacement to matches that are surrounded
by word boundaries. The argument’s value doesn’t matter.

12.7.2 Regexp Replacement

The M-x replace-string command replaces exact matches for a single
string. The similar command M-x replace-regexp replaces any match for
a specified pattern.

In replace-regexp, the newstring need not be constant: it can refer to
all or part of what is matched by the regexp. ‘\&’ in newstring stands for
the entire match being replaced. ‘\d’ in newstring, where d is a digit, stands
for whatever matched the dth parenthesized grouping in regexp. To include
a ‘\’ in the text to replace with, you must enter ‘\\’. For example,

M-x replace-regexp 〈RET〉 c[ad]+r 〈RET〉 \&-safe 〈RET〉

replaces (for example) ‘cadr’ with ‘cadr-safe’ and ‘cddr’ with ‘cddr-safe’.

M-x replace-regexp 〈RET〉 \(c[ad]+r\)-safe 〈RET〉 \1 〈RET〉

performs the inverse transformation.

12.7.3 Replace Commands and Case

If the arguments to a replace command are in lower case, it preserves
case when it makes a replacement. Thus, the command

M-x replace-string 〈RET〉 foo 〈RET〉 bar 〈RET〉

replaces a lower case ‘foo’ with a lower case ‘bar’, an all-caps ‘FOO’ with
‘BAR’, and a capitalized ‘Foo’ with ‘Bar’. (These three alternatives–lower
case, all caps, and capitalized, are the only ones that replace-string can
distinguish.)

If upper case letters are used in the second argument, they remain upper
case every time that argument is inserted. If upper case letters are used
in the first argument, the second argument is always substituted exactly as
given, with no case conversion. Likewise, if the variable case-replace is set
to nil, replacement is done without case conversion. If case-fold-search
is set to nil, case is significant in matching occurrences of ‘foo’ to replace;
this also inhibits case conversion of the replacement string.

12.7.4 Query Replace

Chapter 12: Searching and Replacement 97

M-% string 〈RET〉 newstring 〈RET〉

M-x query-replace 〈RET〉 string 〈RET〉 newstring 〈RET〉

Replace some occurrences of string with newstring.

M-x query-replace-regexp 〈RET〉 regexp 〈RET〉 newstring 〈RET〉

Replace some matches for regexp with newstring.

If you want to change only some of the occurrences of ‘foo’ to ‘bar’, not
all of them, then you cannot use an ordinary replace-string. Instead,
use M-% (query-replace). This command finds occurrences of ‘foo’ one
by one, displays each occurrence and asks you whether to replace it. A
numeric argument to query-replace tells it to consider only occurrences
that are bounded by word-delimiter characters. This preserves case, just
like replace-string, provided case-replace is non-nil, as it normally is.

Aside from querying, query-replace works just like replace-string,
and query-replace-regexp works just like replace-regexp. The shortest
way to type this command name is M-x que 〈SPC〉 〈SPC〉 〈SPC〉 〈RET〉.

The things you can type when you are shown an occurrence of string or
a match for regexp are:

〈SPC〉 to replace the occurrence with newstring.

〈DEL〉 to skip to the next occurrence without replacing this one.

, (Comma)
to replace this occurrence and display the result. You are then
asked for another input character to say what to do next. Since
the replacement has already been made, 〈DEL〉 and 〈SPC〉 are
equivalent in this situation; both move to the next occurrence.

You could type C-r at this point (see below) to alter the replaced
text. You could also type C-x u to undo the replacement; this ex-
its the query-replace, so if you want to do further replacement
you must use C-x 〈ESC〉 〈ESC〉 〈RET〉 to restart (see Section 5.5
[Repetition], page 45).

〈RET〉 to exit without doing any more replacements.

. (Period) to replace this occurrence and then exit without searching for
more occurrences.

! to replace all remaining occurrences without asking again.

^ to go back to the position of the previous occurrence (or what
used to be an occurrence), in case you changed it by mistake.
This works by popping the mark ring. Only one ^ in a row is
meaningful, because only one previous replacement position is
kept during query-replace.

C-r to enter a recursive editing level, in case the occurrence needs
to be edited rather than just replaced with newstring. When

98 GNU Emacs Manual

you are done, exit the recursive editing level with C-M-c to pro-
ceed to the next occurrence. See Section 29.11 [Recursive Edit],
page 365.

C-w to delete the occurrence, and then enter a recursive editing level
as in C-r. Use the recursive edit to insert text to replace the
deleted occurrence of string. When done, exit the recursive edit-
ing level with C-M-c to proceed to the next occurrence.

C-l to redisplay the screen. Then you must type another character
to specify what to do with this occurrence.

C-h to display a message summarizing these options. Then you must
type another character to specify what to do with this occur-
rence.

Some other characters are aliases for the ones listed above: y, n and q
are equivalent to 〈SPC〉, 〈DEL〉 and 〈RET〉.

Aside from this, any other character exits the query-replace, and is
then reread as part of a key sequence. Thus, if you type C-k, it exits the
query-replace and then kills to end of line.

To restart a query-replace once it is exited, use C-x 〈ESC〉 〈ESC〉, which
repeats the query-replace because it used the minibuffer to read its argu-
ments. See Section 5.5 [Repetition], page 45.

See also Section 27.9 [Transforming File Names], page 318, for Dired
commands to rename, copy, or link files by replacing regexp matches in file
names.

12.8 Other Search-and-Loop Commands

Here are some other commands that find matches for a regular expression.
They all operate from point to the end of the buffer.

M-x occur 〈RET〉 regexp 〈RET〉

Display a list showing each line in the buffer that contains a
match for regexp. A numeric argument specifies the number of
context lines to print before and after each matching line; the
default is none. To limit the search to part of the buffer, narrow
to that part (see Section 29.7 [Narrowing], page 362).

The buffer ‘*Occur*’ containing the output serves as a menu for
finding the occurrences in their original context. Click Mouse-2
on an occurrence listed in ‘*Occur*’, or position point there and
type 〈RET〉; this switches to the buffer that was searched and
moves point to the original of the chosen occurrence.

Chapter 12: Searching and Replacement 99

M-x list-matching-lines
Synonym for M-x occur.

M-x count-matches 〈RET〉 regexp 〈RET〉

Print the number of matches for regexp after point.

M-x flush-lines 〈RET〉 regexp 〈RET〉

Delete each line that follows point and contains a match for
regexp.

M-x keep-lines 〈RET〉 regexp 〈RET〉

Delete each line that follows point and does not contain a match
for regexp.

100 GNU Emacs Manual

Chapter 13: Commands for Fixing Typos 101

13 Commands for Fixing Typos

In this chapter we describe the commands that are especially useful for
the times when you catch a mistake in your text just after you have made
it, or change your mind while composing text on the fly.

The most fundamental command for correcting erroneous editing is the
undo command, C-x u or C-_. This command undoes a single command
(usually), a part of a command (in the case of query-replace), or several
consecutive self-inserting characters. Consecutive repetitions of C-_ or C-x
u undo earlier and earlier changes, back to the limit of the undo information
available. See Section 4.4 [Undo], page 32, for for more information.

13.1 Killing Your Mistakes

〈DEL〉 Delete last character (delete-backward-char).

M-〈DEL〉 Kill last word (backward-kill-word).

C-x 〈DEL〉 Kill to beginning of sentence (backward-kill-sentence).

The 〈DEL〉 character (delete-backward-char) is the most important cor-
rection command. It deletes the character before point. When 〈DEL〉 follows
a self-inserting character command, you can think of it as canceling that
command. However, avoid the mistake of thinking of 〈DEL〉 as a general way
to cancel a command!

When your mistake is longer than a couple of characters, it might be more
convenient to use M-〈DEL〉 or C-x 〈DEL〉. M-〈DEL〉 kills back to the start of the
last word, and C-x 〈DEL〉 kills back to the start of the last sentence. C-x
〈DEL〉 is particularly useful when you change your mind about the phrasing
of the text you are writing. M-〈DEL〉 and C-x 〈DEL〉 save the killed text for
C-y and M-y to retrieve. See Section 9.2 [Yanking], page 65.

M-〈DEL〉 is often useful even when you have typed only a few characters
wrong, if you know you are confused in your typing and aren’t sure exactly
what you typed. At such a time, you cannot correct with 〈DEL〉 except by
looking at the screen to see what you did. Often it requires less thought to
kill the whole word and start again.

13.2 Transposing Text

C-t Transpose two characters (transpose-chars).

M-t Transpose two words (transpose-words).

102 GNU Emacs Manual

C-M-t Transpose two balanced expressions (transpose-sexps).

C-x C-t Transpose two lines (transpose-lines).

The common error of transposing two characters can be fixed, when they
are adjacent, with the C-t command (transpose-chars). Normally, C-t
transposes the two characters on either side of point. When given at the
end of a line, rather than transposing the last character of the line with the
newline, which would be useless, C-t transposes the last two characters on
the line. So, if you catch your transposition error right away, you can fix
it with just a C-t. If you don’t catch it so fast, you must move the cursor
back to between the two transposed characters. If you transposed a space
with the last character of the word before it, the word motion commands
are a good way of getting there. Otherwise, a reverse search (C-r) is often
the best way. See Chapter 12 [Search], page 85.

M-t (transpose-words) transposes the word before point with the word
after point. It moves point forward over a word, dragging the word preceding
or containing point forward as well. The punctuation characters between
the words do not move. For example, ‘FOO, BAR’ transposes into ‘BAR, FOO’
rather than ‘BAR FOO,’.

C-M-t (transpose-sexps) is a similar command for transposing two
expressions (see Section 21.2 [Lists], page 212), and C-x C-t (transpose-
lines) exchanges lines. They work like M-t except in determining the divi-
sion of the text into syntactic units.

A numeric argument to a transpose command serves as a repeat count: it
tells the transpose command to move the character (word, sexp, line) before
or containing point across several other characters (words, sexps, lines). For
example, C-u 3 C-t moves the character before point forward across three
other characters. It would change ‘f?oobar’ into ‘oobf?ar’. This is equiva-
lent to repeating C-t three times. C-u - 4 M-t moves the word before point
backward across four words. C-u - C-M-t would cancel the effect of plain
C-M-t.

A numeric argument of zero is assigned a special meaning (because other-
wise a command with a repeat count of zero would do nothing): to transpose
the character (word, sexp, line) ending after point with the one ending after
the mark.

13.3 Case Conversion

M-- M-l Convert last word to lower case. Note Meta-- is Meta-minus.

M-- M-u Convert last word to all upper case.

M-- M-c Convert last word to lower case with capital initial.

Chapter 13: Commands for Fixing Typos 103

A very common error is to type words in the wrong case. Because of this,
the word case-conversion commands M-l, M-u and M-c have a special feature
when used with a negative argument: they do not move the cursor. As soon
as you see you have mistyped the last word, you can simply case-convert it
and go on typing. See Section 20.6 [Case], page 190.

13.4 Checking and Correcting Spelling

This section describes the commands to check the spelling of a single
word or of a portion of a buffer. These commands work with the spelling
checker program Ispell, which is not part of Emacs.

M-$ Check and correct spelling of word at point (ispell-word).

M-〈TAB〉 Complete the word before point based on the spelling dictionary
(ispell-complete-word).

M-x ispell-buffer
Check and correct spelling of each word in the buffer.

M-x ispell-region
Check and correct spelling of each word in the region.

M-x ispell-message
Check and correct spelling of each word in a draft mail message,
excluding cited material.

M-x ispell-change-dictionary 〈RET〉 dict 〈RET〉

Restart the ispell process, using dict as the dictionary.

M-x ispell-kill-ispell
Kill the Ispell subprocess.

To check the spelling of the word around or next to point, and optionally
correct it as well, use the command M-$ (ispell-word). If the word is not
correct, the command offers you various alternatives for what to do about
it.

To check the entire current buffer, use M-x ispell-buffer. Use M-x
ispell-region to check just the current region. To check spelling in an
email message you are writing, use M-x ispell-message; that checks the
whole buffer, but does not check material that is indented or appears to be
cited from other messages.

Each time these commands encounter an incorrect word, they ask you
what to do. It displays a list of alternatives, usually including several “near-
misses”—words that are close to the word being checked. Then you must
type a character. Here are the valid responses:

104 GNU Emacs Manual

〈SPC〉 Skip this word—continue to consider it incorrect, but don’t
change it here.

r new 〈RET〉

Replace the word (just this time) with new.

R new 〈RET〉

Replace the word with new, and do a query-replace so you
can replace it elsewhere in the buffer if you wish.

digit Replace the word (just this time) with one of the displayed near-
misses. Each near-miss is listed with a digit; type that digit to
select it.

a Accept the incorrect word—treat it as correct, but only in this
editing session.

A Accept the incorrect word—treat it as correct, but only in this
editing session and for this buffer.

i Insert this word in your private dictionary file so that Ispell will
consider it correct it from now on, even in future sessions.

u Insert a lower-case version of this word in your private dictionary
file.

m Like i, but you can also specify dictionary completion informa-
tion.

l word 〈RET〉

Look in the dictionary for words that match word. These words
become the new list of “near-misses”; you can select one of them
to replace with by typing a digit. You can use ‘*’ in word as a
wildcard.

C-g Quit interactive spell checking. You can restart it again after-
ward with C-u M-$.

X Same as C-g.

x Quit interactive spell checking and move point back to where it
was when you started spell checking.

q Quit interactive spell checking and kill the Ispell subprocess.

C-l Refresh the screen.

C-z This key has its normal command meaning (suspend Emacs or
iconify this frame).

The command ispell-complete-word, which is bound to the key M-
〈TAB〉 in Text mode and related modes, shows a list of completions based

Chapter 13: Commands for Fixing Typos 105

on spelling correction. Insert the beginning of a word, and then type M-
〈TAB〉; the command displays a completion list window. To choose one of
the completions listed, click Mouse-2 on it, or move the cursor there in the
completions window and type 〈RET〉. See Section 20.7 [Text Mode], page 191.

Once started, the Ispell subprocess continues to run (waiting for some-
thing to do), so that subsequent spell checking commands complete more
quickly. If you want to get rid of the Ispell process, use M-x ispell-kill-
ispell. This is not usually necessary, since the process uses no time except
when you do spelling correction.

Ispell uses two dictionaries: the standard dictionary and your private
dictionary. The variable ispell-dictionary specifies the file name of the
standard dictionary to use. A value of nil says to use the default dictionary.
The command M-x ispell-change-dictionary sets this variable and then
restarts the Ispell subprocess, so that it will use a different dictionary.

106 GNU Emacs Manual

Chapter 14: File Handling 107

14 File Handling

The operating system stores data permanently in named files. So most
of the text you edit with Emacs comes from a file and is ultimately stored
in a file.

To edit a file, you must tell Emacs to read the file and prepare a buffer
containing a copy of the file’s text. This is called visiting the file. Editing
commands apply directly to text in the buffer; that is, to the copy inside
Emacs. Your changes appear in the file itself only when you save the buffer
back into the file.

In addition to visiting and saving files, Emacs can delete, copy, rename,
and append to files, keep multiple versions of them, and operate on file
directories.

14.1 File Names

Most Emacs commands that operate on a file require you to specify the
file name. (Saving and reverting are exceptions; the buffer knows which file
name to use for them.) You enter the file name using the minibuffer (see
Chapter 5 [Minibuffer], page 39). Completion is available, to make it easier
to specify long file names. See Section 5.3 [Completion], page 41.

For most operations, there is a default file name which is used if you type
just 〈RET〉 to enter an empty argument. Normally the default file name is the
name of the file visited in the current buffer; this makes it easy to operate
on that file with any of the Emacs file commands.

Each buffer has a default directory, normally the same as the directory of
the file visited in that buffer. When you enter a file name without a directory,
the default directory is used. If you specify a directory in a relative fashion,
with a name that does not start with a slash, it is interpreted with respect to
the default directory. The default directory is kept in the variable default-
directory, which has a separate value in every buffer.

For example, if the default file name is ‘/u/rms/gnu/gnu.tasks’ then
the default directory is ‘/u/rms/gnu/’. If you type just ‘foo’, which does
not specify a directory, it is short for ‘/u/rms/gnu/foo’. ‘../.login’
would stand for ‘/u/rms/.login’. ‘new/foo’ would stand for the file name
‘/u/rms/gnu/new/foo’.

The command M-x pwd prints the current buffer’s default directory, and
the command M-x cd sets it (to a value read using the minibuffer). A buffer’s
default directory changes only when the cd command is used. A file-visiting
buffer’s default directory is initialized to the directory of the file that is

108 GNU Emacs Manual

visited there. If you create a buffer with C-x b, its default directory is
copied from that of the buffer that was current at the time.

The default directory actually appears in the minibuffer when the mini-
buffer becomes active to read a file name. This serves two purposes: it
shows you what the default is, so that you can type a relative file name and
know with certainty what it will mean, and it allows you to edit the default
to specify a different directory. This insertion of the default directory is
inhibited if the variable insert-default-directory is set to nil.

Note that it is legitimate to type an absolute file name after you enter
the minibuffer, ignoring the presence of the default directory name as part
of the text. The final minibuffer contents may look invalid, but that is not
so. For example, if the minibuffer starts out with ‘/usr/tmp/’ and you add
‘/x1/rms/foo’, you get ‘/usr/tmp//x1/rms/foo’; but Emacs ignores every-
thing through the first slash in the double slash; the result is ‘/x1/rms/foo’.
See Section 5.1 [Minibuffer File], page 39.

You can refer to files on other machines using a special file name syntax:

/host:filename
/user@host:filename

When you do this, Emacs uses the FTP program to read and write files
on the specified host. It logs in through FTP using your user name or the
name user. It may ask you for a password from time to time; this is used
for logging in on host.

You can turn off the FTP file name feature by setting the variable file-
name-handler-alist to nil.

‘$’ in a file name is used to substitute environment variables. For example,
if you have used the shell command ‘export FOO=rms/hacks’ to set up an
environment variable named FOO, then you can use ‘/u/$FOO/test.c’ or
‘/u/${FOO}/test.c’ as an abbreviation for ‘/u/rms/hacks/test.c’. The
environment variable name consists of all the alphanumeric characters after
the ‘$’; alternatively, it may be enclosed in braces after the ‘$’. Note that
shell commands to set environment variables affect Emacs only if done before
Emacs is started.

To access a file with ‘$’ in its name, type ‘$$’. This pair is converted to
a single ‘$’ at the same time as variable substitution is performed for single
‘$’. The Lisp function that performs the substitution is called substitute-
in-file-name. The substitution is performed only on file names read as
such using the minibuffer.

14.2 Visiting Files

C-x C-f Visit a file (find-file).

Chapter 14: File Handling 109

C-x C-r Visit a file for viewing, without allowing changes to it (find-
file-read-only).

C-x C-v Visit a different file instead of the one visited last (find-
alternate-file).

C-x 4 C-f Visit a file, in another window (find-file-other-window).
Don’t change the selected window.

C-x 5 C-f Visit a file, in a new frame (find-file-other-frame). Don’t
change the selected frame.

M-x auto-compression-mode
Toggle automatic uncompression and recompression for com-
pressed files.

Visiting a file means copying its contents into an Emacs buffer so you can
edit them. Emacs makes a new buffer for each file that you visit. We say that
this buffer is visiting the file that it was created to hold. Emacs constructs
the buffer name from the file name by throwing away the directory, keeping
just the name proper. For example, a file named ‘/usr/rms/emacs.tex’
would get a buffer named ‘emacs.tex’. If there is already a buffer with that
name, a unique name is constructed by appending ‘<2>’, ‘<3>’, or so on,
using the lowest number that makes a name that is not already in use.

Each window’s mode line shows the name of the buffer that is being
displayed in that window, so you can always tell what buffer you are editing.

The changes you make with editing commands are made in the Emacs
buffer. They do not take effect in the file that you visited, or any place
permanent, until you save the buffer. Saving the buffer means that Emacs
writes the current contents of the buffer into its visited file. See Section 14.3
[Saving], page 111.

If a buffer contains changes that have not been saved, we say the buffer
is modified. This is important because it implies that some changes will be
lost if the buffer is not saved. The mode line displays two stars near the left
margin to indicate that the buffer is modified.

To visit a file, use the command C-x C-f (find-file). Follow the com-
mand with the name of the file you wish to visit, terminated by a 〈RET〉.

The file name is read using the minibuffer (see Chapter 5 [Minibuffer],
page 39), with defaulting and completion in the standard manner (see Sec-
tion 14.1 [File Names], page 107). While in the minibuffer, you can abort
C-x C-f by typing C-g.

Your confirmation that C-x C-f has completed successfully is the appear-
ance of new text on the screen and a new buffer name in the mode line. If
the specified file does not exist and could not be created, or cannot be read,
then you get an error, with an error message displayed in the echo area.

If you visit a file that is already in Emacs, C-x C-f does not make another
copy. It selects the existing buffer containing that file. However, before doing

110 GNU Emacs Manual

so, it checks that the file itself has not changed since you visited or saved it
last. If the file has changed, a warning message is printed. See Section 14.3.2
[Simultaneous Editing], page 115.

What if you want to create a new file? Just visit it. Emacs prints ‘(New
File)’ in the echo area, but in other respects behaves as if you had visited
an existing empty file. If you make any changes and save them, the file is
created.

If the file you specify is actually a directory, C-x C-f invokes Dired, the
Emacs directory browser so that you can “edit” the contents of the directory
(see Chapter 27 [Dired], page 311). Dired is a convenient way to delete, look
at, or operate on the files in the directory. However, if the variable find-
file-run-dired is nil, then it is an error to try to visit a directory.

If you visit a file that the operating system won’t let you modify, Emacs
makes the buffer read-only, so that you won’t go ahead and make changes
that you’ll have trouble saving afterward. You can make the buffer writable
with C-x C-q (vc-toggle-read-only). See Section 15.3 [Misc Buffer],
page 143.

Occasionally you might want to visit a file as read-only in order to protect
yourself from entering changes accidentally; do so by visiting the file with
the command C-x C-r (find-file-read-only).

If you visit a nonexistent file unintentionally (because you typed the
wrong file name), use the C-x C-v command (find-alternate-file) to
visit the file you really wanted. C-x C-v is similar to C-x C-f, but it kills
the current buffer (after first offering to save it if it is modified). When
it reads the file name to visit, it inserts the entire default file name in the
buffer, with point just after the directory part; this is convenient if you made
a slight error in typing the name.

C-x 4 f (find-file-other-window) is like C-x C-f except that the buffer
containing the specified file is selected in another window. The window that
was selected before C-x 4 f continues to show the same buffer it was already
showing. If this command is used when only one window is being displayed,
that window is split in two, with one window showing the same buffer as
before, and the other one showing the newly requested file. See Chapter 16
[Windows], page 149.

C-x 5 f (find-file-other-frame) is similar, but opens a new frame,
or makes visible any existing frame showing the file you seek. This feature
is available only when you are using a window system. See Chapter 17
[Frames], page 155.

Two special hook variables allow extensions to modify the operation of
visiting files. Visiting a file that does not exist runs the functions in the
list find-file-not-found-hooks; this variable holds a list of functions,
and the functions are called one by one until one of them returns non-nil.
Any visiting of a file, whether extant or not, expects find-file-hooks to

Chapter 14: File Handling 111

contain a list of functions and calls them all, one by one. In both cases the
functions receive no arguments. Of these two variables, find-file-not-
found-hooks takes effect first. These variables are not normal hooks, and
their names end in ‘-hooks’ rather than ‘-hook’ to indicate that fact. See
Section 30.2.3 [Hooks], page 375.

The command M-x auto-compression-mode toggles a mode in which vis-
iting a compressed file automatically uncompresses it. (Editing the file and
saving it automatically recompresses it.)

There are several ways to specify automatically the major mode for edit-
ing the file (see Section 18.1 [Choosing Modes], page 173), and to specify local
variables defined for that file (see Section 30.2.5 [File Variables], page 378).

14.3 Saving Files

Saving a buffer in Emacs means writing its contents back into the file
that was visited in the buffer.

C-x C-s Save the current buffer in its visited file (save-buffer).

C-x s Save any or all buffers in their visited files (save-some-
buffers).

M-~ Forget that the current buffer has been changed (not-
modified).

C-x C-w Save the current buffer in a specified file (write-file).

M-x set-visited-file-name
Change file the name under which the current buffer will be
saved.

When you wish to save the file and make your changes permanent, type
C-x C-s (save-buffer). After saving is finished, C-x C-s displays a message
like this:

Wrote /u/rms/gnu/gnu.tasks

If the selected buffer is not modified (no changes have been made in it since
the buffer was created or last saved), saving is not really done, because it
would have no effect. Instead, C-x C-s displays a message like this in the
echo area:

(No changes need to be saved)

The command C-x s (save-some-buffers) offers to save any or all mod-
ified buffers. It asks you what to do with each buffer. The possible responses
are analogous to those of query-replace:

y Save this buffer and ask about the rest of the buffers.

n Don’t save this buffer, but ask about the rest of the buffers.

112 GNU Emacs Manual

! Save this buffer and all the rest with no more questions.

〈RET〉 Terminate save-some-buffers without any more saving.

. Save this buffer, then exit save-some-buffers without even
asking about other buffers.

C-r View the buffer that you are currently being asked about. When
you exit View mode, you get back to save-some-buffers, which
asks the question again.

C-h Display a help message about these options.

C-x C-c, the key sequence to exit Emacs, invokes save-some-buffers
and therefore asks the same questions.

If you have changed a buffer but you do not want to save the changes, you
should take some action to prevent it. Otherwise, each time you use C-x s or
C-x C-c, you are liable to save this buffer by mistake. One thing you can do
is type M-~ (not-modified), which clears out the indication that the buffer
is modified. If you do this, none of the save commands will believe that the
buffer needs to be saved. (‘~’ is often used as a mathematical symbol for
‘not’; thus M-~ is ‘not’, metafied.) You could also use set-visited-file-
name (see below) to mark the buffer as visiting a different file name, one
which is not in use for anything important. Alternatively, you can cancel all
the changes made since the file was visited or saved, by reading the text from
the file again. This is called reverting. See Section 14.4 [Reverting], page 116.
You could also undo all the changes by repeating the undo command C-x u
until you have undone all the changes; but reverting is easier.

M-x set-visited-file-name alters the name of the file that the current
buffer is visiting. It reads the new file name using the minibuffer. Then it
specifies the visited file name and changes the buffer name correspondingly
(as long as the new name is not in use). set-visited-file-name does not
save the buffer in the newly visited file; it just alters the records inside Emacs
in case you do save later. It also marks the buffer as “modified” so that C-x
C-s in that buffer will save.

If you wish to mark the buffer as visiting a different file and save it right
away, use C-x C-w (write-file). It is precisely equivalent to set-visited-
file-name followed by C-x C-s. C-x C-s used on a buffer that is not visiting
with a file has the same effect as C-x C-w; that is, it reads a file name, marks
the buffer as visiting that file, and saves it there. The default file name in a
buffer that is not visiting a file is made by combining the buffer name with
the buffer’s default directory.

If Emacs is about to save a file and sees that the date of the latest ver-
sion on disk does not match what Emacs last read or wrote, Emacs notifies
you of this fact, because it probably indicates a problem caused by simul-
taneous editing and requires your immediate attention. See Section 14.3.2
[Simultaneous Editing], page 115.

Chapter 14: File Handling 113

If the variable require-final-newline is non-nil, Emacs puts a newline
at the end of any file that doesn’t already end in one, every time a file is
saved or written.

14.3.1 Backup Files

On most operating systems, rewriting a file automatically destroys all
record of what the file used to contain. Thus, saving a file from Emacs
throws away the old contents of the file—or it would, except that Emacs
carefully copies the old contents to another file, called the backup file, before
actually saving. (This assumes that the variable make-backup-files is non-
nil. Backup files are not written if this variable is nil.) Emacs does not
normally make backup files for files in ‘/tmp’.

At your option, Emacs can keep either a single backup file or a series of
numbered backup files for each file that you edit.

Emacs makes a backup for a file only the first time the file is saved
from one buffer. No matter how many times you save a file, its backup file
continues to contain the contents from before the file was visited. Normally
this means that the backup file contains the contents from before the current
editing session; however, if you kill the buffer and then visit the file again, a
new backup file will be made by the next save.

14.3.1.1 Single or Numbered Backups

If you choose to have a single backup file (this is the default), the backup
file’s name is constructed by appending ‘~’ to the file name being edited;
thus, the backup file for ‘eval.c’ would be ‘eval.c~’.

If you choose to have a series of numbered backup files, backup file names
are made by appending ‘.~’, the number, and another ‘~’ to the original file
name. Thus, the backup files of ‘eval.c’ would be called ‘eval.c.~1~’,
‘eval.c.~2~’, and so on, through names like ‘eval.c.~259~’ and beyond.

If protection stops you from writing backup files under the usual names,
the backup file is written as ‘%backup%~’ in your home directory. Only one
such file can exist, so only the most recently made such backup is available.

The choice of single backup or numbered backups is controlled by the
variable version-control. Its possible values are

t Make numbered backups.

nil Make numbered backups for files that have numbered backups
already. Otherwise, make single backups.

never Do not in any case make numbered backups; always make single
backups.

114 GNU Emacs Manual

You can set version-control locally in an individual buffer to control the
making of backups for that buffer’s file. For example, Rmail mode locally
sets version-control to never to make sure that there is only one backup
for an Rmail file. See Section 30.2.4 [Locals], page 376.

If you set the environment variable VERSION_CONTROL, to tell various
GNU utilities what to do with backup files, Emacs also obeys the envi-
ronment variable by setting the Lisp variable version-control accord-
ingly at startup. If the environment variable’s value is ‘t’ or ‘numbered’,
then version-control becomes t; if the value is ‘nil’ or ‘existing’, then
version-control becomes nil; if it is ‘never’ or ‘simple’, then version-
control becomes never.

For files under version control (see Section 14.7 [Version Control],
page 120), the variable vc-make-backup-files determines whether to
make backup files. By default, it is nil, since backup files are redundant
when you store all the previous versions in a version control system. See
Section 14.7.3 [Editing with VC], page 122.

14.3.1.2 Automatic Deletion of Backups

To prevent unlimited consumption of disk space, Emacs can delete num-
bered backup versions automatically. Generally Emacs keeps the first few
backups and the latest few backups, deleting any in between. This happens
every time a new backup is made.

The two variables kept-old-versions and kept-new-versions control
this deletion. Their values are, respectively the number of oldest (lowest-
numbered) backups to keep and the number of newest (highest-numbered)
ones to keep, each time a new backup is made. Recall that these values are
used just after a new backup version is made; that newly made backup is
included in the count in kept-new-versions. By default, both variables are
2.

If delete-old-versions is non-nil, the excess middle versions are
deleted without a murmur. If it is nil, the default, then you are asked
whether the excess middle versions should really be deleted.

Dired’s . (Period) command can also be used to delete old versions. See
Section 27.3 [Dired Deletion], page 312.

14.3.1.3 Copying vs. Renaming

Backup files can be made by copying the old file or by renaming it. This
makes a difference when the old file has multiple names. If the old file is
renamed into the backup file, then the alternate names become names for
the backup file. If the old file is copied instead, then the alternate names

Chapter 14: File Handling 115

remain names for the file that you are editing, and the contents accessed by
those names will be the new contents.

The method of making a backup file may also affect the file’s owner and
group. If copying is used, these do not change. If renaming is used, you
become the file’s owner, and the file’s group becomes the default (different
operating systems have different defaults for the group).

Having the owner change is usually a good idea, because then the owner
always shows who last edited the file. Also, the owners of the backups
show who produced those versions. Occasionally there is a file whose owner
should not change; it is a good idea for such files to contain local variable
lists to set backup-by-copying-when-mismatch locally (see Section 30.2.5
[File Variables], page 378).

The choice of renaming or copying is controlled by three variables. Re-
naming is the default choice. If the variable backup-by-copying is non-
nil, copying is used. Otherwise, if the variable backup-by-copying-when-
linked is non-nil, then copying is used for files that have multiple names,
but renaming may still used when the file being edited has only one name. If
the variable backup-by-copying-when-mismatch is non-nil, then copying
is used if renaming would cause the file’s owner or group to change.

14.3.2 Protection against Simultaneous Editing

Simultaneous editing occurs when two users visit the same file, both make
changes, and then both save them. If nobody were informed that this was
happening, whichever user saved first would later find that his changes were
lost. On some systems, Emacs notices immediately when the second user
starts to change the file, and issues an immediate warning.

For the sake of systems where that is not possible, and in case someone
else proceeds to change the file despite the warning, Emacs also checks when
the file is saved, and issues a second warning if you are about to overwrite
a file containing another user’s changes. You can prevent loss of the other
user’s work by taking the proper corrective action at that time.

When you make the first modification in an Emacs buffer that is visiting
a file, Emacs records that the file is locked by you. (It does this by writing
another file in a directory reserved for this purpose.) The lock is removed
when you save the changes. The idea is that the file is locked whenever an
Emacs buffer visiting it has unsaved changes.

If you begin to modify the buffer while the visited file is locked by someone
else, this constitutes a collision. When Emacs detects a collision, it asks you
what to do, by calling the Lisp function ask-user-about-lock. You can
redefine this function for the sake of customization. The standard definition
of this function asks you a question and accepts three possible answers:

116 GNU Emacs Manual

s Steal the lock. Whoever was already changing the file loses the
lock, and you gain the lock.

p Proceed. Go ahead and edit the file despite its being locked by
someone else.

q Quit. This causes an error (file-locked) and the modification
you were trying to make in the buffer does not actually take
place.

Note that locking works on the basis of a file name; if a file has mul-
tiple names, Emacs does not realize that the two names are the same file
and cannot prevent two users from editing it simultaneously under different
names. However, basing locking on names means that Emacs can interlock
the editing of new files that will not really exist until they are saved.

Some systems are not configured to allow Emacs to make locks. On these
systems, Emacs cannot detect trouble in advance, but it still can detect the
collision when you try to save a file and overwrite someone else’s changes.

Every time Emacs saves a buffer, it first checks the last-modification date
of the existing file on disk to verify that it has not changed since the file was
last visited or saved. If the date does not match, it implies that changes
were made in the file in some other way, and these changes are about to be
lost if Emacs actually does save. To prevent this, Emacs prints a warning
message and asks for confirmation before saving. Occasionally you will know
why the file was changed and know that it does not matter; then you can
answer yes and proceed. Otherwise, you should cancel the save with C-g
and investigate the situation.

The first thing you should do when notified that simultaneous editing has
already taken place is to list the directory with C-u C-x C-d (see Section 14.8
[Directories], page 136). This shows the file’s current author. You should
attempt to contact him to warn him not to continue editing. Often the next
step is to save the contents of your Emacs buffer under a different name, and
use diff to compare the two files.

Simultaneous editing checks are also made when you visit with C-x C-f
a file that is already visited and when you start to modify a file. This is not
strictly necessary, but it can cause you to find out about the collision earlier,
when perhaps correction takes less work.

14.4 Reverting a Buffer

If you have made extensive changes to a file and then change your mind
about them, you can get rid of them by reading in the previous version of
the file. To do this, use M-x revert-buffer, which operates on the current
buffer. Since reverting a buffer unintentionally could lose a lot of work, you
must confirm this command with yes.

Chapter 14: File Handling 117

revert-buffer keeps point at the same distance (measured in characters)
from the beginning of the file. If the file was edited only slightly, you will be
at approximately the same piece of text after reverting as before. If you have
made drastic changes, the same value of point in the old file may address a
totally different piece of text.

Reverting marks the buffer as “not modified” until another change is
made.

Some kinds of buffers whose contents reflect data bases other than files,
such as Dired buffers, can also be reverted. For them, reverting means
recalculating their contents from the appropriate data base. Buffers created
randomly with C-x b cannot be reverted; revert-buffer reports an error
when asked to do so.

14.5 Auto-Saving: Protection Against Disasters

Emacs saves all the visited files from time to time (based on counting your
keystrokes) without being asked. This is called auto-saving. It prevents you
from losing more than a limited amount of work if the system crashes.

When Emacs determines that it is time for auto-saving, each buffer
is considered, and is auto-saved if auto-saving is turned on for it and it
has been changed since the last time it was auto-saved. The message
‘Auto-saving...’ is displayed in the echo area during auto-saving, if any
files are actually auto-saved. Errors occurring during auto-saving are caught
so that they do not interfere with the execution of commands you have been
typing.

14.5.1 Auto-Save Files

Auto-saving does not normally save in the files that you visited, because
it can be very undesirable to save a program that is in an inconsistent state
when you have made half of a planned change. Instead, auto-saving is done
in a different file called the auto-save file, and the visited file is changed only
when you request saving explicitly (such as with C-x C-s).

Normally, the auto-save file name is made by appending ‘#’ to the front
and rear of the visited file name. Thus, a buffer visiting file ‘foo.c’ is
auto-saved in a file ‘#foo.c#’. Most buffers that are not visiting files are
auto-saved only if you request it explicitly; when they are auto-saved, the
auto-save file name is made by appending ‘#%’ to the front and ‘#’ to the
rear of buffer name. For example, the ‘*mail*’ buffer in which you compose
messages to be sent is auto-saved in a file named ‘#%*mail*#’. Auto-save
file names are made this way unless you reprogram parts of Emacs to do

118 GNU Emacs Manual

something different (the functions make-auto-save-file-name and auto-
save-file-name-p). The file name to be used for auto-saving in a buffer is
calculated when auto-saving is turned on in that buffer.

When you delete a substantial part of the text in a large buffer, auto save
turns off temporarily in that buffer. This is because if you deleted the text
unintentionally, you might find the auto-save file more useful if it contains
the deleted text. To reenable auto-saving after this happens, save the buffer
with C-x C-s, or use C-u 1 M-x auto-save.

If you want auto-saving to be done in the visited file, set the variable
auto-save-visited-file-name to be non-nil. In this mode, there is really
no difference between auto-saving and explicit saving.

A buffer’s auto-save file is deleted when you save the buffer in its vis-
ited file. To inhibit this, set the variable delete-auto-save-files to nil.
Changing the visited file name with C-x C-w or set-visited-file-name
renames any auto-save file to go with the new visited name.

14.5.2 Controlling Auto-Saving

Each time you visit a file, auto-saving is turned on for that file’s buffer
if the variable auto-save-default is non-nil (but not in batch mode; see
Chapter 3 [Entering Emacs], page 25). The default for this variable is t, so
auto-saving is the usual practice for file-visiting buffers. Auto-saving can be
turned on or off for any existing buffer with the command M-x auto-save-
mode. Like other minor mode commands, M-x auto-save-mode turns auto-
saving on with a positive argument, off with a zero or negative argument;
with no argument, it toggles.

Emacs does auto-saving periodically based on counting how many char-
acters you have typed since the last time auto-saving was done. The variable
auto-save-interval specifies how many characters there are between auto-
saves. By default, it is 300.

Auto-saving also takes place when you stop typing for a while. The
variable auto-save-timeout says how many seconds Emacs should wait
before it does an auto save (and perhaps also a garbage collection). (The
actual time period is longer if the current buffer is long; this is a heuristic
which aims to keep out of your way when you are editing long buffers in
which auto-save takes an appreciable amount of time.) Auto-saving during
idle periods accomplishes two things: first, it makes sure all your work is
saved if you go away from the terminal for a while; second, it may avoid
some auto-saving while you are actually typing.

Emacs also does auto-saving whenever it gets a fatal error. This includes
killing the Emacs job with a shell command such as ‘kill %emacs’, or dis-
connecting a phone line or network connection.

Chapter 14: File Handling 119

You can request an auto-save explicitly with the command M-x do-auto-
save.

14.5.3 Recovering Data from Auto-Saves

You can use the contents of an auto-save file to recover from a loss of
data with the command M-x recover-file 〈RET〉 file 〈RET〉. This visits file
and then (after your confirmation) restores the contents from from its auto-
save file ‘#file#’. You can then save with C-x C-s to put the recovered text
into file itself. For example, to recover file ‘foo.c’ from its auto-save file
‘#foo.c#’, do:

M-x recover-file 〈RET〉 foo.c 〈RET〉

yes 〈RET〉

C-x C-s

Before asking for confirmation, M-x recover-file displays a directory
listing describing the specified file and the auto-save file, so you can compare
their sizes and dates. If the auto-save file is older, M-x recover-file does
not offer to read it.

If Emacs or the computer crashes, you can recover all the files you were
editing from their auto save files with the command M-x recover-session.
This first shows you a list of recorded interrupted sessions. Move point to
the one you choose, and type C-c C-c.

Then recover-session asks about each of the files that were being edited
during that session, asking whether to recover that file. If you answer y, it
calls recover-file, which works in its normal fashion. It shows the dates of
the original file and its auto-save file, and asks once again whether to recover
that file.

When recover-session is done, the files you’ve chosen to recover are
present in Emacs buffers. You should then save them. Only this—saving
them—updates the files themselves.

Interrupted sessions are recorded for later recovery in files named
‘~/.saves-pid-hostname’. The ‘~/.saves’ portion of these names comes
from the value of auto-save-list-file-prefix. You can arrange to record
sessions in a different place by setting that variable in your ‘.emacs’ file, but
you’ll have to redefine recover-session as well to make it look in the new
place. If you set auto-save-list-file-prefix to nil in your ‘.emacs’
file, sessions are not recorded for recovery.

14.6 File Name Aliases

120 GNU Emacs Manual

Symbolic links and hard links both make it possible for several file names
to refer to the same file. Hard links are alternate names that refer directly to
the file; all the names are equally valid, and no one of them is preferred. By
contrast, a symbolic link is a kind of defined alias: when ‘foo’ is a symbolic
link to ‘bar’, you can use either name to refer to the file, but ‘bar’ is the real
name, while ‘foo’ is just an alias. More complex cases occur when symbolic
links point to directories.

If you visit two names for the same file, normally Emacs makes two
different buffers, but it warns you about the situation.

If you wish to avoid visiting the same file in two buffers under differ-
ent names, set the variable find-file-existing-other-name to a non-nil
value. Then find-file uses the existing buffer visiting the file, no matter
which of the file’s names you specify.

If the variable find-file-visit-truename is non-nil, then the file name
recorded for a buffer is the file’s truename (made by replacing all sym-
bolic links with their target names), rather than the name you specify.
Setting find-file-visit-truename also implies the effect of find-file-
existing-other-name.

14.7 Version Control

Version control systems are packages that can record multiple versions
of a source file, usually storing the unchanged parts of the file just once.
Version control systems also record history information such as the creation
time of each version, who created it, and a description of what was changed
in that version.

The Emacs version control commands work with three version control
systems—RCS, CVS and SCCS. The GNU project recommends RCS and
CVS, which are free software and available from the Free Software Founda-
tion.

14.7.1 Supported Version Control Systems

VC currently works with three different version control systems or “back
ends”: RCS, CVS, and SCCS.

RCS is a free version control system that is available from the Free Soft-
ware Foundation. It is perhaps the most mature of the supported back ends,
and the VC commands are conceptually closest to RCS. Almost everything
you can do with RCS can be done through VC.

Chapter 14: File Handling 121

CVS is built on top of RCS, and extends the features of RCS, allowing
for more sophisticated release management, and concurrent multi-user de-
velopment. VC supports basic editing operations under CVS, but for some
less common tasks you still need to call CVS from the command line. Note
also that before using CVS you must set up a repository, which is a subject
too complex to treat here. See Section 14.7.3.6 [CVS and VC], page 125.

SCCS is a proprietary but widely used version control system. In terms
of capabilities, it is the weakest of the the three that VC supports. VC
compensates for certain features missing in SCCS (snapshots, for example)
by implementing them itself, but some other VC features, such as multiple
branches, are not available with SCCS. You should use SCCS only if for
some reason you cannot use RCS.

14.7.2 Concepts of Version Control

When a file is under version control, we also say that it is registered in
the version control system. Each registered file has a corresponding master
file which represents the file’s present state plus its change history, so that
you can reconstruct from it either the current version or any specified earlier
version. Usually the master file also records a log entry for each version
describing what was changed in that version.

The file that is maintained under version control is sometimes called the
work file corresponding to its master file.

To examine a file, you check it out. This extracts a version of the source
file (typically, the most recent) from the master file. If you want to edit the
file, you must check it out locked. Only one user can do this at a time for
any given source file. (This kind of locking is completely unrelated to the
locking that Emacs uses to detect simultaneous editing of a file.)

When you are done with your editing, you must check in the new version.
This records the new version in the master file, and unlocks the source file
so that other people can lock it and thus modify it.

Checkin and checkout are the basic operations of version control. You
can do both of them with a single Emacs command: C-x C-q (vc-toggle-
read-only).

There are variants of this basic pattern, though. CVS, for example, has
no such thing as locking, and therefore you can normally edit files right
away, without having to check them out first. See Section 14.7.3.6 [CVS and
VC], page 125. With RCS, you can optionally select non-strict locking for a
particular source file; then you can edit the file in Emacs without explicitly
locking it.

A snapshot is a coherent collection of versions of the various files that
make up a program. See Section 14.7.10 [Snapshots], page 132.

122 GNU Emacs Manual

14.7.3 Editing with Version Control

These are the commands for editing a file maintained with version control:

C-x C-q
C-x v v Check the visited file in or out.

C-x v u Revert the buffer and the file to the last checked in version.

C-x v c Remove the last-entered change from the master for the visited
file. This undoes your last check-in.

C-x v i Register the visited file for version control.

(C-x v is the prefix key for version control commands; all of these commands
except for C-x C-q start with C-x v.)

14.7.3.1 Check-Out

When you want to modify a file maintained with version control, type
C-x C-q (vc-toggle-read-only). This checks out the file, and tells RCS or
SCCS to lock the file. This means making the file writable for you (but not
for anyone else).

If you specify a prefix argument (C-u C-x C-q) for checkout, Emacs asks
you for a version number, and checks out that version unlocked. This lets
you move to old versions, or existing branches of the file (see Section 14.7.7
[Branches], page 129). You can then start editing the selected version by
typing C-x C-q again. (If you edit an old version of a file this way, checking
it in again creates a new branch.)

Under CVS, you normally don’t need to check out files explicitly. CVS
does not have locking; multiple users can edit their copies of a file whenever
they want. (If two users make conflicting changes, they need to reconcile
their changes when checking them in.) We therefore say that an implicit
check-out happens when you make the first change in the file.

CVS has an alternative mode in which explicit check-out is required.
And RCS has an alternative mode called non-strict locking in which explicit
check-out is not required. Selecting these modes is done outside of VC, but
once you have selected them, VC obeys them. With RCS, you can select
non-strict locking for a particular file using the ‘rcs -U’ command. See
Section 14.7.3.6 [CVS and VC], page 125, for an explanation of how to do
this with CVS.

14.7.3.2 Check-In

Chapter 14: File Handling 123

When you are finished editing the file, type C-x C-q again. When used on
a file that is checked out, this command checks the file in. But check-in does
not start immediately; first, you must enter the log entry—a description of
the changes in the new version. C-x C-q pops up a buffer for you to enter this
in. When you are finished typing in the log entry, type C-c C-c to terminate
it; this is when actual check-in takes place. See Section 14.7.4 [Log Entries],
page 126.

With RCS and SCCS, a checked-out file is also locked, which means it is
writable for you, but not for anyone else. As long as you own the lock on
the file, nobody else can modify it, and nobody can check in any changes to
that particular version. Checking in your changes unlocks the file, so that
other users can lock it and modify it.

CVS, on the contrary, doesn’t have a concept of locking. The working
files are always modifiable, allowing concurrent development, with possible
conflicts being resolved at check-in time. See Section 14.7.3.6 [CVS and VC],
page 125.

To specify the version number for the new version, type C-u C-x C-q
to check in a file. Then Emacs asks you for the new version number in
the minibuffer. This can be used to create a new branch of the file (see
Section 14.7.7 [Branches], page 129), or to increment the file’s major version
number.

It is not impossible to lock a file that someone else has locked. If you
try to check out a file that is locked, C-x C-q asks you whether you want
to “steal the lock.” If you say yes, the file becomes locked by you, but a
message is sent to the person who had formerly locked the file, to inform
him of what has happened. The mode line indicates that a file is locked by
someone else by displaying the login name of that person, before the version
number.

14.7.3.3 Registering a File for Version Control

C-x v i Register the visited file for version control.

You can put any file under version control by simply visiting it, and
then typing C-x v i (vc-register). After C-x v i, the file is unlocked and
read-only. Type C-x C-q if you wish to start editing it.

When you register the file, Emacs must choose which version control
system to use for it. You can specify your choice explicitly by setting vc-
default-back-end to RCS, CVS or SCCS. Otherwise, if there is a subdirectory
named ‘RCS’, ‘SCCS’, or ‘CVS’, Emacs uses the corresponding version control
system. In the absence of any specification, the default choice is RCS if RCS
is installed, otherwise SCCS.

124 GNU Emacs Manual

After registering a file with CVS, you must subsequently commit the ini-
tial version by typing C-x C-q. See Section 14.7.3.6 [CVS and VC], page 125.

The initial version number for a newly registered file is 1.1, by default. To
specify a different number, give C-x v i a numeric argument; then it reads
the initial version number using the minibuffer.

If vc-initial-comment is non-nil, C-x v i reads an initial comment
(much like a log entry) to describe the purpose of this source file.

14.7.3.4 Undoing Version Control Actions

C-x v u Revert the buffer and the file to the last checked in version.

C-x v c Remove the last-entered change from the master for the visited
file. This undoes your last checkin.

If you want to discard your current set of changes and revert to the
last version checked in, use C-x v u (vc-revert-buffer). This cancels your
last check-out, leaving the file unlocked. If you want to make a different
set of changes, you must first check the file out again. C-x v u requires
confirmation, unless it sees that you haven’t made any changes since the last
checked-in version.

C-x v u is also the command to use to unlock a file if you lock it and then
decide not to change it.

You can cancel a change after checking it in, with C-x v c (vc-cancel-
version). This command discards all record of the most recent checked in
version. C-x v c also offers to revert your work file and buffer to the previous
version (the one that precedes the version that is deleted). If you say no,
then VC keeps your changes in the buffer and locks the file.

The no-revert option is useful when you have checked in a change and
then discover a trivial error in it; you can cancel the erroneous check-in, fix
the error, and check the file in again.

When C-x v c does not revert the buffer, it unexpands all version con-
trol headers in the buffer instead (see Section 14.7.11 [Version Headers],
page 133). This is because the buffer no longer corresponds to any existing
version. If you check it in again, the checkin process will expand the headers
properly for the new version number.

However, it is impossible to unexpand the RCS ‘Log’ header automat-
ically. If you use that header feature, you have to unexpand it by hand—by
deleting the entry for the version that you just canceled.

Be careful when invoking C-x v c, as it is easy to throw away a lot of work
with it. To help you be careful, this command always requires confirmation
with yes. Note also that this command is disabled under CVS, because
canceling versions is very dangerous and discouraged with this back end.

Chapter 14: File Handling 125

14.7.3.5 The VC Mode Line

When you visit a file that is under version control, the mode line indicates
the current status of the file: the name of the version control back end
system, the locking state, and the version.

The locking state is displayed as a single character, which can be either
‘-’ or ‘:’. ‘-’ means the file is not locked or not modified by you. Once
you lock the file, the state indicator changes to ‘:’. If the file is locked by
someone else, that user’s name appears after the version number.

For example, ‘RCS-1.3’ means you are looking at RCS version 1.3, which
is not locked. ‘RCS:1.3’ means that you have locked the file, and possibly
already changed it. ‘RCS:jim:1.3’ means that the file is locked by jim.

14.7.3.6 Using VC with CVS

In CVS, files are never locked. Two users can check out the same file at
the same time; each user has a separate copy and can edit it. Work files are
always writable; once you have one, you need not type a VC command to
start editing the file. You can edit it at any time.

When using RCS and SCCS, you normally use C-x C-q twice for each
change; once before the change, for checkout, and once after, for checkin.
With CVS, it’s different: you normally use C-x C-q just once for each change,
to commit the change when it is done. The work file remains writable, so
you can begin editing again with no special commands.

One way to understand this is that VC does an implicit check-out when
you save the modified file for the first time. VC indicates this on the mode
line: the status indicator changes from ‘-’ to ‘:’ as soon as you save a
modified version, telling you that you are not in sync with the repository
anymore (see Section 14.7.3.5 [VC Mode Line], page 125). The file stays
“checked out” until you check it back in, even if you kill the buffer and visit
the file again.

If, instead, you would like to use explicit check-out with CVS, set the
CVSREAD environment variable to some value. (It does not matter what
value you use.) CVS then makes your work files read-only by default, and
VC requires you to check them out explicitly with C-x C-q. When setting
CVSREAD for the first time, make sure to check out all your modules anew,
so that the file protections are set correctly.

VC does not provide a way to check out a working copy of an existing
file in the repository. You have to use the CVS shell commands to do that.
Once you have a work file, you can start using VC for that file.

126 GNU Emacs Manual

CVS terminology speaks of committing a change rather than checking it
in. But in practical terms they work the same way: Emacs asks you to type
in a log entry, and you finish it with C-c C-c.

When you try to commit a change in a file, but someone else has com-
mitted another change in the meanwhile, that creates a conflict. VC detects
this situation and offers to merge your changes and those of the other user,
creating a new local version of the file, which you can then commit to the
repository. This works smoothly if the changes are in different parts of the
file, although it is wise to check the resulting file for semantic consistency.

However, if you and the other user changed the same parts of the file,
the conflict cannot be resolved automatically. In this case, CVS inserts
both variants of the conflicting regions into your working file, and puts so-
called conflict markers around them. They indicate how the region looks
in the respective user’s version. You must resolve the conflict manually,
for example by choosing one of the two variants and deleting the other one
(and the conflict markers). Then you can commit the resulting file into the
repository. The example below shows how a conflict region looks; the file is
called ‘name’ and the current repository version with user B’s changes in it
is 1.11.

<<<<<<< name

User A’s version

=======

User B’s version

>>>>>>> 1.11

You can turn off use of VC for CVS-managed files by setting the variable
vc-handle-cvs to nil. If you do this, Emacs treats these files as if they
were not managed, and the VC commands are not available for them. You
must do all CVS operations manually.

14.7.4 Log Entries

When you’re editing an initial comment or log entry for inclusion in a
master file, finish your entry by typing C-c C-c.

C-c C-c Finish the comment edit normally (vc-finish-logentry). This
finishes check-in.

To abort check-in, just don’t type C-c C-c in that buffer. You can switch
buffers and do other editing. As long as you don’t try to check in another
file, the entry you were editing remains in its buffer, and you can go back to
that buffer at any time to complete the check-in.

If you change several source files for the same reason, it is often convenient
to specify the same log entry for many of the files. To do this, use the history
of previous log entries. The commands M-n, M-p, M-s and M-r for doing this

Chapter 14: File Handling 127

work just like the minibuffer history commands (except that these versions
are used outside the minibuffer).

Each time you check in a file, the log entry buffer is put into VC Log
mode, which involves running two hooks: text-mode-hook and vc-log-
mode-hook. See Section 30.2.3 [Hooks], page 375.

14.7.5 Change Logs and VC

If you use RCS for a program and also maintain a change log file for
it (see Section 21.11 [Change Log], page 232), you can generate change log
entries automatically from the version control log entries:

C-x v a Visit the current directory’s change log file and create new en-
tries for versions checked in since the most recent entry in the
change log file (vc-update-change-log).

This command works with RCS only; it does not work with CVS
or SCCS.

For example, suppose the first line of ‘ChangeLog’ is dated 10 April
1992, and that the only check-in since then was by Nathaniel Bowditch to
‘rcs2log’ on 8 May 1992 with log text ‘Ignore log messages that start
with ‘#’.’. Then C-x v a visits ‘ChangeLog’ and inserts text like this:

Fri May 8 21:45:00 1992 Nathaniel Bowditch <nat@apn.org>

* rcs2log: Ignore log messages that start with ‘#’.

You can then edit the new change log entry further as you wish.

Normally, the log entry for file ‘foo’ is displayed as ‘* foo: text of
log entry ’. The ‘:’ after ‘foo’ is omitted if the text of the log en-
try starts with ‘(functionname): ’. For example, if the log entry for
‘vc.el’ is ‘(vc-do-command): Check call-process status.’, then the text
in ‘ChangeLog’ looks like this:

Wed May 6 10:53:00 1992 Nathaniel Bowditch <nat@apn.org>

* vc.el (vc-do-command): Check call-process status.

When C-x v a adds several change log entries at once, it groups related
log entries together if they all are checked in by the same author at nearly
the same time. If the log entries for several such files all have the same text,
it coalesces them into a single entry. For example, suppose the most recent
checkins have the following log entries:

• For ‘vc.texinfo’: ‘Fix expansion typos.’
• For ‘vc.el’: ‘Don’t call expand-file-name.’
• For ‘vc-hooks.el’: ‘Don’t call expand-file-name.’

128 GNU Emacs Manual

They appear like this in ‘ChangeLog’:

Wed Apr 1 08:57:59 1992 Nathaniel Bowditch <nat@apn.org>

* vc.texinfo: Fix expansion typos.

* vc.el, vc-hooks.el: Don’t call expand-file-name.

Normally, C-x v a separates log entries by a blank line, but you can mark
several related log entries to be clumped together (without an intervening
blank line) by starting the text of each related log entry with a label of the
form ‘{clumpname} ’. The label itself is not copied to ‘ChangeLog’. For
example, suppose the log entries are:

• For ‘vc.texinfo’: ‘{expand} Fix expansion typos.’
• For ‘vc.el’: ‘{expand} Don’t call expand-file-name.’
• For ‘vc-hooks.el’: ‘{expand} Don’t call expand-file-name.’

Then the text in ‘ChangeLog’ looks like this:

Wed Apr 1 08:57:59 1992 Nathaniel Bowditch <nat@apn.org>

* vc.texinfo: Fix expansion typos.

* vc.el, vc-hooks.el: Don’t call expand-file-name.

A log entry whose text begins with ‘#’ is not copied to ‘ChangeLog’. For
example, if you merely fix some misspellings in comments, you can log the
change with an entry beginning with ‘#’ to avoid putting such trivia into
‘ChangeLog’.

14.7.6 Examining And Comparing Old Versions

C-u C-x C-q version 〈RET〉

Select version version as the current work file version.

C-x v ~ version 〈RET〉

Examine version version of the visited file, in a buffer of its own.

C-x v = Compare the current buffer contents with the latest checked-in
version of the file.

C-u C-x v = file 〈RET〉 oldvers 〈RET〉 newvers 〈RET〉

Compare the specified two versions of file.

There are two ways to work with an old version of a file. You can make
the old version your current work file, for example if you want to reproduce
a former stage of development, or if you want to create a branch from the
old version (see Section 14.7.7 [Branches], page 129). To do this, visit the
file and type C-u C-x C-q version 〈RET〉. (This works only with RCS.)

Chapter 14: File Handling 129

If you want only to examine an old version, without changing your
work file, visit the file and then type C-x v ~ version 〈RET〉 (vc-version-
other-window). This puts the text of version version in a file named ‘file-
name.~version~’, and visits it in its own buffer in a separate window.

To compare two versions of a file, use the command C-x v = (vc-diff).
Plain C-x v = compares the current buffer contents (saving them in the file
if necessary) with the last checked-in version of the file. C-u C-x v =, with
a numeric argument, reads a file name and two version numbers, then com-
pares those versions of the specified file.

If you supply a directory name instead of the name of a work file, this
command compares the two specified versions of all registered files in that
directory and its subdirectories. You can also specify a snapshot name (see
Section 14.7.10 [Snapshots], page 132) instead of one or both version num-
bers.

You can specify a checked-in version by its number; an empty input
specifies the current contents of the work file (which may be different from
all the checked-in versions).

This command works by running the diff utility, getting the options
from the variable diff-switches. It displays the output in a special buffer
in another window. Unlike the M-x diff command, C-x v = does not try to
locate the changes in the old and new versions. This is because normally
one or both versions do not exist as files when you compare them; they exist
only in the records of the master file. See Section 14.9 [Comparing Files],
page 137, for more information about M-x diff.

14.7.7 Multiple Branches of a File

One use of version control is to maintain multiple “current” versions of a
file. For example, you might have different versions of a program in which you
are gradually adding various unfinished new features. Each such independent
line of development is called a branch. VC allows you to create branches,
and switch between existing branches. Note, however, that branches are
supported only with RCS.

A file’s main line of development is usually called the trunk. The versions
on the trunk are normally numbered 1.1, 1.2, 1.3, etc. At any such version,
you may start an independent branch. A branch starting at version 1.2 would
have version number 1.2.1.1. Consecutive versions on this branch would have
numbers 1.2.1.2, 1.2.1.3, 1.2.1.4, and so on. If there is a second branch also
starting at version 1.2; it would consist of versions 1.2.2.1, 1.2.2.2, 1.2.2.3,
and so on.

If you omit the final component of a version number, that is called a
branch number. It refers to the highest existing version on that branch. The
branches in the example above have branch numbers 1.2.1 and 1.2.2.

130 GNU Emacs Manual

A version which is the last in its branch is called a head version.

14.7.7.1 Switching between Branches

To switch between branches, type C-u C-x C-q and specify the version
number you want to select. This version is then checked out unlocked (write-
protected), so you can examine it before really checking it out. Switching
branches in this way is allowed only when the file is not locked.

You may omit the minor version number, thus giving only the branch
number; this takes you to the highest version on the indicated branch. If
you only type RET, Emacs goes to the highest version on the trunk.

After you have switched to any branch (including the main branch), you
stay on it for subsequent VC commands, until you explicitly select some
other branch.

14.7.7.2 Creating New Branches

To create a new branch from a head version (one that is the latest in the
branch that contains it), first select that version if necessary, lock it with
C-x C-q, and make whatever changes you want. Then, when you check in
the changes, use C-u C-x C-q. This lets you specify the version number for
the new version. You should specify a suitable branch number for a branch
starting at the current version. For example, if the current version is 2.5, the
branch number should be 2.5.1, 2.5.2, and so on, depending on the number
of existing branches at that point.

To create a new branch at an older version (one that is no longer the
head of a branch), first select that version, then lock it with C-x C-q. You’ll
be asked to confirm, when you lock the old version, that you really mean to
create a new branch—if you say no, you’ll be offered a chance to lock the
latest version instead.

Then make your changes and type C-x C-q again to check in a new ver-
sion. This automatically creates a new branch starting from the selected
version. You need not specially request a new branch, because that’s the
only way to add a new version at a point that is not the head of a branch.

After the branch is created, you “stay” on it. That means that subsequent
checkouts and checkins create new versions on that branch. To leave the
branch, you must explicitly select a different version with C-u C-x C-q for
checkout.

14.7.7.3 Multi-User Branching

Chapter 14: File Handling 131

It is sometimes useful for multiple developers to work simultaneously on
different branches of a file. This is possible if you create multiple source di-
rectories. Each source directory should have a link named ‘RCS’ which points
to a common directory of RCS master files. Then each source directory can
have its own choice of versions checked out, but all share the same common
RCS records.

This technique works reliably and automatically, provided that the source
files contain RCS version headers (see Section 14.7.11 [Version Headers],
page 133). The headers enable Emacs to be sure, at all times, which version
number is present in the work file.

If the files do not have version headers, you must instead tell Emacs
explicitly in each session which branch you are working on. To do this,
first find the file, then type C-u C-x C-q and specify the correct branch
number. This ensures that Emacs knows which branch it is using during
this particular editing session.

14.7.8 VC Status Commands

To view the detailed version control status and history of a file, type
C-x v l (vc-print-log). It displays the history of changes to the current
file, including the text of the log entries. The output appears in a separate
window.

When you are working on a large program, it’s often useful to find all the
files that are currently locked, or all the files maintained in version control
at all. You can use C-x v d (vc-directory) to show all the locked files in
or beneath a certain directory. This includes all files that are locked by any
user. C-u C-x v d lists all files in or beneath the specified directory that are
maintained with version control.

The list of files is displayed as a buffer that uses an augmented Dired
mode. The names of the users locking various files are shown (in parentheses)
in place of the owner and group. (With CVS, a more detailed status is
shown for each file.) All the normal Dired commands work in this buffer.
Most interactive VC commands work also, and apply to the file name on the
current line.

The C-x v v command (vc-next-action), when used in the augmented
Dired buffer, operates on all the marked files (or the file on the current line).
If it operates on more than one file, it handles each file according to its
current state; thus, it may check out one file and check in another (because
it is already checked out). If it has to check in any files, it reads a single
log entry, then uses that text for all the files being checked in. This can be
convenient for registering or checking in several files at once, as part of the
same change.

132 GNU Emacs Manual

14.7.9 Renaming VC Work Files and Master Files

When you rename a registered file, you must also rename its master
file correspondingly to get proper results. Use vc-rename-file to rename
the source file as you specify, and rename its master file accordingly. It
also updates any snapshots (see Section 14.7.10 [Snapshots], page 132) that
mention the file, so that they use the new name; despite this, the snapshot
thus modified may not completely work (see Section 14.7.10.2 [Snapshot
Caveats], page 133).

You cannot use vc-rename-file on a file that is locked by someone else.

14.7.10 Snapshots

A snapshot is a named set of file versions (one for each registered file)
that you can treat as a unit. One important kind of snapshot is a release, a
(theoretically) stable version of the system that is ready for distribution to
users.

14.7.10.1 Making and Using Snapshots

There are two basic commands for snapshots; one makes a snapshot with
a given name, the other retrieves a named snapshot.

C-x v s name 〈RET〉

Define the last saved versions of every registered file in or under
the current directory as a snapshot named name (vc-create-
snapshot).

C-x v r name 〈RET〉

Check out all registered files at or below the current directory
level using whatever versions correspond to the snapshot name
(vc-retrieve-snapshot).

This command reports an error if any files are locked at or below
the current directory, without changing anything; this is to avoid
overwriting work in progress.

A snapshot uses a very small amount of resources—just enough to record
the list of file names and which version belongs to the snapshot. Thus, you
need not hesitate to create snapshots whenever they are useful.

You can give a snapshot name as an argument to C-x v = or C-x v ~ (see
Section 14.7.6 [Old Versions], page 128). Thus, you can use it to compare a
snapshot against the current files, or two snapshots against each other, or a
snapshot against a named version.

Chapter 14: File Handling 133

14.7.10.2 Snapshot Caveats

VC’s snapshot facilities are modeled on RCS’s named-configuration sup-
port. They use RCS’s native facilities for this, so under VC snapshots made
using RCS are visible even when you bypass VC.

For SCCS, VC implements snapshots itself. The files it uses contain
name/file/version-number triples. These snapshots are visible only through
VC.

A snapshot is a set of checked-in versions. So make sure that all the files
are checked in and not locked when you make a snapshot.

File renaming and deletion can create some difficulties with snapshots.
This is not a VC-specific problem, but a general design issue in version
control systems that no one has solved very well yet.

If you rename a registered file, you need to rename its master along with
it (the command vc-rename-file does this automatically). If you are using
SCCS, you must also update the records of the snapshot, to mention the
file by its new name (vc-rename-file does this, too). An old snapshot
that refers to a master file that no longer exists under the recorded name is
invalid; VC can no longer retrieve it. It would be beyond the scope of this
manual to explain enough about RCS and SCCS to explain how to update
the snapshots by hand.

Using vc-rename-file makes the snapshot remain valid for retrieval, but
it does not solve all problems. For example, some of the files in the program
probably refer to others by name. At the very least, the makefile probably
mentions the file that you renamed. If you retrieve an old snapshot, the
renamed file is retrieved under its new name, which is not the name that the
makefile expects. So the program won’t really work as retrieved.

14.7.11 Inserting Version Control Headers

Sometimes it is convenient to put version identification strings directly
into working files. Certain special strings called version headers are replaced
in each successive version by the number of that version.

If you are using RCS, and version headers are present in your working files,
Emacs can use them to determine the current version and the locking state
of the files. This is more reliable than referring to the master files, which
is done when there are no version headers. Note that in a multi-branch
environment, version headers are necessary to make VC behave correctly
(see Section 14.7.7.3 [Multi-User Branching], page 131).

Searching for version headers is controlled by the variable vc-consult-
headers. If it is non-nil, Emacs searches for headers to determine the
version number you are editing. Setting it to nil disables this feature.

134 GNU Emacs Manual

You can use the C-x v h command (vc-insert-headers) to insert a suit-
able header string.

C-x v h Insert headers in a file for use with your version-control system.

The default header string is ‘Id’ for RCS and ‘%W%’ for SCCS. You can
specify other headers to insert by setting the variable vc-header-alist. Its
value is a list of elements of the form (program . string) where program is
RCS or SCCS and string is the string to use.

Instead of a single string, you can specify a list of strings; then each string
in the list is inserted as a separate header on a line of its own.

It is often necessary to use “superfluous” backslashes when writing the
strings that you put in this variable. This is to prevent the string in the
constant from being interpreted as a header itself if the Emacs Lisp file
containing it is maintained with version control.

Each header is inserted surrounded by tabs, inside comment delimiters,
on a new line at the start of the buffer. Normally the ordinary comment
start and comment end strings of the current mode are used, but for certain
modes, there are special comment delimiters for this purpose; the variable
vc-comment-alist specifies them. Each element of this list has the form
(mode starter ender).

The variable vc-static-header-alist specifies further strings to add
based on the name of the buffer. Its value should be a list of elements of
the form (regexp . format). Whenever regexp matches the buffer name,
format is inserted as part of the header. A header line is inserted for each
element that matches the buffer name, and for each string specified by vc-
header-alist. The header line is made by processing the string from vc-
header-alist with the format taken from the element. The default value
for vc-static-header-alist is as follows:

(("\\.c$" .
"\n#ifndef lint\nstatic char vcid[] = \"\%s\";\n\

#endif /* lint */\n"))

It specifies insertion of text of this form:

#ifndef lint
static char vcid[] = "string";
#endif /* lint */

Note that the text above starts with a blank line.

If you use more than one version header in a file, put them close together
in the file. The mechanism in revert-buffer that preserves markers may
not handle markers positioned between two version headers.

14.7.12 Customizing VC

Chapter 14: File Handling 135

There are many ways of customizing VC. The variables that control its
behavior fall into three categories, described in the following sections.

14.7.12.1 VC Workfile Handling

Emacs normally does not save backup files for source files that are main-
tained with version control. If you want to make backup files even for files
that use version control, set the variable vc-make-backup-files to a non-
nil value.

Normally the work file exists all the time, whether it is locked or not.
If you set vc-keep-workfiles to nil, then checking in a new version with
C-x C-q deletes the work file; but any attempt to visit the file with Emacs
creates it again. (With CVS, work files are always kept.)

Editing a version-controlled file through a symbolic link can be dangerous.
It bypasses the version control system—you can edit the file without checking
it out, and fail to check your changes in. Also, your changes might overwrite
those of another user. To protect against this, VC checks each symbolic link
that you visit, to see if it points to a file under version control.

The variable vc-follow-symlinks controls what to do when a symbolic
link points to a version-controlled file. If it is nil, VC only displays a warning
message. If it is t, VC automatically follows the link, and visits the real file
instead, telling you about this in the echo area. If the value is ask (the
default), VC asks you each time whether to follow the link.

14.7.12.2 VC Status Retrieval

When deducing the locked/unlocked state of a file, VC first looks for an
RCS version header string in the file (see Section 14.7.11 [Version Headers],
page 133). If there is no header string (or if the backend system is SCCS),
VC normally looks at the file permissions of the work file; this is fast. But
there might be situations when the file permissions cannot be trusted. In this
case the master file has to be consulted, which is rather expensive. Also the
master file can only tell you if there’s any lock on the file, but not whether
your work file really contains that locked version.

You can tell VC not to use version headers to determine lock status by
setting vc-consult-headers to nil. VC then always uses the file permis-
sions (if it can trust them), or else checks the master file.

You can specify the criterion for whether to trust the file permissions by
setting the variable vc-mistrust-permissions. Its value may be t (always
mistrust the file permissions and check the master file), nil (always trust the
file permissions), or a function of one argument which makes the decision.

136 GNU Emacs Manual

The argument is the directory name of the ‘RCS’, ‘CVS’ or ‘SCCS’ subdirectory.
A non-nil value from the function says to mistrust the file permissions. If
you find that the file permissions of work files are changed erroneously, set
vc-mistrust-permissions to t. Then VC always checks the master file to
determine the file’s status.

14.7.12.3 VC Command Execution

If vc-suppress-confirm is non-nil, then C-x C-q and C-x v i can save
the current buffer without asking, and C-x v u also operates without asking
for confirmation. (This variable does not affect C-x v c; that operation is so
drastic that it should always ask for confirmation.)

VC mode does much of its work by running the shell commands for RCS,
CVS and SCCS. If vc-command-messages is non-nil, VC displays messages
to indicate which shell commands it runs, and additional messages when the
commands finish.

You can specify additional directories to search for version control pro-
grams by setting the variable vc-path. These directories are searched before
the usual search path. But the proper files are usually found automatically.

14.8 File Directories

The file system groups files into directories. A directory listing is a list
of all the files in a directory. Emacs provides commands to create and delete
directories, and to make directory listings in brief format (file names only)
and verbose format (sizes, dates, and authors included). There is also a
directory browser called Dired; see Chapter 27 [Dired], page 311.

C-x C-d dir-or-pattern 〈RET〉

Display a brief directory listing (list-directory).

C-u C-x C-d dir-or-pattern 〈RET〉

Display a verbose directory listing.

M-x make-directory 〈RET〉 dirname 〈RET〉

Create a new directory named dirname.

M-x delete-directory 〈RET〉 dirname 〈RET〉

Delete the directory named dirname. It must be empty, or you
get an error.

The command to display a directory listing is C-x C-d (list-directory).
It reads using the minibuffer a file name which is either a directory to be
listed or a wildcard-containing pattern for the files to be listed. For example,

Chapter 14: File Handling 137

C-x C-d /u2/emacs/etc 〈RET〉

lists all the files in directory ‘/u2/emacs/etc’. Here is an example of speci-
fying a file name pattern:

C-x C-d /u2/emacs/src/*.c 〈RET〉

Normally, C-x C-d prints a brief directory listing containing just file
names. A numeric argument (regardless of value) tells it to make a ver-
bose listing including sizes, dates, and authors (like ‘ls -l’).

The text of a directory listing is obtained by running ls in an inferior
process. Two Emacs variables control the switches passed to ls: list-
directory-brief-switches is a string giving the switches to use in brief
listings ("-CF" by default), and list-directory-verbose-switches is a
string giving the switches to use in a verbose listing ("-l" by default).

14.9 Comparing Files

The command M-x diff compares two files, displaying the differences in
an Emacs buffer named ‘*Diff*’. It works by running the diff program,
using options taken from the variable diff-switches, whose value should
be a string.

The buffer ‘*Diff*’ has Compilation mode as its major mode, so you
can use C-x ‘ to visit successive changed locations in the two source files.
You can also move to a particular hunk of changes and type 〈RET〉 or C-c
C-c, or click Mouse-2 on it, to move to the corresponding source location.
You can also use the other special commands of Compilation mode: 〈SPC〉

and 〈DEL〉 for scrolling, and M-p and M-n for cursor motion. See Section 22.1
[Compilation], page 261.

The command M-x diff-backup compares a specified file with its most
recent backup. If you specify the name of a backup file, diff-backup com-
pares it with the source file that it is a backup of.

The command M-x compare-windows compares the text in the current
window with that in the next window. Comparison starts at point in each
window, and each starting position is pushed on the mark ring in its respec-
tive buffer. Then point moves forward in each window, a character at a time,
until a mismatch between the two windows is reached. Then the command
is finished. For more information about windows in Emacs, Chapter 16
[Windows], page 149.

With a numeric argument, compare-windows ignores changes in whites-
pace. If the variable compare-ignore-case is non-nil, it ignores differences
in case as well.

See also Section 21.13 [Emerge], page 241, for convenient facilities for
merging two similar files.

138 GNU Emacs Manual

14.10 Miscellaneous File Operations

Emacs has commands for performing many other operations on files. All
operate on one file; they do not accept wild card file names.

M-x view-file allows you to scan or read a file by sequential screenfuls.
It reads a file name argument using the minibuffer. After reading the file
into an Emacs buffer, view-file displays the beginning. You can then type
〈SPC〉 to scroll forward one windowful, or 〈DEL〉 to scroll backward. Various
other commands are provided for moving around in the file, but none for
changing it; type ? while viewing for a list of them. They are mostly the
same as normal Emacs cursor motion commands. To exit from viewing, type
q. The commands for viewing are defined by a special major mode called
View mode.

A related command, M-x view-buffer, views a buffer already present in
Emacs. See Section 15.3 [Misc Buffer], page 143.

M-x insert-file inserts a copy of the contents of the specified file into
the current buffer at point, leaving point unchanged before the contents and
the mark after them.

M-x write-region is the inverse of M-x insert-file; it copies the con-
tents of the region into the specified file. M-x append-to-file adds the text
of the region to the end of the specified file. See Section 9.3 [Accumulating
Text], page 68.

M-x delete-file deletes the specified file, like the rm command in the
shell. If you are deleting many files in one directory, it may be more conve-
nient to use Dired (see Chapter 27 [Dired], page 311).

M-x rename-file reads two file names old and new using the minibuffer,
then renames file old as new. If a file named new already exists, you must
confirm with yes or renaming is not done; this is because renaming causes
the old meaning of the name new to be lost. If old and new are on different
file systems, the file old is copied and deleted.

The similar command M-x add-name-to-file is used to add an addi-
tional name to an existing file without removing its old name. The new
name must belong on the same file system that the file is on.

M-x copy-file reads the file old and writes a new file named new with
the same contents. Confirmation is required if a file named new already
exists, because copying has the consequence of overwriting the old contents
of the file new.

M-x make-symbolic-link reads two file names old and linkname, then
creates a symbolic link named linkname and pointing at old. The effect
is that future attempts to open file linkname will refer to whatever file is
named old at the time the opening is done, or will get an error if the name
old is not in use at that time. This command does not expand the argument

Chapter 14: File Handling 139

filename, so that it allows you to specify a relative name as the target of the
link.

Confirmation is required when creating the link if linkname is in use.
Note that not all systems support symbolic links.

14.11 Accessing Compressed Files

Emacs comes with a library that can automatically uncompress com-
pressed files when you visit them, and automatically recompress them if you
alter them and save them. To enable this feature, type the command M-x
auto-compression-mode.

When automatic compression (which implies automatic uncompression as
well) is enabled, Emacs recognizes compressed files by their file names. File
names ending in ‘.gz’ indicate a file compressed with gzip. Other endings
indicate other compression programs.

Automatic uncompression and compression apply to all the operations in
which Emacs uses the contents of a file. This includes visiting it, saving it,
inserting its contents into a buffer, loading it, and byte compiling it.

140 GNU Emacs Manual

Chapter 15: Using Multiple Buffers 141

15 Using Multiple Buffers

The text you are editing in Emacs resides in an object called a buffer.
Each time you visit a file, a buffer is created to hold the file’s text. Each
time you invoke Dired, a buffer is created to hold the directory listing. If
you send a message with C-x m, a buffer named ‘*mail*’ is used to hold the
text of the message. When you ask for a command’s documentation, that
appears in a buffer called ‘*Help*’.

At any time, one and only one buffer is selected. It is also called the
current buffer. Often we say that a command operates on “the buffer” as if
there were only one; but really this means that the command operates on
the selected buffer (most commands do).

When Emacs has multiple windows, each window has a chosen buffer
which is displayed there, but at any time only one of the windows is selected
and its chosen buffer is the selected buffer. Each window’s mode line dis-
plays the name of the buffer that the window is displaying (see Chapter 16
[Windows], page 149).

Each buffer has a name, which can be of any length, and you can select
any buffer by giving its name. Most buffers are made by visiting files, and
their names are derived from the files’ names. But you can also create an
empty buffer with any name you want. A newly started Emacs has a buffer
named ‘*scratch*’ which can be used for evaluating Lisp expressions in
Emacs. The distinction between upper and lower case matters in buffer
names.

Each buffer records individually what file it is visiting, whether it is mod-
ified, and what major mode and minor modes are in effect in it (see Chap-
ter 18 [Major Modes], page 173). Any Emacs variable can be made local to
a particular buffer, meaning its value in that buffer can be different from the
value in other buffers. See Section 30.2.4 [Locals], page 376.

15.1 Creating and Selecting Buffers

C-x b buffer 〈RET〉

Select or create a buffer named buffer (switch-to-buffer).

C-x 4 b buffer 〈RET〉

Similar, but select buffer in another window (switch-to-
buffer-other-window).

C-x 5 b buffer 〈RET〉

Similar, but select buffer in a separate frame (switch-to-
buffer-other-frame).

142 GNU Emacs Manual

To select the buffer named bufname, type C-x b bufname 〈RET〉. This
runs the command switch-to-buffer with argument bufname. You can use
completion on an abbreviation for the buffer name you want (see Section 5.3
[Completion], page 41). An empty argument to C-x b specifies the most
recently selected buffer that is not displayed in any window.

Most buffers are created by visiting files, or by Emacs commands that
want to display some text, but you can also create a buffer explicitly by
typing C-x b bufname 〈RET〉. This makes a new, empty buffer which is not
visiting any file, and selects it for editing. Such buffers are used for making
notes to yourself. If you try to save one, you are asked for the file name to
use. The new buffer’s major mode is determined by the value of default-
major-mode (see Chapter 18 [Major Modes], page 173).

Note that C-x C-f, and any other command for visiting a file, can also be
used to switch to an existing file-visiting buffer. See Section 14.2 [Visiting],
page 108.

Emacs uses buffer names that start with a space for internal purposes.
It treats these buffers specially in minor ways—for example, by default they
do not record undo information. It is best to avoid using such buffer names
yourself.

15.2 Listing Existing Buffers

C-x C-b List the existing buffers (list-buffers).

To display a list of all the buffers that exist, type C-x C-b. Each line in
the list shows one buffer’s name, major mode and visited file. The buffers
are listed in the order, most recently visited first.

‘*’ at the beginning of a line indicates the buffer is “modified”. If several
buffers are modified, it may be time to save some with C-x s (see Section 14.3
[Saving], page 111). ‘%’ indicates a read-only buffer. ‘.’ marks the selected
buffer. Here is an example of a buffer list:

MR Buffer Size Mode File

-- ------ ---- ---- ----

.* emacs.tex 383402 Texinfo /u2/emacs/man/emacs.tex

Help 1287 Fundamental

files.el 23076 Emacs-Lisp /u2/emacs/lisp/files.el

% RMAIL 64042 RMAIL /u/rms/RMAIL

*% man 747 Dired /u2/emacs/man/

net.emacs 343885 Fundamental /u/rms/net.emacs

fileio.c 27691 C /u2/emacs/src/fileio.c

NEWS 67340 Text /u2/emacs/etc/NEWS

scratch 0 Lisp Interaction

Chapter 15: Using Multiple Buffers 143

Note that the buffer ‘*Help*’ was made by a help request; it is not
visiting any file. The buffer man was made by Dired on the directory
‘/u2/emacs/man/’.

15.3 Miscellaneous Buffer Operations

C-x C-q Toggle read-only status of buffer (vc-toggle-read-only).

M-x rename-buffer 〈RET〉 name 〈RET〉

Change the name of the current buffer.

M-x rename-uniquely
Rename the current buffer by adding ‘<number>’ to the end.

M-x view-buffer 〈RET〉 buffer 〈RET〉

Scroll through buffer buffer.

A buffer can be read-only, which means that commands to change its
contents are not allowed. The mode line indicates read-only buffers with
‘%%’ or ‘%*’ near the left margin. Read-only buffers are usually made by
subsystems such as Dired and Rmail that have special commands to operate
on the text; also by visiting a file whose access control says you cannot write
it.

If you wish to make changes in a read-only buffer, use the command C-
x C-q (vc-toggle-read-only). It makes a read-only buffer writable, and
makes a writable buffer read-only. In most cases, this works by setting
the variable buffer-read-only, which has a local value in each buffer and
makes the buffer read-only if its value is non-nil. If the file is maintained
with version control, C-x C-q works through the version control system to
change the read-only status of the file as well as the buffer. See Section 14.7
[Version Control], page 120.

M-x rename-buffer changes the name of the current buffer. Specify the
new name as a minibuffer argument. There is no default. If you specify a
name that is in use for some other buffer, an error happens and no renaming
is done.

M-x rename-uniquely renames the current buffer to a similar name with
a numeric suffix added to make it both different and unique. This command
does not need an argument. It is useful for creating multiple shell buffers:
if you rename the ‘*Shell*’ buffer, then do M-x shell again, it makes a
new shell buffer named ‘*Shell*’; meanwhile, the old shell buffer continues
to exist under its new name. This method is also good for mail buffers,
compilation buffers, and most Emacs features that create special buffers
with particular names.

M-x view-buffer is much like M-x view-file (see Section 14.10 [Misc
File Ops], page 138) except that it examines an already existing Emacs

144 GNU Emacs Manual

buffer. View mode provides commands for scrolling through the buffer con-
veniently but not for changing it. When you exit View mode, the value of
point that resulted from your perusal remains in effect.

The commands M-x append-to-buffer and M-x insert-buffer can be
used to copy text from one buffer to another. See Section 9.3 [Accumulating
Text], page 68.

15.4 Killing Buffers

If you continue an Emacs session for a while, you may accumulate a large
number of buffers. You may then find it convenient to kill the buffers you no
longer need. On most operating systems, killing a buffer releases its space
back to the operating system so that other programs can use it. Here are
some commands for killing buffers:

C-x k bufname 〈RET〉

Kill buffer bufname (kill-buffer).

M-x kill-some-buffers
Offer to kill each buffer, one by one.

C-x k (kill-buffer) kills one buffer, whose name you specify in the
minibuffer. The default, used if you type just 〈RET〉 in the minibuffer, is
to kill the current buffer. If you kill the current buffer, another buffer is
selected; one that has been selected recently but does not appear in any
window now. If you ask to kill a file-visiting buffer that is modified (has
unsaved editing), then you must confirm with yes before the buffer is killed.

The command M-x kill-some-buffers asks about each buffer, one by
one. An answer of y means to kill the buffer. Killing the current buffer or a
buffer containing unsaved changes selects a new buffer or asks for confirma-
tion just like kill-buffer.

The buffer menu feature (see Section 15.5 [Several Buffers], page 144) is
also convenient for killing various buffers.

If you want to do something special every time a buffer is killed, you
can add hook functions to the hook kill-buffer-hook (see Section 30.2.3
[Hooks], page 375).

15.5 Operating on Several Buffers

The buffer-menu facility is like a “Dired for buffers”; it allows you to
request operations on various Emacs buffers by editing an Emacs buffer
containing a list of them. You can save buffers, kill them (here called deleting
them, for consistency with Dired), or display them.

Chapter 15: Using Multiple Buffers 145

M-x buffer-menu
Begin editing a buffer listing all Emacs buffers.

The command buffer-menu writes a list of all Emacs buffers into the
buffer ‘*Buffer List*’, and selects that buffer in Buffer Menu mode. The
buffer is read-only, and can be changed only through the special commands
described in this section. The usual Emacs cursor motion commands can be
used in the ‘*Buffer List*’ buffer. The following commands apply to the
buffer described on the current line.

d Request to delete (kill) the buffer, then move down. The request
shows as a ‘D’ on the line, before the buffer name. Requested
deletions take place when you type the x command.

C-d Like d but move up afterwards instead of down.

s Request to save the buffer. The request shows as an ‘S’ on the
line. Requested saves take place when you type the x command.
You may request both saving and deletion for the same buffer.

x Perform previously requested deletions and saves.

u Remove any request made for the current line, and move down.

〈DEL〉 Move to previous line and remove any request made for that
line.

The d, C-d, s and u commands to add or remove flags also move down
(or up) one line. They accept a numeric argument as a repeat count.

These commands operate immediately on the buffer listed on the current
line:

~ Mark the buffer “unmodified”. The command ~ does this im-
mediately when you type it.

% Toggle the buffer’s read-only flag. The command % does this
immediately when you type it.

t Visit the buffer as a tags table. See Section 21.12.3 [Select Tags
Table], page 237.

There are also commands to select another buffer or buffers:

q Quit the buffer menu—immediately display the most recent for-
merly visible buffer in its place.

〈RET〉

f Immediately select this line’s buffer in place of the ‘*Buffer
List*’ buffer.

o Immediately select this line’s buffer in another window as if by
C-x 4 b, leaving ‘*Buffer List*’ visible.

146 GNU Emacs Manual

C-o Immediately display this line’s buffer in another window, but
don’t select the window.

1 Immediately select this line’s buffer in a full-screen window.

2 Immediately set up two windows, with this line’s buffer in
one, and the previously selected buffer (aside from the buffer
‘*Buffer List*’) in the other.

m Mark this line’s buffer to be displayed in another window if you
exit with the v command. The request shows as a ‘>’ at the
beginning of the line. (A single buffer may not have both a
delete request and a display request.)

v Immediately select this line’s buffer, and also display in other
windows any buffers previously marked with the m command. If
you have not marked any buffers, this command is equivalent to
1.

All that buffer-menu does directly is create and switch to a suitable
buffer, and turn on Buffer Menu mode. Everything else described above is
implemented by the special commands provided in Buffer Menu mode. One
consequence of this is that you can switch from the ‘*Buffer List*’ buffer
to another Emacs buffer, and edit there. You can reselect the ‘*Buffer
List*’ buffer later, to perform the operations already requested, or you can
kill it, or pay no further attention to it.

The only difference between buffer-menu and list-buffers is that
buffer-menu switches to the ‘*Buffer List*’ buffer in the selected window;
list-buffers displays it in another window. If you run list-buffers (that
is, type C-x C-b) and select the buffer list manually, you can use all of the
commands described here.

The buffer ‘*Buffer List*’ is not updated automatically when buffers
are created and killed; its contents are just text. If you have created, deleted
or renamed buffers, the way to update ‘*Buffer List*’ to show what you
have done is to type g (revert-buffer) or repeat the buffer-menu com-
mand.

15.6 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called
the base buffer of the indirect buffer. In some ways it is the analogue, for
buffers, of a symbolic link between files.

M-x make-indirect-buffer base-buffer 〈RET〉 indirect-name 〈RET〉

Create an indirect buffer named indirect-name whose base buffer
is base-buffer.

Chapter 15: Using Multiple Buffers 147

The text of the indirect buffer is always identical to the text of its base
buffer; changes made by editing either one are visible immediately in the
other. But in all other respects, the indirect buffer and its base buffer are
completely separate. They have different names, different values of point,
different narrowing, different markers, different major modes, and different
local variables.

An indirect buffer cannot visit a file, but its base buffer can. If you try
to save the indirect buffer, that actually works by saving the base buffer.
Killing the base buffer effectively kills the indirect buffer, but killing an
indirect buffer has no effect on its base buffer.

One way to use indirect buffers is to display multiple views of an outline.
See Section 20.8.4 [Outline Views], page 196.

148 GNU Emacs Manual

Chapter 16: Multiple Windows 149

16 Multiple Windows

Emacs can split a frame into two or many windows. Multiple windows
can display parts of different buffers, or different parts of one buffer. Multiple
frames always imply multiple windows, because each frame has its own set
of windows. Each window belongs to one and only one frame.

16.1 Concepts of Emacs Windows

Each Emacs window displays one Emacs buffer at any time. A single
buffer may appear in more than one window; if it does, any changes in its
text are displayed in all the windows where it appears. But the windows
showing the same buffer can show different parts of it, because each window
has its own value of point.

At any time, one of the windows is the selected window ; the buffer this
window is displaying is the current buffer. The terminal’s cursor shows the
location of point in this window. Each other window has a location of point
as well, but since the terminal has only one cursor there is no way to show
where those locations are. When multiple frames are visible in X Windows,
each frame has a cursor which appears in the frame’s selected window. The
cursor in the selected frame is solid; the cursor in other frames is a hollow
box.

Commands to move point affect the value of point for the selected Emacs
window only. They do not change the value of point in any other Emacs
window, even one showing the same buffer. The same is true for commands
such as C-x b to change the selected buffer in the selected window; they do
not affect other windows at all. However, there are other commands such
as C-x 4 b that select a different window and switch buffers in it. Also, all
commands that display information in a window, including (for example) C-
h f (describe-function) and C-x C-b (list-buffers), work by switching
buffers in a nonselected window without affecting the selected window.

When multiple windows show the same buffer, they can have different
regions, because they can have different values of point. This means that in
Transient Mark mode, each window highlights a different part of the buffer.
The part that is highlighted in the selected window is the region that editing
commands use.

Each window has its own mode line, which displays the buffer name, mod-
ification status and major and minor modes of the buffer that is displayed
in the window. See Section 1.3 [Mode Line], page 17, for full details on the
mode line.

150 GNU Emacs Manual

16.2 Splitting Windows

C-x 2 Split the selected window into two windows, one above the other
(split-window-vertically).

C-x 3 Split the selected window into two windows positioned side by
side (split-window-horizontally).

C-Mouse-2
In the mode line or scroll bar of a window, split that window.

The command C-x 2 (split-window-vertically) breaks the selected
window into two windows, one above the other. Both windows start out
displaying the same buffer, with the same value of point. By default the two
windows each get half the height of the window that was split; a numeric
argument specifies how many lines to give to the top window.

C-x 3 (split-window-horizontally) breaks the selected window into
two side-by-side windows. A numeric argument specifies how many columns
to give the one on the left. A line of vertical bars separates the two windows.
Windows that are not the full width of the screen have mode lines, but they
are truncated; also, they do not always appear in inverse video, because
the Emacs display routines have not been taught how to display a region of
inverse video that is only part of a line on the screen.

You can split a window horizontally or vertically by clicking C-Mouse-2
in the mode line or the scroll bar. The line of splitting goes through the place
where you click: if you click on the mode line, the new scroll bar goes above
the spot; if you click in the scroll bar, the mode line of the split window is
side by side with your click.

When a window is less than the full width, text lines too long to fit
are frequent. Continuing all those lines might be confusing. The variable
truncate-partial-width-windows can be set non-nil to force truncation
in all windows less than the full width of the screen, independent of the
buffer being displayed and its value for truncate-lines. See Section 4.8
[Continuation Lines], page 35.

Horizontal scrolling is often used in side-by-side windows. See Chapter 11
[Display], page 77.

If split-window-keep-point is non-nil, C-x 2 tries to avoid shifting any
text on the screen by putting point in whichever window happens to contain
the screen line the cursor is already on. The default is that split-window-
keep-point is non-nil on slow terminals.

16.3 Using Other Windows

Chapter 16: Multiple Windows 151

C-x o Select another window (other-window). That is o, not zero.

C-M-v Scroll the next window (scroll-other-window).

M-x compare-windows
Find next place where the text in the selected window does not
match the text in the next window.

Mouse-1 Mouse-1, in a window’s mode line, selects that window but does
not move point in it (mouse-select-region).

To select a different window, click with Mouse-1 on its mode line. With
the keyboard, you can switch windows by typing C-x o (other-window).
That is an o, for ‘other’, not a zero. When there are more than two windows,
this command moves through all the windows in a cyclic order, generally top
to bottom and left to right. After the rightmost and bottommost window,
it goes back to the one at the upper left corner. A numeric argument means
to move several steps in the cyclic order of windows. A negative argument
moves around the cycle in the opposite order. When the minibuffer is active,
the minibuffer is the last window in the cycle; you can switch from the
minibuffer window to one of the other windows, and later switch back and
finish supplying the minibuffer argument that is requested. See Section 5.2
[Minibuffer Edit], page 40.

The usual scrolling commands (see Chapter 11 [Display], page 77) ap-
ply to the selected window only, but there is one command to scroll the
next window. C-M-v (scroll-other-window) scrolls the window that C-x
o would select. It takes arguments, positive and negative, like C-v. (In
the minibuffer, C-M-v scrolls the window that contains the minibuffer help
display, if any, rather than the next window in the standard cyclic order.)

The command M-x compare-windows lets you compare two files or buffers
visible in two windows, by moving through them to the next mismatch. See
Section 14.9 [Comparing Files], page 137, for details.

16.4 Displaying in Another Window

C-x 4 is a prefix key for commands that select another window (splitting
the window if there is only one) and select a buffer in that window. Different
C-x 4 commands have different ways of finding the buffer to select.

C-x 4 b bufname 〈RET〉

Select buffer bufname in another window. This runs switch-
to-buffer-other-window.

C-x 4 C-o bufname 〈RET〉

Display buffer bufname in another window, but don’t select that
buffer or that window. This runs display-buffer.

152 GNU Emacs Manual

C-x 4 f filename 〈RET〉

Visit file filename and select its buffer in another window. This
runs find-file-other-window. See Section 14.2 [Visiting],
page 108.

C-x 4 d directory 〈RET〉

Select a Dired buffer for directory directory in another win-
dow. This runs dired-other-window. See Chapter 27 [Dired],
page 311.

C-x 4 m Start composing a mail message in another window. This runs
mail-other-window; its same-window analogue is C-x m (see
Chapter 25 [Sending Mail], page 285).

C-x 4 . Find a tag in the current tags table, in another window. This
runs find-tag-other-window, the multiple-window variant of
M-. (see Section 21.12 [Tags], page 233).

C-x 4 r filename 〈RET〉

Visit file filename read-only, and select its buffer in another win-
dow. This runs find-file-read-only-other-window. See Sec-
tion 14.2 [Visiting], page 108.

16.5 Forcing Display in the Same Window

Certain Emacs commands switch to a specific buffer with special con-
tents. For example, M-x shell switches to a buffer named ‘*Shell*’. By
convention, all these commands are written to pop up the buffer in a sepa-
rate window. But you can specify that certain of these buffers should appear
in the selected window.

If you add a buffer name to the list same-window-buffer-names, the
effect is that such commands display that particular buffer by switching to
it in the selected window. For example, if you add the element "*grep*"
to the list, the grep command will display its output buffer in the selected
window.

The default value of same-window-buffer-names is not nil. It specifies
the buffers ‘*info*’, ‘*mail*’ and ‘*shell*’. This is why M-x shell nor-
mally switches to the ‘*shell*’ buffer in the selected window. If you delete
this element from the value of same-window-buffer-names, the behavior of
M-x shell will change—it will pop up the buffer in another window instead.

You can specify these buffers more generally with the variable same-
window-regexps. Set it to a list of regular expressions; then any buffer whose
name matches one of those regular expressions is displayed by switching to
it in the selected window. (Once again, this applies only to buffers that

Chapter 16: Multiple Windows 153

normally get displayed for you in a separate window.) The default value of
this variable specifies Telnet and rlogin buffers.

An analogous feature lets you specify buffers which should be displayed
in their own individual frames. See Section 17.8 [Special Buffer Frames],
page 161.

16.6 Deleting and Rearranging Windows

C-x 0 Delete the selected window (delete-window). That is a zero.

C-x 1 Delete all windows in the selected frame except the selected win-
dow (delete-other-windows).

C-x ^ Make selected window taller (enlarge-window).

C-x } Make selected window wider (enlarge-window-horizontally).

Drag-Mouse-1
Dragging a window’s mode line up or down with Mouse-1
changes window heights.

Mouse-2 Mouse-2 in a window’s mode line deletes all other windows in
the frame (mouse-delete-other-windows).

Mouse-3 Mouse-3 in a window’s mode line deletes that window (mouse-
delete-window).

To delete a window, type C-x 0 (delete-window). (That is a zero.) The
space occupied by the deleted window is given to an adjacent window (but
not the minibuffer window, even if that is active at the time). Once a window
is deleted, its attributes are forgotten; only restoring a window configuration
can bring it back. Deleting the window has no effect on the buffer it used to
display; the buffer continues to exist, and you can select it in any window
with C-x b.

C-x 1 (delete-other-windows) is more powerful than C-x 0; it deletes
all the windows except the selected one (and the minibuffer); the selected
window expands to use the whole frame except for the echo area.

You can also delete a window by clicking on its mode line with Mouse-
2, and expand a window to fill its frame by clicking on its mode line with
Mouse-3.

The easiest way to adjust window heights is with a mouse. If you press
Mouse-1 on a mode line, you can drag that mode line up or down, changing
the heights of the windows above and below it.

To readjust the division of space among vertically adjacent windows, use
C-x ^ (enlarge-window). It makes the currently selected window get one
line bigger, or as many lines as is specified with a numeric argument. With a

154 GNU Emacs Manual

negative argument, it makes the selected window smaller. C-x } (enlarge-
window-horizontally) makes the selected window wider by the specified
number of columns. The extra screen space given to a window comes from
one of its neighbors, if that is possible. If this makes any window too small,
it is deleted and its space is given to an adjacent window. The minimum size
is specified by the variables window-min-height and window-min-width.

See Section 5.2 [Minibuffer Edit], page 40, for information about the
Resize-Minibuffer mode, which automatically changes the size of the mini-
buffer window to fit the text in the minibuffer.

Chapter 17: Frames and X Windows 155

17 Frames and X Windows

When using the X Window System, you can create multiple windows at
the X level in a single Emacs session. Each X window that belongs to Emacs
displays a frame which can contain one or several Emacs windows. A frame
initially contains a single general-purpose Emacs window which you can
subdivide vertically or horizontally into smaller windows. A frame normally
contains its own echo area and minibuffer, but you can make frames that
don’t have these—they use the echo area and minibuffer of another frame.

Editing you do in one frame also affects the other frames. For instance, if
you put text in the kill ring in one frame, you can yank it in another frame.
If you exit Emacs through C-x C-c in one frame, it terminates all the frames.
To delete just one frame, use C-x 5 0.

To avoid confusion, we reserve the word “window” for the subdivisions
that Emacs implements, and never use it to refer to a frame.

17.1 Mouse Commands for Editing

The mouse commands for selecting and copying a region are mostly com-
patible with the xterm program. You can use the same mouse commands
for copying between Emacs and other X client programs.

Mouse-1 Move point to where you click (mouse-set-point). This is nor-
mally the left button.

Drag-Mouse-1
Set the region to the text you select by dragging, and copy it to
the kill ring (mouse-set-region). You can specify both ends of
the region with this single command.

If you move the mouse off the top or bottom of the window while
dragging, the window scrolls at a steady rate until you move the
mouse back into the window. This way, you can select regions
that don’t fit entirely on the screen. The number of lines scrolled
per step depends on how far away from the window edge the
mouse has gone; the variable mouse-scroll-min-lines speci-
fies a minimum step size.

Mouse-2 Yank the last killed text, where you click (mouse-yank-at-
click). This is normally the middle button.

Mouse-3 This command, mouse-save-then-kill, has several functions
depending on where you click and the status of the region.

The most basic case is when you click Mouse-1 in one place and
then Mouse-3 in another. This selects the text between those

156 GNU Emacs Manual

two positions as the region. It also copies the new region to the
kill ring, so that you can copy it to someplace else.

If you click Mouse-1, scroll with the scroll bar, and then click
Mouse-3, it remembers where point was before scrolling (where
you put it with Mouse-1), and uses that position as the other
end of the region. This is so that you can select a region that
doesn’t fit entirely on the screen.

More generally, if you do not have a highlighted region, Mouse-
3 selects the text between point and the click position as the
region. It does this by setting the mark where point was, and
moving point to where you click.

If you have a highlighted region, or if the region was set just
before by dragging button 1, Mouse-3 adjusts the nearer end
of the region by moving it to where you click. The adjusted
region’s text also replaces the old region’s text in the kill ring.

If you originally specified the region using a double or triple
Mouse-1, so that the region is defined to consist of entire words
or lines, then adjusting the region with Mouse-3 also proceeds
by entire words or lines.

If you use Mouse-3 a second time consecutively, at the same
place, that kills the region already selected.

Double-Mouse-1
This key sets the region around the word which you click on.
If you click on a character with “symbol” syntax (such as un-
derscore, in C mode), it sets the region around the symbol sur-
rounding that character.

If you click on a character with open-parenthesis or close-
parenthesis syntax, it sets the region around the parenthetical
grouping (sexp) which that character starts or ends. If you click
on a character with string-delimiter syntax (such as a single-
quote or doublequote in C), it sets the region around the string
constant (using heuristics to figure out whether that character
is the beginning or the end of it).

Double-Drag-Mouse-1
This key selects a region made up of the words that you drag
across.

Triple-Mouse-1
This key sets the region around the line which you click on.

Triple-Drag-Mouse-1
This key selects a region made up of the lines that you drag
across.

Chapter 17: Frames and X Windows 157

The simplest way to kill text with the mouse is to press Mouse-1 at one
end, then press Mouse-3 twice at the other end. See Section 9.1 [Killing],
page 63. To copy the text into the kill ring without deleting it from the
buffer, press Mouse-3 just once—or just drag across the text with Mouse-1.
Then you can copy it elsewhere by yanking it.

To yank the killed or copied text somewhere else, move the mouse there
and press Mouse-2. See Section 9.2 [Yanking], page 65. However, if mouse-
yank-at-point is non-nil, Mouse-2 yanks at point. Then it does not matter
precisely where you click; all that matters is which window you click on.
The default value is nil. This variable also effects yanking the secondary
selection.

To copy text to another X window, kill it or save it in the kill ring.
Under X, this also sets the primary selection. Then use the “paste” or
“yank” command of the program operating the other window to insert the
text from the selection.

To copy text from another X window, use the “cut” or “copy” command
of the program operating the other window, to select the text you want.
Then yank it in Emacs with C-y or Mouse-2.

When Emacs puts text into the kill ring, or rotates text to the front of the
kill ring, it sets the primary selection in the X server. This is how other X
clients can access the text. Emacs also stores the text in the cut buffer, but
only if the text is short enough (x-cut-buffer-max specifies the maximum
number of characters); putting long strings in the cut buffer can be slow.

The commands to yank the first entry in the kill ring actually check first
for a primary selection in another program; after that, they check for text
in the cut buffer. If neither of those sources provides text to yank, the kill
ring contents are used.

17.2 Secondary Selection

The secondary selection is another way of selecting text using X. It does
not use point or the mark, so you can use it to kill text without setting point
or the mark.

M-Drag-Mouse-1
Set the secondary selection, with one end at the place where you
press down the button, and the other end at the place where you
release it (mouse-set-secondary). The highlighting appears
and changes as you drag.

If you move the mouse off the top or bottom of the window while
dragging, the window scrolls at a steady rate until you move the
mouse back into the window. This way, you can mark regions
that don’t fit entirely on the screen.

158 GNU Emacs Manual

M-Mouse-1
Set one endpoint for the secondary selection (mouse-start-
secondary).

M-Mouse-3
Make a secondary selection, using the place specified with M-
Mouse-1 as the other end (mouse-secondary-save-then-kill).
A second click at the same place kills the secondary selection just
made.

M-Mouse-2
Insert the secondary selection where you click (mouse-kill-
secondary). This places point at the end of the yanked text.

Double or triple clicking of M-Mouse-1 operates on words and lines, much
like Mouse-1.

If mouse-yank-at-point is non-nil, M-Mouse-2 yanks at point. Then it
does not matter precisely where you click; all that matters is which window
you click on. See Section 17.1 [Mouse Commands], page 155.

17.3 Following References with the Mouse

Some Emacs buffers display lists of various sorts. These include lists of
files, of buffers, of possible completions, of matches for a pattern, and so on.

Since yanking text into these buffers is not very useful, most of them
define Mouse-2 specially, as a command to use or view the item you click
on.

For example, if you click Mouse-2 on a file name in a Dired buffer,
you visit the that file. If you click Mouse-2 on an error message in the
‘*Compilation*’ buffer, you go to the source code for that error message.
If you click Mouse-2 on a completion in the ‘*Completions*’ buffer, you
choose that completion.

You can usually tell when Mouse-2 has this special sort of meaning be-
cause the sensitive text highlights when you move the mouse over it.

17.4 Mouse Clicks for Menus

Mouse clicks modified with the 〈CONTROL〉 and 〈SHIFT〉 keys bring up
menus.

C-Mouse-1
This menu is for selecting a buffer.

Chapter 17: Frames and X Windows 159

C-Mouse-2
This menu is for specifying faces and other text properties for
editing formatted text. See Section 20.11 [Formatted Text],
page 202.

C-Mouse-3
This menu is mode-specific. For most modes, this menu has
the same items as all the mode-specific menu bar menus put
together. Some modes may specify a different menu for this
button.1

S-mouse-1
This menu is for specifying the frame’s default font.

17.5 Mode Line Mouse Commands

You can use mouse clicks on window mode lines to select and manipulate
windows.

Mouse-1 Mouse-1 on a mode line selects the window above. By dragging
Mouse-1 on the mode line, you can move it, thus changing the
height of the windows above and below.

Mouse-2 Mouse-2 on a mode line expands that window to fill its frame.

Mouse-3 Mouse-3 on a mode line deletes the window above.

C-Mouse-2
C-Mouse-2 on a mode line splits the window above horizontally,
above the place in the mode line where you click.

C-Mouse-2 on a scroll bar splits the corresponding window vertically. See
Section 16.2 [Split Window], page 150.

17.6 Creating Frames

The prefix key C-x 5 is analogous to C-x 4, with parallel subcommands.
The difference is that C-x 5 commands create a new frame rather than just
a new window in the selected frame (See Section 16.4 [Pop Up Window],
page 151). If an existing visible or iconified frame already displays the re-
quested material, these commands use the existing frame, after raising or
deiconifying as necessary.

1 Some systems use Mouse-3 for a mode-specific menu. We took a survey of
users, and found they preferred to keep Mouse-3 for selecting and killing
regions. Hence the decision to use C-Mouse-3 for this menu.

160 GNU Emacs Manual

The various C-x 5 commands differ in how they find or create the buffer
to select:

C-x 5 2 Create a new frame (make-frame).

C-x 5 b bufname 〈RET〉

Select buffer bufname in another window. This runs switch-
to-buffer-other-frame.

C-x 5 f filename 〈RET〉

Visit file filename and select its buffer in another frame. This
runs find-file-other-frame. See Section 14.2 [Visiting],
page 108.

C-x 5 d directory 〈RET〉

Select a Dired buffer for directory directory in another frame.
This runs dired-other-frame. See Chapter 27 [Dired],
page 311.

C-x 5 m Start composing a mail message in another frame. This runs
mail-other-frame. It is the other-frame variant of C-x m. See
Chapter 25 [Sending Mail], page 285.

C-x 5 . Find a tag in the current tag table in another frame. This runs
find-tag-other-frame, the multiple-frame variant of M-.. See
Section 21.12 [Tags], page 233.

C-x 5 r filename 〈RET〉

Visit file filename read-only, and select its buffer in another
frame. This runs find-file-read-only-other-frame. See
Section 14.2 [Visiting], page 108.

You can control the appearance of new frames you create by setting
the frame parameters in default-frame-alist. You can use the vari-
able initial-frame-alist to specify parameters that affect only the initial
frame. See section “Initial Parameters” in The Emacs Lisp Manual, for more
information.

17.7 Multiple Displays

A single Emacs can talk to more than one X Windows display. Ini-
tially, Emacs uses just one display—the one specified with the DISPLAY en-
vironment variable or with the ‘--display’ option (see Section A.2 [Initial
Options], page 418). To connect to another display, use the command make-
frame-on-display:

M-x make-frame-on-display 〈RET〉 display 〈RET〉

Create a new frame on display display.

Chapter 17: Frames and X Windows 161

A single X server can handle more than one screen. When you open
frames on two screens belonging to one server, Emacs knows they share a
single keyboard, and it treats all the commands arriving from these screens
as a single stream of input.

When you open frames on different X servers, Emacs makes a separate
input stream for each server. This way, two users can type simultaneously
on the two displays, and Emacs will not garble their input. Each server also
has its own selected frame. The commands you enter with a particular X
server apply to that server’s selected frame.

Despite these features, people using the same Emacs job from different
displays can still interfere with each other if they are not careful. For exam-
ple, if any one types C-x C-c, that exits the Emacs job for all of them!

17.8 Special Buffer Frames

You can make certain chosen buffers, for which Emacs normally creates a
second window when you have just one window, appear in special frames of
their own. To do this, set the variable special-display-buffer-names to a
list of buffer names; any buffer whose name is in that list automatically gets
a special frame, when an Emacs command wants to display it “in another
window.”

For example, if you set the variable this way,

(setq special-display-buffer-names
’("*Completions*" "*grep*" "*tex-shell*"))

then completion lists, grep output and the TEX mode shell buffer get in-
dividual frames of their own. These frames, and the windows in them, are
never automatically split or reused for any other buffers. They continue
to show the buffers they were created for, unless you alter them by hand.
Killing the special buffer deletes its frame automatically.

More generally, you can set special-display-regexps to a list of regular
expressions; then a buffer gets its own frame if its name matches any of those
regular expressions. (Once again, this applies only to buffers that normally
get displayed for you in a separate window.)

The variable special-display-frame-alist specifies the frame param-
eters for these frames. It has a default value, so you don’t need to set it.

For those who know Lisp, an element of special-display-buffer-
names or special-display-regexps can also be a list. Then the first ele-
ment is the buffer name or regular expression; the rest of the list specifies
how to create the frame. It can be an association list specifying frame pa-
rameter values; these values take precedence over parameter values specified
in special-display-frame-alist. Alternatively, it can have this form:

(function args...)

162 GNU Emacs Manual

where function is a symbol. Then the frame is constructed by calling func-
tion; its first argument is the buffer, and its remaining arguments are args.

17.9 Setting Frame Parameters

This section describes commands for altering the display style and win-
dow management behavior of the selected frame.

M-x set-foreground-color 〈RET〉 color 〈RET〉

Specify color color for the foreground of the selected frame.

M-x set-background-color 〈RET〉 color 〈RET〉

Specify color color for the background of the selected frame.
This changes the foreground color of the modeline face also, so
that it remains in inverse video compared with the default.

M-x set-cursor-color 〈RET〉 color 〈RET〉

Specify color color for the cursor of the selected frame.

M-x set-mouse-color 〈RET〉 color 〈RET〉

Specify color color for the mouse cursor when it is over the
selected frame.

M-x set-border-color 〈RET〉 color 〈RET〉

Specify color color for the border of the selected frame.

M-x list-colors-display
Display the defined color names and show what the colors look
like. This command is somewhat slow.

M-x auto-raise-mode
Toggle whether or not the selected frame should auto-raise.
Auto-raise means that every time you move the mouse onto the
frame, it raises the frame.

Note that this auto-raise feature is implemented by Emacs it-
self. Some window managers also implement auto-raise. If you
enable auto-raise for Emacs frames in your X window manager,
it should work, but it is beyond Emacs’s control and therefore
auto-raise-mode has no effect on it.

M-x auto-lower-mode
Toggle whether or not the selected frame should auto-lower.
Auto-lower means that every time you move the mouse off of
the frame, the frame moves to the bottom of the stack of X
windows.

The command auto-lower-mode has no effect on auto-lower
implemented by the X window manager. To control that, you
must use the appropriate window manager features.

Chapter 17: Frames and X Windows 163

M-x set-default-font 〈RET〉 font 〈RET〉

Specify font font as the default for the selected frame. See Sec-
tion A.7 [Font X], page 425, for ways to list the available fonts
on your system.

You can also set a frame’s default font through a pop-up menu.
Press S-Mouse-1 to activate this menu.

In Emacs versions that use an X toolkit, the color-setting and font-setting
functions don’t affect menus and the menu bar, since they are displayed by
their own widget classes. To change the appearance of the menus and menu
bar, you must use X resources (see Section A.13 [Resources X], page 430).
See Section A.8 [Colors X], page 426, regarding colors. See Section A.7 [Font
X], page 425, regarding choice of font.

For information on frame parameters and customization, see section
“Frame Parameters” in The Emacs Lisp Manual.

17.10 Scroll Bars

When using X, Emacs normally makes a scroll bar at the right of each
Emacs window. The scroll bar runs the height of the window, and shows
a moving rectangular inner box which represents the portion of the buffer
currently displayed. The entire height of the scroll bar represents the entire
length of the buffer.

You can use Mouse-2 (normally, the middle button) in the scroll bar to
move or drag the inner box up and down. If you move it to the top of the
scroll bar, you see the top of the buffer. If you move it to the bottom of the
scroll bar, you see the bottom of the buffer.

The left and right buttons in the scroll bar scroll by controlled increments.
Mouse-1 (normally, the left button) moves the line at the level where you
click up to the top of the window. Mouse-3 (normally, the right button)
moves the line at the top of the window down to the level where you click.
By clicking repeatedly in the same place, you can scroll by the same distance
over and over.

Aside from scrolling, you can also click C-Mouse-2 in the scroll bar to
split a window vertically. The split occurs on the line where you click.

You can enable or disable Scroll Bar mode with the command M-x
scroll-bar-mode. With no argument, it toggles the use of scroll bars.
With an argument, it turns use of scroll bars on if and only if the argument
is positive. This command applies to all frames, including frames yet to be
created. You can use the X resource ‘verticalScrollBars’ to control the
initial setting of Scroll Bar mode. See Section A.13 [Resources X], page 430.

To enable or disable scroll bars for just the selected frame, use the M-x
toggle-scroll-bar command.

164 GNU Emacs Manual

17.11 Menu Bars

By default, each Emacs frame has a menu bar at the top which you can
use to perform certain common operations. There’s no need to describe them
in detail here, as you can more easily see for yourself; also, we may change
them and add to them in subsequent Emacs versions.

When you are using a window system, you can use the mouse to choose
a command from the menu bar. On text-only terminals, you can use the
menu bar by typing M-‘ (tmm-menubar). This enters a mode in which you
can select a menu item from the keyboard. Either type the initial of the
item you want, or use the left and right arrow keys to choose an item and
use 〈RET〉 to finalize the choice.

Each of the operations in the menu bar is bound to an ordinary Emacs
command which you can invoke equally well with M-x or with its own key
bindings. The menu lists one equivalent key binding (if the command has
any) at the right margin. To see the command’s name and documentation,
type C-h k and then select the menu bar item you are interested in.

You can turn display of menu bars on or off with M-x menu-bar-mode.
With no argument, this command toggles Menu Bar mode, a minor mode.
With an argument, the command turns Menu Bar mode on if the argument
is positive, off if the argument is not positive. You can use the X resource
‘menuBarLines’ to control the initial setting of Menu Bar mode. See Sec-
tion A.13 [Resources X], page 430. Expert users often turn off the menu
bar, especially on text-only terminals where this makes one additional line
available for text.

17.12 Using Multiple Typefaces

When using Emacs with X, you can set up multiple styles of displaying
characters. The aspects of style that you can control are the type font, the
foreground color, the background color, and whether to underline. Emacs
on MS-DOS supports faces partially by letting you control the foreground
and background colors of each face (see Appendix C [MS-DOS], page 439).

The way you control display style is by defining named faces. Each face
can specify a type font, a foreground color, a background color, and an
underline flag; but it does not have to specify all of them.

The style of display used for a given character in the text is determined by
combining several faces. Any aspect of the display style that isn’t specified
by overlays or text properties comes from the frame itself.

Enriched mode, the mode for editing formatted text, includes several
commands and menus for specifying faces. See Section 20.11.4 [Format

Chapter 17: Frames and X Windows 165

Faces], page 205, for how to specify the font for text in the buffer. See
Section 20.11.5 [Format Colors], page 206, for how to specify the foreground
and background color.

To see what faces are currently defined, and what they look like, type
M-x list-faces-display. It’s possible for a given face to look different in
different frames; this command shows the appearance in the frame in which
you type it. Here’s a list of the standardly defined faces:

default This face is used for ordinary text that doesn’t specify any other
face.

modeline This face is used for mode lines. By default, it’s set up as
the inverse of the default face. See Section 11.7 [Display Vars],
page 82.

highlight
This face is used for highlighting portions of text, in various
modes.

region This face is used for displaying a selected region (when Transient
Mark mode is enabled—see below).

secondary-selection
This face is used for displaying a secondary selection (see Sec-
tion 17.2 [Secondary Selection], page 157).

bold This face uses a bold variant of the default font, if it has one.

italic This face uses an italic variant of the default font, if it has one.

bold-italic
This face uses a bold italic variant of the default font, if it has
one.

underline
This face underlines text.

When Transient Mark mode is enabled, the text of the region is high-
lighted when the mark is active. This uses the face named region; you can
control the style of highlighting by changing the style of this face (see Sec-
tion 17.13 [Modifying Faces], page 166). See Section 8.2 [Transient Mark],
page 58, for more information about Transient Mark mode and activation
and deactivation of the mark.

One easy way to use faces is to turn on Font Lock mode. This minor mode,
which is always local to a particular buffer, arranges to choose faces according
to the syntax of the text you are editing. It can recognize comments and
strings in most languages; in several languages, it can also recognize and
properly highlight various other important constructs. See Section 17.14
[Font Lock], page 167, for more information about Font Lock mode and
syntactic highlighting.

166 GNU Emacs Manual

You can print out the buffer with the highlighting that appears on your
screen using the command ps-print-buffer-with-faces. See Section 29.5
[Postscript], page 358.

17.13 Modifying Faces

Here are the commands for changing the font of a face:

M-x set-face-font 〈RET〉 face 〈RET〉 font 〈RET〉

Change face face to use font font. See Section A.7 [Font X],
page 425, for more information about font naming under X.

M-x make-face-bold 〈RET〉 face 〈RET〉

Convert face face to use a bold version of its current font.

M-x make-face-italic 〈RET〉 face 〈RET〉

Convert face face to use a italic version of its current font.

M-x make-face-bold-italic 〈RET〉 face 〈RET〉

Convert face face to use a bold-italic version of its current font.

M-x make-face-unbold 〈RET〉 face 〈RET〉

Convert face face to use a non-bold version of its current font.

M-x make-face-unitalic 〈RET〉 face 〈RET〉

Convert face face to use a non-italic version of its current font.

Here are the commands for setting the colors and underline flag of a face:

M-x set-face-foreground 〈RET〉 face 〈RET〉 color 〈RET〉

Use color color for the foreground of characters in face face.

M-x set-face-background 〈RET〉 face 〈RET〉 color 〈RET〉

Use color color for the background of characters in face face.

On a black-and-white display, the colors you can use for the
background are ‘black’, ‘white’, ‘gray’, ‘gray1’ and ‘gray3’.
Emacs supports the gray colors by using background stipple pat-
terns instead of a color.

M-x set-face-stipple 〈RET〉 face 〈RET〉 pattern 〈RET〉

Use stipple pattern pattern for the background of characters in
face face.

M-x list-colors-display
Display the defined color names and show what the colors look
like.

M-x set-face-underline-p 〈RET〉 face 〈RET〉 flag 〈RET〉

Specify whether to underline characters in face face.

Chapter 17: Frames and X Windows 167

M-x invert-face 〈RET〉 face 〈RET〉

Swap the foreground and background colors of face face.

M-x modify-face 〈RET〉 face 〈RET〉 attributes. . .
Change various attributes of face face. This command prompts
for all the attribute of the face, one attribute at a time. For
the color and stipple attributes, the attribute’s current value is
the default—type just 〈RET〉 if you don’t want to change that
attribute. Type ‘none’ if you want to clear out the attribute.

You can also use X resources to specify attributes of particular faces. See
Section A.13 [Resources X], page 430.

17.14 Font Lock mode

Font Lock mode is a minor mode, always local to a particular buffer,
which highlights (or “fontifies”) using various faces according to the syntax
of the text you are editing. It can recognize comments and strings in most
languages; in several languages, it can also recognize and properly highlight
various other important constructs—for example, names of functions being
defined or reserved keywords.

The command M-x font-lock-mode turns Font Lock mode on or off ac-
cording to the argument, and toggles the mode when it has no argument.
The function turn-on-font-lock unconditionally enables Font Lock mode.
This is useful in mode-hook functions. For example, to enable Font Lock
mode whenever you edit a C file, you can do this:

(add-hook ’c-mode-hook ’turn-on-font-lock)

To turn on Font Lock mode automatically in all modes which support it,
use the function global-font-lock-mode, like this:

(global-font-lock-mode t)

In Font Lock mode, when you edit the text, the highlighting updates
automatically in the line that you changed. Most changes don’t affect the
highlighting of subsequent lines, but occasionally they do. To rehighlight a
range of lines, use the command C-M-g (font-lock-fontify-block).

In certain major modes, C-M-g refontifies the entire current function.
(The variable font-lock-mark-block-function controls how to find the
current function.) In other major modes, C-M-g refontifies 16 lines above
and below point.

With a prefix argument n, C-M-g refontifies n lines above and below point,
regardless of the mode.

To get the full benefit of Font Lock mode, you need to choose a default
font which has bold, italic, and bold-italic variants; or else you need to have a
color or grayscale screen. The variable font-lock-display-type specifies

168 GNU Emacs Manual

whether Font Lock mode should use font styles, colors, or shades of gray
to distinguish the various kinds of text. Emacs chooses the default value
according to the characteristics of your display.

The variable font-lock-maximum-decoration specifies the preferred
level of fontification for modes that provide multiple levels. The normal
default is 1; larger numbers request more fontification, and some modes sup-
port levels as high as 3. These variables can also specify different numbers
for particular major modes; for example, to use level 3 for C/C++ modes,
and the default level otherwise, use this:

(setq font-lock-maximum-decoration
’((c-mode . 3) (c++-mode . 3)))

Fontification can be too slow for large buffers, so you can suppress it.
The variable font-lock-maximum-size specifies a buffer size, beyond which
buffer fontification is suppressed.

17.15 Font Lock Support Modes

Font Lock support modes make Font Lock mode faster for large buffers.
There are two support modes: Fast Lock mode and Lazy Lock mode. They
use two different methods of speeding up Font Lock mode.

17.15.1 Fast Lock Mode

To make Font Lock mode faster for buffers visiting large files, you can
use Fast Lock mode. Fast Lock mode saves the font information for each
file in a separate cache file; each time you visit the file, it rereads the font
information from the cache file instead of refontifying the text from scratch.

The command M-x fast-lock-mode turns Fast Lock mode on or off, ac-
cording to the argument (with no argument, it toggles). You can also arrange
to enable Fast Lock mode whenever you use Font Lock mode, like this:

(setq font-lock-support-mode ’fast-lock-mode)

It is not worth writing a cache file for small buffers. Therefore, the
variable fast-lock-minimum-size specifies a minimum file size for caching
font information.

The variable fast-lock-cache-directories specifies where to put the
cache files. Its value is a list of directories to try; "." means the same
directory as the file being edited. The default value is ("." "~/.emacs-
flc"), which means to use the same directory if possible, and otherwise the
directory ‘~/.emacs-flc’.

Chapter 17: Frames and X Windows 169

The variable fast-lock-save-others specifies whether Fast Lock mode
should save cache files for files that you do not own. A non-nil value means
yes (and that is the default).

17.15.2 Lazy Lock Mode

To make Font Lock mode faster for large buffers, you can use Lazy Lock
mode to reduce the amount of text that is fontified. In Lazy Lock mode,
buffer fontification is demand-driven; it happens to portions of the buffer that
are about to be displayed. And fontification of your changes is deferred; it
happens only when Emacs has been idle for a certain short period of time.

The command M-x lazy-lock-mode turns Lazy Lock mode on or off,
according to the argument (with no argument, it toggles). You can also
arrange to enable Lazy Lock mode whenever you use Font Lock mode, like
this:

(setq font-lock-support-mode ’lazy-lock-mode)

It is not worth avoiding buffer fontification for small buffers. Therefore,
the variable lazy-lock-minimum-size specifies a minimum buffer size for
demand-driven buffer fontification. Buffers smaller than that are fontified
all at once, as in plain Font Lock mode.

When you alter the buffer, Lazy Lock mode defers fontification of the
text you changed. The variable lazy-lock-defer-time specifies how many
seconds Emacs must be idle before it starts fontifying your changes. If the
value is nil, then changes are fontified immediately, as in plain Font Lock
mode.

Lazy Lock mode normally fontifies newly visible portions of the buffer
before they are first displayed. However, if the value of lazy-lock-defer-
driven is non-nil, newly visible text is fontified only when Emacs is idle
for lazy-lock-defer-time seconds.

When Emacs is idle for a long time, Lazy Lock fontifies additional por-
tions of the buffer, not yet displayed, in case you will display them later.
This is called stealth fontification.

The variable lazy-lock-stealth-time specifies how many seconds
Emacs has to be idle before stealth fontification starts. A value of nil
means no stealth fontification. The variables lazy-lock-stealth-lines
and lazy-lock-stealth-verbose specify the granularity and verbosity of
stealth fontification.

17.15.3 Fast Lock or Lazy Lock?

170 GNU Emacs Manual

Here is a simple guide to help you choose one of the Font Lock support
modes.

• Fast Lock mode only intervenes during file visiting and buffer killing
(and related events); therefore buffer editing and window scrolling are
no faster or slower than plain Font Lock mode.

• Fast Lock mode is slower at reading a cache file than Lazy Lock mode
is at fontifying a window; therefore Fast Lock mode is slower at visiting
a file than Lazy Lock mode.

• Lazy Lock mode intervenes during window scrolling to fontify text that
scrolls onto the screen; therefore, scrolling is slower than in plain Font
Lock mode.

• Lazy Lock mode doesn’t fontify during buffer editing (it defers fontifi-
cation of changes); therefore, editing is faster than in plain Font Lock
mode.

• Fast Lock mode can be fooled by a file that is kept under version control
software; therefore buffer fontification may occur even when a cache file
exists for the file.

• Fast Lock mode only works with a buffer visiting a file; Lazy Lock mode
works with any buffer.

• Fast Lock mode generates cache files; Lazy Lock mode does not.

The variable font-lock-support-mode specifies which of these support
modes to use; for example, to specify that Fast Lock mode is used for C/C++
modes, and Lazy Lock mode otherwise, set the variable like this:

(setq font-lock-support-mode
’((c-mode . fast-lock-mode) (c++-mode . fast-lock-mode)
(t . lazy-lock-mode)))

17.16 Miscellaneous X Window Features

The following commands let you create, delete and operate on frames:

C-z To iconify the selected Emacs frame, type C-z (iconify-or-
deiconify-frame). The normal meaning of C-z, to suspend
Emacs, is not useful under a window system, so it has a different
binding in that case.

If you type this command on an Emacs frame’s icon, it deiconi-
fies the frame.

C-x 5 0 To delete the selected frame, type C-x 5 0 (delete-frame).
This is not allowed if there is only one frame.

Chapter 17: Frames and X Windows 171

C-x 5 o Select another frame, raise it, and warp the mouse to it so that
it stays selected. If you repeat this command, it cycles through
all the frames on your terminal.

M-x transient-mark-mode
Under X Windows, when Transient Mark mode is enabled,
Emacs highlights the region when the mark is active. This fea-
ture is the main motive for using Transient Mark mode. To
toggle the state of this mode, use the command M-x transient-
mark-mode. See Chapter 8 [Mark], page 57.

17.17 Non-Window Terminals

If your terminal does not have a window system that Emacs supports,
then it can display only one Emacs frame at a time. However, you can
still create multiple Emacs frames, and switch between them. Switching
frames on these terminals is much like switching between different window
configurations.

Use C-x 5 2 to create a new frame and switch to it; use C-x 5 o to cycle
through the existing frames; use C-x 5 0 to delete the current frame.

Each frame has a number to distinguish it. The selected frame’s number
appears in the mode line after ‘Emacs’, except when frame 1 is selected.

172 GNU Emacs Manual

Chapter 18: Major Modes 173

18 Major Modes

Emacs provides many alternative major modes, each of which customizes
Emacs for editing text of a particular sort. The major modes are mutually
exclusive, and each buffer has one major mode at any time. The mode line
normally shows the name of the current major mode, in parentheses (see
Section 1.3 [Mode Line], page 17).

The least specialized major mode is called Fundamental mode. This
mode has no mode-specific redefinitions or variable settings, so that each
Emacs command behaves in its most general manner, and each option is in
its default state. For editing text of a specific type that Emacs knows about,
such as Lisp code or English text, you should switch to the appropriate
major mode, such as Lisp mode or Text mode.

Selecting a major mode changes the meanings of a few keys to become
more specifically adapted to the language being edited. The ones which are
changed frequently are 〈TAB〉, 〈DEL〉, and 〈LFD〉. The prefix key C-c normally
contains mode-specific commands. In addition, the commands which handle
comments use the mode to determine how comments are to be delimited.
Many major modes redefine the syntactical properties of characters appear-
ing in the buffer. See Section 30.6 [Syntax], page 395.

The major modes fall into three major groups. Lisp mode (which has
several variants), C mode, Fortran mode and others are for specific pro-
gramming languages. Text mode, Nroff mode, TEX mode and Outline mode
are for editing English text. The remaining major modes are not intended
for use on users’ files; they are used in buffers created for specific purposes
by Emacs, such as Dired mode for buffers made by Dired (see Chapter 27
[Dired], page 311), and Mail mode for buffers made by C-x m (see Chapter 25
[Sending Mail], page 285), and Shell mode for buffers used for communi-
cating with an inferior shell process (see Section 29.2.2 [Interactive Shell],
page 349).

Most programming language major modes specify that only blank lines
separate paragraphs. This is to make the paragraph commands useful. (See
Section 20.3 [Paragraphs], page 184.) They also cause Auto Fill mode to
use the definition of 〈TAB〉 to indent the new lines it creates. This is because
most lines in a program are usually indented. (See Chapter 19 [Indentation],
page 177.)

18.1 How Major Modes are Chosen

You can select a major mode explicitly for the current buffer, but most
of the time Emacs determines which mode to use based on the file name or
on special text in the file.

174 GNU Emacs Manual

Explicit selection of a new major mode is done with a M-x command.
From the name of a major mode, add -mode to get the name of a command
to select that mode. Thus, you can enter Lisp mode by executing M-x lisp-
mode.

When you visit a file, Emacs usually chooses the right major mode based
on the file’s name. For example, files whose names end in ‘.c’ are edited
in C mode. The correspondence between file names and major modes is
controlled by the variable auto-mode-alist. Its value is a list in which each
element has this form,

(regexp . mode-function)

or this form,

(regexp mode-function flag)

For example, one element normally found in the list has the form ("\\.c\\’"
. c-mode), and it is responsible for selecting C mode for files whose names
end in ‘.c’. (Note that ‘\\’ is needed in Lisp syntax to include a ‘\’ in the
string, which is needed to suppress the special meaning of ‘.’ in regexps.) If
the element has the form (regexp mode-function flag) and flag is non-nil,
then after calling function, the suffix that matched regexp is deleted and the
list is searched again for another match.

You can specify which major mode should be used for editing a certain
file by a special sort of text in the first nonblank line of the file. The mode
name should appear in this line both preceded and followed by ‘-*-’. Other
text may appear on the line as well. For example,

;-*-Lisp-*-

tells Emacs to use Lisp mode. Such an explicit specification overrides any
defaulting based on the file name. Note how the semicolon is used to make
Lisp treat this line as a comment.

Another format of mode specification is

-*-Mode: modename;-*-

which allows you to specify local variables as well, like this:

-*- mode: modename; var: value; . . . -*-

See Section 30.2.5 [File Variables], page 378, for more information about
this.

When a file’s contents begin with ‘#!’, it can serve as an executable shell
command, which works by running an interpreter named on the file’s first
line. The rest of the file is used as input to the interpreter.

When you visit such a file in Emacs, if the file’s name does not specify a
major mode, Emacs uses the interpreter name on the first line to choose a
mode. If the first line is the name of a recognized interpreter program, such
as ‘perl’ or ‘tcl’, Emacs uses a mode appropriate for programs for that
interpreter. The variable interpreter-mode-alist specifies the correspon-
dence between interpreter program names and major modes.

Chapter 18: Major Modes 175

When you visit a file that does not specify a major mode to use, or
when you create a new buffer with C-x b, the variable default-major-
mode specifies which major mode to use. Normally its value is the symbol
fundamental-mode, which specifies Fundamental mode. If default-major-
mode is nil, the major mode is taken from the previously selected buffer.

If you change the major mode of a buffer, you can go back to the major
mode Emacs would choose automatically: use the command M-x normal-
mode to do this. This is the same function that find-file calls to choose
the major mode. It also processes the file’s local variables list if any.

176 GNU Emacs Manual

Chapter 19: Indentation 177

19 Indentation

This chapter describes the Emacs commands that add, remove, or adjust
indentation.

〈TAB〉 Indent current line “appropriately” in a mode-dependent fash-
ion.

〈LFD〉 Perform 〈RET〉 followed by 〈TAB〉 (newline-and-indent).

M-^ Merge two lines (delete-indentation). This would cancel out
the effect of 〈LFD〉.

C-M-o Split line at point; text on the line after point becomes a new line
indented to the same column that it now starts in (split-line).

M-m Move (forward or back) to the first nonblank character on the
current line (back-to-indentation).

C-M-\ Indent several lines to same column (indent-region).

C-x 〈TAB〉 Shift block of lines rigidly right or left (indent-rigidly).

M-i Indent from point to the next prespecified tab stop column (tab-
to-tab-stop).

M-x indent-relative
Indent from point to under an indentation point in the previous
line.

Most programming languages have some indentation convention. For
Lisp code, lines are indented according to their nesting in parentheses. The
same general idea is used for C code, though many details are different.

Whatever the language, to indent a line, use the 〈TAB〉 command. Each
major mode defines this command to perform the sort of indentation ap-
propriate for the particular language. In Lisp mode, 〈TAB〉 aligns the line
according to its depth in parentheses. No matter where in the line you are
when you type 〈TAB〉, it aligns the line as a whole. In C mode, 〈TAB〉 imple-
ments a subtle and sophisticated indentation style that knows about many
aspects of C syntax.

In Text mode, 〈TAB〉 runs the command tab-to-tab-stop, which indents
to the next tab stop column. You can set the tab stops with M-x edit-tab-
stops.

19.1 Indentation Commands and Techniques

178 GNU Emacs Manual

To move over the indentation on a line, do M-m (back-to-indentation).
This command, given anywhere on a line, positions point at the first non-
blank character on the line.

To insert an indented line before the current line, do C-a C-o 〈TAB〉. To
make an indented line after the current line, use C-e 〈LFD〉.

If you just want to insert a tab character in the buffer, you can type C-q
〈TAB〉.

C-M-o (split-line) moves the text from point to the end of the line
vertically down, so that the current line becomes two lines. C-M-o first
moves point forward over any spaces and tabs. Then it inserts after point a
newline and enough indentation to reach the same column point is on. Point
remains before the inserted newline; in this regard, C-M-o resembles C-o.

To join two lines cleanly, use the M-^ (delete-indentation) command.
It deletes the indentation at the front of the current line, and the line bound-
ary as well, replacing them with a single space. As a special case (useful for
Lisp code) the single space is omitted if the characters to be joined are con-
secutive open parentheses or closing parentheses, or if the junction follows
another newline. To delete just the indentation of a line, go to the begin-
ning of the line and use M-\ (delete-horizontal-space), which deletes all
spaces and tabs around the cursor.

If you have a fill prefix, M-^ deletes the fill prefix if it appears after the
newline that is deleted. See Section 20.5.3 [Fill Prefix], page 189.

There are also commands for changing the indentation of several lines
at once. C-M-\ (indent-region) applies to all the lines that begin in the
region; it indents each line in the “usual” way, as if you had typed 〈TAB〉 at
the beginning of the line. A numeric argument specifies the column to indent
to, and each line is shifted left or right so that its first nonblank character
appears in that column. C-x 〈TAB〉 (indent-rigidly) moves all of the lines
in the region right by its argument (left, for negative arguments). The whole
group of lines moves rigidly sideways, which is how the command gets its
name.

M-x indent-relative indents at point based on the previous line (actu-
ally, the last nonempty line). It inserts whitespace at point, moving point,
until it is underneath an indentation point in the previous line. An inden-
tation point is the end of a sequence of whitespace or the end of the line.
If point is farther right than any indentation point in the previous line,
the whitespace before point is deleted and the first indentation point then
applicable is used. If no indentation point is applicable even then, indent-
relative runs tab-to-tab-stop (see next section).

indent-relative is the definition of 〈TAB〉 in Indented Text mode. See
Chapter 20 [Text], page 181.

Chapter 19: Indentation 179

See Section 20.11.6 [Format Indentation], page 206, for another way of
specifying the indentation for part of your text.

19.2 Tab Stops

For typing in tables, you can use Text mode’s definition of 〈TAB〉, tab-
to-tab-stop. This command inserts indentation before point, enough to
reach the next tab stop column. If you are not in Text mode, this command
can be found on the key M-i.

You can specify the tab stops used by M-i. They are stored in a variable
called tab-stop-list, as a list of column-numbers in increasing order.

The convenient way to set the tab stops is with M-x edit-tab-stops,
which creates and selects a buffer containing a description of the tab stop
settings. You can edit this buffer to specify different tab stops, and then type
C-c C-c to make those new tab stops take effect. In the tab stop buffer, C-c
C-c runs the function edit-tab-stops-note-changes rather than its usual
definition save-buffer. edit-tab-stops records which buffer was current
when you invoked it, and stores the tab stops back in that buffer; normally
all buffers share the same tab stops and changing them in one buffer affects
all, but if you happen to make tab-stop-list local in one buffer then edit-
tab-stops in that buffer will edit the local settings.

Here is what the text representing the tab stops looks like for ordinary
tab stops every eight columns.

: : : : : :
0 1 2 3 4
0123456789012345678901234567890123456789012345678
To install changes, type C-c C-c

The first line contains a colon at each tab stop. The remaining lines are
present just to help you see where the colons are and know what to do.

Note that the tab stops that control tab-to-tab-stop have nothing to
do with displaying tab characters in the buffer. See Section 11.7 [Display
Vars], page 82, for more information on that.

19.3 Tabs vs. Spaces

Emacs normally uses both tabs and spaces to indent lines. If you prefer,
all indentation can be made from spaces only. To request this, set indent-
tabs-mode to nil. This is a per-buffer variable; altering the variable affects
only the current buffer, but there is a default value which you can change as
well. See Section 30.2.4 [Locals], page 376.

180 GNU Emacs Manual

There are also commands to convert tabs to spaces or vice versa, always
preserving the columns of all nonblank text. M-x tabify scans the region for
sequences of spaces, and converts sequences of at least three spaces to tabs
if that can be done without changing indentation. M-x untabify changes all
tabs in the region to appropriate numbers of spaces.

Chapter 20: Commands for Human Languages 181

20 Commands for Human Languages

The term text has two widespread meanings in our area of the computer
field. One is data that is a sequence of characters. Any file that you edit
with Emacs is text, in this sense of the word. The other meaning is more
restrictive: a sequence of characters in a human language for humans to read
(possibly after processing by a text formatter), as opposed to a program or
commands for a program.

Human languages have syntactic/stylistic conventions that can be sup-
ported or used to advantage by editor commands: conventions involving
words, sentences, paragraphs, and capital letters. This chapter describes
Emacs commands for all of these things. There are also commands for fill-
ing, which means rearranging the lines of a paragraph to be approximately
equal in length. The commands for moving over and killing words, sen-
tences and paragraphs, while intended primarily for editing text, are also
often useful for editing programs.

Emacs has several major modes for editing human language text. If
the file contains text pure and simple, use Text mode, which customizes
Emacs in small ways for the syntactic conventions of text. Outline mode
provides special commands for operating on text with an outline structure.
See Section 20.8 [Outline Mode], page 192.

For text which contains embedded commands for text formatters, Emacs
has other major modes, each for a particular text formatter. Thus, for input
to TEX, you would use TEX mode (see Section 20.9 [TeX Mode], page 197).
For input to nroff, use Nroff mode.

Instead of using a text formatter, you can edit formatted text in WYSI-
WYG style (“what you see is what you get”), with Enriched mode. Then the
formatting appears on the screen in Emacs while you edit. See Section 20.11
[Formatted Text], page 202.

20.1 Words

Emacs has commands for moving over or operating on words. By con-
vention, the keys for them are all Meta characters.

M-f Move forward over a word (forward-word).

M-b Move backward over a word (backward-word).

M-d Kill up to the end of a word (kill-word).

M-〈DEL〉 Kill back to the beginning of a word (backward-kill-word).

M-@ Mark the end of the next word (mark-word).

182 GNU Emacs Manual

M-t Transpose two words or drag a word across other words
(transpose-words).

Notice how these keys form a series that parallels the character-based
C-f, C-b, C-d, C-t and 〈DEL〉. M-@ is cognate to C-@, which is an alias for
C-〈SPC〉.

The commands M-f (forward-word) and M-b (backward-word) move for-
ward and backward over words. These Meta characters are thus analogous
to the corresponding control characters, C-f and C-b, which move over single
characters in the text. The analogy extends to numeric arguments, which
serve as repeat counts. M-f with a negative argument moves backward, and
M-b with a negative argument moves forward. Forward motion stops right
after the last letter of the word, while backward motion stops right before
the first letter.

M-d (kill-word) kills the word after point. To be precise, it kills every-
thing from point to the place M-f would move to. Thus, if point is in the
middle of a word, M-d kills just the part after point. If some punctuation
comes between point and the next word, it is killed along with the word. (If
you wish to kill only the next word but not the punctuation before it, simply
do M-f to get the end, and kill the word backwards with M-〈DEL〉.) M-d takes
arguments just like M-f.

M-〈DEL〉 (backward-kill-word) kills the word before point. It kills ev-
erything from point back to where M-b would move to. If point is after the
space in ‘FOO, BAR’, then ‘FOO, ’ is killed. (If you wish to kill just ‘FOO’, do
M-b M-d instead of M-〈DEL〉.)

M-t (transpose-words) exchanges the word before or containing point
with the following word. The delimiter characters between the words do
not move. For example, ‘FOO, BAR’ transposes into ‘BAR, FOO’ rather than
‘BAR FOO,’. See Section 13.2 [Transpose], page 101, for more on transposition
and on arguments to transposition commands.

To operate on the next n words with an operation which applies between
point and mark, you can either set the mark at point and then move over the
words, or you can use the command M-@ (mark-word) which does not move
point, but sets the mark where M-f would move to. M-@ accepts a numeric
argument that says how many words to scan for the place to put the mark.
In Transient Mark mode, this command activates the mark.

The word commands’ understanding of syntax is completely controlled
by the syntax table. Any character can, for example, be declared to be a
word delimiter. See Section 30.6 [Syntax], page 395.

20.2 Sentences

Chapter 20: Commands for Human Languages 183

The Emacs commands for manipulating sentences and paragraphs are
mostly on Meta keys, so as to be like the word-handling commands.

M-a Move back to the beginning of the sentence (backward-
sentence).

M-e Move forward to the end of the sentence (forward-sentence).

M-k Kill forward to the end of the sentence (kill-sentence).

C-x 〈DEL〉 Kill back to the beginning of the sentence (backward-kill-
sentence).

The commands M-a and M-e (backward-sentence and forward-
sentence) move to the beginning and end of the current sentence, re-
spectively. They were chosen to resemble C-a and C-e, which move to the
beginning and end of a line. Unlike them, M-a and M-e if repeated or given
numeric arguments move over successive sentences.

Moving backward over a sentence places point just before the first charac-
ter of the sentence; moving forward places point right after the punctuation
that ends the sentence. Neither one moves over the whitespace at the sen-
tence boundary.

Just as C-a and C-e have a kill command, C-k, to go with them, so M-a
and M-e have a corresponding kill command M-k (kill-sentence) which
kills from point to the end of the sentence. With minus one as an argu-
ment it kills back to the beginning of the sentence. Larger arguments serve
as a repeat count. There is also a command, C-x 〈DEL〉 (backward-kill-
sentence), for killing back to the beginning of a sentence. This command
is useful when you change your mind in the middle of composing text.

The sentence commands assume that you follow the American typist’s
convention of putting two spaces at the end of a sentence; they consider a
sentence to end wherever there is a ‘.’, ‘?’ or ‘!’ followed by the end of a
line or two spaces, with any number of ‘)’, ‘]’, ‘’’, or ‘"’ characters allowed
in between. A sentence also begins or ends wherever a paragraph begins or
ends.

The variable sentence-end controls recognition of the end of a sentence.
It is a regexp that matches the last few characters of a sentence, together
with the whitespace following the sentence. Its normal value is

"[.?!][]\"’)]*\\($\\|\t\\| \\)[\t\n]*"

This example is explained in the section on regexps. See Section 12.5 [Reg-
exps], page 90.

If you want to use just one space between sentences, you should set
sentence-end to this value:

"[.?!][]\"’)]*\\($\\|\t\\| \\)[\t\n]*"

184 GNU Emacs Manual

You should also set the variable sentence-end-double-space to nil so that
the fill commands expect and leave just one space at the end of a sentence.
Note that this makes it impossible to distinguish between periods that end
sentences and those that indicate abbreviations.

20.3 Paragraphs

The Emacs commands for manipulating paragraphs are also Meta keys.

M-{ Move back to previous paragraph beginning (backward-
paragraph).

M-} Move forward to next paragraph end (forward-paragraph).

M-h Put point and mark around this or next paragraph (mark-
paragraph).

M-{ moves to the beginning of the current or previous paragraph, while
M-} moves to the end of the current or next paragraph. Blank lines and text
formatter command lines separate paragraphs and are not considered part
of any paragraph. Also, an indented line starts a new paragraph.

In major modes for programs (as opposed to Text mode), paragraphs
begin and end only at blank lines. This makes the paragraph commands
continue to be useful even though there are no paragraphs per se.

When there is a fill prefix, then paragraphs are delimited by all lines
which don’t start with the fill prefix. See Section 20.5 [Filling], page 186.

When you wish to operate on a paragraph, you can use the command
M-h (mark-paragraph) to set the region around it. Thus, for example, M-h
C-w kills the paragraph around or after point. The M-h command puts point
at the beginning and mark at the end of the paragraph point was in. In
Transient Mark mode, it activates the mark. If point is between paragraphs
(in a run of blank lines, or at a boundary), the paragraph following point is
surrounded by point and mark. If there are blank lines preceding the first
line of the paragraph, one of these blank lines is included in the region.

The precise definition of a paragraph boundary is controlled by the
variables paragraph-separate and paragraph-start. The value of
paragraph-start is a regexp that should match any line that either starts or
separates paragraphs. The value of paragraph-separate is another regexp
that should match only lines that separate paragraphs without being part
of any paragraph. Lines that start a new paragraph and are contained in it
must match only paragraph-start, not paragraph-separate. For exam-
ple, normally paragraph-start is "[\t\n\f]" and paragraph-separate
is "[\t\f]*$".

Normally it is desirable for page boundaries to separate paragraphs. The
default values of these variables recognize the usual separator for pages.

Chapter 20: Commands for Human Languages 185

20.4 Pages

Files are often thought of as divided into pages by the formfeed character
(ASCII control-L, octal code 014). When you print hardcopy for a file, this
character forces a page break; thus, each page of the file goes on a separate
page on paper. Most Emacs commands treat the page-separator character
just like any other character: you can insert it with C-q C-l, and delete it
with 〈DEL〉. Thus, you are free to paginate your file or not. However, since
pages are often meaningful divisions of the file, Emacs provides commands
to move over them and operate on them.

C-x [Move point to previous page boundary (backward-page).

C-x] Move point to next page boundary (forward-page).

C-x C-p Put point and mark around this page (or another page) (mark-
page).

C-x l Count the lines in this page (count-lines-page).

The C-x [(backward-page) command moves point to immediately after
the previous page delimiter. If point is already right after a page delimiter,
it skips that one and stops at the previous one. A numeric argument serves
as a repeat count. The C-x] (forward-page) command moves forward past
the next page delimiter.

The C-x C-p command (mark-page) puts point at the beginning of the
current page and the mark at the end. The page delimiter at the end is
included (the mark follows it). The page delimiter at the front is excluded
(point follows it). C-x C-p C-w is a handy way to kill a page to move it
elsewhere. If you move to another page delimiter with C-x [and C-x],
then yank the killed page, all the pages will be properly delimited once
again. The reason C-x C-p includes only the following page delimiter in the
region is to ensure that.

A numeric argument to C-x C-p is used to specify which page to go to,
relative to the current one. Zero means the current page. One means the
next page, and −1 means the previous one.

The C-x l command (count-lines-page) is good for deciding where to
break a page in two. It prints in the echo area the total number of lines in
the current page, and then divides it up into those preceding the current line
and those following, as in

Page has 96 (72+25) lines

Notice that the sum is off by one; this is correct if point is not at the
beginning of a line.

The variable page-delimiter controls where pages begin. Its value is
a regexp that matches the beginning of a line that separates pages. The

186 GNU Emacs Manual

normal value of this variable is "^\f", which matches a formfeed character
at the beginning of a line.

20.5 Filling Text

Filling text means breaking it up into lines that fit a specified width.
Emacs does filling in two ways. In Auto Fill mode, inserting text with self-
inserting characters also automatically fills it. There are also explicit fill
commands that you can use when editing text leaves it unfilled. When you
edit formatted text, you can specify a style of filling for each portion of the
text (see Section 20.11 [Formatted Text], page 202).

20.5.1 Auto Fill Mode

Auto Fill mode is a minor mode in which lines are broken automatically
when they become too wide. Breaking happens only when you type a 〈SPC〉

or 〈RET〉.

M-x auto-fill-mode
Enable or disable Auto Fill mode.

〈SPC〉

〈RET〉 In Auto Fill mode, break lines when appropriate.

M-x auto-fill-mode turns Auto Fill mode on if it was off, or off if it was
on. With a positive numeric argument it always turns Auto Fill mode on,
and with a negative argument always turns it off. You can see when Auto
Fill mode is in effect by the presence of the word ‘Fill’ in the mode line,
inside the parentheses. Auto Fill mode is a minor mode which is enabled
or disabled for each buffer individually. See Section 30.1 [Minor Modes],
page 371.

In Auto Fill mode, lines are broken automatically at spaces when they
get longer than the desired width. Line breaking and rearrangement takes
place only when you type 〈SPC〉 or 〈RET〉. If you wish to insert a space or
newline without permitting line-breaking, type C-q 〈SPC〉 or C-q 〈LFD〉 (recall
that a newline is really a linefeed). Also, C-o inserts a newline without line
breaking.

Auto Fill mode works well with Lisp mode, because when it makes a
new line in Lisp mode it indents that line with 〈TAB〉. If a line ending in
a comment gets too long, the text of the comment is split into two com-
ment lines. Optionally new comment delimiters are inserted at the end of
the first line and the beginning of the second so that each line is a sepa-
rate comment; the variable comment-multi-line controls the choice (see
Section 21.7 [Comments], page 228).

Chapter 20: Commands for Human Languages 187

Adaptive filling (see the following section) works for Auto Filling as well
as for explicit fill commands. It takes a fill prefix automatically from the
second or first line of a paragraph.

Auto Fill mode does not refill entire paragraphs; it can break lines but
cannot merge lines. So editing in the middle of a paragraph can result in a
paragraph that is not correctly filled. The easiest way to make the paragraph
properly filled again is usually with the explicit fill commands.

Many users like Auto Fill mode and want to use it in all text files. The
section on init files says how to arrange this permanently for yourself. See
Section 30.7 [Init File], page 395.

20.5.2 Explicit Fill Commands

M-q Fill current paragraph (fill-paragraph).

C-x f Set the fill column (set-fill-column).

M-x fill-region
Fill each paragraph in the region (fill-region).

M-x fill-region-as-paragraph.
Fill the region, considering it as one paragraph.

M-s Center a line.

To refill a paragraph, use the command M-q (fill-paragraph). This
operates on the paragraph that point is inside, or the one after point if point
is between paragraphs. Refilling works by removing all the line-breaks, then
inserting new ones where necessary.

To refill many paragraphs, use M-x fill-region, which divides the region
into paragraphs and fills each of them.

M-q and fill-region use the same criteria as M-h for finding paragraph
boundaries (see Section 20.3 [Paragraphs], page 184). For more control, you
can use M-x fill-region-as-paragraph, which refills everything between
point and mark. This command deletes any blank lines within the region,
so separate blocks of text end up combined into one block.

A numeric argument to M-q causes it to justify the text as well as filling
it. This means that extra spaces are inserted to make the right margin line
up exactly at the fill column. To remove the extra spaces, use M-q with no
argument. (Likewise for fill-region.) Another way to control justification,
and choose other styles of filling, is with the justification text property;
see Section 20.11.7 [Format Justification], page 208.

The fill commands can deduce the proper fill prefix for a paragraph au-
tomatically in certain cases: either whitespace or certain punctuation char-
acters at the beginning of a line are treated as a fill prefix. They take the fill

188 GNU Emacs Manual

prefix from the paragraph’s second line, unless the paragraph has just one
line. You can turn off this feature by setting adaptive-fill-mode to nil.

Some major modes, including Text mode, treat whitespace at the begin-
ning of a line as a signal that this line starts a new paragraph. It would be
a mistake to copy text which implies the start of a paragraph onto each line
of the paragraph when filling it. Therefore, adaptive filling does not accept
a fill prefix from a line which is a paragraph-starter. In particular, adaptive
filling in Text mode does not accept a fill prefix consisting of just whitespace.

However, other modes including Indented Text mode (see Section 20.7
[Text Mode], page 191) do not consider whitespace as a signal to start a
new paragraph. In these modes, adaptive filling does accept a fill prefix
consisting of just whitespace, if the first or second line of a paragraph begins
with whitespace.

The variable adaptive-fill-regexp determines what kinds of line be-
ginnings can serve as a fill prefix: any characters at the start of the line
which match this regular expression are used.

You can specify more complex ways of choosing a fill prefix automatically
by setting the variable adaptive-fill-function to a function. This func-
tion is called with point after the left margin of a line, and it should return
the appropriate fill prefix based on that line. If it returns nil, that means
it sees no fill prefix in that line.

The command M-s (center-line) centers the current line within the
current fill column. With an argument n, it centers n lines individually and
moves past them.

The maximum line width for filling is in the variable fill-column. Al-
tering the value of fill-column makes it local to the current buffer; until
that time, the default value is in effect. The default is initially 70. See Sec-
tion 30.2.4 [Locals], page 376. The easiest way to set fill-column is to use
the command C-x f (set-fill-column). With a numeric argument, it uses
that as the new fill column. With just C-u as argument, it sets fill-column
to the current horizontal position of point.

Emacs commands normally consider a period followed by two spaces or
by a newline as the end of a sentence; a period followed by just one space
indicates an abbreviation and not the end of a sentence. To preserve the
distinction between these two ways of using a period, the fill commands do
not break a line after a period followed by just one space.

If the variable sentence-end-double-space is nil, the fill commands
expect and leave just one space at the end of a sentence. Ordinarily this
variable is t, so the fill commands insist on two spaces for the end of a
sentence, as explained above. See Section 20.2 [Sentences], page 183.

If the variable colon-double-space is non-nil, the fill commands put
two spaces after a colon.

Chapter 20: Commands for Human Languages 189

20.5.3 The Fill Prefix

To fill a paragraph in which each line starts with a special marker (which
might be a few spaces, giving an indented paragraph), use the fill prefix
feature. The fill prefix is a string which Emacs expects every line to start
with, and which is not included in filling.

C-x . Set the fill prefix (set-fill-prefix).

M-q Fill a paragraph using current fill prefix (fill-paragraph).

M-x fill-individual-paragraphs
Fill the region, considering each change of indentation as starting
a new paragraph.

M-x fill-nonuniform-paragraphs
Fill the region, considering only paragraph-separator lines as
starting a new paragraph.

To specify a fill prefix, move to a line that starts with the desired prefix,
put point at the end of the prefix, and give the command C-x . (set-fill-
prefix). That’s a period after the C-x. To turn off the fill prefix, specify
an empty prefix: type C-x . with point at the beginning of a line.

When a fill prefix is in effect, the fill commands remove the fill prefix from
each line before filling and insert it on each line after filling. Auto Fill mode
also inserts the fill prefix automatically when it makes a new line. The C-o
command inserts the fill prefix on new lines it creates, when you use it at
the beginning of a line (see Section 4.7 [Blank Lines], page 34). Conversely,
the command M-^ deletes the prefix (if it occurs) after the newline that it
deletes (see Chapter 19 [Indentation], page 177).

For example, if fill-column is 40 and you set the fill prefix to ‘;; ’, then
M-q in the following text

;; This is an
;; example of a paragraph
;; inside a Lisp-style comment.

produces this:

;; This is an example of a paragraph
;; inside a Lisp-style comment.

Lines that do not start with the fill prefix are considered to start para-
graphs, both in M-q and the paragraph commands; this gives good results
for paragraphs with hanging indentation (every line indented except the
first one). Lines which are blank or indented once the prefix is removed
also separate or start paragraphs; this is what you want if you are writing
multi-paragraph comments with a comment delimiter on each line.

190 GNU Emacs Manual

You can use M-x fill-individual-paragraphs to set the fill prefix for
each paragraph automatically. This command divides the region into para-
graphs, treating every change in the amount of indentation as the start of a
new paragraph, and fills each of these paragraphs. Thus, all the lines in one
“paragraph” have the same amount of indentation. That indentation serves
as the fill prefix for that paragraph.

M-x fill-nonuniform-paragraphs is a similar command that divides
the region into paragraphs in a different way. It considers only paragraph-
separating lines (as defined by paragraph-separate) as starting a new para-
graph. Since this means that the lines of one paragraph may have different
amounts of indentation, the fill prefix used is the smallest amount of inden-
tation of any of the lines of the paragraph. This gives good results with
styles that indent a paragraph’s first line more or less that the rest of the
paragraph.

The fill prefix is stored in the variable fill-prefix. Its value is a string,
or nil when there is no fill prefix. This is a per-buffer variable; altering the
variable affects only the current buffer, but there is a default value which
you can change as well. See Section 30.2.4 [Locals], page 376.

The indentation text property provides another way to control the
amount of indentation paragraphs receive. See Section 20.11.6 [Format In-
dentation], page 206.

20.6 Case Conversion Commands

Emacs has commands for converting either a single word or any arbitrary
range of text to upper case or to lower case.

M-l Convert following word to lower case (downcase-word).

M-u Convert following word to upper case (upcase-word).

M-c Capitalize the following word (capitalize-word).

C-x C-l Convert region to lower case (downcase-region).

C-x C-u Convert region to upper case (upcase-region).

The word conversion commands are the most useful. M-l (downcase-
word) converts the word after point to lower case, moving past it. Thus,
repeating M-l converts successive words. M-u (upcase-word) converts to
all capitals instead, while M-c (capitalize-word) puts the first letter of
the word into upper case and the rest into lower case. All these commands
convert several words at once if given an argument. They are especially
convenient for converting a large amount of text from all upper case to
mixed case, because you can move through the text using M-l, M-u or M-c
on each word as appropriate, occasionally using M-f instead to skip a word.

Chapter 20: Commands for Human Languages 191

When given a negative argument, the word case conversion commands
apply to the appropriate number of words before point, but do not move
point. This is convenient when you have just typed a word in the wrong
case: you can give the case conversion command and continue typing.

If a word case conversion command is given in the middle of a word, it
applies only to the part of the word which follows point. This is just like
what M-d (kill-word) does. With a negative argument, case conversion
applies only to the part of the word before point.

The other case conversion commands are C-x C-u (upcase-region) and
C-x C-l (downcase-region), which convert everything between point and
mark to the specified case. Point and mark do not move.

The region case conversion commands upcase-region and downcase-
region are normally disabled. This means that they ask for confirmation
if you try to use them. When you confirm, you may enable the command,
which means it will not ask for confirmation again. See Section 30.4.10
[Disabling], page 393.

20.7 Text Mode

When you edit files of text in a human language, it’s more convenient to
use Text mode rather than Fundamental mode. Invoke M-x text-mode to
enter Text mode. In Text mode, 〈TAB〉 runs the function tab-to-tab-stop,
which allows you to use arbitrary tab stops set with M-x edit-tab-stops
(see Section 19.2 [Tab Stops], page 179). Features concerned with comments
in programs are turned off in Text mode except when explicitly invoked. The
syntax table is changed so that periods are not considered part of a word,
while apostrophes, backspaces and underlines are part of words.

A similar variant mode is Indented Text mode, intended for editing text
in which most lines are indented. This mode defines 〈TAB〉 to run indent-
relative (see Chapter 19 [Indentation], page 177), and makes Auto Fill
indent the lines it creates. The result is that normally a line made by Auto
Filling, or by 〈LFD〉, is indented just like the previous line. In Indented Text
mode, only blank lines separate paragraphs—indented lines continue the
current paragraph. Use M-x indented-text-mode to select this mode.

Text mode, and all the modes based on it, define M-〈TAB〉 as the command
ispell-complete-word, which performs completion of the partial word in
the buffer before point, using the spelling dictionary as the space of possible
words. See Section 13.4 [Spelling], page 103.

Entering Text mode or Indented Text mode runs the hook text-mode-
hook. Other major modes related to Text mode also run this hook, followed
by hooks of their own; this includes Nroff mode, TEX mode, Outline mode
and Mail mode. Hook functions on text-mode-hook can look at the value

192 GNU Emacs Manual

of major-mode to see which of these modes is actually being entered. See
Section 30.2.3 [Hooks], page 375.

20.8 Outline Mode

Outline mode is a major mode much like Text mode but intended for
editing outlines. It allows you to make parts of the text temporarily invisible
so that you can see the outline structure. Type M-x outline-mode to switch
to Outline mode as the major mode of the current buffer.

When Outline mode makes a line invisible, the line does not appear on
the screen. The screen appears exactly as if the invisible line were deleted,
except that an ellipsis (three periods in a row) appears at the end of the
previous visible line (only one ellipsis no matter how many invisible lines
follow).

All editing commands treat the text of the invisible line as part of the
previous visible line. For example, C-n moves onto the next visible line.
Killing an entire visible line, including its terminating newline, really kills
all the following invisible lines along with it; yanking it all back yanks the
invisible lines and they remain invisible.

Outline minor mode provides the same commands as the major mode,
Outline mode, but you can use it in conjunction with other major modes.
Type M-x outline-minor-mode to enable the Outline minor mode in the
current buffer. You can also specify this in the text of a file, with a file
local variable of the form ‘mode: outline-minor’ (see Section 30.2.5 [File
Variables], page 378).

The major mode, Outline mode, provides special key bindings on the
C-c prefix. Outline minor mode provides similar bindings with C-c @ as
the prefix; this is to reduce the conflicts with the major mode’s special
commands. (The variable outline-minor-mode-prefix controls the prefix
used.)

Entering Outline mode runs the hook text-mode-hook followed by the
hook outline-mode-hook (see Section 30.2.3 [Hooks], page 375).

20.8.1 Format of Outlines

Outline mode assumes that the lines in the buffer are of two types: head-
ing lines and body lines. A heading line represents a topic in the outline.
Heading lines start with one or more stars; the number of stars determines
the depth of the heading in the outline structure. Thus, a heading line with
one star is a major topic; all the heading lines with two stars between it and
the next one-star heading are its subtopics; and so on. Any line that is not

Chapter 20: Commands for Human Languages 193

a heading line is a body line. Body lines belong with the preceding heading
line. Here is an example:

* Food

This is the body,
which says something about the topic of food.

** Delicious Food

This is the body of the second-level header.

** Distasteful Food

This could have
a body too, with
several lines.

*** Dormitory Food

* Shelter

Another first-level topic with its header line.

A heading line together with all following body lines is called collectively
an entry. A heading line together with all following deeper heading lines
and their body lines is called a subtree.

You can customize the criterion for distinguishing heading lines by setting
the variable outline-regexp. Any line whose beginning has a match for this
regexp is considered a heading line. Matches that start within a line (not at
the left margin) do not count. The length of the matching text determines
the level of the heading; longer matches make a more deeply nested level.
Thus, for example, if a text formatter has commands ‘@chapter’, ‘@section’
and ‘@subsection’ to divide the document into chapters and sections, you
could make those lines count as heading lines by setting outline-regexp to
‘"@chap\\|@\\(sub\\)*section"’. Note the trick: the two words ‘chapter’
and ‘section’ are equally long, but by defining the regexp to match only
‘chap’ we ensure that the length of the text matched on a chapter heading
is shorter, so that Outline mode will know that sections are contained in
chapters. This works as long as no other command starts with ‘@chap’.

It is possible to change the rule for calculating the level of a heading line
by setting the variable outline-level. The value of outline-level should
be a function that takes no arguments and returns the level of the current
heading. Some major modes such as C, Nroff, and Emacs Lisp mode set this
variable in order to work with Outline minor mode.

194 GNU Emacs Manual

Outline mode makes a line invisible by changing the newline before it
into an ASCII control-M (code 015). Most editing commands that work
on lines treat an invisible line as part of the previous line because, strictly
speaking, it is part of that line, since there is no longer a newline in between.
When you save the file in Outline mode, control-M characters are saved as
newlines, so the invisible lines become ordinary lines in the file. But saving
does not change the visibility status of a line inside Emacs.

20.8.2 Outline Motion Commands

Outline mode provides special motion commands that move backward
and forward to heading lines.

C-c C-n Move point to the next visible heading line (outline-next-
visible-heading).

C-c C-p Move point to the previous visible heading line (outline-
previous-visible-heading).

C-c C-f Move point to the next visible heading line at the same level as
the one point is on (outline-forward-same-level).

C-c C-b Move point to the previous visible heading line at the same level
(outline-backward-same-level).

C-c C-u Move point up to a lower-level (more inclusive) visible heading
line (outline-up-heading).

C-c C-n (outline-next-visible-heading) moves down to the next
heading line. C-c C-p (outline-previous-visible-heading) moves sim-
ilarly backward. Both accept numeric arguments as repeat counts. The
names emphasize that invisible headings are skipped, but this is not really a
special feature. All editing commands that look for lines ignore the invisible
lines automatically.

More powerful motion commands understand the level structure of head-
ings. C-c C-f (outline-forward-same-level) and C-c C-b (outline-
backward-same-level) move from one heading line to another visible head-
ing at the same depth in the outline. C-c C-u (outline-up-heading) moves
backward to another heading that is less deeply nested.

20.8.3 Outline Visibility Commands

The other special commands of outline mode are used to make lines visible
or invisible. Their names all start with hide or show. Most of them fall into
pairs of opposites. They are not undoable; instead, you can undo right past

Chapter 20: Commands for Human Languages 195

them. Making lines visible or invisible is simply not recorded by the undo
mechanism.

C-c C-t Make all body lines in the buffer invisible (hide-body).

C-c C-a Make all lines in the buffer visible (show-all).

C-c C-d Make everything under this heading invisible, not including this
heading itself
(hide-subtree).

C-c C-s Make everything under this heading visible, including body, sub-
headings, and their bodies (show-subtree).

C-c C-l Make the body of this heading line, and of all its subheadings,
invisible (hide-leaves).

C-c C-k Make all subheadings of this heading line, at all levels, visible
(show-branches).

C-c C-i Make immediate subheadings (one level down) of this heading
line visible (show-children).

C-c C-c Make this heading line’s body invisible (hide-entry).

C-c C-e Make this heading line’s body visible (show-entry).

C-c C-q Hide everything except the top n levels of heading lines (hide-
sublevels).

C-c C-o Hide everything except for the heading or body that point is in,
plus the headings leading up from there to the top level of the
outline (hide-other).

Two commands that are exact opposites are C-c C-c (hide-entry) and
C-c C-e (show-entry). They are used with point on a heading line, and
apply only to the body lines of that heading. Subheadings and their bodies
are not affected.

Two more powerful opposites are C-c C-d (hide-subtree) and C-c C-s
(show-subtree). Both expect to be used when point is on a heading line,
and both apply to all the lines of that heading’s subtree: its body, all its
subheadings, both direct and indirect, and all of their bodies. In other words,
the subtree contains everything following this heading line, up to and not
including the next heading of the same or higher rank.

Intermediate between a visible subtree and an invisible one is having all
the subheadings visible but none of the body. There are two commands for
doing this, depending on whether you want to hide the bodies or make the
subheadings visible. They are C-c C-l (hide-leaves) and C-c C-k (show-
branches).

196 GNU Emacs Manual

A little weaker than show-branches is C-c C-i (show-children). It
makes just the direct subheadings visible—those one level down. Deeper
subheadings remain invisible, if they were invisible.

Two commands have a blanket effect on the whole file. C-c C-t (hide-
body) makes all body lines invisible, so that you see just the outline structure.
C-c C-a (show-all) makes all lines visible. These commands can be thought
of as a pair of opposites even though C-c C-a applies to more than just body
lines.

The command C-c C-q (hide-sublevels) hides all but the top level
headings. With a numeric argument n, it hides everything except the top n
levels of heading lines.

The command C-c C-o (hide-other) hides everything except the head-
ing or body text that point is in, plus its parents (the headers leading up
from there to top level in the outline).

You can turn off the use of ellipses at the ends of visible lines by setting
selective-display-ellipses to nil. Then there is no visible indication
of the presence of invisible lines.

20.8.4 Viewing One Outline in Multiple Views

You can display two views of a single outline at the same time, in different
windows, by means of an alternative implementation of Outline mode called
noutline.

To do this, first load the library noutline with M-x load-library 〈RET〉

noutline 〈RET〉. This loads the alternative implementation of Outline mode.
It provides the same command names and key bindings as regular Outline
mode, but it implements them differently.

Then, to display a second view of an outline buffer, you must create an
indirect buffer using M-x make-indirect-buffer. The first argument of this
command is the existing outline buffer name, and its second argument is the
name to use for the new indirect buffer. See Section 15.6 [Indirect Buffers],
page 146.

Once the indirect buffer exists, you can display it in a window in the
normal fashion, with C-x 4 b or other Emacs commands. The Outline mode
commands to show and hide parts of the text operate on each buffer inde-
pendently; as a result, each buffer can have its own view. If you want more
than two views on the same outline, create additional indirect buffers.

In a future Emacs version, the alternative noutline implementation will
probably become the principal implementation.

20.9 TEX Mode

Chapter 20: Commands for Human Languages 197

TEX is a powerful text formatter written by Donald Knuth; it is also free,
like GNU Emacs. LaTEX is a simplified input format for TEX, implemented
by TEX macros; it comes with TEX. SliTEX is a special form of LaTEX.

Emacs has a special TEX mode for editing TEX input files. It provides
facilities for checking the balance of delimiters and for invoking TEX on all
or part of the file.

TEX mode has three variants, Plain TEX mode, LaTEX mode, and SliTEX
mode (these three distinct major modes differ only slightly). They are de-
signed for editing the three different formats. The command M-x tex-mode
looks at the contents of the buffer to determine whether the contents appear
to be either LaTEX input or SliTEX input; if so, it selects the appropriate
mode. If the file contents do not appear to be LaTEX or SliTEX, it selects
Plain TEX mode. If the contents are insufficient to determine this, the vari-
able tex-default-mode controls which mode is used.

When M-x tex-mode does not guess right, you can use the commands
M-x plain-tex-mode, M-x latex-mode, and M-x slitex-mode to select ex-
plicitly the particular variants of TEX mode.

20.9.1 TEX Editing Commands

Here are the special commands provided in TEX mode for editing the text
of the file.

" Insert, according to context, either ‘‘‘’ or ‘"’ or ‘’’’ (tex-
insert-quote).

〈LFD〉 Insert a paragraph break (two newlines) and check the pre-
vious paragraph for unbalanced braces or dollar signs (tex-
terminate-paragraph).

M-x validate-tex-region
Check each paragraph in the region for unbalanced braces or
dollar signs.

C-c { Insert ‘{}’ and position point between them (tex-insert-
braces).

C-c } Move forward past the next unmatched close brace (up-list).

In TEX, the character ‘"’ is not normally used; we use ‘‘‘’ to start a
quotation and ‘’’’ to end one. To make editing easier under this formatting
convention, TEX mode overrides the normal meaning of the key " with a
command that inserts a pair of single-quotes or backquotes (tex-insert-
quote). To be precise, this command inserts ‘‘‘’ after whitespace or an
open brace, ‘"’ after a backslash, and ‘’’’ after any other character.

198 GNU Emacs Manual

If you need the character ‘"’ itself in unusual contexts, use C-q to insert it.
Also, " with a numeric argument always inserts that number of ‘"’ characters.

In TEX mode, ‘$’ has a special syntax code which attempts to understand
the way TEX math mode delimiters match. When you insert a ‘$’ that is
meant to exit math mode, the position of the matching ‘$’ that entered math
mode is displayed for a second. This is the same feature that displays the
open brace that matches a close brace that is inserted. However, there is no
way to tell whether a ‘$’ enters math mode or leaves it; so when you insert
a ‘$’ that enters math mode, the previous ‘$’ position is shown as if it were
a match, even though they are actually unrelated.

TEX uses braces as delimiters that must match. Some users prefer to keep
braces balanced at all times, rather than inserting them singly. Use C-c {
(tex-insert-braces) to insert a pair of braces. It leaves point between the
two braces so you can insert the text that belongs inside. Afterward, use the
command C-c } (up-list) to move forward past the close brace.

There are two commands for checking the matching of braces. 〈LFD〉 (tex-
terminate-paragraph) checks the paragraph before point, and inserts two
newlines to start a new paragraph. It prints a message in the echo area if any
mismatch is found. M-x validate-tex-region checks a region, paragraph
by paragraph. When it finds a paragraph that contains a mismatch, it
displays point at the beginning of the paragraph for a few seconds and sets
the mark at that spot. Scanning continues until the whole buffer has been
checked or until you type another key. Afterward, you can use the mark
ring to find the last several paragraphs that had mismatches (see Section 8.5
[Mark Ring], page 61).

Note that Emacs commands count square brackets and parentheses in
TEX mode, not just braces. This is not strictly correct for the purpose of
checking TEX syntax. However, parentheses and square brackets are likely
to be used in text as matching delimiters and it is useful for the various
motion commands and automatic match display to work with them.

20.9.2 LaTEX Editing Commands

LaTEX mode, and its variant, SliTEX mode, provide a few extra features
not applicable to plain TEX.

C-c C-o Insert ‘\begin’ and ‘\end’ for LaTEX block and position point
on a line between them. (tex-latex-block).

C-c C-e Close the last unended block for LaTEX (tex-close-latex-
block).

In LaTEX input, ‘\begin’ and ‘\end’ commands are used to group blocks
of text. To insert a ‘\begin’ and a matching ‘\end’ (on a new line following
the ‘\begin’), use C-c C-o (tex-latex-block). A blank line is inserted

Chapter 20: Commands for Human Languages 199

between the two, and point is left there. You can use completion when you
enter the block type; to specify additional block type names beyond the
standard list, set the variable latex-block-names. For example, here’s how
to add ‘theorem’, ‘corollary’, and ‘proof’:

(setq latex-block-names ’("theorem" "corollary" "proof"))

In LaTEX input, ‘\begin’ and ‘\end’ commands must balance. You can
use C-c C-e (tex-close-latex-block) to insert automatically a matching
‘\end’ to match the last unmatched ‘\begin’. It indents the ‘\end’ to match
the corresponding ‘\begin’. It inserts a newline after ‘\end’ if point is at
the beginning of a line.

20.9.3 TEX Printing Commands

You can invoke TEX as an inferior of Emacs on either the entire contents
of the buffer or just a region at a time. Running TEX in this way on just
one chapter is a good way to see what your changes look like without taking
the time to format the entire file.

C-c C-r Invoke TEX on the current region, together with the buffer’s
header (tex-region).

C-c C-b Invoke TEX on the entire current buffer (tex-buffer).

C-c TAB Invoke BibTEX on the current file (tex-bibtex-file).

C-c C-f Invoke TEX on the current file (tex-file).

C-c C-l Recenter the window showing output from the inferior TEX so
that the last line can be seen (tex-recenter-output-buffer).

C-c C-k Kill the TEX subprocess (tex-kill-job).

C-c C-p Print the output from the last C-c C-r, C-c C-b, or C-c C-f
command (tex-print).

C-c C-v Preview the output from the last C-c C-r, C-c C-b, or C-c C-f
command (tex-view).

C-c C-q Show the printer queue (tex-show-print-queue).

You can pass the current buffer through an inferior TEX by means of
C-c C-b (tex-buffer). The formatted output appears in a temporary file;
to print it, type C-c C-p (tex-print). Afterward, you can use C-c C-q
(tex-show-print-queue) to view the progress of your output towards being
printed. If your terminal has the ability to display TEX output files, you can
preview the output on the terminal with C-c C-v (tex-view).

You can specify the directory to use for running TEX by setting the
variable tex-directory. "." is the default value. If your environment

200 GNU Emacs Manual

variable TEXINPUTS contains relative directory names, or if your files contains
‘\input’ commands with relative file names, then tex-directory must be
"." or you will get the wrong results. Otherwise, it is safe to specify some
other directory, such as "/tmp".

If you want to specify which shell commands are used in the infe-
rior TEX, you can do so by setting the values of the variables tex-run-
command, latex-run-command, slitex-run-command, tex-dvi-print-
command, tex-dvi-view-command, and tex-show-queue-command. You
must set the value of tex-dvi-view-command for your particular terminal;
this variable has no default value. The other variables have default values
that may (or may not) be appropriate for your system.

Normally, the file name given to these commands comes at the end of the
command string; for example, ‘latex filename’. In some cases, however, the
file name needs to be embedded in the command; an example is when you
need to provide the file name as an argument to one command whose output
is piped to another. You can specify where to put the file name with ‘*’ in
the command string. For example,

(setq tex-dvi-print-command "dvips -f * | lpr")

The terminal output from TEX, including any error messages, appears
in a buffer called ‘*tex-shell*’. If TEX gets an error, you can switch to
this buffer and feed it input (this works as in Shell mode; see Section 29.2.2
[Interactive Shell], page 349). Without switching to this buffer you can scroll
it so that its last line is visible by typing C-c C-l.

Type C-c C-k (tex-kill-job) to kill the TEX process if you see that its
output is no longer useful. Using C-c C-b or C-c C-r also kills any TEX
process still running.

You can also pass an arbitrary region through an inferior TEX by typ-
ing C-c C-r (tex-region). This is tricky, however, because most files of
TEX input contain commands at the beginning to set parameters and define
macros, without which no later part of the file will format correctly. To solve
this problem, C-c C-r allows you to designate a part of the file as containing
essential commands; it is included before the specified region as part of the
input to TEX. The designated part of the file is called the header.

To indicate the bounds of the header in Plain TEX mode, you insert two
special strings in the file. Insert ‘%**start of header’ before the header,
and ‘%**end of header’ after it. Each string must appear entirely on one
line, but there may be other text on the line before or after. The lines con-
taining the two strings are included in the header. If ‘%**start of header’
does not appear within the first 100 lines of the buffer, C-c C-r assumes that
there is no header.

In LaTEX mode, the header begins with ‘\documentstyle’ and ends with
‘\begin{document}’. These are commands that LaTEX requires you to use
in any case, so nothing special needs to be done to identify the header.

Chapter 20: Commands for Human Languages 201

The commands (tex-buffer) and (tex-region) do all of their work in
a temporary directory, and do not have available any of the auxiliary files
needed by TEX for cross-references; these commands are generally not suit-
able for running the final copy in which all of the cross-references need to be
correct. When you want the auxiliary files, use C-c C-f (tex-file) which
runs TEX on the current buffer’s file, in that file’s directory. Before TEX
runs, you will be asked about saving any modified buffers. Generally, you
need to use (tex-file) twice to get cross-references correct.

For LaTEX files, you can use BibTEX to process the auxiliary file for the
current buffer’s file. BibTEX looks up bibliographic citations in a data base
and prepares the cited references for the bibliography section. The com-
mand C-c TAB (tex-bibtex-file) runs the shell command (tex-bibtex-
command) to produce a ‘.bbl’ file for the current buffer’s file. Generally, you
need to do C-c C-f (tex-file) once to generate the ‘.aux’ file, then do C-c
TAB (tex-bibtex-file), and then repeat C-c C-f (tex-file) twice more
to get the cross-references correct.

Entering any kind of TEX mode runs the hooks text-mode-hook and
tex-mode-hook. Then it runs either plain-tex-mode-hook or latex-mode-
hook, whichever is appropriate. For SliTEX files, it calls slitex-mode-hook.
Starting the TEX shell runs the hook tex-shell-hook. See Section 30.2.3
[Hooks], page 375.

20.9.4 Unix TEX Distribution

TEX for Unix systems can be obtained from the University of Washington
for a distribution fee.

To order a full distribution, specify whether you prefer 1/4 inch QIC-24 or
4mm DAT tape (9-track reel-to-reel is no longer available) and send $210.00
for a (tar or cpio) cartridge, payable to the University of Washington to:

Pierre MacKay
Department of Classics
Denny Hall, Mail Stop DH-10
University of Washington
Seattle, Washington 98195

Purchase orders are acceptable, but there is an extra charge of $10.00, to
pay for processing charges.

For overseas orders please add $20.00 to the base cost for shipment via air
parcel post, or $30.00 for shipment via courier.

The normal distribution is a tar tape, blocked 20, 1600 bpi, on an industry
standard 2400 foot half-inch reel. The physical format for the 1/4 inch
streamer cartridges is QIC-24. System V tapes can be written in cpio format,
blocked 5120 bytes, with ASCII headers.

202 GNU Emacs Manual

20.10 Nroff Mode

Nroff mode is a mode like Text mode but modified to handle nroff com-
mands present in the text. Invoke M-x nroff-mode to enter this mode. It
differs from Text mode in only a few ways. All nroff command lines are
considered paragraph separators, so that filling will never garble the nroff
commands. Pages are separated by ‘.bp’ commands. Comments start with
backslash-doublequote. Also, three special commands are provided that are
not in Text mode:

M-n Move to the beginning of the next line that isn’t an nroff com-
mand (forward-text-line). An argument is a repeat count.

M-p Like M-n but move up (backward-text-line).

M-? Prints in the echo area the number of text lines (lines that are
not nroff commands) in the region (count-text-lines).

The other feature of Nroff mode is that you can turn on Electric Nroff
mode. This is a minor mode that you can turn on or off with M-x electric-
nroff-mode (see Section 30.1 [Minor Modes], page 371). When the mode is
on, each time you use 〈RET〉 to end a line that contains an nroff command
that opens a kind of grouping, the matching nroff command to close that
grouping is automatically inserted on the following line. For example, if you
are at the beginning of a line and type . (b 〈RET〉, this inserts the matching
command ‘.)b’ on a new line following point.

If you use Outline minor mode with Nroff mode (see Section 20.8 [Outline
Mode], page 192), heading lines are lines of the form ‘.H’ followed by a
number (the header level).

Entering Nroff mode runs the hook text-mode-hook, followed by the
hook nroff-mode-hook (see Section 30.2.3 [Hooks], page 375).

20.11 Editing Formatted Text

Enriched mode is a minor mode for editing files that contain formatted
text in WYSIWYG fashion, as in a word processor. Currently, formatted
text in Enriched mode can specify fonts, colors, underlining, margins, and
types of filling and justification. In the future, we plan to implement other
formatting features as well.

Enriched mode is a minor mode (see Section 30.1 [Minor Modes],
page 371). Typically it is used in conjunction with Text mode (see Sec-
tion 20.7 [Text Mode], page 191). However, you can also use it with other
major modes such as Outline mode and Indented Text mode.

Chapter 20: Commands for Human Languages 203

Potentially, Emacs can store formatted text files in various file formats.
Currently, only one format is implemented: text/enriched format, which is
defined by the MIME protocol. See section “Format Conversion” in the
Emacs Lisp Reference Manual, for details of how Emacs recognizes and
converts file formats.

The Emacs distribution contains a formatted text file that can serve as an
example. Its name is ‘etc/enriched.doc’. It contains samples illustrating
all the features described in this section. It also contains a list of ideas for
future enhancements.

20.11.1 Requesting to Edit Formatted Text

Whenever you visit a file that Emacs saved in the text/enriched format,
Emacs automatically converts the formatting information in the file into
Emacs’s own internal format (text properties), and turns on Enriched mode.

To create a new file of formatted text, first visit the nonexistent file, then
type M-x enriched-mode before you start inserting text. This command
turns on Enriched mode. Do this before you begin inserting text, to ensure
that the text you insert is handled properly.

More generally, the command enriched-mode turns Enriched mode on
if it was off, and off if it was on. With a prefix argument, this command
turns Enriched mode on if the argument is positive, and turns the mode off
otherwise.

When you save a buffer while Enriched mode is enabled in it, Emacs
automatically converts the text to text/enriched format while writing it into
the file. When you visit the file again, Emacs will automatically recognize
the format, reconvert the text, and turn on Enriched mode again.

Normally, after reading a file in text/enriched format, Emacs refills each
paragraph to fit the width of the window. You can turn off this refilling, to
save time, by setting the variable enriched-fill-after-visiting to nil
or to ask.

In any case, if the window width is the same as the width with which the
file was saved, Emacs trusts that the file is already properly filled.

You can add annotations for saving additional text properties, which
Emacs normally does not save, by adding to enriched-translations. Note
that the text/enriched standard requires any non-standard annotations to
have names starting with ‘x-’, as in ‘x-read-only’. This ensures that they
will not conflict with standard annotations that may be added later.

20.11.2 Hard and Soft Newlines

204 GNU Emacs Manual

In formatted text, Emacs distinguishes between two different kinds of
newlines, hard newlines and soft newlines.

Hard newlines are used to separate paragraphs, or items in a list, or
anywhere that there should always be a line break regardless of the margins.
The RET command (newline) and C-o (open-line) insert hard newlines.

Soft newlines are used to make text fit between the margins. All the fill
commands, including Auto Fill, insert soft newlines—and they delete only
soft newlines.

Although hard and soft newlines look the same, it is important to bear
the difference in mind. Do not use 〈RET〉 to break lines in the middle of
filled paragraphs, or else you will get hard newlines that are barriers to
further filling. Instead, let Auto Fill mode break lines, so that if the text or
the margins change, Emacs can refill the lines properly. See Section 20.5.1
[Auto Fill], page 186.

On the other hand, in tables and lists, where the lines should always
remain as you type them, you can use 〈RET〉 to end lines. For these lines, you
may also want to set the justification style to unfilled. See Section 20.11.7
[Format Justification], page 208.

20.11.3 Editing Format Information

There are two ways to alter the formatting information for a formatted
text file: with keyboard commands, and with the mouse.

The easiest way to add properties to your document is by using the Text
Properties menu. You can get to this menu in two ways: from the Edit
menu in the menu bar, or with C-mouse-2 (hold the 〈CTRL〉 key and press
the middle mouse button).

Most of the items in the Text Properties menu lead to other submenus.
These are described in the sections that follow. Some items run commands
directly:

Remove Properties
Delete from the region all the text properties that the Text Prop-
erties menu works with (facemenu-remove-props).

Remove All
Delete all text properties from the region (facemenu-remove-
all).

List Properties
List all the text properties of the character following point
(list-text-properties-at).

Chapter 20: Commands for Human Languages 205

Display Faces
Display a list of all the defined faces.

Display Colors
Display a list of all the defined colors.

20.11.4 Faces in Formatted Text

The Faces submenu lists various Emacs faces including bold, italic,
and underline. Selecting one of these adds the chosen face to the region.
See Section 17.12 [Faces], page 164. You can also specify a face with these
keyboard commands:

M-g d Set the region, or the next inserted character, to the default
face (facemenu-set-default).

M-g b Set the region, or the next inserted character, to the bold face
(facemenu-set-bold).

M-g i Set the region, or the next inserted character, to the italic face
(facemenu-set-italic).

M-g l Set the region, or the next inserted character, to the bold-
italic face (facemenu-set-bold-italic).

M-g u Set the region, or the next inserted character, to the underline
face (facemenu-set-underline).

M-g o face 〈RET〉

Set the region, or the next inserted character, to the face face
(facemenu-set-face).

If you use these commands with a prefix argument—or, in Transient Mark
mode, if the region is not active—then these commands specify a face to use
for your next self-inserting input. See Section 8.2 [Transient Mark], page 58.
This applies to both the keyboard commands and the menu commands.

Enriched mode defines two additional faces: excerpt and fixed. These
correspond to codes used in the text/enriched file format.

The excerpt face is intended for quotations. This face is the same
as italic unless you customize it (see Section 17.13 [Modifying Faces],
page 166).

The fixed face is meant to say, “Use a fixed-width font for this part
of the text.” Emacs currently supports only fixed-width fonts; therefore,
the fixed annotation is not necessary now. However, we plan to support
variable width fonts in future Emacs versions, and other systems that display
text/enriched format may not use a fixed-width font as the default. So if
you specifically want a certain part of the text to use a fixed-width font, you
should specify the fixed face for that part.

206 GNU Emacs Manual

The fixed face is normally defined to use a different font from the default.
However, systems have different fonts installed, you may need to customize
this.

If your terminal cannot display different faces, you will not be able to see
them, but you can still edit documents containing faces. You can even add
faces and colors to documents. They will be visible when the file is viewed
on a terminal that can display them.

20.11.5 Colors in Formatted Text

You can specify foreground and background colors for portions of the
text. There is a menu for specifying the foreground color and a menu for
specifying the background color. Each color menu lists all the colors that
you have used in Enriched mode in the current Emacs session.

If you specify a color with a prefix argument—or, in Transient Mark
mode, if the region is not active—then it applies to your next self-inserting
input. See Section 8.2 [Transient Mark], page 58. Otherwise, the command
applies to the region.

Each color menu contains one additional item: ‘Other’. You can use
this item to specify a color that is not listed in the menu; it reads the
color name with the minibuffer. To display list of available colors and their
names, use the ‘Display Colors’ menu item in the Text Properties menu
(see Section 20.11.3 [Editing Format Info], page 204).

Any color that you specify in this way, or that is mentioned in a formatted
text file that you read in, is added to both color menus for the duration of
the Emacs session.

There are no key bindings for specifying colors, but you can do so with the
extended commands M-x facemenu-set-foreground and M-x facemenu-
set-background. Both of these commands read the name of the color with
the minibuffer.

20.11.6 Indentation in Formatted Text

When editing formatted text, you can specify different amounts of in-
dentation for the right or left margin of an entire paragraph or a part of a
paragraph. The margins you specify automatically affect the Emacs fill com-
mands (see Section 20.5 [Filling], page 186) and line-breaking commands.

The Indentation submenu provides a convenient interface for specifying
these properties. The submenu contains four items:

Chapter 20: Commands for Human Languages 207

Indent More
Indent the region by 4 columns (increase-left-margin). In
Enriched mode, this command is also available on C-x 〈TAB〉; if
you supply a numeric argument, that says how many columns
to add to the margin (a negative argument reduces the number
of columns).

Indent Less
Remove 4 columns of indentation from the region.

Indent Right More
Make the text narrower by indenting 4 columns at the right
margin.

Indent Right Less
Remove 4 columns of indentation from the right margin.

You can use these commands repeatedly to increase or decrease the in-
dentation.

The most common way to use these commands is to change the inden-
tation of an entire paragraph. However, that is not the only use. You can
change the margins at any point; the new values take effect at the end of the
line (for right margins) or the beginning of the next line (for left margins).

This makes it possible to format paragraphs with hanging indents, which
means that the first line is indented less than subsequent lines. To set up a
hanging indent, increase the indentation of the region starting after the first
word of the paragraph and running until the end of the paragraph.

Indenting the first line of a paragraph is easier. Set the margin for the
whole paragraph where you want it to be for the body of the paragraph,
then indent the first line by inserting extra spaces or tabs.

Sometimes, as a result of editing, the filling of a paragraph becomes
messed up—parts of the paragraph may extend past the left or right margins.
When this happens, use M-q (fill-paragraph) to refill the paragraph.

The variable standard-indent specifies how many columns these com-
mands should add to or subtract from the indentation. The default value is
4.

Enriched mode automatically sets the variable fill-column based on the
window width: it leaves a certain number of columns for the right margin.
The variable enriched-default-right-margin says how many columns.
The default value is 10.

20.11.7 Justification in Formatted Text

208 GNU Emacs Manual

When editing formatted text, you can specify various styles of justifica-
tion for a paragraph. The style you specify automatically affects the Emacs
fill commands.

The Justification submenu provides a convenient interface for specifying
the style. The submenu contains five items:

Flush Left
This is the most common style of justification (at least for En-
glish). Lines are aligned at the left margin but left uneven at
the right.

Flush Right
This aligns each line with the right margin. Spaces and tabs are
added on the left, if necessary, to make lines line up on the right.

Full This justifies the text, aligning both edges of each line. Justified
text looks very nice in a printed book, where the spaces can all
be adjusted equally, but it does not look as nice with a fixed-
width font on the screen. Perhaps a future version of Emacs will
be able to adjust the width of spaces in a line to achieve elegant
justification.

Center This centers every line between the current margins.

None This turns off filling entirely. Each line will remain as you wrote
it; the fill and auto-fill functions will have no effect on text which
has this setting. You can, however, still indent the left margin.
In unfilled regions, all newlines are treated as hard newlines (see
Section 20.11.2 [Hard and Soft Newlines], page 204) .

In Enriched mode, you can also specify justification from the keyboard
using the M-j prefix character:

M-j l Make the region left-filled (set-justification-left).

M-j r Make the region right-filled (set-justification-right).

M-j f Make the region fully-justified (set-justification-full).

M-j c
M-S Make the region centered (set-justification-center).

M-j u Make the region unfilled (set-justification-none).

Justification styles apply to entire paragraphs. All the justification-
changing commands operate on the paragraph containing point, or, if the
region is active, on all paragraphs which overlap the region.

The default justification style is specified by the variable default-
justification. Its value should be one of the symbols left, right, full,
center, or none.

Chapter 20: Commands for Human Languages 209

20.11.8 Setting Other Text Properties

The Other Properties menu lets you add or remove three other useful text
properties: read-only, invisible and intangible. The intangible prop-
erty disallows moving point within the text, the invisible text property
hides text from display, and the read-only property disallows alteration of
the text.

Each of these special properties has a menu item to add it to the region.
The last menu item, ‘Remove Special’, removes all of these special properties
from the text in the region.

Currently, the invisible and intangible properties are not saved in
the text/enriched format. The read-only property is saved, but it is not a
standard part of the text/enriched format, so other editors may not respect
it.

20.11.9 Forcing Enriched Mode

Normally, Emacs knows when you are editing formatted text because it
recognizes the special annotations used in the file that you visited. However,
there are situations in which you must take special actions to convert file
contents or turn on Enriched mode:

• When you visit a file that was created with some other editor, Emacs
may not recognize the file as being in the text/enriched format. In
this case, when you visit the file you will see the formatting commands
rather than the formatted text. Type M-x format-decode-buffer to
translate it.

• When you insert a file into a buffer, rather than visiting it. Emacs does
the necessary conversions on the text which you insert, but it does not
enable Enriched mode. If you wish to do that, type M-x enriched-mode.

The command format-decode-buffer translates text in various formats
into Emacs’s internal format. It asks you to specify the format to translate
from; however, normally you can type just 〈RET〉, which tells Emacs to guess
the format.

If you wish to look at a file in text/enriched format in its raw form, as a
sequence of characters with no formatting, use M-x format-find-file 〈RET〉

filename 〈RET〉 〈RET〉. The empty second argument means, “read without
format conversion.”

210 GNU Emacs Manual

Chapter 21: Editing Programs 211

21 Editing Programs

Emacs has many commands designed to understand the syntax of pro-
gramming languages such as Lisp and C. These commands can

• Move over or kill balanced expressions or sexps (see Section 21.2 [Lists],
page 212).

• Move over or mark top-level expressions—defuns, in Lisp; functions, in
C (see Section 21.4 [Defuns], page 214).

• Show how parentheses balance (see Section 21.6 [Matching], page 227).

• Insert, kill or align comments (see Section 21.7 [Comments], page 228).

• Follow the usual indentation conventions of the language (see Sec-
tion 21.5 [Program Indent], page 215).

The commands for words, sentences and paragraphs are very useful in
editing code even though their canonical application is for editing human lan-
guage text. Most symbols contain words (see Section 20.1 [Words], page 181);
sentences can be found in strings and comments (see Section 20.2 [Sen-
tences], page 183). Paragraphs per se don’t exist in code, but the paragraph
commands are useful anyway, because programming language major modes
define paragraphs to begin and end at blank lines (see Section 20.3 [Para-
graphs], page 184). Judicious use of blank lines to make the program clearer
will also provide useful chunks of text for the paragraph commands to work
on.

The selective display feature is useful for looking at the overall structure of
a function (see Section 11.3 [Selective Display], page 79). This feature causes
only the lines that are indented less than a specified amount to appear on
the screen.

21.1 Major Modes for Programming Languages

Emacs also has major modes for the programming languages Lisp, Scheme
(a variant of Lisp), Awk, C, C++, Fortran, Icon, Java, Objective-C, Pascal,
Perl and Tcl. There is also a major mode for makefiles, called Makefile
mode.

Ideally, a major mode should be implemented for each programming lan-
guage that you might want to edit with Emacs; but often the mode for one
language can serve for other syntactically similar languages. The language
modes that exist are those that someone decided to take the trouble to write.

There are several forms of Lisp mode, which differ in the way they inter-
face to Lisp execution. See Section 22.3 [Executing Lisp], page 267.

212 GNU Emacs Manual

Each of the programming language modes defines the 〈TAB〉 key to run an
indentation function that knows the indentation conventions of that language
and updates the current line’s indentation accordingly. For example, in C
mode 〈TAB〉 is bound to c-indent-line. 〈LFD〉 is normally defined to do
〈RET〉 followed by 〈TAB〉; thus, it too indents in a mode-specific fashion.

In most programming languages, indentation is likely to vary from line to
line. So the major modes for those languages rebind 〈DEL〉 to treat a tab as
if it were the equivalent number of spaces (using the command backward-
delete-char-untabify). This makes it possible to rub out indentation one
column at a time without worrying whether it is made up of spaces or tabs.
Use C-b C-d to delete a tab character before point, in these modes.

Programming language modes define paragraphs to be separated only
by blank lines, so that the paragraph commands remain useful. Auto Fill
mode, if enabled in a programming language major mode, indents the new
lines which it creates.

Turning on a major mode runs a normal hook called the mode hook,
which is the value of a Lisp variable. Each major mode has a mode hook,
and the hook’s name is always made from the mode command’s name by
adding ‘-hook’. For example, turning on C mode runs the hook c-mode-
hook, while turning on Lisp mode runs the hook lisp-mode-hook. See
Section 30.2.3 [Hooks], page 375.

21.2 Lists and Sexps

By convention, Emacs keys for dealing with balanced expressions are
usually Control-Meta characters. They tend to be analogous in function to
their Control and Meta equivalents. These commands are usually thought
of as pertaining to expressions in programming languages, but can be useful
with any language in which some sort of parentheses exist (including human
languages).

These commands fall into two classes. Some deal only with lists (paren-
thetical groupings). They see nothing except parentheses, brackets, braces
(whichever ones must balance in the language you are working with), and
escape characters that might be used to quote those.

The other commands deal with expressions or sexps. The word ‘sexp’ is
derived from s-expression, the ancient term for an expression in Lisp. But in
Emacs, the notion of ‘sexp’ is not limited to Lisp. It refers to an expression
in whatever language your program is written in. Each programming lan-
guage has its own major mode, which customizes the syntax tables so that
expressions in that language count as sexps.

Sexps typically include symbols, numbers, and string constants, as well
as anything contained in parentheses, brackets or braces.

Chapter 21: Editing Programs 213

In languages that use prefix and infix operators, such as C, it is not
possible for all expressions to be sexps. For example, C mode does not
recognize ‘foo + bar’ as a sexp, even though it is a C expression; it recognizes
‘foo’ as one sexp and ‘bar’ as another, with the ‘+’ as punctuation between
them. This is a fundamental ambiguity: both ‘foo + bar’ and ‘foo’ are
legitimate choices for the sexp to move over if point is at the ‘f’. Note that
‘(foo + bar)’ is a single sexp in C mode.

Some languages have obscure forms of expression syntax that nobody has
bothered to make Emacs understand properly.

21.3 List And Sexp Commands

C-M-f Move forward over a sexp (forward-sexp).

C-M-b Move backward over a sexp (backward-sexp).

C-M-k Kill sexp forward (kill-sexp).

C-M-〈DEL〉 Kill sexp backward (backward-kill-sexp).

C-M-u Move up and backward in list structure (backward-up-list).

C-M-d Move down and forward in list structure (down-list).

C-M-n Move forward over a list (forward-list).

C-M-p Move backward over a list (backward-list).

C-M-t Transpose expressions (transpose-sexps).

C-M-@ Put mark after following expression (mark-sexp).

To move forward over a sexp, use C-M-f (forward-sexp). If the first
significant character after point is an opening delimiter (‘(’ in Lisp; ‘(’,
‘[’ or ‘{’ in C), C-M-f moves past the matching closing delimiter. If the
character begins a symbol, string, or number, C-M-f moves over that.

The command C-M-b (backward-sexp) moves backward over a sexp. The
detailed rules are like those above for C-M-f, but with directions reversed.
If there are any prefix characters (single-quote, backquote and comma, in
Lisp) preceding the sexp, C-M-b moves back over them as well. The sexp
commands move across comments as if they were whitespace in most modes.

C-M-f or C-M-b with an argument repeats that operation the specified
number of times; with a negative argument, it moves in the opposite direc-
tion.

Killing a sexp at a time can be done with C-M-k (kill-sexp) or C-M-
〈DEL〉 (backward-kill-sexp). C-M-k kills the characters that C-M-f would
move over, and C-M-〈DEL〉 kills the characters that C-M-b would move over.

214 GNU Emacs Manual

The list commands move over lists like the sexp commands but skip
blithely over any number of other kinds of sexps (symbols, strings, etc). They
are C-M-n (forward-list) and C-M-p (backward-list). The main reason
they are useful is that they usually ignore comments (since the comments
usually do not contain any lists).

C-M-n and C-M-p stay at the same level in parentheses, when that’s pos-
sible. To move up one (or n) levels, use C-M-u (backward-up-list). C-M-u
moves backward up past one unmatched opening delimiter. A positive ar-
gument serves as a repeat count; a negative argument reverses direction of
motion and also requests repetition, so it moves forward and up one or more
levels.

To move down in list structure, use C-M-d (down-list). In Lisp mode,
where ‘(’ is the only opening delimiter, this is nearly the same as searching
for a ‘(’. An argument specifies the number of levels of parentheses to go
down.

A somewhat random-sounding command which is nevertheless handy is
C-M-t (transpose-sexps), which drags the previous sexp across the next
one. An argument serves as a repeat count, and a negative argument drags
backwards (thus canceling out the effect of C-M-t with a positive argument).
An argument of zero, rather than doing nothing, transposes the sexps ending
after point and the mark.

To set the region around the next sexp in the buffer, use C-M-@ (mark-
sexp), which sets mark at the same place that C-M-f would move to. C-M-@
takes arguments like C-M-f. In particular, a negative argument is useful for
putting the mark at the beginning of the previous sexp.

The list and sexp commands’ understanding of syntax is completely con-
trolled by the syntax table. Any character can, for example, be declared to
be an opening delimiter and act like an open parenthesis. See Section 30.6
[Syntax], page 395.

21.4 Defuns

In Emacs, a parenthetical grouping at the top level in the buffer is called
a defun. The name derives from the fact that most top-level lists in a Lisp
file are instances of the special form defun, but any top-level parenthetical
grouping counts as a defun in Emacs parlance regardless of what its contents
are, and regardless of the programming language in use. For example, in C,
the body of a function definition is a defun.

C-M-a Move to beginning of current or preceding defun (beginning-
of-defun).

C-M-e Move to end of current or following defun (end-of-defun).

Chapter 21: Editing Programs 215

C-M-h Put region around whole current or following defun (mark-
defun).

The commands to move to the beginning and end of the current defun
are C-M-a (beginning-of-defun) and C-M-e (end-of-defun).

If you wish to operate on the current defun, use C-M-h (mark-defun)
which puts point at the beginning and mark at the end of the current or
next defun. For example, this is the easiest way to get ready to move the
defun to a different place in the text. In C mode, C-M-h runs the function
mark-c-function, which is almost the same as mark-defun; the difference is
that it backs up over the argument declarations, function name and returned
data type so that the entire C function is inside the region. See Section 8.4
[Marking Objects], page 60.

Emacs assumes that any open-parenthesis found in the leftmost column
is the start of a defun. Therefore, never put an open-parenthesis at the left
margin in a Lisp file unless it is the start of a top level list. Never put an
open-brace or other opening delimiter at the beginning of a line of C code
unless it starts the body of a function. The most likely problem case is when
you want an opening delimiter at the start of a line inside a string. To avoid
trouble, put an escape character (‘\’, in C and Emacs Lisp, ‘/’ in some other
Lisp dialects) before the opening delimiter. It will not affect the contents of
the string.

In the remotest past, the original Emacs found defuns by moving upward
a level of parentheses until there were no more levels to go up. This always
required scanning all the way back to the beginning of the buffer, even for
a small function. To speed up the operation, Emacs was changed to assume
that any ‘(’ (or other character assigned the syntactic class of opening-
delimiter) at the left margin is the start of a defun. This heuristic is nearly
always right and avoids the costly scan; however, it mandates the convention
described above.

21.5 Indentation for Programs

The best way to keep a program properly indented is to use Emacs to
re-indent it as you change it. Emacs has commands to indent properly either
a single line, a specified number of lines, or all of the lines inside a single
parenthetical grouping.

Emacs also provides a Lisp pretty-printer in the library pp. This program
prints a Lisp object with indentation chosen to look nice.

21.5.1 Basic Program Indentation Commands

216 GNU Emacs Manual

〈TAB〉 Adjust indentation of current line.

〈LFD〉 Equivalent to 〈RET〉 followed by 〈TAB〉 (newline-and-indent).

The basic indentation command is 〈TAB〉, which gives the current line
the correct indentation as determined from the previous lines. The function
that 〈TAB〉 runs depends on the major mode; it is lisp-indent-line in Lisp
mode, c-indent-line in C mode, etc. These functions understand different
syntaxes for different languages, but they all do about the same thing. 〈TAB〉

in any programming language major mode inserts or deletes whitespace at
the beginning of the current line, independent of where point is in the line.
If point is inside the whitespace at the beginning of the line, 〈TAB〉 leaves it at
the end of that whitespace; otherwise, 〈TAB〉 leaves point fixed with respect
to the characters around it.

Use C-q 〈TAB〉 to insert a tab at point.

When entering lines of new code, use 〈LFD〉 (newline-and-indent), which
is equivalent to a 〈RET〉 followed by a 〈TAB〉. 〈LFD〉 creates a blank line, and
then gives it the appropriate indentation.
〈TAB〉 indents the second and following lines of the body of a parenthetical

grouping each under the preceding one; therefore, if you alter one line’s
indentation to be nonstandard, the lines below will tend to follow it. This
behavior is convenient in cases where you have overridden the standard result
of 〈TAB〉 because you find it unaesthetic for a particular line.

Remember that an open-parenthesis, open-brace or other opening de-
limiter at the left margin is assumed by Emacs (including the indentation
routines) to be the start of a function. Therefore, you must never have an
opening delimiter in column zero that is not the beginning of a function, not
even inside a string. This restriction is vital for making the indentation com-
mands fast; you must simply accept it. See Section 21.4 [Defuns], page 214,
for more information on this.

21.5.2 Indenting Several Lines

When you wish to re-indent several lines of code which have been altered
or moved to a different level in the list structure, you have several commands
available.

C-M-q Re-indent all the lines within one list (indent-sexp).

C-u 〈TAB〉 Shift an entire list rigidly sideways so that its first line is properly
indented.

C-M-\ Re-indent all lines in the region (indent-region).

You can re-indent the contents of a single list by positioning point before
the beginning of it and typing C-M-q (indent-sexp in Lisp mode, indent-
c-exp in C mode; also bound to other suitable commands in other modes).

Chapter 21: Editing Programs 217

The indentation of the line the sexp starts on is not changed; therefore, only
the relative indentation within the list, and not its position, is changed. To
correct the position as well, type a 〈TAB〉 before the C-M-q.

If the relative indentation within a list is correct but the indentation of
its first line is not, go to that line and type C-u 〈TAB〉. 〈TAB〉 with a numeric
argument reindents the current line as usual, then reindents by the same
amount all the lines in the grouping starting on the current line. In other
words, it reindents the whole grouping rigidly as a unit. It is clever, though,
and does not alter lines that start inside strings, or C preprocessor lines
when in C mode.

Another way to specify the range to be re-indented is with the region.
The command C-M-\ (indent-region) applies 〈TAB〉 to every line whose first
character is between point and mark.

21.5.3 Customizing Lisp Indentation

The indentation pattern for a Lisp expression can depend on the function
called by the expression. For each Lisp function, you can choose among
several predefined patterns of indentation, or define an arbitrary one with a
Lisp program.

The standard pattern of indentation is as follows: the second line of the
expression is indented under the first argument, if that is on the same line
as the beginning of the expression; otherwise, the second line is indented
underneath the function name. Each following line is indented under the
previous line whose nesting depth is the same.

If the variable lisp-indent-offset is non-nil, it overrides the usual
indentation pattern for the second line of an expression, so that such lines
are always indented lisp-indent-offset more columns than the containing
list.

The standard pattern is overridden for certain functions. Functions whose
names start with def always indent the second line by lisp-body-indent
extra columns beyond the open-parenthesis starting the expression.

The standard pattern can be overridden in various ways for individual
functions, according to the lisp-indent-function property of the function
name. There are four possibilities for this property:

nil This is the same as no property; the standard indentation pat-
tern is used.

defun The pattern used for function names that start with def is used
for this function also.

a number, number
The first number arguments of the function are distinguished
arguments; the rest are considered the body of the expression.

218 GNU Emacs Manual

A line in the expression is indented according to whether the first
argument on it is distinguished or not. If the argument is part of
the body, the line is indented lisp-body-indent more columns
than the open-parenthesis starting the containing expression. If
the argument is distinguished and is either the first or second
argument, it is indented twice that many extra columns. If the
argument is distinguished and not the first or second argument,
the standard pattern is followed for that line.

a symbol, symbol
symbol should be a function name; that function is called to
calculate the indentation of a line within this expression. The
function receives two arguments:

state The value returned by parse-partial-sexp (a Lisp
primitive for indentation and nesting computation)
when it parses up to the beginning of this line.

pos The position at which the line being indented be-
gins.

It should return either a number, which is the number of columns
of indentation for that line, or a list whose car is such a number.
The difference between returning a number and returning a list
is that a number says that all following lines at the same nest-
ing level should be indented just like this one; a list says that
following lines might call for different indentations. This makes
a difference when the indentation is being computed by C-M-q;
if the value is a number, C-M-q need not recalculate indentation
for the following lines until the end of the list.

21.5.4 Commands for C Indentation

Here are the commands for indentation in C mode and related modes:

C-c C-q Reindent the current top-level function definition or aggregate
type declaration (c-indent-defun).

C-M-q Reindent each line in the balanced expression that follows point
(c-indent-exp). A prefix argument inhibits error checking and
warning messages about invalid syntax.

〈TAB〉 Reindent the current line, and/or in some cases insert a tab
character (c-indent-command).

If c-tab-always-indent is t, this command always reindents
the current line and does nothing else. This is the default.

Chapter 21: Editing Programs 219

If that variable is nil, this command reindents the current line
only if point is at the left margin or in the line’s indentation;
otherwise, it inserts a tab.

Any other value (not nil or t) means always reindent the line,
and also insert a tab if within a comment, a string, or a prepro-
cessor directive.

C-u 〈TAB〉 Reindent the current line according to its syntax; also rigidly
reindent any other lines of the expression that starts on the
current line. See Section 21.5.2 [Multi-line Indent], page 216.

To reindent the whole current buffer, type C-x h C-M-\. This first selects
the whole buffer as the region, then reindents that region.

To reindent the current block, use C-M-u C-M-q. This moves to the front
of the block and then reindents it all.

21.5.5 Customizing C Indentation

C mode and related modes use a simple yet flexible mechanism for cus-
tomizing indentation. The mechanism works in two steps: first it classifies
the line syntactically according to its contents and context; second, it asso-
ciates each kind of syntactic construct with an indentation offset which you
can customize.

21.5.5.1 Step 1—Syntactic Analysis

In the first step, the C indentation mechanism looks at the line you are
currently indenting and determines the syntactic components of the con-
struct on that line. It builds a list of these syntactic components, where
each component on the list contains a syntactic symbol and a relative buffer
position. Syntactic symbols describe grammatical elements such as state-
ment, substatement, class-open, class-close, knr-argdecl, etc.

Conceptually, a line of C code is always indented relative to the indenta-
tion of some line higher up in the buffer. This is represented by the relative
buffer positions in the syntactic component list.

Here is an example. Suppose we have the following code in a C++ mode
buffer (the line numbers don’t actually appear in the buffer):

1: void swap (int& a, int& b)
2: {
3: int tmp = a;
4: a = b;
5: b = tmp;
6: }

220 GNU Emacs Manual

If you type C-c C-s (which runs the command c-show-syntactic-
information) on line 4, it shows the result of the indentation mechanism
for that line:

((statement . 32))

This indicates that the line is a statement and it is indented relative to
buffer position 32, which happens to be the ‘i’ in int on line 3. If you move
the cursor to line 3 and type C-c C-s, it displays this:

((defun-block-intro . 28))

This indicates that the int line is the first statement in a block, and
is indented relative to buffer position 28, which is the brace just after the
function header.

Here is another example:

1: int add (int val, int incr, int doit)
2: {
3: if (doit)
4: {
5: return (val + incr);
6: }
7: return (val);
8: }

Typing C-c C-s on line 4 displays this:

((substatement-open . 43))

This says that the brace opens a substatement block. By the way, a
substatement indicates the line after an if, else, while, do, switch, and
for statements.

After a line has been analyzed syntactically for indentation, the global
variable c-syntactic-context contains a list that describes the results.
Each element in this list is a a syntactic component: a cons cell containing
a syntactic symbol and (optionally) its corresponding buffer position. There
may be several elements in a component list; typically only one element has
a buffer position.

21.5.5.2 Step 2—Indentation Calculation

The C indentation mechanism calculates the indentation for the current
line using the list of syntactic components, c-syntactic-context, derived
from syntactic analysis. Each component is a cons cell that contains a syn-
tactic symbol and may also contain a pointer to a location in the buffer.

Each component contributes to the final total indentation of the line in
two ways. First, the syntactic symbol identifies an element of c-offsets-
alist, which is an association list mapping syntactic symbols into inden-

Chapter 21: Editing Programs 221

tation offsets. Each syntactic symbol’s offset adds to the total indentation.
Second, if the component includes a buffer position, the column number of
that position adds to the indentation. All these offsets and column numbers,
added together, give the total indentation.

The following examples demonstrate the workings of the C indentation
mechanism:

1: void swap (int& a, int& b)
2: {
3: int tmp = a;
4: a = b;
5: b = tmp;
6: }

Suppose that point is on line 3 and you type 〈TAB〉 to reindent the line.
As explained above (see Section 21.5.5.1 [Syntactic Analysis], page 219), the
syntactic component list for that line is:

((defun-block-intro . 28))

In this case, the indentation calculation first looks up defun-block-
intro in the c-offsets-alist alist. Suppose that it finds the integer 2;
it adds this to the running total (initialized to zero), yielding a updated
total indentation of 2 spaces.

The next step is to find the column number of buffer position 28. Since
the brace at buffer position 28 is in column zero, this adds 0 to the running
total. Since this line has only one syntactic component, the total indentation
for the line is 2 spaces.

1: int add (int val, int incr, int doit)
2: {
3: if (doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

If you type 〈TAB〉 on line 4, the same process is performed, but with
different data. The syntactic component list for this line is:

((substatement-open . 43))

Here, the indentation calculation’s first job is to look up the symbol
substatement-open in c-offsets-alist. Let’s assume that the offset for
this symbol is 2. At this point the running total is 2 (0 + 2 = 2). Then it
adds the column number of buffer position 43, which is the ‘i’ in if on line
3. This character is in column 2 on that line. Adding this yields a total
indentation of 4 spaces.

222 GNU Emacs Manual

If a syntactic symbol in the analysis of a line does not appear in c-
offsets-alist, it is ignored; if in addition the variable c-strict-syntax-p
is non-nil, it is an error.

21.5.5.3 Changing Indentation Style

There are two ways to customize the indentation style for the C modes.
First, you can select one of several predefined styles, each of which specifies
offsets for all the syntactic symbols. For more flexibility, you can customize
the handling of individual syntactic symbols. See Section 21.5.5.4 [Syntactic
Symbols], page 223, for a list of all defined syntactic symbols.

M-x c-set-style 〈RET〉 style 〈RET〉

Select predefined indentation style style. Type ? when entering
style to see a list of supported styles; to find out what a style
looks like, select it and reindent some C code.

C-c C-o symbol 〈RET〉 offset 〈RET〉

Set the indentation offset for syntactic symbol symbol (c-set-
offset). The second argument offset specifies the new indenta-
tion offset.

The c-offsets-alist variable controls the amount of indentation to give
to each syntactic symbol. Its value is an association list, and each element
of the list has the form (syntactic-symbol . offset). By changing the offsets
for various syntactic symbols, you can customize indentation in fine detail.

Each offset value in c-offsets-alist can be an integer, a function or
variable name, or one of the following symbols: +, -, ++, or --, indicating
positive or negative multiples of the variable c-basic-offset. Thus, if you
want to change the levels of indentation to be 3 spaces instead of 2 spaces,
set c-basic-offset to 3.

Using a function as the offset value provides the ultimate flexibility in
customizing indentation. The function is called with a single argument con-
taining the cons of the syntactic symbol and the relative indent point. The
function should return an integer offset.

The command C-c C-o (c-set-offset) is the easiest way to set offsets,
both interactively or in your ‘~/.emacs’ file. First specify the syntactic
symbol, then the offset you want. See Section 21.5.5.4 [Syntactic Symbols],
page 223, for a list of valid syntactic symbols and their meanings.

The variable c-offsets-alist-default holds the default settings for
the offsets of the syntactic symbols. Do not change this value!

21.5.5.4 Syntactic Symbols

Chapter 21: Editing Programs 223

Here is a table of valid syntactic symbols for C mode indentation, with
their syntactic meanings. Normally, most of these symbols are assigned
offsets in c-offsets-alist.

string Inside a multi-line string.

c Inside a multi-line C style block comment.

defun-open
On a brace that opens a function definition.

defun-close
On a brace that closes a function definition.

defun-block-intro
In the first line in a top-level defun.

class-open
On a brace that opens a class definition.

class-close
On a brace that closes a class definition.

inline-open
On a brace that opens an in-class inline method.

inline-close
On a brace that closes an in-class inline method.

ansi-funcdecl-cont
In the nether region between an ANSI function declaration and
the defun opening brace.

knr-argdecl-intro
On the first line of a K&R C argument declaration.

knr-argdecl
In one of the subsequent lines in a K&R C argument declaration.

topmost-intro
On the first line in a topmost construct definition.

topmost-intro-cont
On the topmost definition continuation lines.

member-init-intro
On the first line in a member initialization list.

member-init-cont
On one of the subsequent member initialization list lines.

inher-intro
On the first line of a multiple inheritance list.

224 GNU Emacs Manual

inher-cont
On one of the subsequent multiple inheritance lines.

block-open
On a statement block open brace.

block-close
On a statement block close brace.

brace-list-open
On the opening brace of an enum or static array list.

brace-list-close
On the closing brace of an enum or static array list.

brace-list-intro
On the first line in an enum or static array list.

brace-list-entry
On one of the subsequent lines in an enum or static array list.

statement
On an ordinary statement.

statement-cont
On a continuation line of a statement.

statement-block-intro
On the first line in a new statement block.

statement-case-intro
On the first line in a case “block”.

statement-case-open
On the first line in a case block starting with brace.

substatement
On the first line after an if, while, for, do, or else.

substatement-open
On the brace that opens a substatement block.

case-label
On a case or default label.

access-label
On a C++ private, protected, or public access label.

label On any ordinary label.

do-while-closure
On the while that ends a do-while construct.

else-clause
On the else of an if-else construct.

Chapter 21: Editing Programs 225

comment-intro
On a line containing only a comment introduction.

arglist-intro
On the first line in an argument list.

arglist-cont
On one of the subsequent argument list lines when no arguments
follow on the same line as the the arglist opening parenthesis.

arglist-cont-nonempty
On one of the subsequent argument list lines when at least one
argument follows on the same line as the arglist opening paren-
thesis.

arglist-close
On the closing parenthesis of an argument list.

stream-op
On one of the lines continuing a stream operator construct.

inclass On a construct which is nested inside a class definition.

cpp-macro
On the start of a cpp macro.

friend On a C++ friend declaration.

objc-method-intro
On the first line of an Objective-C method definition.

objc-method-args-cont
On one of the lines continuing an Objective-C method definition.

objc-method-call-cont
On one of the lines continuing an Objective-C method call.

21.5.5.5 Variables for C Indentation

This section describes additional variables which control the indentation
behavior of C mode and related mode.

c-offsets-alist
Association list of syntactic symbols and their indentation off-
sets. See Section 21.5.5.3 [Changing Indent Style], page 222, for
details.

c-offsets-alist-default
Default settings for the offsets of the syntactic symbols. See
Section 21.5.5.3 [Changing Indent Style], page 222.

226 GNU Emacs Manual

c-style-alist
Variable for specifying styles of indentation; see below.

c-basic-offset
Amount of basic offset used by + and - symbols in c-offsets-
alist.

c-recognize-knr-p
If this variable is non-nil, C mode and Objective C mode rec-
ognize K&R constructs. This variable is needed because of am-
biguities in C syntax that make recognition of K&R constructs
problematic and slow. If you always use ANSI C prototype syn-
tax, set this variable to nil to speed up C indentation.

This variable is nil by default in C++ mode, and t by default
in C mode and Objective C mode.

c-special-indent-hook
Hook for user-defined special indentation adjustments. This
hook is called after a line is indented by C mode and related
modes.

The variable c-style-alist specifies the predefined indentation styles.
Each element has form (name variable-setting . . .), where name is the name
of the style. Each variable-setting has the form (variable . value); variable
is one of the customization variables used by C mode, and value is the value
for that variable when using the selected style.

When variable is c-offsets-alist, that is a special case: value is ap-
pended to the front of the value of c-offsets-alist instead of replacing
that value outright. Therefore, it is not necessary for value to specify each
and every syntactic symbol—only those for which the style differs from the
default.

The indentation of lines containing only comments is also affected by the
variable c-comment-only-line-offset (see Section 21.14.5 [Comments in
C], page 251).

21.5.5.6 C Indentation Styles

A C style is a collection of indentation style customizations. Emacs comes
with several predefined indentation styles for C code including gnu, k&r, bsd,
stroustrup whitesmith, ellemtel, and cc-mode. The default style is gnu.

To choose the style you want, use the command M-x c-set-style. Spec-
ify a style name as an argument (case is not significant in C style names).
The chosen style only affects newly visited buffers, not those you are already
editing.

To define a new C indentation style, call the function c-add-style:

Chapter 21: Editing Programs 227

(c-add-style name values use-now)

Here name is the name of the new style (a string), and values is an alist whose
elements have the form (variable . value). The variables you specify should
be among those documented in Section 21.5.5.5 [Variables for C Indent],
page 225.

If use-now is non-nil, c-add-style switches to the new style after defin-
ing it.

21.6 Automatic Display Of Matching Parentheses

The Emacs parenthesis-matching feature is designed to show automati-
cally how parentheses match in the text. Whenever you type a self-inserting
character that is a closing delimiter, the cursor moves momentarily to the
location of the matching opening delimiter, provided that is on the screen.
If it is not on the screen, some text near it is displayed in the echo area.
Either way, you can tell what grouping is being closed off.

In Lisp, automatic matching applies only to parentheses. In C, it applies
to braces and brackets too. Emacs knows which characters to regard as
matching delimiters based on the syntax table, which is set by the major
mode. See Section 30.6 [Syntax], page 395.

If the opening delimiter and closing delimiter are mismatched—such as in
‘[x)’—a warning message is displayed in the echo area. The correct matches
are specified in the syntax table.

Three variables control parenthesis match display. blink-matching-
paren turns the feature on or off; nil turns it off, but the default is t
to turn match display on. blink-matching-delay says how many seconds
to wait; the default is 1, but on some systems it is useful to specify a fraction
of a second. blink-matching-paren-distance specifies how many charac-
ters back to search to find the matching opening delimiter. If the match is
not found in that far, scanning stops, and nothing is displayed. This is to
prevent scanning for the matching delimiter from wasting lots of time when
there is no match. The default is 12,000.

When using X Windows, you can request a more powerful kind of auto-
matic parenthesis matching by loading the paren library. To load it, type
M-x load-library 〈RET〉 paren 〈RET〉. This library turns off the usual kind
of matching parenthesis display and substitutes another: whenever point is
after a close parenthesis, the close parenthesis and its matching open paren-
thesis are both highlighted; otherwise, if point is before an open parenthesis,
the matching close parenthesis is highlighted. (There is no need to highlight
the open parenthesis after point because the cursor appears on top of that
character.)

228 GNU Emacs Manual

21.7 Manipulating Comments

Because comments are such an important part of programming, Emacs
provides special commands for editing and inserting comments.

21.7.1 Comment Commands

The comment commands insert, kill and align comments.

M-; Insert or align comment (indent-for-comment).

C-x ; Set comment column (set-comment-column).

C-u - C-x ;
Kill comment on current line (kill-comment).

M-〈LFD〉 Like 〈RET〉 followed by inserting and aligning a comment
(indent-new-comment-line).

M-x comment-region
Add or remove comment delimiters on all the lines in the region.

The command that creates a comment is M-; (indent-for-comment). If
there is no comment already on the line, a new comment is created, aligned
at a specific column called the comment column. The comment is created
by inserting the string Emacs thinks comments should start with (the value
of comment-start; see below). Point is left after that string. If the text of
the line extends past the comment column, then the indentation is done to
a suitable boundary (usually, at least one space is inserted). If the major
mode has specified a string to terminate comments, that is inserted after
point, to keep the syntax valid.

M-; can also be used to align an existing comment. If a line already
contains the string that starts comments, then M-; just moves point after it
and re-indents it to the conventional place. Exception: comments starting
in column 0 are not moved.

Some major modes have special rules for indenting certain kinds of com-
ments in certain contexts. For example, in Lisp code, comments which start
with two semicolons are indented as if they were lines of code, instead of
at the comment column. Comments which start with three semicolons are
supposed to start at the left margin. Emacs understands these conventions
by indenting a double-semicolon comment using 〈TAB〉, and by not changing
the indentation of a triple-semicolon comment at all.

;; This function is just an example
;;; Here either two or three semicolons are appropriate.
(defun foo (x)

Chapter 21: Editing Programs 229

;;; And now, the first part of the function:
;; The following line adds one.
(1+ x)) ; This line adds one.

In C code, a comment preceded on its line by nothing but whitespace is
indented like a line of code.

Even when an existing comment is properly aligned, M-; is still useful for
moving directly to the start of the comment.

C-u - C-x ; (kill-comment) kills the comment on the current line, if
there is one. The indentation before the start of the comment is killed as
well. If there does not appear to be a comment in the line, nothing is done.
To reinsert the comment on another line, move to the end of that line, do
C-y, and then do M-; to realign it. Note that C-u - C-x ; is not a distinct
key; it is C-x ; (set-comment-column) with a negative argument. That
command is programmed so that when it receives a negative argument it
calls kill-comment. However, kill-comment is a valid command which you
could bind directly to a key if you wanted to.

21.7.2 Multiple Lines of Comments

If you are typing a comment and wish to continue it on another line,
you can use the command M-〈LFD〉 (indent-new-comment-line). This ter-
minates the comment you are typing, creates a new blank line afterward,
and begins a new comment indented under the old one. When Auto Fill
mode is on, going past the fill column while typing a comment causes the
comment to be continued in just this fashion. If point is not at the end of
the line when M-〈LFD〉 is typed, the text on the rest of the line becomes part
of the new comment line.

To turn existing lines into comment lines, use the M-x comment-region
command. It adds comment delimiters to the lines that start in the re-
gion, thus commenting them out. With a negative argument, it does the
opposite—it deletes comment delimiters from the lines in the region.

With a positive argument, comment-region duplicates the last character
of the comment start sequence it adds; the argument specifies how many
copies of the character to insert. Thus, in Lisp mode, C-u 2 M-x comment-
region adds ‘;;’ to each line. Duplicating the comment delimiter is a way
of calling attention to the comment. It can also affect how the comment is
indented. In Lisp, for proper indentation, you should use an argument of
two, if between defuns, and three, if within a defun.

21.7.3 Options Controlling Comments

230 GNU Emacs Manual

The comment column is stored in the variable comment-column. You
can set it to a number explicitly. Alternatively, the command C-x ; (set-
comment-column) sets the comment column to the column point is at. C-u
C-x ; sets the comment column to match the last comment before point in
the buffer, and then does a M-; to align the current line’s comment under
the previous one. Note that C-u - C-x ; runs the function kill-comment as
described above.

The variable comment-column is per-buffer: setting the variable in the
normal fashion affects only the current buffer, but there is a default value
which you can change with setq-default. See Section 30.2.4 [Locals],
page 376. Many major modes initialize this variable for the current buffer.

The comment commands recognize comments based on the regular ex-
pression that is the value of the variable comment-start-skip. Make sure
this regexp does not match the null string. It may match more than the
comment starting delimiter in the strictest sense of the word; for example,
in C mode the value of the variable is "/*+ *", which matches extra stars
and spaces after the ‘/*’ itself. (Note that ‘\\’ is needed in Lisp syntax to
include a ‘\’ in the string, which is needed to deny the first star its special
meaning in regexp syntax. See Section 12.5 [Regexps], page 90.)

When a comment command makes a new comment, it inserts the value
of comment-start to begin it. The value of comment-end is inserted after
point, so that it will follow the text that you will insert into the comment.
In C mode, comment-start has the value "/* " and comment-end has the
value " */".

The variable comment-multi-line controls how M-〈LFD〉 (indent-new-
comment-line) behaves when used inside a comment. If comment-multi-
line is nil, as it normally is, then the comment on the starting line is
terminated and a new comment is started on the new following line. If
comment-multi-line is not nil, then the new following line is set up as
part of the same comment that was found on the starting line. This is done
by not inserting a terminator on the old line, and not inserting a starter on
the new line. In languages where multi-line comments work, the choice of
value for this variable is a matter of taste.

The variable comment-indent-function should contain a function that
will be called to compute the indentation for a newly inserted comment
or for aligning an existing comment. It is set differently by various major
modes. The function is called with no arguments, but with point at the
beginning of the comment, or at the end of a line if a new comment is to be
inserted. It should return the column in which the comment ought to start.
For example, in Lisp mode, the indent hook function bases its decision on
how many semicolons begin an existing comment, and on the code in the
preceding lines.

Chapter 21: Editing Programs 231

21.8 Editing Without Unbalanced Parentheses

M-(Put parentheses around next sexp(s) (insert-parentheses).

M-) Move past next close parenthesis and re-indent (move-over-
close-and-reindent).

The commands M-((insert-parentheses) and M-) (move-over-close-
and-reindent) are designed to facilitate a style of editing which keeps paren-
theses balanced at all times. M-(inserts a pair of parentheses, either together
as in ‘()’, or, if given an argument, around the next several sexps. It leaves
point after the open parenthesis. The command M-) moves past the close
parenthesis, deleting any indentation preceding it (in this example there is
none), and indenting with 〈LFD〉 after it.

For example, instead of typing (F O O), you can type M-(F O O, which
has the same effect except for leaving the cursor before the close parenthesis.

M-(may insert a space before the open parenthesis, depending on the
syntax class of the preceding character. Set parens-dont-require-spaces
to a non-nil value if you wish to inhibit this.

21.9 Completion for Symbol Names

Usually completion happens in the minibuffer. But one kind of comple-
tion is available in all buffers: completion for symbol names.

The character M-〈TAB〉 runs a command to complete the partial symbol
before point against the set of meaningful symbol names. Any additional
characters determined by the partial name are inserted at point.

If the partial name in the buffer has more than one possible completion
and they have no additional characters in common, a list of all possible
completions is displayed in another window.

There are two ways of determining the set of legitimate symbol names
to complete against. In most major modes, this uses a tags table (see
Section 21.12 [Tags], page 233); the legitimate symbol names are the tag
names listed in the tags table file. The command which implements this is
complete-tag.

In Emacs-Lisp mode, the name space for completion normally consists of
nontrivial symbols present in Emacs—those that have function definitions,
values or properties. However, if there is an open-parenthesis immediately
before the beginning of the partial symbol, only symbols with function defi-
nitions are considered as completions. The command which implements this
is lisp-complete-symbol.

232 GNU Emacs Manual

In Text mode and related modes, M-〈TAB〉 completes words based on the
spell-checker’s dictionary. See Section 13.4 [Spelling], page 103.

21.10 Documentation Commands

As you edit Lisp code to be run in Emacs, the commands C-h f
(describe-function) and C-h v (describe-variable) can be used to print
documentation of functions and variables that you want to call. These com-
mands use the minibuffer to read the name of a function or variable to
document, and display the documentation in a window.

For extra convenience, these commands provide default arguments based
on the code in the neighborhood of point. C-h f sets the default to the
function called in the innermost list containing point. C-h v uses the symbol
name around or adjacent to point as its default.

Documentation on operating system commands, library functions and
system calls can be obtained with the M-x manual-entry command. This
reads a topic as an argument, and displays the “man page” on that topic.
manual-entry starts a background process that formats the manual page, by
running the man program. The result goes in a buffer named ‘*man topic*’.
These buffers use a special major mode, Man mode, that facilitates scrolling
and examining other manual pages. For details, type C-h m while in a man
page buffer.

For a long man page, setting the faces properly can take substantial time.
By default, Emacs uses faces in man pages if you are using X Windows. You
can turn off use of faces in man pages by setting the variable Man-fontify-
manpage-flag to nil.

If you insert the text of a man page into an Emacs buffer in some other
fashion, you can use the command M-x Man-fontify-manpage to perform
the same conversions that M-x manual-entry does.

Eventually the GNU project hopes to replace most man pages with better-
organized manuals that you can browse with Info. See Section 7.5 [Misc
Help], page 54. Since this process is only partially completed, it is still
useful to read manual pages.

21.11 Change Logs

The Emacs command C-x 4 a adds a new entry to the change log file for
the file you are editing (add-change-log-entry-other-window).

A change log file contains a chronological record of when and why you
have changed a program, consisting of a sequence of entries describing indi-
vidual changes. Normally it is kept in a file called ‘ChangeLog’ in the same

Chapter 21: Editing Programs 233

directory as the file you are editing, or one of its parent directories. A single
‘ChangeLog’ file can record changes for all the files in its directory and all
its subdirectories.

A change log entry starts with a header line that contains your name,
your email address (taken from the variable user-mail-address), and the
current date and time. Aside from these header lines, every line in the change
log starts with a space or a tab. The bulk of the entry consists of items,
each of which starts with a line starting with whitespace and a star. Here
are two entries, each with two items:

Wed May 5 14:11:45 1993 Richard Stallman <rms@gnu.ai.mit.edu>

* man.el: Rename symbols ‘man-*’ to ‘Man-*’.

(manual-entry): Make prompt string clearer.

* simple.el (blink-matching-paren-distance):

Change default to 12,000.

Tue May 4 12:42:19 1993 Richard Stallman <rms@gnu.ai.mit.edu>

* vc.el (minor-mode-map-alist): Don’t use it if it’s void.

(vc-cancel-version): Doc fix.

One entry can describe several changes; each change should have its own
item. Normally there should be a blank line between items. When items
are related (parts of the same change, in different places), group them by
leaving no blank line between them. The second entry above contains two
items grouped in this way.

C-x 4 a visits the change log file and creates a new entry unless the most
recent entry is for today’s date and your name. It also creates a new item
for the current file. For many languages, it can even guess the name of the
function or other object that was changed.

The change log file is visited in Change Log mode. In this major mode,
each bunch of grouped items counts as one paragraph, and each entry is
considered a page. This facilitates editing the entries. 〈LFD〉 and auto-fill
indent each new line like the previous line; this is convenient for entering the
contents of an entry.

Version control systems are another way to keep track of changes in your
program and keep a change log. See Section 14.7.4 [Log Entries], page 126.

21.12 Tags Tables

A tags table is a description of how a multi-file program is broken up into
files. It lists the names of the component files and the names and positions

234 GNU Emacs Manual

of the functions (or other named subunits) in each file. Grouping the related
files makes it possible to search or replace through all the files with one
command. Recording the function names and positions makes possible the
M-. command which finds the definition of a function by looking up which
of the files it is in.

Tags tables are stored in files called tags table files. The conventional
name for a tags table file is ‘TAGS’.

Each entry in the tags table records the name of one tag, the name of the
file that the tag is defined in (implicitly), and the position in that file of the
tag’s definition.

Just what names from the described files are recorded in the tags table
depends on the programming language of the described file. They normally
include all functions and subroutines, and may also include global variables,
data types, and anything else convenient. Each name recorded is called a
tag.

21.12.1 Source File Tag Syntax

• In Lisp code, any function defined with defun, any variable defined with
defvar or defconst, and in general the first argument of any expression
that starts with ‘(def’ in column zero, is a tag.

• In Scheme code, tags include anything defined with def or with a con-
struct whose name starts with ‘def’. They also include variables set
with set! at top level in the file.

• In C code, any C function or typedef is a tag, and so are defini-
tions of struct, union and enum. Any #define is also a tag, unless
‘--no-defines’ is specified when the tags table is constructed, which
sometimes makes the tags file much smaller. In C++ code, member
functions are also recognized.

• In Yacc or Bison input files, each rule defines as a tag the nonterminal
it constructs. The portions of the file that contain C code are parsed as
C code.

• In Fortran code, functions and subroutines are tags.

• In Pascal code, the tags are the functions and procedures defined in the
file.

• In Perl code, the tags are the procedures defined by the sub keyword.

• In Prolog code, a tag name appears at the left margin.

• In Erlang code, the tags are the functions, records, and macros defined
in the file.

• In assembler code, labels appearing at the beginning of a line, followed
by a colon, are tags.

Chapter 21: Editing Programs 235

• In LaTEX text, the argument of any of the commands \chapter,
\section, \subsection, \subsubsection, \eqno, \label, \ref,
\cite, \bibitem, \part, \appendix, \entry, or \index, is a tag.

Other commands can make tags as well, if you specify them in the envi-
ronment variable TEXTAGS before invoking etags. The value of this en-
vironment variable should be a colon-separated list of commands names.
For example,

TEXTAGS="def:newcommand:newenvironment"
export TEXTAGS

specifies (using Bourne shell syntax) that the commands ‘\def’,
‘\newcommand’ and ‘\newenvironment’ also define tags.

• You can also generate tags based on regexp matching (see Sec-
tion 21.12.2 [Create Tags Table], page 235) for any text file.

21.12.2 Creating Tags Tables

The etags program is used to create a tags table file. It knows the syntax
of several languages, as described in the previous section. Here is how to
run etags:

etags inputfiles. . .

The etags program reads the specified files, and writes a tags table named
‘TAGS’ in the current working directory. etags recognizes the language used
in an input file based on its file name and contents. You can specify the
language with the ‘--language=name’ option, described below.

If the tags table data become outdated due to changes in the files de-
scribed in the table, the way to update the tags table is the same way it was
made in the first place. It is not necessary to do this often.

If the tags table fails to record a tag, or records it for the wrong file, then
Emacs cannot possibly find its definition. However, if the position recorded
in the tags table becomes a little bit wrong (due to some editing in the file
that the tag definition is in), the only consequence is a slight delay in finding
the tag. Even if the stored position is very wrong, Emacs will still find the
tag, but it must search the entire file for it.

So you should update a tags table when you define new tags that you want
to have listed, or when you move tag definitions from one file to another, or
when changes become substantial. Normally there is no need to update the
tags table after each edit, or even every day.

One tags table can effectively include another. Specify the included tags
file name with the ‘--include=file’ option when creating the file that is to
include it. The latter file then acts as if it contained all the files specified in
the included file, as well as the files it directly contains.

236 GNU Emacs Manual

If you specify the source files with relative file names when you run etags,
the tags file will contain file names relative to the directory where the tags
file was initially written. This way, you can move an entire directory tree
containing both the tags file and the source files, and the tags file will still
refer correctly to the source files.

If you specify absolute file names as arguments to etags, then the tags
file will contain absolute file names. This way, the tags file will still refer
to the same files even if you move it, as long as the source files remain in
the same place. Absolute file names start with ‘/’, or with ‘device:/’ on
MS-DOS and Windows.

When you want to make a tags table from a great number of files, you
may have problems listing them on the command line, because some systems
have a limit on its length. The simplest way to circumvent this limit is to
tell etags to read the file names from its standard input, by typing a dash
in place of the file names, like this:

find . -name "*.[chCH]" -print | etags -

Use the option ‘--language=name’ to specify the language explicitly.
You can intermix these options with file names; each one applies to the
file names that follow it. Specify ‘--language=auto’ to tell etags to re-
sume guessing the language from the file names and file contents. Specify
‘--language=none’ to turn off language-specific processing entirely; then
etags recognizes tags by regexp matching alone. ‘etags --help’ prints the
list of the languages etags knows, and the file name rules for guessing the
language.

The ‘--regex’ option provides a general way of recognizing tags based on
regexp matching. You can freely intermix it with file names. Each ‘--regex’
option adds to the preceding ones, and applies only to the following files.
The syntax is:

--regex=/tagregexp[/nameregexp]/

where tagregexp is used to match the lines to tag. It is always anchored, that
is, it behaves as if preceded by ‘^’. If you want to account for indentation,
just match any initial number of blanks by beginning your regular expression
with ‘[\t]*’. In the regular expressions, ‘\’ quotes the next character, and
‘\t’ stands for the tab character. Note that etags does not handle the other
C escape sequences for special characters.

You should not match more characters with tagregexp than that needed
to recognize what you want to tag. If the match is such that more characters
than needed are unavoidably matched by tagregexp, you may find useful to
add a nameregexp, in order to narrow the tag scope. You can find some
examples below.

The ‘-R’ option deletes all the regexps defined with ‘--regex’ options.
It applies to the file names following it, as you can see from the following
example:

Chapter 21: Editing Programs 237

etags --regex=/reg1/ voo.doo --regex=/reg2/ \
bar.ber -R --lang=lisp los.er

Here etags chooses the parsing language for ‘voo.doo’ and ‘bar.ber’ ac-
cording to their contents. etags also uses reg1 to recognize additional tags in
‘voo.doo’, and both reg1 and reg2 to recognize additional tags in ‘bar.ber’.
etags uses the Lisp tags rules, and no regexp matching, to recognize tags in
‘los.er’.

Here are some more examples. The regexps are quoted to protect them
from shell interpretation.

Tag the DEFVAR macros in the emacs source files:

--regex=’/[\t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/’

Tag VHDL files (this example is a single long line, broken here for formatting
reasons):

--language=none
--regex=’/[\t]*\(ARCHITECTURE\|CONFIGURATION\) +[^]* +OF/’
--regex=’/[\t]*\(ATTRIBUTE\|ENTITY\|FUNCTION\|PACKAGE\
\(BODY\)?\|PROCEDURE\|PROCESS\|TYPE\)[\t]+\([^ \t(]+\)/\3/’

Tag Cobol files (every label starting in column seven):

--language=none --regex=’/.......[a-zA-Z0-9-]+\./’

Tag Postscript files (every label starting in column one):

--language=none --regex=’#/[^ \t{]+#/’

Tag TCL files (this last example shows the usage of a nameregexp):

--lang=none --regex=’/proc[\t]+\([^ \t]+\)/\1/’

For a list of the other available etags options, execute etags --help.

21.12.3 Selecting a Tags Table

Emacs has at any time one selected tags table, and all the commands for
working with tags tables use the selected one. To select a tags table, type M-
x visit-tags-table, which reads the tags table file name as an argument.
The name ‘TAGS’ in the default directory is used as the default file name.

All this command does is store the file name in the variable tags-file-
name. Emacs does not actually read in the tags table contents until you try to
use them. Setting this variable yourself is just as good as using visit-tags-
table. The variable’s initial value is nil; that value tells all the commands
for working with tags tables that they must ask for a tags table file name to
use.

Using visit-tags-table when a tags table is already loaded gives you
a choice: you can add the new tags table to the current list of tags tables,
or start a new list. The tags commands use all the tags tables in the current
list. If you start a new list, the new tags table is used instead of others. If

238 GNU Emacs Manual

you add the new table to the current list, it is used as well as the others.
When the tags commands scan the list of tags tables, they don’t always start
at the beginning of the list; they start with the first tags table (if any) that
describes the current file, proceed from there to the end of the list, and then
scan from the beginning of the list until they have covered all the tables in
the list.

You can specify a precise list of tags tables by setting the variable tags-
table-list to a list of strings, like this:

(setq tags-table-list
’("~/emacs" "/usr/local/lib/emacs/src"))

This tells the tags commands to look at the ‘TAGS’ files in your ‘~/emacs’
directory and in the ‘/usr/local/lib/emacs/src’ directory. The order de-
pends on which file you are in and which tags table mentions that file, as
explained above.

Do not set both tags-file-name and tags-table-list.

21.12.4 Finding a Tag

The most important thing that a tags table enables you to do is to find
the definition of a specific tag.

M-. tag 〈RET〉

Find first definition of tag (find-tag).

C-u M-. Find next alternate definition of last tag specified.

C-u - M-. Go back to previous tag found.

C-M-. pattern 〈RET〉

Find a tag whose name matches pattern (find-tag-regexp).

C-u C-M-. Find the next tag whose name matches the last pattern used.

C-x 4 . tag 〈RET〉

Find first definition of tag, but display it in another window
(find-tag-other-window).

C-x 5 . tag 〈RET〉

Find first definition of tag, and create a new frame to select the
buffer (find-tag-other-frame).

M-. (find-tag) is the command to find the definition of a specified tag.
It searches through the tags table for that tag, as a string, and then uses
the tags table info to determine the file that the definition is in and the
approximate character position in the file of the definition. Then find-
tag visits that file, moves point to the approximate character position, and
searches ever-increasing distances away to find the tag definition.

Chapter 21: Editing Programs 239

If an empty argument is given (just type 〈RET〉), the sexp in the buffer
before or around point is used as the tag argument. See Section 21.2 [Lists],
page 212, for info on sexps.

You don’t need to give M-. the full name of the tag; a part will do.
This is because M-. finds tags in the table which contain tag as a substring.
However, it prefers an exact match to a substring match. To find other tags
that match the same substring, give find-tag a numeric argument, as in
C-u M-.; this does not read a tag name, but continues searching the tags
table’s text for another tag containing the same substring last used. If you
have a real 〈META〉 key, M-0 M-. is an easier alternative to C-u M-..

Like most commands that can switch buffers, find-tag has a variant that
displays the new buffer in another window, and one that makes a new frame
for it. The former is C-x 4 ., which invokes the command find-tag-other-
window. The latter is C-x 5 ., which invokes find-tag-other-frame.

To move back to places you’ve found tags recently, use C-u - M-.; more
generally, M-. with a negative numeric argument. This command can take
you to another buffer. C-x 4 . with a negative argument finds the previous
tag location in another window.

The command C-M-. (find-tag-regexp) visits the tags that match a
specified regular expression. It is just like M-. except that it does regexp
matching instead of substring matching.

21.12.5 Searching and Replacing with Tags Tables

The commands in this section visit and search all the files listed in the
selected tags table, one by one. For these commands, the tags table serves
only to specify a sequence of files to search.

M-x tags-search 〈RET〉 regexp 〈RET〉

Search for regexp through the files in the selected tags table.

M-x tags-query-replace 〈RET〉 regexp 〈RET〉 replacement 〈RET〉

Perform a query-replace-regexp on each file in the selected
tags table.

M-, Restart one of the commands above, from the current location
of point (tags-loop-continue).

M-x tags-search reads a regexp using the minibuffer, then searches for
matches in all the files in the selected tags table, one file at a time. It displays
the name of the file being searched so you can follow its progress. As soon
as it finds an occurrence, tags-search returns.

Having found one match, you probably want to find all the rest. To
find one more match, type M-, (tags-loop-continue) to resume the tags-

240 GNU Emacs Manual

search. This searches the rest of the current buffer, followed by the remain-
ing files of the tags table.

M-x tags-query-replace performs a single query-replace-regexp
through all the files in the tags table. It reads a regexp to search for
and a string to replace with, just like ordinary M-x query-replace-regexp.
It searches much like M-x tags-search, but repeatedly, processing matches
according to your input. See Section 12.7 [Replace], page 95, for more
information on query replace.

It is possible to get through all the files in the tags table with a single
invocation of M-x tags-query-replace. But often it is useful to exit tem-
porarily, which you can do with any input event that has no special query
replace meaning. You can resume the query replace subsequently by typing
M-,; this command resumes the last tags search or replace command that
you did.

The commands in this section carry out much broader searches than the
find-tag family. The find-tag commands search only for definitions of
tags that match your substring or regexp. The commands tags-search and
tags-query-replace find every occurrence of the regexp, as ordinary search
commands and replace commands do in the current buffer.

These commands create buffers only temporarily for the files that they
have to search (those which are not already visited in Emacs buffers). Buffers
in which no match is found are quickly killed; the others continue to exist.

It may have struck you that tags-search is a lot like grep. You can also
run grep itself as an inferior of Emacs and have Emacs show you the match-
ing lines one by one. This works much like running a compilation; finding
the source locations of the grep matches works like finding the compilation
errors. See Section 22.1 [Compilation], page 261.

21.12.6 Tags Table Inquiries

M-x list-tags 〈RET〉 file 〈RET〉

Display a list of the tags defined in the program file ‘file’.

M-x tags-apropos 〈RET〉 regexp 〈RET〉

Display a list of all tags matching regexp.

M-x list-tags reads the name of one of the files described by the selected
tags table, and displays a list of all the tags defined in that file. The “file
name” argument is really just a string to compare against the file names
recorded in the tags table; it is read as a string rather than as a file name.
Therefore, completion and defaulting are not available, and you must enter
the file name the same way it appears in the tags table. Do not include a
directory as part of the file name unless the file name recorded in the tags
table includes a directory.

Chapter 21: Editing Programs 241

M-x tags-apropos is like apropos for tags (see Section 7.3 [Apropos],
page 51). It reads a regexp, then finds all the tags in the selected tags table
whose entries match that regexp, and displays the tag names found.

You can also perform completion in the buffer on the name space of tag
names in the current tags tables. See Section 21.9 [Symbol Completion],
page 231.

21.13 Merging Files with Emerge

It’s not unusual for programmers to get their signals crossed and modify
the same program in two different directions. To recover from this confusion,
you need to merge the two versions. Emerge makes this easier. See also
Section 14.9 [Comparing Files], page 137.

21.13.1 Overview of Emerge

To start Emerge, run one of these four commands:

M-x emerge-files
Merge two specified files.

M-x emerge-files-with-ancestor
Merge two specified files, with reference to a common ancestor.

M-x emerge-buffers
Merge two buffers.

M-x emerge-buffers-with-ancestor
Merge two buffers with reference to a common ancestor in a
third buffer.

The Emerge commands compare two files or buffers, and display the
comparison in three buffers: one for each input text (the A buffer and the B
buffer), and one (the merge buffer) where merging takes place. The merge
buffer shows the full merged text, not just the differences. Wherever the two
input texts differ, you can choose which one of them to include in the merge
buffer.

The Emerge commands that take input from existing buffers use only the
accessible portions of those buffers, if they are narrowed (see Section 29.7
[Narrowing], page 362).

If a common ancestor version is available, from which the two texts to
be merged were both derived, Emerge can use it to guess which alternative
is right. Wherever one current version agrees with the ancestor, Emerge
presumes that the other current version is a deliberate change which should

242 GNU Emacs Manual

be kept in the merged version. Use the ‘with-ancestor’ commands if you
want to specify a common ancestor text. These commands read three file or
buffer names—variant A, variant B, and the common ancestor.

After the comparison is done and the buffers are prepared, the interactive
merging starts. You control the merging by typing special merge commands
in the merge buffer. The merge buffer shows you a full merged text, not
just differences. For each run of differences between the input texts, you can
choose which one of them to keep, or edit them both together.

The merge buffer uses a special major mode, Emerge mode, with com-
mands for making these choices. But you can also edit the buffer with
ordinary Emacs commands.

At any given time, the attention of Emerge is focused on one particular
difference, called the selected difference. This difference is marked off in the
three buffers like this:

vvvvvvvvvvvvvvvvvvvv
text that differs
^^^^^^^^^^^^^^^^^^^^

Emerge numbers all the differences sequentially and the mode line always
shows the number of the selected difference.

Normally, the merge buffer starts out with the A version of the text. But
when the A version of a difference agrees with the common ancestor, then
the B version is initially preferred for that difference.

Emerge leaves the merged text in the merge buffer when you exit. At
that point, you can save it in a file with C-x C-w. If you give a numeric
argument to emerge-files or emerge-files-with-ancestor, it reads the
name of the output file using the minibuffer. (This is the last file name those
commands read.) Then exiting from Emerge saves the merged text in the
output file.

Normally, Emerge commands save the output buffer in its file when you
exit. If you abort Emerge with C-], the Emerge command does not save the
output buffer, but you can save it yourself if you wish.

21.13.2 Submodes of Emerge

You can choose between two modes for giving merge commands: Fast
mode and Edit mode. In Fast mode, basic merge commands are single
characters, but ordinary Emacs commands are disabled. This is convenient
if you use only merge commands. In Edit mode, all merge commands start
with the prefix key C-c C-c, and the normal Emacs commands are also
available. This allows editing the merge buffer, but slows down Emerge
operations.

Chapter 21: Editing Programs 243

Use e to switch to Edit mode, and C-c C-c f to switch to Fast mode.
The mode line indicates Edit and Fast modes with ‘E’ and ‘F’.

Emerge has two additional submodes that affect how particular merge
commands work: Auto Advance mode and Skip Prefers mode.

If Auto Advance mode is in effect, the a and b commands advance to
the next difference. This lets you go through the merge faster as long as
you simply choose one of the alternatives from the input. The mode line
indicates Auto Advance mode with ‘A’.

If Skip Prefers mode is in effect, the n and p commands skip over differ-
ences in states prefer-A and prefer-B (see Section 21.13.3 [State of Differ-
ence], page 243). Thus you see only differences for which neither version is
presumed “correct”. The mode line indicates Skip Prefers mode with ‘S’.

Use the command s a (emerge-auto-advance-mode) to set or clear Auto
Advance mode. Use s s (emerge-skip-prefers-mode) to set or clear Skip
Prefers mode. These commands turn on the mode with a positive argument,
turns it off with a negative or zero argument, and toggle the mode with no
argument.

21.13.3 State of a Difference

In the merge buffer, a difference is marked with lines of ‘v’ and ‘^’ char-
acters. Each difference has one of these seven states:

A The difference is showing the A version. The a command always
produces this state; the mode line indicates it with ‘A’.

B The difference is showing the B version. The b command always
produces this state; the mode line indicates it with ‘B’.

default-A
default-B The difference is showing the A or the B state by default, because

you haven’t made a choice. All differences start in the default-
A state (and thus the merge buffer is a copy of the A buffer),
except those for which one alternative is “preferred” (see below).

When you select a difference, its state changes from default-A or
default-B to plain A or B. Thus, the selected difference never has
state default-A or default-B, and these states are never displayed
in the mode line.

The command d a chooses default-A as the default state, and d
b chooses default-B. This chosen default applies to all differences
which you haven’t ever selected and for which no alternative is
preferred. If you are moving through the merge sequentially, the
differences you haven’t selected are those following the selected
one. Thus, while moving sequentially, you can effectively make

244 GNU Emacs Manual

the A version the default for some sections of the merge buffer
and the B version the default for others by using d a and d b
between sections.

prefer-A
prefer-B The difference is showing the A or B state because it is preferred.

This means that you haven’t made an explicit choice, but one
alternative seems likely to be right because the other alternative
agrees with the common ancestor. Thus, where the A buffer
agrees with the common ancestor, the B version is preferred,
because chances are it is the one that was actually changed.

These two states are displayed in the mode line as ‘A*’ and ‘B*’.

combined The difference is showing a combination of the A and B states,
as a result of the x c or x C commands.

Once a difference is in this state, the a and b commands don’t
do anything to it unless you give them a numeric argument.

The mode line displays this state as ‘comb’.

21.13.4 Merge Commands

Here are the Merge commands for Fast mode; in Edit mode, precede them
with C-c C-c:

p Select the previous difference.

n Select the next difference.

a Choose the A version of this difference.

b Choose the B version of this difference.

C-u n j Select difference number n.

. Select the difference containing point. You can use this com-
mand in the merge buffer or in the A or B buffer.

q Quit—finish the merge.

C-] Abort—exit merging and do not save the output.

f Go into Fast mode. (In Edit mode, this is actually C-c C-c f.)

e Go into Edit mode.

l Recenter (like C-l) all three windows.

- Specify part of a prefix numeric argument.

digit Also specify part of a prefix numeric argument.

Chapter 21: Editing Programs 245

d a Choose the A version as the default from here down in the merge
buffer.

d b Choose the B version as the default from here down in the merge
buffer.

c a Copy the A version of this difference into the kill ring.

c b Copy the B version of this difference into the kill ring.

i a Insert the A version of this difference at point.

i b Insert the B version of this difference at point.

m Put point and mark around the difference.

^ Scroll all three windows down (like M-v).

v Scroll all three windows up (like C-v).

< Scroll all three windows left (like C-x <).

> Scroll all three windows right (like C-x >).

| Reset horizontal scroll on all three windows.

x 1 Shrink the merge window to one line. (Use C-u l to restore it
to full size.)

x c Combine the two versions of this difference (see Section 21.13.6
[Combining in Emerge], page 246).

x f Show the names of the files/buffers Emerge is operating on, in
a Help window. (Use C-u l to restore windows.)

x j Join this difference with the following one. (C-u x j joins this
difference with the previous one.)

x s Split this difference into two differences. Before you use this
command, position point in each of the three buffers at the place
where you want to split the difference.

x t Trim identical lines off top and bottom of the difference. Such
lines occur when the A and B versions are identical but differ
from the ancestor version.

21.13.5 Exiting Emerge

The q command (emerge-quit) finishes the merge, storing the results
into the output file if you specified one. It restores the A and B buffers to
their proper contents, or kills them if they were created by Emerge and you
haven’t changed them. It also disables the Emerge commands in the merge

246 GNU Emacs Manual

buffer, since executing them later could damage the contents of the various
buffers.

C-] aborts the merge. This means exiting without writing the output file.
If you didn’t specify an output file, then there is no real difference between
aborting and finishing the merge.

If the Emerge command was called from another Lisp program, then its
return value is t for successful completion, or nil if you abort.

21.13.6 Combining the Two Versions

Sometimes you want to keep both alternatives for a particular difference.
To do this, use x c, which edits the merge buffer like this:

#ifdef NEW
version from A buffer
#else /* NEW */
version from B buffer
#endif /* NEW */

While this example shows C preprocessor conditionals delimiting the two
alternative versions, you can specify the strings to use by setting the variable
emerge-combine-versions-template to a string of your choice. In the
string, ‘%a’ says where to put version A, and ‘%b’ says where to put version
B. The default setting, which produces the results shown above, looks like
this:

"#ifdef NEW\n%a#else /* NEW */\n%b#endif /* NEW */\n"

21.13.7 Fine Points of Emerge

During the merge, you mustn’t try to edit the A and B buffers yourself.
Emerge modifies them temporarily, but ultimately puts them back the way
they were.

You can have any number of merges going at once—just don’t use any
one buffer as input to more than one merge at once, since the temporary
changes made in these buffers would get in each other’s way.

Starting Emerge can take a long time because it needs to compare the
files fully. Emacs can’t do anything else until diff finishes. Perhaps in the
future someone will change Emerge to do the comparison in the background
when the input files are large—then you could keep on doing other things
with Emacs until Emerge is ready to accept commands.

After setting up the merge, Emerge runs the hook emerge-startup-hook
(see Section 30.2.3 [Hooks], page 375).

Chapter 21: Editing Programs 247

21.14 C Mode

This section describes special features available in C, C++, Objective-C
and Java modes.

21.14.1 C Mode Motion Commands

This section commands for moving point, in C mode and related modes.

C-c C-u Move point back to the containing preprocessor conditional,
leaving the mark behind. A prefix argument acts as a repeat
count. With a negative argument, move point forward to the
end of the containing preprocessor conditional. When going
backwards, #elif is treated like #else followed by #if. When
going forwards, #elif is ignored.

C-c C-p Move point back over a preprocessor conditional, leaving the
mark behind. A prefix argument acts as a repeat count. With
a negative argument, move forward.

C-c C-n Move point forward across a preprocessor conditional, leaving
the mark behind. A prefix argument acts as a repeat count.
With a negative argument, move backward.

M-a Move point to the beginning of the innermost C statement. If
point is already at the beginning of a statement, move to the
beginning of the preceding statement. With prefix argument n,
move back n − 1 statements.

If point is within a string or comment, or next to a comment
(only whitespace between them), this command moves by sen-
tences instead of statements.

When called from a program, this function takes two optional
arguments: the numeric prefix argument, and a buffer position
limit (don’t move back before that place).

M-e Move point to the end of the innermost C statement. If point is
at the end of a statement, move to the end of the next statement.
With prefix argument n, move forward n − 1 statements.

If point is within a string or comment, or next to a comment
(only whitespace between them), this command moves by sen-
tences instead of statements.

When called from a program, this function takes two optional
arguments: the numeric prefix argument, and a buffer position
limit (don’t move past that place).

248 GNU Emacs Manual

M-x c-backward-into-nomenclature
Move point backward to beginning of a C++ nomenclature sec-
tion or word. With prefix argument n, move n times. If n is nega-
tive, move forward. C++ nomenclature means a symbol name in
the style of NamingSymbolsWithMixedCaseAndNoUnderlines;
each capital letter begins a section or word.

In the GNU project, we recommend using underscores to sepa-
rate words within an identifier in C or C++, rather than using
case distinctions.

M-x c-forward-into-nomenclature
Move point forward to end of a C++ nomenclature section or
word. With prefix argument n, move n times.

21.14.2 Electric C Characters

In C mode and related modes, certain printing characters are “electric”—
in addition to inserting themselves, they also reindent the current line and
may insert newlines. This feature is controlled by the variable c-auto-
newline. The “electric” characters are {, }, :, #, ;, ,, <, >, / and *.

Electric characters insert newlines only when the auto-newline feature
is enabled (indicated by ‘/a’ in the mode line after the mode name). This
feature is controlled by the variable c-auto-newline. You can turn this
feature on or off with the command C-c C-a:

C-c C-a Toggle the auto-newline feature (c-toggle-auto-state). With
a prefix argument, this command turns the auto-newline feature
on if the argument is positive, and off if it is negative.

The colon character is electric because that is appropriate for a single
colon. But when you want to insert a double colon in C++, the electric
behavior of colon is inconvenient. You can insert a double colon with no
reindentation or newlines by typing C-c ::

C-c : Insert a double colon scope operator at point, without reindent-
ing the line or adding any newlines (c-scope-operator).

The electric # key reindents the line if it appears to be the beginning
of a preprocessor directive. This happens when the value of c-electric-
pound-behavior is (alignleft). You can turn this feature off by setting
c-electric-pound-behavior to nil.

The variable c-hanging-braces-alist controls the insertion of newlines
before and after inserted braces. It is an association list with elements of the
following form: (syntactic-symbol . nl-list). Most of the syntactic symbols
that appear in c-offsets-alist are meaningful here as well.

Chapter 21: Editing Programs 249

The list nl-list may contain either of the symbols before or after, or
both; or it may be nil. When a brace is inserted, the syntactic context it
defines is looked up in c-hanging-braces-alist; if it is found, the nl-list
is used to determine where newlines are inserted: either before the brace,
after, or both. If not found, the default is to insert a newline both before
and after braces.

The variable c-hanging-colons-alist controls the insertion of newlines
before and after inserted colons. It is an association list with elements of
the following form: (syntactic-symbol . nl-list). The list nl-list may contain
either of the symbols before or after, or both; or it may be nil.

When a colon is inserted, the syntactic symbol it defines is looked up in
this list, and if found, the nl-list is used to determine where newlines are
inserted: either before the brace, after, or both. If the syntactic symbol is
not found in this list, no newlines are inserted.

Electric characters can also delete newlines automatically when the auto-
newline feature is enabled. This feature makes auto-newline more acceptable,
by deleting the newlines in the most common cases where you do not want
them. Emacs can recognize several cases in which deleting a newline might
be desirable; by setting the variable c-cleanup-list, you can specify which
of these cases that should happen. The variable’s value is a list of symbols,
each describing one case for possible deletion of a newline. Here are the
meaningful symbols, and their meanings:

brace-else-brace
Clean up ‘} else {’ constructs by placing entire construct on a
single line. The clean-up occurs when you type the ‘{’ after the
else, but only if there is nothing but white space between the
braces and the else.

empty-defun-braces
Clean up empty defun braces by placing the braces on the same
line. Clean-up occurs when you type the closing brace.

defun-close-semi
Clean up the semicolon after a struct or similar type declara-
tion, by placing the semicolon on the same line as the closing
brace. Clean-up occurs when you type the semicolon.

list-close-comma
Clean up commas following braces in array and aggregate ini-
tializers. Clean-up occurs when you type the comma.

scope-operator
Clean up double colons which may designate a C++ scope op-
erator, by placing the colons together. Clean-up occurs when
you type the second colon, but only when the two colons are
separated by nothing but whitespace.

250 GNU Emacs Manual

21.14.3 Hungry Delete Feature in C

When the hungry-delete feature is enabled (indicated by ‘/h’ or ‘/ah’
in the mode line after the mode name), a single 〈DEL〉 command deletes all
preceding whitespace, not just one space. To turn this feature on or off, use
C-c C-d:

C-c C-d Toggle the hungry-delete feature (c-toggle-hungry-state).
With a prefix argument, this command turns the hungry-delete
feature on if the argument is positive, and off if it is negative.

C-c C-t Toggle the auto-newline and hungry-delete features, both at
once (c-toggle-auto-hungry-state).

The variable c-hungry-delete-key controls whether the hungry-delete
feature is enabled.

21.14.4 Other Commands for C Mode

C-M-h Put mark at the end of a function definition, and put point at
the beginning (c-mark-function).

M-q Fill a paragraph, handling C and C++ comments (c-fill-
paragraph). If any part of the current line is a comment or
within a comment, this command fills the comment or the para-
graph of it that point is in, preserving the comment indentation
and comment delimiters.

C-c C-e Run the C preprocessor on the text in the region, and show
the result, which includes the expansion of all the macro calls
(c-macro-expand). The buffer text before the region is also
included in preprocessing, for the sake of macros defined there,
but the output from this part isn’t shown.

When you are debugging C code that uses macros, sometimes
it is hard to figure out precisely how the macros expand. With
this command, you don’t have to figure it out; you can see the
expansions.

C-c C-\ Insert or align ‘\’ characters at the ends of the lines of the region
(c-backslash-region). This is useful after writing or editing a
C macro definition.

If a line already ends in ‘\’, this command adjusts the amount of
whitespace before it. Otherwise, it inserts a new ‘\’. However,
the last line in the region is treated specially; no ‘\’ is inserted
on that line, and any ‘\’ there is deleted.

Chapter 21: Editing Programs 251

M-x cpp-highlight-buffer
Highlight parts of the text according to its preprocessor con-
ditionals. This command displays another buffer named ‘*CPP
Edit*’, which serves as a graphic menu for selecting how to dis-
play particular kinds of conditionals and their contents. After
changing various settings, click on ‘[A]pply these settings’
(or go to that buffer and type a) to rehighlight the C mode
buffer accordingly.

C-c C-s Display the syntactic information about the current source line
(c-show-syntactic-information). This is the information
that directs how the line is indented.

21.14.5 Comments in C Modes

C mode and related modes use a number of variables for controlling com-
ment format.

c-block-comments-indent-p
This variable specifies how to reindent block comments. The C
modes support five styles of block comments:

style 1: style 2 (GNU): style 3: style 4: style 5:

/* /* Blah /* /* /*

blah blah. */ * blah ** blah blah

blah * blah ** blah blah

*/ */ */ */

For the styles 1 through 4, c-block-comments-indent-p should
be nil (the default). If you want to use style 5, set c-block-
comments-indent-p to t.

This variable has no effect on the indentation of the comment-
start itself or on insertion of asterisks when auto-filling C com-
ments. It does not affect M-q either.

c-comment-only-line-offset
Extra offset for line which contains only the start of a com-
ment. It can be either an integer or a cons cell of the form
(non-anchored-offset . anchored-offset), where non-anchored-
offset is the amount of offset given to non-column-zero anchored
comment-only lines, and anchored-offset is the amount of off-
set to give column-zero anchored comment-only lines. Just an
integer as value is equivalent to (val . 0).

c-comment-start-regexp
This buffer-local variable specifies how to recognize the start of
a comment.

252 GNU Emacs Manual

c-hanging-comment-ender-p
If this variable is nil, c-fill-paragraph leaves the comment
terminator of a block comment on a line by itself. The default
value is t, which always puts the comment-end delimiter ‘*/’ at
the end of the last line of the comment text.

21.15 Fortran Mode

Fortran mode provides special motion commands for Fortran statements
and subprograms, and indentation commands that understand Fortran con-
ventions of nesting, line numbers and continuation statements. Fortran mode
has its own Auto Fill mode that breaks long lines into proper Fortran con-
tinuation lines.

Special commands for comments are provided because Fortran comments
are unlike those of other languages. Built-in abbrevs optionally save typing
when you insert Fortran keywords.

Use M-x fortran-mode to switch to this major mode. This command
runs the hook fortran-mode-hook (see Section 30.2.3 [Hooks], page 375).

21.15.1 Motion Commands

Fortran mode provides special commands to move by subprograms (func-
tions and subroutines) and by statements. There is also a command to put
the region around one subprogram, convenient for killing it or moving it.

C-M-a Move to beginning of subprogram (beginning-of-fortran-
subprogram).

C-M-e Move to end of subprogram (end-of-fortran-subprogram).

C-M-h Put point at beginning of subprogram and mark at end (mark-
fortran-subprogram).

C-c C-n Move to beginning of current or next statement (fortran-next-
statement).

C-c C-p Move to beginning of current or previous statement (fortran-
previous-statement).

21.15.2 Fortran Indentation

Special commands and features are needed for indenting Fortran code
in order to make sure various syntactic entities (line numbers, comment
line indicators and continuation line flags) appear in the columns that are
required for standard Fortran.

Chapter 21: Editing Programs 253

21.15.2.1 Fortran Indentation Commands

〈TAB〉 Indent the current line (fortran-indent-line).

〈LFD〉 Indent the current and start a new indented line (fortran-
indent-new-line).

M-〈LFD〉 Break the current line and set up a continuation line.

C-M-q Indent all the lines of the subprogram point is in (fortran-
indent-subprogram).

Fortran mode redefines 〈TAB〉 to reindent the current line for Fortran
(fortran-indent-line). This command indents Line numbers and contin-
uation markers to their required columns, and independently indents the
body of the statement based on its nesting in the program.

The key LFD runs the command fortran-indent-new-line, which rein-
dents the current line then makes and indents a new line. This command is
useful to reindent the closing statement of ‘do’ loops and other blocks before
starting a new line.

The key C-M-q runs fortran-indent-subprogram, a command to rein-
dent all the lines of the Fortran subprogram (function or subroutine) con-
taining point.

The key M-〈LFD〉 runs fortran-split-line, which splits a line in the
appropriate fashion for Fortran. In a non-comment line, the second half
becomes a continuation line and is indented accordingly. In a comment line,
both halves become separate comment lines.

21.15.2.2 Continuation Lines

Most modern Fortran compilers allow two ways of writing continuation
lines. If the first non-space character on a line is in column 5, then that
line is a continuation of the previous line. We call this fixed format. (In
GNU Emacs we always count columns from 0.) The variable fortran-
continuation-string specifies what character to put on column 5. A line
that starts with a tab character followed by any digit except ‘0’ is also a
continuation line. We call this style of continuation tab format.

Fortran mode can make either style of continuation line, but you must
specify which one you prefer. The value of the variable indent-tabs-mode
controls the choice: nil for fixed format, and non-nil for tab format. You
can tell which style is presently in effect by the presence or absence of the
string ‘Tab’ in the mode line.

If the text on a line starts with the conventional Fortran continuation
marker ‘$’, or if it begins with any non-whitespace character in column 5,

254 GNU Emacs Manual

Fortran mode treats it as a continuation line. When you indent a continu-
ation line with 〈TAB〉, it converts the line to the current continuation style.
When you split a Fortran statement with M-〈LFD〉, the continuation marker
on the newline is created according to the continuation style.

The setting of continuation style affects several other aspects of editing in
Fortran mode. In fixed format mode, the minimum column number for the
body of a statement is 6. Lines inside of Fortran blocks that are indented to
larger column numbers always use only the space character for whitespace.
In tab format mode, the minimum column number for the statement body
is 8, and the whitespace before column 8 must always consist of one tab
character.

When you enter Fortran mode for an existing file, it tries to deduce the
proper continuation style automatically from the file contents. The first line
that begins with either a tab character or six spaces determines the choice.
The variable fortran-analyze-depth specifies how many lines to consider
(at the beginning of the file); if none of those lines indicates a style, then the
variable fortran-tab-mode-default specifies the style. If it is nil, that
specifies fixed format, and non-nil specifies tab format.

21.15.2.3 Line Numbers

If a number is the first non-whitespace in the line, Fortran indentation
assumes it is a line number and moves it to columns 0 through 4. (Columns
always count from 0 in GNU Emacs.)

Line numbers of four digits or less are normally indented one space. The
variable fortran-line-number-indent controls this; it specifies the max-
imum indentation a line number can have. Line numbers are indented to
right-justify them to end in column 4 unless that would require more than
this maximum indentation. The default value of the variable is 1.

Simply inserting a line number is enough to indent it according to these
rules. As each digit is inserted, the indentation is recomputed. To turn off
this feature, set the variable fortran-electric-line-number to nil. Then
inserting line numbers is like inserting anything else.

21.15.2.4 Syntactic Conventions

Fortran mode assumes that you follow certain conventions that simplify
the task of understanding a Fortran program well enough to indent it prop-
erly:

• Two nested ‘do’ loops never share a ‘continue’ statement.

• Fortran keywords such as ‘if’, ‘else’, ‘then’, ‘do’ and others are written
without embedded whitespace or line breaks.

Chapter 21: Editing Programs 255

Fortran compilers generally ignore whitespace outside of string con-
stants, but Fortran mode does not recognize these keywords if they
are not contiguous. Constructs such as ‘else if’ or ‘end do’ are ac-
ceptable, but the second word should be on the same line as the first
and not on a continuation line.

If you fail to follow these conventions, the indentation commands may indent
some lines unaesthetically. However, a correct Fortran program retains its
meaning when reindented even if the conventions are not followed.

21.15.2.5 Variables for Fortran Indentation

Several additional variables control how Fortran indentation works:

fortran-do-indent
Extra indentation within each level of ‘do’ statement (default
3).

fortran-if-indent
Extra indentation within each level of ‘if’ statement (default 3).
This value is also used for extra indentation within each level of
the Fortran 90 ‘where’ statement.

fortran-structure-indent
Extra indentation within each level of ‘structure’, ‘union’, or
‘map’ statements (default 3).

fortran-continuation-indent
Extra indentation for bodies of continuation lines (default 5).

fortran-check-all-num-for-matching-do
If this is nil, indentation assumes that each ‘do’ statement ends
on a ‘continue’ statement. Therefore, when computing inden-
tation for a statement other than ‘continue’, it can save time
by not checking for a ‘do’ statement ending there. If this is non-
nil, indenting any numbered statement must check for a ‘do’
that ends there. The default is nil.

fortran-blink-matching-if
If this is t, indenting an ‘endif’ statement moves the cursor
momentarily to the matching ‘if’ statement to show where it is.
The default is nil.

fortran-minimum-statement-indent-fixed
Minimum indentation for fortran statements when using fixed
format continuation line style. Statement bodies are never in-
dented less than this much. The default is 6.

256 GNU Emacs Manual

fortran-minimum-statement-indent-tab
Minimum indentation for fortran statements for tab format con-
tinuation line style. Statement bodies are never indented less
than this much. The default is 8.

21.15.3 Fortran Comments

The usual Emacs comment commands assume that a comment can follow
a line of code. In Fortran, the standard comment syntax requires an entire
line to be just a comment. Therefore, Fortran mode replaces the standard
Emacs comment commands and defines some new variables.

Fortran mode can also handle a nonstandard comment syntax where com-
ments start with ‘!’ and can follow other text. Because only some Fortran
compilers accept this syntax, Fortran mode will not insert such comments un-
less you have said in advance to do so. To do this, set the variable comment-
start to ‘"!"’ (see Section 30.2 [Variables], page 373).

M-; Align comment or insert new comment (fortran-comment-
indent).

C-x ; Applies to nonstandard ‘!’ comments only.

C-c ; Turn all lines of the region into comments, or (with argument)
turn them back into real code (fortran-comment-region).

M-; in Fortran mode is redefined as the command fortran-comment-
indent. Like the usual M-; command, this recognizes any kind of existing
comment and aligns its text appropriately; if there is no existing comment,
a comment is inserted and aligned. But inserting and aligning comments are
not the same in Fortran mode as in other modes.

When a new comment must be inserted, if the current line is blank, a full-
line comment is inserted. On a non-blank line, a nonstandard ‘!’ comment
is inserted if you have said you want to use them. Otherwise a full-line
comment is inserted on a new line before the current line.

Nonstandard ‘!’ comments are aligned like comments in other languages,
but full-line comments are different. In a standard full-line comment, the
comment delimiter itself must always appear in column zero. What can be
aligned is the text within the comment. You can choose from three styles of
alignment by setting the variable fortran-comment-indent-style to one
of these values:

fixed Align the text at a fixed column, which is the sum of fortran-
comment-line-extra-indent and the minimum statement in-
dentation. This is the default.

The minimum statement indentation is fortran-minimum-
statement-indent-fixed for fixed format continuation line

Chapter 21: Editing Programs 257

style and fortran-minimum-statement-indent-tab for tab
format style.

relative Align the text as if it were a line of code, but with an additional
fortran-comment-line-extra-indent columns of indentation.

nil Don’t move text in full-line columns automatically at all.

In addition, you can specify the character to be used to indent within
full-line comments by setting the variable fortran-comment-indent-char
to the single-character string you want to use.

Fortran mode introduces two variables comment-line-start and
comment-line-start-skip which play for full-line comments the same
roles played by comment-start and comment-start-skip for ordinary text-
following comments. Normally these are set properly by Fortran mode so
you do not need to change them.

The normal Emacs comment command C-x ; has not been redefined. If
you use ‘!’ comments, this command can be used with them. Otherwise it
is useless in Fortran mode.

The command C-c ; (fortran-comment-region) turns all the lines of the
region into comments by inserting the string ‘C$$$’ at the front of each one.
With a numeric argument, it turns the region back into live code by deleting
‘C$$$’ from the front of each line in it. The string used for these comments
can be controlled by setting the variable fortran-comment-region. Note
that here we have an example of a command and a variable with the same
name; these two uses of the name never conflict because in Lisp and in Emacs
it is always clear from the context which one is meant.

21.15.4 Fortran Auto Fill Mode

Fortran Auto Fill mode is a minor mode which automatically splits For-
tran statements as you insert them when they become too wide. Splitting a
statement involves making continuation lines using fortran-continuation-
string (See Section 21.15.2.2 [ForIndent Cont], page 253). This splitting
happens when you type 〈SPC〉, 〈RET〉, or 〈TAB〉, and also in the Fortran inden-
tation commands.

M-x fortran-auto-fill-mode turns Fortran Auto Fill mode on if it was
off, or off if it was on. This command works the same as M-x auto-fill-
mode does for normal Auto Fill mode (see Section 20.5 [Filling], page 186). A
positive numeric argument turns Fortran Auto Fill mode on, and a negative
argument turns it off. You can see when Fortran Auto Fill mode is in effect
by the presence of the word ‘Fill’ in the mode line, inside the parentheses.
Fortran Auto Fill mode is a minor mode, turned on or off for each buffer
individually. See Section 30.1 [Minor Modes], page 371.

258 GNU Emacs Manual

Fortran Auto Fill mode breaks lines at spaces or delimiters when the
lines get longer than the desired width (the value of fill-column). The
delimiters that Fortran Auto Fill mode may break at are ‘,’, ‘’’, ‘+’, ‘-’,
‘/’, ‘*’, ‘=’, and ‘)’. The line break comes after the delimiter if the variable
fortran-break-before-delimiters is nil. Otherwise (and by default),
the break comes before the delimiter.

By default, Fortran Auto Fill mode is not enabled. If you want this
feature turned on permanently, add a hook function to fortran-mode-
hook to execute (fortran-auto-fill-mode 1). See Section 30.2.3 [Hooks],
page 375.

21.15.5 Checking Columns in Fortran

C-c C-r Display a “column ruler” momentarily above the current line
(fortran-column-ruler).

C-c C-w Split the current window horizontally temporarily so that it is
72 columns wide. This may help you avoid making lines longer
than the 72 character limit that some fortran compilers impose
(fortran-window-create-momentarily).

The command C-c C-r (fortran-column-ruler) shows a column ruler
momentarily above the current line. The comment ruler is two lines of text
that show you the locations of columns with special significance in Fortran
programs. Square brackets show the limits of the columns for line numbers,
and curly brackets show the limits of the columns for the statement body.
Column numbers appear above them.

Note that the column numbers count from zero, as always in GNU Emacs.
As a result, the numbers may be one less than those you are familiar with;
but the positions they indicate in the line are standard for Fortran.

The text used to display the column ruler depends on the value of the vari-
able indent-tabs-mode. If indent-tabs-mode is nil, then the value of the
variable fortran-column-ruler-fixed is used as the column ruler. Oth-
erwise, the variable fortran-column-ruler-tab is displayed. By changing
these variables, you can change the column ruler display.

For even more help, use C-c C-w (fortran-window-create), a command
which splits the current window horizontally, making a window 72 columns
wide. By editing in this window you can immediately see when you make a
line too wide to be correct Fortran.

21.15.6 Fortran Keyword Abbrevs

Chapter 21: Editing Programs 259

Fortran mode provides many built-in abbrevs for common keywords and
declarations. These are the same sort of abbrev that you can define yourself.
To use them, you must turn on Abbrev mode. See Chapter 23 [Abbrevs],
page 273.

The built-in abbrevs are unusual in one way: they all start with a semi-
colon. You cannot normally use semicolon in an abbrev, but Fortran mode
makes this possible by changing the syntax of semicolon to “word con-
stituent.”

For example, one built-in Fortran abbrev is ‘;c’ for ‘continue’. If you
insert ‘;c’ and then insert a punctuation character such as a space or a
newline, the ‘;c’ expands automatically to ‘continue’, provided Abbrev
mode is enabled.

Type ‘;?’ or ‘;C-h’ to display a list of all the built-in Fortran abbrevs
and what they stand for.

21.16 Asm Mode

Asm mode is a major mode for editing files of assembler code. It defines
these commands:

〈TAB〉 tab-to-tab-stop.

〈LFD〉 Insert a newline and then indent using tab-to-tab-stop.

: Insert a colon and then remove the indentation from before the
label preceding colon. Then do tab-to-tab-stop.

; Insert or align a comment.

The variable asm-comment-char specifies which character starts com-
ments in assembler syntax.

260 GNU Emacs Manual

Chapter 22: Compiling and Testing Programs 261

22 Compiling and Testing Programs

The previous chapter discusses the Emacs commands that are useful for
making changes in programs. This chapter deals with commands that assist
in the larger process of developing and maintaining programs.

22.1 Running Compilations under Emacs

Emacs can run compilers for noninteractive languages such as C and
Fortran as inferior processes, feeding the error log into an Emacs buffer.
It can also parse the error messages and show you the source lines where
compilation errors occurred.

M-x compile
Run a compiler asynchronously under Emacs, with error mes-
sages to ‘*compilation*’ buffer.

M-x grep Run grep asynchronously under Emacs, with matching lines
listed in the buffer named ‘*grep*’.

M-x kill-compilation
M-x kill-grep

Kill the running compilation or grep subprocess.

C-x ‘ Visit the locus of the next compiler error message or grep match.

〈RET〉 Visit the locus of the error message that point is on. This com-
mand is used in the compilation buffer.

Mouse-2 Visit the locus of the error message that you click on.

To run make or another compilation command, do M-x compile. This
command reads a shell command line using the minibuffer, and then exe-
cutes the command in an inferior shell, putting output in the buffer named
‘*compilation*’. The current buffer’s default directory is used as the work-
ing directory for the execution of the command; normally, therefore, the
compilation happens in this directory.

When the shell command line is read, the minibuffer appears containing
a default command line, which is the command you used the last time you
did M-x compile. If you type just 〈RET〉, the same command line is used
again. For the first M-x compile, the default is ‘make -k’. The default
compilation command comes from the variable compile-command; if the
appropriate compilation command for a file is something other than ‘make
-k’, it can be useful for the file to specify a local value for compile-command
(see Section 30.2.5 [File Variables], page 378).

262 GNU Emacs Manual

Starting a compilation displays the buffer ‘*compilation*’ in another
window but does not select it. The buffer’s mode line tells you whether
compilation is finished, with the word ‘run’ or ‘exit’ inside the parentheses.
You do not have to keep this buffer visible; compilation continues in any
case. While a compilation is going on, the string ‘Compiling’ appears in the
mode lines of all windows. When this string disappears, the compilation is
finished.

If you want to watch the compilation transcript as it appears, switch to
the ‘*compilation*’ buffer and move point to the end of the buffer. When
point is at the end, new compilation output is inserted above point, which
remains at the end. If point is not at the end of the buffer, it remains fixed
while more compilation output is added at the end of the buffer.

To kill the compilation process, do M-x kill-compilation. When the
compiler process terminates, the mode line of the ‘*compilation*’ buffer
changes to say ‘signal’ instead of ‘run’. Starting a new compilation also
kills any running compilation, as only one can exist at any time. However,
M-x compile asks for confirmation before actually killing a compilation that
is running.

The ‘*compilation*’ buffer uses a special major mode, Compilation
mode. This mode provides the keys 〈SPC〉 and 〈DEL〉 to scroll by screen-
fuls, and M-n and M-p to move to the next or previous error message. You
can also use M-{ and M-} to move up or down to an error message for a
different source file.

You can visit the source for any particular error message by moving point
in ‘*compilation*’ to that error message and typing 〈RET〉 (compile-goto-
error). Or click Mouse-2 on the error message; you need not switch to the
‘*compilation*’ buffer first.

To parse the compiler error messages sequentially, type C-x ‘ (next-
error). The character following the C-x is the backquote or “grave accent,”
not the single-quote. This command is available in all buffers, not just in
‘*compilation*’; it displays the next error message at the top of one window
and source location of the error in another window.

The first time C-x ‘ is used after the start of a compilation, it moves
to the first error’s location. Subsequent uses of C-x ‘ advance down to
subsequent errors. If you visit a specific error message with 〈RET〉 or Mouse-
2, subsequent C-x ‘ commands advance from there. When C-x ‘ gets to
the end of the buffer and finds no more error messages to visit, it fails and
signals an Emacs error.

C-u C-x ‘ starts scanning from the beginning of the compilation buffer.
This way, you can process the same set of errors again.

Just as you can run a compiler, you can also run grep and then visit
the lines on which matches were found. To do this, type M-x grep with
an argument line that contains the same arguments you would give grep

Chapter 22: Compiling and Testing Programs 263

when running it normally: a grep-style regexp (usually in single-quotes to
quote the shell’s special characters) followed by file names which may use
wildcards. The output from grep goes in the ‘*grep*’ buffer, and you can
find the matching lines in the source with C-x ‘ and 〈RET〉 just like compiler
errors.

Note: a shell is used to run the compile command, but the shell is told
that it should be noninteractive. This means in particular that the shell
starts up with no prompt. If you find your usual shell prompt making an
unsightly appearance in the ‘*compilation*’ buffer, it means you have made
a mistake in your shell’s init file by setting the prompt unconditionally. (The
init file name may be ‘.profile’, ‘.cshrc’, ‘.shrc’, or various other things,
depending on the shell you use.) The shell init file should set the prompt
only if there already is a prompt. In csh, here is how to do it:

if ($?prompt) set prompt = . . .

And here’s how to do it in bash:

if ["${PS1+set}" = set]
then prompt=. . .
fi

There may well be other things that your shell’s init file ought to do
only for an interactive shell. You can use the same method to conditionalize
them.

The features of Compilation mode are also available in a minor mode
called Compilation Minor mode. This lets you parse error messages in any
buffer, not just a normal compilation output buffer. Type M-x compilation-
minor-mode to enable the minor mode. This defines the keys 〈RET〉 and
Mouse-2, as in the Compilation major mode. In an Rlogin buffer (see Sec-
tion 29.2.6 [Remote Host], page 355), Compilation minor mode automat-
ically accesses remote source files by FTP (see Section 14.1 [File Names],
page 107).

The MS-DOS “operating system” does not support asynchronous subpro-
cesses; to work around this lack, M-x compile runs the compilation command
synchronously on MS-DOS. As a consequence, you must wait until the com-
mand finishes before you can do anything else in Emacs. See Appendix C
[MS-DOS], page 439.

22.2 Running Debuggers Under Emacs

The GUD (Grand Unified Debugger) library provides an interface to var-
ious symbolic debuggers from within Emacs. We recommend the debugger
GDB, which is free software, but you can also run DBX, SDB or XDB if
you have them. GUD can also serve as an interface to the Perl’s debugging
mode.

264 GNU Emacs Manual

22.2.1 Starting GUD

There are five commands for starting a debugger, each corresponding to
a particular debugger program.

M-x gdb 〈RET〉 file 〈RET〉

Run GDB as a subprocess of Emacs. This command creates a
buffer for input and output to GDB, and switches to it. If a
GDB buffer already exists, it just switches to that buffer.

M-x dbx 〈RET〉 file 〈RET〉

Similar, but run DBX instead of GDB.

M-x xdb 〈RET〉 file 〈RET〉

Similar, but run XDB instead of GDB. Use the variable gud-
xdb-directories to specify directories to search for source files.

M-x sdb 〈RET〉 file 〈RET〉

Similar, but run SDB instead of GDB.

Some versions of SDB do not mention source file names in their
messages. When you use them, you need to have a valid tags
table (see Section 21.12 [Tags], page 233) in order for GUD to
find functions in the source code. If you have not visited a
tags table or the tags table doesn’t list one of the functions, you
get a message saying ‘The sdb support requires a valid tags
table to work’. If this happens, generate a valid tags table in
the working directory and try again.

M-x perldb 〈RET〉 file 〈RET〉

Run the Perl interpreter in debug mode to debug file, a Perl
program.

You can only run one debugger process at a time.

Each of these commands takes one argument: a command line to invoke
the debugger. In the simplest case, specify just the name of the executable
file you want to debug. You may also use options that the debugger supports.
However, shell wild cards and variables are not allowed. GUD assumes that
the first argument not preceded by a ‘-’ is the executable file name.

22.2.2 Debugger Operation

When you run a debugger with GUD, the debugger uses an Emacs buffer
for its ordinary input and output. This is called the GUD buffer. The debug-
ger displays the source files of the program by visiting them in Emacs buffers.
An arrow (‘=>’) in one of these buffers indicates the current execution line.
Moving point in this buffer does not move the arrow.

Chapter 22: Compiling and Testing Programs 265

You can start editing these source files at any time in the buffers that
were made to display them. The arrow is not part of the file’s text; it appears
only on the screen. If you do modify a source file, keep in mind that inserting
or deleting lines will throw off the arrow’s positioning; GUD has no way of
figuring out which line corresponded before your changes to the line number
in a debugger message. Also, you’ll typically have to recompile and restart
the program for your changes to be reflected in the debugger’s tables.

If you wish, you can control your debugger process entirely through the
debugger buffer, which uses a variant of Shell mode. All the usual commands
for your debugger are available, and you can use the Shell mode history
commands to repeat them. See Section 29.2.3 [Shell Mode], page 350.

22.2.3 Commands of GUD

The GUD interaction buffer uses a variant of Shell mode, so the com-
mands of Shell mode are available (see Section 29.2.3 [Shell Mode], page 350).
GUD mode also provides commands for setting and clearing breakpoints, for
selecting stack frames, and for stepping through the program. These com-
mands are available both in the GUD buffer and globally, but with different
key bindings.

The breakpoint commands are usually used in source file buffers, because
that is the way to specify where to set or clear the breakpoint. Here’s the
global command to set a breakpoint:

C-x 〈SPC〉 Set a breakpoint on the source line that point is on.

Here are the other special commands provided by GUD. The keys starting
with C-c are available only in the GUD interaction buffer. The bindings that
start with C-x C-a are available in the GUD buffer and also in source files.

C-c C-l
C-x C-a C-l

Display in another window the last line referred to in the GUD
buffer (that is, the line indicated in the last location message).
This runs the command gud-refresh.

C-c C-s
C-x C-a C-s

Execute a single line of code (gud-step). If the line contains a
function call, execution stops after entering the called function.

C-c C-n
C-x C-a C-n

Execute a single line of code, stepping across entire function calls
at full speed (gud-next).

266 GNU Emacs Manual

C-c C-i
C-x C-a C-i

Execute a single machine instruction (gud-stepi).

C-c C-r
C-x C-a C-r

Continue execution without specifying any stopping point. The
program will run until it hits a breakpoint, terminates, or gets
a signal that the debugger is checking for (gud-cont).

C-c C-d
C-x C-a C-d

Delete the breakpoint(s) on the current source line, if any (gud-
remove). If you use this command in the GUD interaction buffer,
it applies to the line where the program last stopped.

C-c C-t
C-x C-a C-t

Set a temporary breakpoint on the current source line, if any. If
you use this command in the GUD interaction buffer, it applies
to the line where the program last stopped.

The above commands are common to all supported debuggers. If you
are using GDB or (some versions of) DBX, these additional commands are
available:

C-c <
C-x C-a < Select the next enclosing stack frame (gud-up). This is equiva-

lent to the ‘up’ command.

C-c >
C-x C-a > Select the next inner stack frame (gud-down). This is equivalent

to the ‘down’ command.

If you are using GDB, these additional key bindings are available:

〈TAB〉 With GDB, complete a symbol name (gud-gdb-complete-
command). This key is available only in the GUD interaction
buffer, and requires GDB versions 4.13 and later.

C-c C-f
C-x C-a C-f

Run the program until the selected stack frame returns (or until
it stops for some other reason).

These commands interpret a numeric argument as a repeat count, when
that makes sense.

Because 〈TAB〉 serves as a completion command, you can’t use it to enter
a tab as input to the program you are debugging with GDB. Instead, type
C-q 〈TAB〉 to enter a tab.

Chapter 22: Compiling and Testing Programs 267

22.2.4 GUD Customization

On startup, GUD runs one of the following hooks: gdb-mode-hook, if
you are using GDB; dbx-mode-hook, if you are using DBX; sdb-mode-hook,
if you are using SDB; xdb-mode-hook, if you are using XDB; perldb-mode-
hook, for Perl debugging mode. You can use these hooks to define custom
key bindings for the debugger interaction buffer. See Section 30.2.3 [Hooks],
page 375.

Here is a convenient way to define a command that sends a particular
command string to the debugger, and set up a key binding for it in the
debugger interaction buffer:

(gud-def function cmdstring binding docstring)

This defines a command named function which sends cmdstring to the
debugger process, and gives it the documentation string docstring. You can
use the command thus defined in any buffer. If binding is non-nil, gud-def
also binds the command to C-c binding in the GUD buffer’s mode and to
C-x C-a binding generally.

The command string cmdstring may contain certain ‘%’-sequences that
stand for data to be filled in at the time function is called:

‘%f’ The name of the current source file. If the current buffer is the
GUD buffer, then the “current source file” is the file that the
program stopped in.

‘%l’ The number of the current source line. If the current buffer is
the GUD buffer, then the “current source line” is the line that
the program stopped in.

‘%e’ The text of the C lvalue or function-call expression at or adjacent
to point.

‘%a’ The text of the hexadecimal address at or adjacent to point.

‘%p’ The numeric argument of the called function, as a decimal num-
ber. If the command is used without a numeric argument, ‘%p’
stands for the empty string.

If you don’t use ‘%p’ in the command string, the command you
define ignores any numeric argument.

22.3 Executing Lisp Expressions

Emacs has several different major modes for Lisp and Scheme. They
are the same in terms of editing commands, but differ in the commands for
executing Lisp expressions. Each mode has its own purpose.

268 GNU Emacs Manual

Emacs-Lisp mode
The mode for editing source files of programs to run in Emacs
Lisp. This mode defines C-M-x to evaluate the current defun.
See Section 22.4 [Lisp Libraries], page 268.

Lisp Interaction mode
The mode for an interactive session with Emacs Lisp. It defines
〈LFD〉 to evaluate the sexp before point and insert its value in
the buffer. See Section 22.6 [Lisp Interaction], page 271.

Lisp mode The mode for editing source files of programs that run in Lisps
other than Emacs Lisp. This mode defines C-M-x to send the
current defun to an inferior Lisp process. See Section 22.7 [Ex-
ternal Lisp], page 271.

Inferior Lisp mode
The mode for an interactive session with an inferior Lisp process.
This mode combines the special features of Lisp mode and Shell
mode (see Section 29.2.3 [Shell Mode], page 350).

Scheme mode
Like Lisp mode but for Scheme programs.

Inferior Scheme mode
The mode for an interactive session with an inferior Scheme
process.

Most editing commands for working with Lisp programs are in fact avail-
able globally. See Chapter 21 [Programs], page 211.

22.4 Libraries of Lisp Code for Emacs

Lisp code for Emacs editing commands is stored in files whose names
conventionally end in ‘.el’. This ending tells Emacs to edit them in Emacs-
Lisp mode (see Section 22.3 [Executing Lisp], page 267).

To execute a file of Emacs Lisp code, use M-x load-file. This command
reads a file name using the minibuffer and then executes the contents of that
file as Lisp code. It is not necessary to visit the file first; in any case, this
command reads the file as found on disk, not text in an Emacs buffer.

Once a file of Lisp code is installed in the Emacs Lisp library directories,
users can load it using M-x load-library. Programs can load it by calling
load-library, or with load, a more primitive function that is similar but
accepts some additional arguments.

M-x load-library differs from M-x load-file in that it searches a se-
quence of directories and tries three file names in each directory. Suppose
your argument is lib; the three names are ‘lib.elc’, ‘lib.el’, and lastly just

Chapter 22: Compiling and Testing Programs 269

‘lib’. If ‘lib.elc’ exists, it is by convention the result of compiling ‘lib.el’;
it is better to load the compiled file, since it will load and run faster.

If load-library finds that ‘lib.el’ is newer than ‘lib.elc’ file, it prints
a warning, because it’s likely that somebody made changes to the ‘.el’ file
and forgot to recompile it.

Because the argument to load-library is usually not in itself a valid
file name, file name completion is not available. Indeed, when using this
command, you usually do not know exactly what file name will be used.

The sequence of directories searched by M-x load-library is specified
by the variable load-path, a list of strings that are directory names. The
default value of the list contains the directory where the Lisp code for Emacs
itself is stored. If you have libraries of your own, put them in a single
directory and add that directory to load-path. nil in this list stands for
the current default directory, but it is probably not a good idea to put nil
in the list. If you find yourself wishing that nil were in the list, most likely
what you really want to do is use M-x load-file this once.

Often you do not have to give any command to load a library, because the
commands defined in the library are set up to autoload that library. Trying
to run any of those commands calls load to load the library; this replaces
the autoload definitions with the real ones from the library.

Emacs Lisp code can be compiled into byte-code which loads faster, takes
up less space when loaded, and executes faster. See section “Byte Compi-
lation” in the Emacs Lisp Reference Manual. By convention, the compiled
code for a library goes in a separate file whose name consists of the library
source file with ‘c’ appended. Thus, the compiled code for ‘foo.el’ goes in
‘foo.elc’. That’s why load-library searches for ‘.elc’ files first.

22.5 Evaluating Emacs-Lisp Expressions

Lisp programs intended to be run in Emacs should be edited in Emacs-
Lisp mode; this happens automatically for file names ending in ‘.el’. By
contrast, Lisp mode itself is used for editing Lisp programs intended for other
Lisp systems. To switch to Emacs-Lisp mode explicitly, use the command
M-x emacs-lisp-mode.

For testing of Lisp programs to run in Emacs, it is often useful to eval-
uate part of the program as it is found in the Emacs buffer. For example,
after changing the text of a Lisp function definition, evaluating the defini-
tion installs the change for future calls to the function. Evaluation of Lisp
expressions is also useful in any kind of editing, for invoking noninteractive
functions (functions that are not commands).

M-: Read a single Lisp expression in the minibuffer, evaluate it, and
print the value in the echo area (eval-expression).

270 GNU Emacs Manual

C-x C-e Evaluate the Lisp expression before point, and print the value
in the echo area (eval-last-sexp).

C-M-x Evaluate the defun containing or after point, and print the value
in the echo area (eval-defun).

M-x eval-region
Evaluate all the Lisp expressions in the region.

M-x eval-current-buffer
Evaluate all the Lisp expressions in the buffer.

M-: (eval-expression) is the most basic command for evaluating a Lisp
expression interactively. It reads the expression using the minibuffer, so you
can execute any expression on a buffer regardless of what the buffer contains.
When the expression is evaluated, the current buffer is once again the buffer
that was current when M-: was typed.

M-: can easily confuse users who do not understand it. Therefore, eval-
expression is normally a disabled command. Attempting to use this com-
mand asks for confirmation and gives you the option of enabling it; once
you enable the command, confirmation will no longer be required for it. See
Section 30.4.10 [Disabling], page 393.

In Emacs-Lisp mode, the key C-M-x is bound to the command eval-
defun, which parses the defun containing or following point as a Lisp expres-
sion and evaluates it. The value is printed in the echo area. This command
is convenient for installing in the Lisp environment changes that you have
just made in the text of a function definition.

C-M-x treats defvar expressions specially. Normally, evaluating a defvar
expression does nothing if the variable it defines already has a value. But
C-M-x unconditionally resets the variable to the initial value specified in the
defvar expression. This special feature is convenient for debugging Lisp
programs.

The command C-x C-e (eval-last-sexp) evaluates the Lisp expression
preceding point in the buffer, and displays the value in the echo area. It is
available in all major modes, not just Emacs-Lisp mode. It does not treat
defvar specially.

If C-M-x or C-x C-e is given a numeric argument, it inserts the value into
the current buffer at point, rather than displaying it in the echo area. The
argument’s value does not matter.

The most general command for evaluating Lisp expressions from a buffer
is eval-region. M-x eval-region parses the text of the region as one or
more Lisp expressions, evaluating them one by one. M-x eval-current-
buffer is similar but evaluates the entire buffer. This is a reasonable way
to install the contents of a file of Lisp code that you are just ready to test.
Later, as you find bugs and change individual functions, use C-M-x on each

Chapter 22: Compiling and Testing Programs 271

function that you change. This keeps the Lisp world in step with the source
file.

22.6 Lisp Interaction Buffers

The buffer ‘*scratch*’ which is selected when Emacs starts up is pro-
vided for evaluating Lisp expressions interactively inside Emacs.

The simplest way to use the ‘*scratch*’ buffer is to insert Lisp expres-
sions and type 〈LFD〉 after each expression. This command reads the Lisp
expression before point, evaluates it, and inserts the value in printed repre-
sentation before point. The result is a complete typescript of the expressions
you have evaluated and their values.

The ‘*scratch*’ buffer’s major mode is Lisp Interaction mode, which is
the same as Emacs-Lisp mode except for the binding of 〈LFD〉.

The rationale for this feature is that Emacs must have a buffer when it
starts up, but that buffer is not useful for editing files since a new buffer
is made for every file that you visit. The Lisp interpreter typescript is the
most useful thing I can think of for the initial buffer to do. Type M-x lisp-
interaction-mode to put the current buffer in Lisp Interaction mode.

An alternative way of evaluating Emacs Lisp expressions interactively
is to use Inferior Emacs-Lisp mode, which provides an interface rather like
Shell mode (see Section 29.2.3 [Shell Mode], page 350) for evaluating Emacs
Lisp expressions. Type M-x ielm to create an ‘*ielm*’ buffer which uses
this mode.

22.7 Running an External Lisp

Emacs has facilities for running programs in other Lisp systems. You
can run a Lisp process as an inferior of Emacs, and pass expressions to it to
be evaluated. You can also pass changed function definitions directly from
the Emacs buffers in which you edit the Lisp programs to the inferior Lisp
process.

To run an inferior Lisp process, type M-x run-lisp. This runs the pro-
gram named lisp, the same program you would run by typing lisp as a
shell command, with both input and output going through an Emacs buffer
named ‘*lisp*’. That is to say, any “terminal output” from Lisp will go
into the buffer, advancing point, and any “terminal input” for Lisp comes
from text in the buffer. (You can change the name of the Lisp executable
file by setting the variable inferior-lisp-program.)

To give input to Lisp, go to the end of the buffer and type the input,
terminated by 〈RET〉. The ‘*lisp*’ buffer is in Inferior Lisp mode, which

272 GNU Emacs Manual

combines the special characteristics of Lisp mode with most of the features
of Shell mode (see Section 29.2.3 [Shell Mode], page 350). The definition of
〈RET〉 to send a line to a subprocess is one of the features of Shell mode.

For the source files of programs to run in external Lisps, use Lisp mode.
This mode can be selected with M-x lisp-mode, and is used automatically
for files whose names end in ‘.l’, ‘.lsp’, or ‘.lisp’, as most Lisp systems
usually expect.

When you edit a function in a Lisp program you are running, the easiest
way to send the changed definition to the inferior Lisp process is the key
C-M-x. In Lisp mode, this runs the function lisp-eval-defun, which finds
the defun around or following point and sends it as input to the Lisp process.
(Emacs can send input to any inferior process regardless of what buffer is
current.)

Contrast the meanings of C-M-x in Lisp mode (for editing programs to be
run in another Lisp system) and Emacs-Lisp mode (for editing Lisp programs
to be run in Emacs): in both modes it has the effect of installing the function
definition that point is in, but the way of doing so is different according to
where the relevant Lisp environment is found. See Section 22.3 [Executing
Lisp], page 267.

Chapter 23: Abbrevs 273

23 Abbrevs

A defined abbrev is a word which expands, if you insert it, into some
different text. Abbrevs are defined by the user to expand in specific ways.
For example, you might define ‘foo’ as an abbrev expanding to ‘find outer
otter’. Then you would be able to insert ‘find outer otter ’ into the buffer
by typing f o o 〈SPC〉.

A second kind of abbreviation facility is called dynamic abbrev expansion.
You use dynamic abbrev expansion with an explicit command to expand the
letters in the buffer before point by looking for other words in the buffer that
start with those letters. See Section 23.6 [Dynamic Abbrevs], page 277.

23.1 Abbrev Concepts

An abbrev is a word which has been defined to expand into a specified
expansion. When you insert a word-separator character following the abbrev,
that expands the abbrev—replacing the abbrev with its expansion. For
example, if ‘foo’ is defined as an abbrev expanding to ‘find outer otter’,
then you can insert ‘find outer otter.’ into the buffer by typing f o o ..

Abbrevs expand only when Abbrev mode (a minor mode) is enabled.
Disabling Abbrev mode does not cause abbrev definitions to be forgotten,
but they do not expand until Abbrev mode is enabled again. The command
M-x abbrev-mode toggles Abbrev mode; with a numeric argument, it turns
Abbrev mode on if the argument is positive, off otherwise. See Section 30.1
[Minor Modes], page 371. abbrev-mode is also a variable; Abbrev mode is
on when the variable is non-nil. The variable abbrev-mode automatically
becomes local to the current buffer when it is set.

Abbrev definitions can be mode-specific—active only in one major mode.
Abbrevs can also have global definitions that are active in all major modes.
The same abbrev can have a global definition and various mode-specific
definitions for different major modes. A mode specific definition for the
current major mode overrides a global definition.

Abbrevs can be defined interactively during the editing session. Lists of
abbrev definitions can also be saved in files and reloaded in later sessions.
Some users keep extensive lists of abbrevs that they load in every session.

23.2 Defining Abbrevs

C-x a g Define an abbrev, using one or more words before point as its
expansion (add-global-abbrev).

274 GNU Emacs Manual

C-x a l Similar, but define an abbrev specific to the current major mode
(add-mode-abbrev).

C-x a i g Define a word in the buffer as an abbrev (inverse-add-global-
abbrev).

C-x a i l Define a word in the buffer as a mode-specific abbrev (inverse-
add-mode-abbrev).

M-x kill-all-abbrevs
This command discards all abbrev definitions currently in effect,
leaving a blank slate.

The usual way to define an abbrev is to enter the text you want the
abbrev to expand to, position point after it, and type C-x a g (add-global-
abbrev). This reads the abbrev itself using the minibuffer, and then defines
it as an abbrev for one or more words before point. Use a numeric argument
to say how many words before point should be taken as the expansion. For
example, to define the abbrev ‘foo’ as mentioned above, insert the text ‘find
outer otter’ and then type C-u 3 C-x a g f o o 〈RET〉.

An argument of zero to C-x a g means to use the contents of the region
as the expansion of the abbrev being defined.

The command C-x a l (add-mode-abbrev) is similar, but defines a mode-
specific abbrev. Mode specific abbrevs are active only in a particular major
mode. C-x a l defines an abbrev for the major mode in effect at the time
C-x a l is typed. The arguments work the same as for C-x a g.

If the text already in the buffer is the abbrev, rather than its expansion,
use command C-x a i g (inverse-add-global-abbrev) instead of C-x a g,
or use C-x a i l (inverse-add-mode-abbrev) instead of C-x a l. These
commands are called “inverse” because they invert the meaning of the two
text strings they use (one from the buffer and one read with the minibuffer).

To change the definition of an abbrev, just define a new definition. When
the abbrev has a prior definition, the abbrev definition commands ask for
confirmation for replacing it.

To remove an abbrev definition, give a negative argument to the abbrev
definition command: C-u - C-x a g or C-u - C-x a l. The former removes
a global definition, while the latter removes a mode-specific definition.

M-x kill-all-abbrevs removes all the abbrev definitions there are, both
global and local.

23.3 Controlling Abbrev Expansion

An abbrev expands whenever it is present in the buffer just before point
and you type a self-inserting whitespace or punctuation character (〈SPC〉,

Chapter 23: Abbrevs 275

comma, etc.). More precisely, any character that is not a word constituent
expands an abbrev, and any word constituent character can be part of an
abbrev. The most common way to use an abbrev is to insert it and then
insert a punctuation character to expand it.

Abbrev expansion preserves case; thus, ‘foo’ expands into ‘find outer
otter’; ‘Foo’ into ‘Find outer otter’, and ‘FOO’ into ‘FIND OUTER OTTER’ or
‘Find Outer Otter’ according to the variable abbrev-all-caps (a non-nil
value chooses the first of the two expansions).

These commands are used to control abbrev expansion:

M-’ Separate a prefix from a following abbrev to be expanded
(abbrev-prefix-mark).

C-x a e Expand the abbrev before point (expand-abbrev). This is ef-
fective even when Abbrev mode is not enabled.

M-x expand-region-abbrevs
Expand some or all abbrevs found in the region.

You may wish to expand an abbrev with a prefix attached; for example,
if ‘cnst’ expands into ‘construction’, you might want to use it to enter
‘reconstruction’. It does not work to type recnst, because that is not
necessarily a defined abbrev. What you can do is use the command M-’
(abbrev-prefix-mark) in between the prefix ‘re’ and the abbrev ‘cnst’.
First, insert ‘re’. Then type M-’; this inserts a hyphen in the buffer to indi-
cate that it has done its work. Then insert the abbrev ‘cnst’; the buffer now
contains ‘re-cnst’. Now insert a non-word character to expand the abbrev
‘cnst’ into ‘construction’. This expansion step also deletes the hyphen that
indicated M-’ had been used. The result is the desired ‘reconstruction’.

If you actually want the text of the abbrev in the buffer, rather than its
expansion, you can accomplish this by inserting the following punctuation
with C-q. Thus, foo C-q , leaves ‘foo,’ in the buffer.

If you expand an abbrev by mistake, you can undo the expansion and
bring back the abbrev itself by typing C-_ to undo (see Section 4.4 [Undo],
page 32). This also undoes the insertion of the non-word character that
expanded the abbrev. If the result you want is the terminating non-word
character plus the unexpanded abbrev, you must reinsert the terminating
character, quoting it with C-q.

M-x expand-region-abbrevs searches through the region for defined ab-
brevs, and for each one found offers to replace it with its expansion. This
command is useful if you have typed in text using abbrevs but forgot to
turn on Abbrev mode first. It may also be useful together with a special set
of abbrev definitions for making several global replacements at once. This
command is effective even if Abbrev mode is not enabled.

Expanding an abbrev runs the hook pre-abbrev-expand-hook (see Sec-
tion 30.2.3 [Hooks], page 375).

276 GNU Emacs Manual

23.4 Examining and Editing Abbrevs

M-x list-abbrevs
Display a list of all abbrev definitions.

M-x edit-abbrevs
Edit a list of abbrevs; you can add, alter or remove definitions.

The output from M-x list-abbrevs looks like this:

(lisp-mode-abbrev-table)
"dk" 0 "define-key"
(global-abbrev-table)
"dfn" 0 "definition"

(Some blank lines of no semantic significance, and some other abbrev tables,
have been omitted.)

A line containing a name in parentheses is the header for abbrevs in a par-
ticular abbrev table; global-abbrev-table contains all the global abbrevs,
and the other abbrev tables that are named after major modes contain the
mode-specific abbrevs.

Within each abbrev table, each nonblank line defines one abbrev. The
word at the beginning of the line is the abbrev. The number that follows
is the number of times the abbrev has been expanded. Emacs keeps track
of this to help you see which abbrevs you actually use, so that you can
eliminate those that you don’t use often. The string at the end of the line
is the expansion.

M-x edit-abbrevs allows you to add, change or kill abbrev definitions
by editing a list of them in an Emacs buffer. The list has the same format
described above. The buffer of abbrevs is called ‘*Abbrevs*’, and is in Edit-
Abbrevs mode. Type C-c C-c in this buffer to install the abbrev definitions
as specified in the buffer—and delete any abbrev definitions not listed.

The command edit-abbrevs is actually the same as list-abbrevs ex-
cept that it selects the buffer ‘*Abbrevs*’ whereas list-abbrevs merely
displays it in another window.

23.5 Saving Abbrevs

These commands allow you to keep abbrev definitions between editing
sessions.

M-x write-abbrev-file 〈RET〉 file 〈RET〉

Write a file file describing all defined abbrevs.

M-x read-abbrev-file 〈RET〉 file 〈RET〉

Read the file file and define abbrevs as specified therein.

Chapter 23: Abbrevs 277

M-x quietly-read-abbrev-file 〈RET〉 file 〈RET〉

Similar but do not display a message about what is going on.

M-x define-abbrevs
Define abbrevs from definitions in current buffer.

M-x insert-abbrevs
Insert all abbrevs and their expansions into current buffer.

M-x write-abbrev-file reads a file name using the minibuffer and then
writes a description of all current abbrev definitions into that file. This is
used to save abbrev definitions for use in a later session. The text stored in
the file is a series of Lisp expressions that, when executed, define the same
abbrevs that you currently have.

M-x read-abbrev-file reads a file name using the minibuffer and then
reads the file, defining abbrevs according to the contents of the file. M-x
quietly-read-abbrev-file is the same except that it does not display a
message in the echo area saying that it is doing its work; it is actually useful
primarily in the ‘.emacs’ file. If an empty argument is given to either of these
functions, they use the file name specified in the variable abbrev-file-name,
which is by default "~/.abbrev_defs".

Emacs will offer to save abbrevs automatically if you have changed any of
them, whenever it offers to save all files (for C-x s or C-x C-c). This feature
can be inhibited by setting the variable save-abbrevs to nil.

The commands M-x insert-abbrevs and M-x define-abbrevs are sim-
ilar to the previous commands but work on text in an Emacs buffer. M-x
insert-abbrevs inserts text into the current buffer before point, describing
all current abbrev definitions; M-x define-abbrevs parses the entire current
buffer and defines abbrevs accordingly.

23.6 Dynamic Abbrev Expansion

The abbrev facility described above operates automatically as you insert
text, but all abbrevs must be defined explicitly. By contrast, dynamic ab-
brevs allow the meanings of abbrevs to be determined automatically from
the contents of the buffer, but dynamic abbrev expansion happens only when
you request it explicitly.

M-/ Expand the word in the buffer before point as a dynamic ab-
brev, by searching in the buffer for words starting with that
abbreviation (dabbrev-expand).

C-M-/ Complete the word before point as a dynamic abbrev (dabbrev-
completion).

278 GNU Emacs Manual

For example, if the buffer contains ‘does this follow ’ and you type f o
M-/, the effect is to insert ‘follow’ because that is the last word in the buffer
that starts with ‘fo’. A numeric argument to M-/ says to take the second,
third, etc. distinct expansion found looking backward from point. Repeating
M-/ searches for an alternative expansion by looking farther back. After
considering the entire buffer before point, it searches the text after point.
The variable dabbrev-limit, if non-nil, specifies how far in the buffer to
search for an expansion.

After searching all of the current buffer, M-/ normally searches other
buffers, unless you have set dabbrev-check-all-buffers to nil.

A negative argument to M-/, as in C-u - M-/, says to search first for
expansions after point, and second for expansions before point. If you repeat
the M-/ to look for another expansion, do not specify an argument. This
tries all the expansions after point and then the expansions before point.

After you have expanded a dynamic abbrev, you can copy additional
words that follow the expansion in its original context. Simply type 〈SPC〉

M-/ for each word you want to copy. The spacing and punctuation between
words is copied along with the words.

The command C-M-/ (dabbrev-completion) performs completion of a
dynamic abbreviation. Instead of trying the possible expansions one by one,
it finds all of them, then inserts the text that they have in common. If they
have nothing in common, C-M-/ displays a list of completions, from which
you can select a choice in the usual manner. See Section 5.3 [Completion],
page 41.

Dynamic abbrev expansion is completely independent of Abbrev mode;
the expansion of a word with M-/ is completely independent of whether it
has a definition as an ordinary abbrev.

23.7 Customizing Dynamic Abbreviation

Normally, dynamic abbrev expansion ignores case when searching for
expansions. That is, the expansion need not agree in case with the word
you are expanding. If you set dabbrev-case-fold-search to nil, then the
word and the expansion must match in case.

The value of dabbrev-case-fold-search may be any expression. Dy-
namic abbrev expansion evaluates that expression, and ignores case while
searching if its value is not nil. The default value of dabbrev-case-fold-
search is case-fold-search, so normally the value of case-fold-search
controls the decision. The reason why dynamic abbrev expansion normally
ignores case when searching for expansions is that normally the value of
case-fold-search is t.

Chapter 23: Abbrevs 279

Normally, dynamic abbrev expansion preserves the case pattern of the
word you are expanding, by converting the expansion to that case pattern.
If you set dabbrev-case-replace to nil, the expansion is copied without
conversion.

The variables dabbrev-case-fold-search and dabbrev-case-replace
are handled in a special way. Their values are actually Lisp expressions
which are evaluated each time a decision needs to be made. If the expres-
sion’s value is non-nil, then case is ignored in searching, or converted on
replacement, respectively. If the expression’s value is nil, case is not ignored
or not converted. The default values let the variables case-fold-search (see
Section 12.6 [Search Case], page 94) and case-replace (see Section 12.7.3
[Replacement and Case], page 96) control what to do.

The variable dabbrev-abbrev-char-regexp, if non-nil, controls which
characters are considered part of a word, for dynamic expansion purposes.
The regular expression must match just one character, never two or more.
The same regular expression also determines which characters are part of an
expansion. The value nil has a special meaning: abbreviations are made of
word characters, but expansions are made of word and symbol characters.

In shell scripts and makefiles, a variable name is sometimes prefixed with
‘$’ and sometimes not. Major modes for this kind of text can customize
dynamic abbreviation to handle optional prefixes by setting the variable
dabbrev-abbrev-skip-leading-regexp. Its value should be a regular ex-
pression that matches the optional prefix that dynamic abbreviation should
ignore.

280 GNU Emacs Manual

Chapter 24: Editing Pictures 281

24 Editing Pictures

To edit a picture made out of text characters (for example, a picture of
the division of a register into fields, as a comment in a program), use the
command M-x edit-picture to enter Picture mode.

In Picture mode, editing is based on the quarter-plane model of text,
according to which the text characters lie studded on an area that stretches
infinitely far to the right and downward. The concept of the end of a line
does not exist in this model; the most you can say is where the last nonblank
character on the line is found.

Of course, Emacs really always considers text as a sequence of characters,
and lines really do have ends. But Picture mode replaces the most frequently-
used commands with variants that simulate the quarter-plane model of text.
They do this by inserting spaces or by converting tabs to spaces.

Most of the basic editing commands of Emacs are redefined by Picture
mode to do essentially the same thing but in a quarter-plane way. In addi-
tion, Picture mode defines various keys starting with the C-c prefix to run
special picture editing commands.

One of these keys, C-c C-c, is pretty important. Often a picture is part
of a larger file that is usually edited in some other major mode. M-x edit-
picture records the name of the previous major mode so you can use the C-c
C-c command (picture-mode-exit) later to go back to that mode. C-c C-c
also deletes spaces from the ends of lines, unless given a numeric argument.

The special commands of Picture mode all work in other modes (provided
the ‘picture’ library is loaded), but are not bound to keys except in Picture
mode. The descriptions below talk of moving “one column” and so on, but
all the picture mode commands handle numeric arguments as their normal
equivalents do.

Turning on Picture mode runs the hook picture-mode-hook (see Sec-
tion 30.2.3 [Hooks], page 375).

24.1 Basic Editing in Picture Mode

Most keys do the same thing in Picture mode that they usually do, but
do it in a quarter-plane style. For example, C-f is rebound to run picture-
forward-column, a command which moves point one column to the right,
inserting a space if necessary so that the actual end of the line makes no
difference. C-b is rebound to run picture-backward-column, which always
moves point left one column, converting a tab to multiple spaces if necessary.
C-n and C-p are rebound to run picture-move-down and picture-move-up,
which can either insert spaces or convert tabs as necessary to make sure that

282 GNU Emacs Manual

point stays in exactly the same column. C-e runs picture-end-of-line,
which moves to after the last nonblank character on the line. There is no
need to change C-a, as the choice of screen model does not affect beginnings
of lines.

Insertion of text is adapted to the quarter-plane screen model through
the use of Overwrite mode (see Section 30.1 [Minor Modes], page 371). Self-
inserting characters replace existing text, column by column, rather than
pushing existing text to the right. 〈RET〉 runs picture-newline, which just
moves to the beginning of the following line so that new text will replace
that line.

Picture mode provides erasure instead of deletion and killing of text. 〈DEL〉

(picture-backward-clear-column) replaces the preceding character with
a space rather than removing it; this moves point backwards. C-d (picture-
clear-column) replaces the next character or characters with spaces, but
does not move point. (If you want to clear characters to spaces and move
forward over them, use 〈SPC〉.) C-k (picture-clear-line) really kills the
contents of lines, but does not delete the newlines from the buffer.

To do actual insertion, you must use special commands. C-o (picture-
open-line) creates a blank line after the current line; it never splits a line.
C-M-o, split-line, makes sense in Picture mode, so it is not changed. 〈LFD〉

(picture-duplicate-line) inserts below the current line another line with
the same contents.

To do actual deletion in Picture mode, use C-w, C-c C-d (which is defined
as delete-char, as C-d is in other modes), or one of the picture rectangle
commands (see Section 24.4 [Rectangles in Picture], page 284).

24.2 Controlling Motion after Insert

Since “self-inserting” characters in Picture mode overwrite and move
point, there is no essential restriction on how point should be moved. Nor-
mally point moves right, but you can specify any of the eight orthogonal
or diagonal directions for motion after a “self-inserting” character. This is
useful for drawing lines in the buffer.

C-c < Move left after insertion (picture-movement-left).

C-c > Move right after insertion (picture-movement-right).

C-c ^ Move up after insertion (picture-movement-up).

C-c . Move down after insertion (picture-movement-down).

C-c ‘ Move up and left (“northwest”) after insertion (picture-
movement-nw).

Chapter 24: Editing Pictures 283

C-c ’ Move up and right (“northeast”) after insertion (picture-
movement-ne).

C-c / Move down and left (“southwest”) after insertion
(picture-movement-sw).

C-c \ Move down and right (“southeast”) after insertion
(picture-movement-se).

Two motion commands move based on the current Picture insertion direc-
tion. The command C-c C-f (picture-motion) moves in the same direction
as motion after “insertion” currently does, while C-c C-b (picture-motion-
reverse) moves in the opposite direction.

24.3 Picture Mode Tabs

Two kinds of tab-like action are provided in Picture mode. Use M-〈TAB〉

(picture-tab-search) for context-based tabbing. With no argument, it
moves to a point underneath the next “interesting” character that follows
whitespace in the previous nonblank line. “Next” here means “appearing
at a horizontal position greater than the one point starts out at.” With an
argument, as in C-u M-〈TAB〉, this command moves to the next such interest-
ing character in the current line. M-〈TAB〉 does not change the text; it only
moves point. “Interesting” characters are defined by the variable picture-
tab-chars, which should define a set of characters. The syntax for this
variable is like the syntax used inside of ‘[. . .]’ in a regular expression—but
without the ‘[’ and the ‘]’. Its default value is "!-~".

〈TAB〉 itself runs picture-tab, which operates based on the current tab
stop settings; it is the Picture mode equivalent of tab-to-tab-stop. Nor-
mally it just moves point, but with a numeric argument it clears the text
that it moves over.

The context-based and tab-stop-based forms of tabbing are brought to-
gether by the command C-c 〈TAB〉, picture-set-tab-stops. This command
sets the tab stops to the positions which M-〈TAB〉 would consider significant
in the current line. The use of this command, together with 〈TAB〉, can get
the effect of context-based tabbing. But M-〈TAB〉 is more convenient in the
cases where it is sufficient.

It may be convenient to prevent use of actual tab characters in pictures.
For example, this prevents C-x 〈TAB〉 from messing up the picture. You can
do this by setting the variable indent-tabs-mode to nil. See Section 19.3
[Just Spaces], page 179.

24.4 Picture Mode Rectangle Commands

284 GNU Emacs Manual

Picture mode defines commands for working on rectangular pieces of the
text in ways that fit with the quarter-plane model. The standard rectangle
commands may also be useful (see Section 9.4 [Rectangles], page 69).

C-c C-k Clear out the region-rectangle with spaces (picture-clear-
rectangle). With argument, delete the text.

C-c C-w r Similar but save rectangle contents in register r first (picture-
clear-rectangle-to-register).

C-c C-y Copy last killed rectangle into the buffer by overwriting, with
upper left corner at point (picture-yank-rectangle). With
argument, insert instead.

C-c C-x r Similar, but use the rectangle in register r (picture-yank-
rectangle-from-register).

The picture rectangle commands C-c C-k (picture-clear-rectangle)
and C-c C-w (picture-clear-rectangle-to-register) differ from the
standard rectangle commands in that they normally clear the rectangle in-
stead of deleting it; this is analogous with the way C-d is changed in Picture
mode.

However, deletion of rectangles can be useful in Picture mode, so these
commands delete the rectangle if given a numeric argument. C-c C-k either
with or without a numeric argument saves the rectangle for C-c C-y.

The Picture mode commands for yanking rectangles differ from the stan-
dard ones in overwriting instead of inserting. This is the same way that
Picture mode insertion of other text differs from other modes. C-c C-
y (picture-yank-rectangle) inserts (by overwriting) the rectangle that
was most recently killed, while C-c C-x (picture-yank-rectangle-from-
register) does likewise for the rectangle found in a specified register.

Chapter 25: Sending Mail 285

25 Sending Mail

To send a message in Emacs, you start by typing a command (C-x m) to
select and initialize the ‘*mail*’ buffer. Then you edit the text and headers
of the message in this buffer, and type another command (C-c C-s or C-c
C-c) to send the message.

C-x m Begin composing a message to send (mail).

C-x 4 m Likewise, but display the message in another window (mail-
other-window).

C-x 5 m Likewise, but make a new frame (mail-other-frame).

C-c C-s In Mail mode, send the message (mail-send).

C-c C-c Send the message and bury the mail buffer (mail-send-and-
exit).

The command C-x m (mail) selects a buffer named ‘*mail*’ and initializes
it with the skeleton of an outgoing message. C-x 4 m (mail-other-window)
selects the ‘*mail*’ buffer in a different window, leaving the previous current
buffer visible. C-x 5 m (mail-other-frame) creates a new frame to select
the ‘*mail*’ buffer.

Because the mail composition buffer is an ordinary Emacs buffer, you
can switch to other buffers while in the middle of composing mail, and
switch back later (or never). If you use the C-x m command again when you
have been composing another message but have not sent it, you are asked to
confirm before the old message is erased. If you answer n, the ‘*mail*’ buffer
is left selected with its old contents, so you can finish the old message and
send it. C-u C-x m is another way to do this. Sending the message marks the
‘*mail*’ buffer “unmodified”, which avoids the need for confirmation when
C-x m is next used.

If you are composing a message in the ‘*mail*’ buffer and want to send
another message before finishing the first, rename the ‘*mail*’ buffer using
M-x rename-uniquely (see Section 15.3 [Misc Buffer], page 143). Then you
can use C-x m or its variants described above to make a new ‘*mail*’ buffer.
Once you’ve done that, you can work with each mail buffer independently.

25.1 The Format of the Mail Buffer

In addition to the text or body, a message has header fields which say
who sent it, when, to whom, why, and so on. Some header fields such as the
date and sender are created automatically after the message is sent. Others,

286 GNU Emacs Manual

such as the recipient names, must be specified by you in order to send the
message properly.

Mail mode provides a few commands to help you edit some header fields,
and some are preinitialized in the buffer automatically at times. You can
insert and edit header fields using ordinary editing commands.

The line in the buffer that says

--text follows this line--

is a special delimiter that separates the headers you have specified from the
text. Whatever follows this line is the text of the message; the headers
precede it. The delimiter line itself does not appear in the message actually
sent. The text used for the delimiter line is controlled by the variable mail-
header-separator.

Here is an example of what the headers and text in the mail buffer might
look like.

To: gnu@prep.ai.mit.edu
CC: lungfish@spam.org, byob@spam.org
Subject: The Emacs Manual
--Text follows this line--
Please ignore this message.

25.2 Mail Header Fields

A header field in the mail buffer starts with a field name at the beginning
of a line, terminated by a colon. Upper and lower case are equivalent in
field names (and in mailing addresses also). After the colon and optional
whitespace comes the contents of the field.

You can use any name you like for a header field, but normally people
use only standard field names with accepted meanings. Here is a table of
fields commonly used in outgoing messages.

‘To’ This field contains the mailing addresses to which the message
is addressed.

‘Subject’ The contents of the ‘Subject’ field should be a piece of text
that says what the message is about. The reason ‘Subject’
fields are useful is that most mail-reading programs can provide
a summary of messages, listing the subject of each message but
not its text.

‘CC’ This field contains additional mailing addresses to send the mes-
sage to, but whose readers should not regard the message as
addressed to them.

Chapter 25: Sending Mail 287

‘BCC’ This field contains additional mailing addresses to send the mes-
sage to, which should not appear in the header of the message ac-
tually sent. Copies sent this way are called blind carbon copies.

To send a blind carbon copy of every outgoing message to your-
self, set the variable mail-self-blind to t.

‘FCC’ This field contains the name of one file and directs Emacs to
append a copy of the message to that file when you send the
message. If the file is in Rmail format, Emacs writes the message
to Rmail format; otherwise, Emacs writes the message in system
mail file format.

To put a fixed file name as in ‘FCC’ field each time you start
editing an outgoing message, set the variable mail-archive-
file-name to that file name. Unless you remove the ‘FCC’ field
before sending, the message will be written into that file when
it is sent.

‘From’ Use the ‘From’ field to say who you are, when the account you
are using to send the mail is not your own. The contents of the
‘From’ field should be a valid mailing address, since replies will
normally go there. If you don’t specify the ‘From’ field yourself,
Emacs uses the value of user-mail-address as the default.

‘Reply-to’
Use this field to direct replies to a different address. Most mail-
reading programs (including Rmail) automatically send replies
to the ‘Reply-to’ address in preference to the ‘From’ address. By
adding a ‘Reply-to’ field to your header, you can work around
any problems your ‘From’ address may cause for replies.

To put a fixed ‘Reply-to’ address into every outgoing message,
set the variable mail-default-reply-to to that address (as
a string). Then mail initializes the message with a ‘Reply-to’
field as specified. You can delete or alter that header field before
you send the message, if you wish. When Emacs starts up, if the
environment variable REPLYTO is set, mail-default-reply-to
is initialized from that environment variable.

‘In-reply-to’
This field contains a piece of text describing a message you are
replying to. Some mail systems can use this information to
correlate related pieces of mail. Normally this field is filled in
by Rmail when you reply to a message in Rmail, and you never
need to think about it (see Chapter 26 [Rmail], page 293).

The ‘To’, ‘CC’, ‘BCC’ and ‘FCC’ fields can appear any number of times, to
specify many places to send the message. The ‘To’, ‘CC’, and ‘BCC’ fields can

288 GNU Emacs Manual

have continuation lines. All the lines starting with whitespace, following the
line on which the field starts, are considered part of the field. For example,

To: foo@here.net, this@there.net,
me@gnu.cambridge.mass.usa.earth.spiral3281

When you send the message, if you didn’t write a ‘From’ field yourself,
Emacs puts in one for you. The variable mail-from-style controls the
format:

nil Just the email address, as in ‘king@grassland.com’.

parens Both email address and full name, as in ‘king@grassland.com
(Elvis Parsley)’.

angles Both email address and full name, as in ‘Elvis Parsley
<king@grassland.com>’.

25.3 Mail Aliases

You can define mail aliases in a file named ‘~/.mailrc’. These are short
mnemonic names which stand for mail addresses or groups of mail addresses.
Like many other mail programs, Emacs expands aliases when they occur
in the ‘To’, ‘From’, ‘CC’, ‘BCC’, and ‘Reply-to’ fields, plus their ‘Resent-’
variants.

To define an alias in ‘~/.mailrc’, write a line in the following format:

alias shortaddress fulladdresses

Here fulladdresses stands for one or more mail addresses for shortaddress to
expand into. Separate multiple addresses with spaces; if an address contains
a space, quote the whole address with a pair of double-quotes.

For instance, to make maingnu stand for gnu@prep.ai.mit.edu plus a
local address of your own, put in this line:

alias maingnu gnu@prep.ai.mit.edu local-gnu

Emacs also recognizes include commands in ‘.mailrc’ files. They look
like this:

source filename

The file ‘~/.mailrc’ is used primarily by other mail-reading programs; it
can contain various other commands. Emacs ignores everything in it except
for alias definitions and include commands.

Another way to define a mail alias, within Emacs alone, is with the
define-mail-alias command. It prompts for the alias and then the full
address. You can use it to define aliases in your ‘.emacs’ file, like this:

(define-mail-alias "maingnu" "gnu@prep.ai.mit.edu")

define-mail-alias records aliases by adding them to a variable named
mail-aliases. If you are comfortable with manipulating Lisp lists, you can

Chapter 25: Sending Mail 289

set mail-aliases directly. The initial value of mail-aliases is t, which
means that Emacs should read ‘.mailrc’ to get the proper value.

You can specify a different file name to use instead of ‘~/.mailrc’ by
setting the variable mail-personal-alias-file.

Normally, Emacs expands aliases when you send the message. If you like,
you can have mail aliases expand as abbrevs, as soon as you type them in
(see Chapter 23 [Abbrevs], page 273). To enable this feature, execute the
following:

(add-hook ’mail-setup-hook ’mail-abbrevs-setup)

This can go in your ‘.emacs’ file. See Section 30.2.3 [Hooks], page 375. If
you use this feature, you must use define-mail-abbrev instead of define-
mail-alias; the latter does not work with this package. Note that the
mail abbreviation package uses the variable mail-abbrevs instead of mail-
aliases, and that all alias names are converted to lower case.

The mail abbreviation package also provides the C-c C-a (mail-
interactive-insert-alias) command, which reads an alias name (with
completion) and inserts its definition at point. This is useful when editing
the message text itself or a header field such as ‘Subject’ in which Emacs
does not normally expand aliases.

Note that abbrevs expand only if you insert a word-separator character
afterward. However, you can rebind C-n and M-> to cause expansion as well.
Here’s how to do that:

(add-hook ’mail-setup-hook

’(lambda ()

(substitute-key-definition

’next-line ’mail-abbrev-next-line

mail-mode-map global-map)

(substitute-key-definition

’end-of-buffer ’mail-abbrev-end-of-buffer

mail-mode-map global-map)))

25.4 Mail Mode

The major mode used in the mail buffer is Mail mode, which is much like
Text mode except that various special commands are provided on the C-c
prefix. These commands all have to do specifically with editing or sending
the message.

C-c C-s Send the message, and leave the mail buffer selected (mail-
send).

C-c C-c Send the message, and select some other buffer (mail-send-
and-exit).

290 GNU Emacs Manual

M-〈TAB〉 Complete a mailing address (mail-complete).

C-c C-f C-t
Move to the ‘To’ header field, creating one if there is none (mail-
to).

C-c C-f C-s
Move to the ‘Subject’ header field, creating one if there is none
(mail-subject).

C-c C-f C-c
Move to the ‘CC’ header field, creating one if there is none (mail-
cc).

C-c C-f C-b
Move to the ‘BCC’ header field, creating one if there is none
(mail-bcc).

C-c C-f C-f
Move to the ‘FCC’ header field, creating one if there is none
(mail-fcc).

C-c C-t Move to the beginning of the message body text (mail-text).

C-c C-w Insert the file ‘~/.signature’ at the end of the message text
(mail-signature).

C-c C-y Yank the selected message from Rmail (mail-yank-original).
This command does nothing unless your command to start send-
ing a message was issued with Rmail.

C-c C-q Fill all paragraphs of yanked old messages, each individually
(mail-fill-yanked-message).

M-x ispell-message
Do spelling correction on the message text, but not on citations
from other messages.

There are two ways to send the message. C-c C-s (mail-send) sends
the message and marks the mail buffer unmodified, but leaves that buffer
selected so that you can modify the message (perhaps with new recipients)
and send it again. C-c C-c (mail-send-and-exit) sends and then deletes
the window or switches to another buffer. It puts the mail buffer at the
lowest priority for reselection by default, since you are finished with using
it. This is the usual way to send the message.

While editing a header field that contains mailing addresses, such as ‘To:’,
‘CC:’ and ‘BCC:’, you can complete a mailing address by typing M-〈TAB〉

(mail-complete). For completion purposes, the valid mailing addresses are
taken to be the local users’ names plus your personal mail aliases. Addition-
ally, if your site provides a mail directory or a specific host to use for any

Chapter 25: Sending Mail 291

unrecognized user name, you can arrange to query that host for completion—
see the variables mail-directory-process and mail-directory-stream in
the source code.

If you type M-〈TAB〉 in the body of the message, it invokes ispell-
complete-word, as in Text mode.

Mail mode provides special commands for editing the headers and text
of the message before you send it. There are five commands defined to move
point to particular header fields, all based on the prefix C-c C-f (‘C-f’ is
for “field”). They are C-c C-f C-t (mail-to) to move to the ‘To’ field, C-
c C-f C-s (mail-subject) for the ‘Subject’ field, C-c C-f C-c (mail-cc)
for the ‘CC’ field, C-c C-f C-b (mail-bcc) for the ‘BCC’ field, and C-c C-f
C-f (mail-fcc) for the ‘FCC’ field. If the field in question does not exist,
these commands create one. We provide special motion commands for these
particular fields because they are the fields users most often want to edit.

C-c C-t (mail-text) moves point to just after the header separator line—
that is, to the beginning of the message body text.

C-c C-w (mail-signature) adds a standard piece text at the end of the
message to say more about who you are. The text comes from the file
‘.signature’ in your home directory. To insert your signature automati-
cally, set the variable mail-signature to t; then starting a mail message
automatically inserts the contents of your ‘.signature’ file. If you want
to omit your signature from a particular message, delete it from the buffer
before you send the message.

You can also set mail-signature to a string; then that string is inserted
automatically as your signature when you start editing a message to send.

When mail sending is invoked from the Rmail mail reader using an Rmail
command, C-c C-y can be used inside the mail buffer to insert the text of the
message you are replying to. Normally it indents each line of that message
four spaces and eliminates most header fields. A numeric argument specifies
the number of spaces to indent. An argument of just C-u says not to indent at
all and not to eliminate anything. C-c C-y always uses the current message
from the Rmail buffer, so you can insert several old messages by selecting
one in Rmail, switching to ‘*mail*’ and yanking it, then switching back to
Rmail to select another.

You can specify the text for C-c C-y to insert at the beginning of each
line: set mail-yank-prefix to the desired string. (A value of nil means
to use indentation; this is the default.) However, C-u C-c C-y never adds
anything at the beginning of the inserted lines, regardless of the value of
mail-yank-prefix.

After using C-c C-y, you can use the command C-c C-q (mail-fill-
yanked-message) to fill the paragraphs of the yanked old message or mes-
sages. One use of C-c C-q fills all such paragraphs, each one individually. To
fill a single paragraph of the quoted message, use M-q, after first setting the

292 GNU Emacs Manual

fill prefix appropriately to handle the indentation. See Section 20.5 [Filling],
page 186.

You can do spelling correction on the message text you have written
with the command M-x ispell-message. If you have yanked an incoming
message into the outgoing draft, this command skips what was yanked, but it
checks the text that you yourself inserted. (It looks for indentation or mail-
yank-prefix to distinguish the cited lines from your input.) See Section 13.4
[Spelling], page 103.

Mail mode defines the character ‘%’ as a word separator; this is helpful
for using the word commands to edit mail addresses.

Mail mode is normally used in buffers set up automatically by the mail
command and related commands. However, you can also switch to Mail
mode in a file-visiting buffer. That is a useful thing to do if you have saved
draft message text in a file. In a file-visiting buffer, C-c C-c does not clear
the modified flag, because only saving the file should do that. As a result,
you don’t get a warning about trying to send the same message twice.

Turning on Mail mode (which C-x m does automatically) runs the normal
hooks text-mode-hook and mail-mode-hook. Initializing a new outgoing
message runs the normal hook mail-setup-hook; if you want to add special
fields to your mail header or make other changes to the appearance of the
mail buffer, use that hook. See Section 30.2.3 [Hooks], page 375.

The main difference between these hooks is just when they are invoked.
Whenever you type M-x mail, mail-mode-hook runs as soon as the ‘*mail*’
buffer is created. Then the mail-setup function puts in the default contents
of the buffer. After these default contents are inserted, mail-setup-hook
runs.

25.5 Distracting the NSA

M-x spook adds a line of randomly chosen keywords to an outgoing mail
message. The keywords are chosen from a list of words that suggest you are
discussing something subversive.

The idea behind this feature is the suspicion that the NSA snoops on all
electronic mail messages that contain keywords suggesting they might find
them interesting. (The NSA says they don’t, but that’s what they would
say.) The idea is that if lots of people add suspicious words to their messages,
the NSA will get so busy with spurious input that they will have to give up
reading it all.

Here’s how to insert spook keywords automatically whenever you start
entering an outgoing message:

(add-hook ’mail-setup-hook ’spook)

Whether or not this confuses the NSA, it at least amuses people.

Chapter 26: Reading Mail with Rmail 293

26 Reading Mail with Rmail

Rmail is an Emacs subsystem for reading and disposing of mail that you
receive. Rmail stores mail messages in files called Rmail files. Reading the
message in an Rmail file is done in a special major mode, Rmail mode, which
redefines most letters to run commands for managing mail.

26.1 Basic Concepts of Rmail

Using Rmail in the simplest fashion, you have one Rmail file ‘~/RMAIL’
in which all of your mail is saved. It is called your primary Rmail file.
The command M-x rmail reads your primary Rmail file, merges new mail in
from your inboxes, displays the first message you haven’t read yet, and lets
you begin reading. The variable rmail-file-name specifies the name of the
primary Rmail file.

Rmail uses narrowing to hide all but one message in the Rmail file. The
message that is shown is called the current message. Rmail mode’s special
commands can do such things as delete the current message, copy it into
another file, send a reply, or move to another message. You can also create
multiple Rmail files and use Rmail to move messages between them.

Within the Rmail file, messages are normally arranged sequentially in
order of receipt; you can specify other ways to sort them. Messages are
assigned consecutive integers as their message numbers. The number of the
current message is displayed in Rmail’s mode line, followed by the total
number of messages in the file. You can move to a message by specifying its
message number with the j key (see Section 26.3 [Rmail Motion], page 294).

Following the usual conventions of Emacs, changes in an Rmail file be-
come permanent only when the file is saved. You can save it with s (rmail-
save), which also expunges deleted messages from the file first (see Sec-
tion 26.4 [Rmail Deletion], page 295). To save the file without expunging,
use C-x C-s. Rmail also saves the Rmail file after merging new mail from
an inbox file (see Section 26.5 [Rmail Inbox], page 296).

You can exit Rmail with q (rmail-quit); this expunges and saves the
Rmail file and then switches to another buffer. But there is no need to ‘exit’
formally. If you switch from Rmail to editing in other buffers, and never
happen to switch back, you have exited. (The Rmail command b, rmail-
bury, does this for you.) Just make sure to save the Rmail file eventually
(like any other file you have changed). C-x s is a good enough way to do
this (see Section 14.3 [Saving], page 111).

294 GNU Emacs Manual

26.2 Scrolling Within a Message

When Rmail displays a message that does not fit on the screen, you must
scroll through it to read the rest. You could do this with C-v, M-v and M-<,
but in Rmail scrolling is so frequent that it deserves to be easier to type.

〈SPC〉 Scroll forward (scroll-up).

〈DEL〉 Scroll backward (scroll-down).

. Scroll to start of message (rmail-beginning-of-message).

Since the most common thing to do while reading a message is to scroll
through it by screenfuls, Rmail makes 〈SPC〉 and 〈DEL〉 synonyms of C-v
(scroll-up) and M-v (scroll-down)

The command . (rmail-beginning-of-message) scrolls back to the be-
ginning of the selected message. This is not quite the same as M-<: for one
thing, it does not set the mark; for another, it resets the buffer boundaries
to the current message if you have changed them.

26.3 Moving Among Messages

The most basic thing to do with a message is to read it. The way to do
this in Rmail is to make the message current. The usual practice is to move
sequentially through the file, since this is the order of receipt of messages.
When you enter Rmail, you are positioned at the first message that you have
not yet made current (that is, the first one that has the ‘unseen’ attribute;
see Section 26.8 [Rmail Labels], page 300). Move forward to see the other
new messages; move backward to reexamine old messages.

n Move to the next nondeleted message, skipping any intervening
deleted messages (rmail-next-undeleted-message).

p Move to the previous nondeleted message (rmail-previous-
undeleted-message).

M-n Move to the next message, including deleted messages (rmail-
next-message).

M-p Move to the previous message, including deleted messages
(rmail-previous-message).

j Move to the first message. With argument n, move to message
number n (rmail-show-message).

> Move to the last message (rmail-last-message).

< Move to the first message (rmail-first-message).

Chapter 26: Reading Mail with Rmail 295

M-s regexp 〈RET〉

Move to the next message containing a match for regexp (rmail-
search).

- M-s regexp 〈RET〉

Move to the previous message containing a match for regexp.

n and p are the usual way of moving among messages in Rmail. They
move through the messages sequentially, but skip over deleted messages,
which is usually what you want to do. Their command definitions are
named rmail-next-undeleted-message and rmail-previous-undeleted-
message. If you do not want to skip deleted messages—for example, if you
want to move to a message to undelete it—use the variants M-n and M-p
(rmail-next-message and rmail-previous-message). A numeric argu-
ment to any of these commands serves as a repeat count.

In Rmail, you can specify a numeric argument by typing just the digits.
You don’t need to type C-u first.

The M-s (rmail-search) command is Rmail’s version of search. The
usual incremental search command C-s works in Rmail, but it searches only
within the current message. The purpose of M-s is to search for another
message. It reads a regular expression (see Section 12.5 [Regexps], page 90)
nonincrementally, then searches starting at the beginning of the following
message for a match. It then selects that message. If regexp is empty, M-s
reuses the regexp used the previous time.

To search backward in the file for another message, give M-s a negative
argument. In Rmail you can do this with - M-s.

It is also possible to search for a message based on labels. See Section 26.8
[Rmail Labels], page 300.

To move to a message specified by absolute message number, use j
(rmail-show-message) with the message number as argument. With no
argument, j selects the first message. < (rmail-first-message) also se-
lects the first message. > (rmail-last-message) selects the last message.

26.4 Deleting Messages

When you no longer need to keep a message, you can delete it. This flags
it as ignorable, and some Rmail commands pretend it is no longer present;
but it still has its place in the Rmail file, and still has its message number.

Expunging the Rmail file actually removes the deleted messages. The
remaining messages are renumbered consecutively. Expunging is the only
action that changes the message number of any message, except for undiges-
tifying (see Section 26.14 [Rmail Digest], page 309).

296 GNU Emacs Manual

d Delete the current message, and move to the next nondeleted
message (rmail-delete-forward).

C-d Delete the current message, and move to the previous nondeleted
message (rmail-delete-backward).

u Undelete the current message, or move back to a deleted message
and undelete it (rmail-undelete-previous-message).

x Expunge the Rmail file (rmail-expunge).

There are two Rmail commands for deleting messages. Both delete the
current message and select another message. d (rmail-delete-forward)
moves to the following message, skipping messages already deleted, while
C-d (rmail-delete-backward) moves to the previous nondeleted message.
If there is no nondeleted message to move to in the specified direction, the
message that was just deleted remains current.

Whenever Rmail deletes a message, it invokes the function(s) listed in
rmail-delete-message-hook. When the hook functions are invoked, the
message has been marked deleted, but it is still the current message in the
Rmail buffer.

To make all the deleted messages finally vanish from the Rmail file, type x
(rmail-expunge). Until you do this, you can still undelete the deleted mes-
sages. The undeletion command, u (rmail-undelete-previous-message),
is designed to cancel the effect of a d command in most cases. It undeletes
the current message if the current message is deleted. Otherwise it moves
backward to previous messages until a deleted message is found, and un-
deletes that message.

You can usually undo a d with a u because the u moves back to and
undeletes the message that the d deleted. But this does not work when the
d skips a few already-deleted messages that follow the message being deleted;
then the u command undeletes the last of the messages that were skipped.
There is no clean way to avoid this problem. However, by repeating the
u command, you can eventually get back to the message that you intend
to undelete. You can also select a particular deleted message with the M-p
command, then type u to undelete it.

A deleted message has the ‘deleted’ attribute, and as a result ‘deleted’
appears in the mode line when the current message is deleted. In fact,
deleting or undeleting a message is nothing more than adding or removing
this attribute. See Section 26.8 [Rmail Labels], page 300.

26.5 Rmail Files and Inboxes

The operating system places incoming mail for you in a file that we call
your inbox. When you start up Rmail, it runs a C program called movemail

Chapter 26: Reading Mail with Rmail 297

to copy the new messages from your inbox into your primary Rmail file,
which also contains other messages saved from previous Rmail sessions. It
is in this file that you actually read the mail with Rmail. This operation
is called getting new mail. You can get new mail at any time in Rmail by
typing g.

The variable rmail-primary-inbox-list contains a list of the files
which are inboxes for your primary Rmail file. If you don’t set this vari-
able explicitly, it is initialized from the MAIL environment variable, or,
as a last resort, set to nil, which means to use the default inbox. The
default inbox is ‘/var/mail/username’, ‘/usr/spool/mail/username’, or
‘/usr/mail/username’, depending on your operating system. You can spec-
ify the inbox file(s) for any Rmail file with the command set-rmail-inbox-
list; see Section 26.6 [Rmail Files], page 298.

Some sites use a method called POP for accessing users’ inbox data in-
stead of storing the data in inbox files. movemail can work with POP if you
compile it with the macro MAIL_USE_POP defined, and then install it setuid
to root. It is safe to install movemail in this way. Note: movemail only
works with POP3, not with older versions of POP.

Assuming you have compiled and installed movemail appropriately, you
can specify a POP inbox with a “file name” of the form ‘po:username’.
movemail handles such a name by opening a connection to the POP server.
The MAILHOST environment variable specifies the machine to look for the
server on.

Accessing mail via POP may require a password. If the variable rmail-
pop-password is non-nil, it specifies the password to use for POP. Alterna-
tively, if rmail-pop-password-required is non-nil, then Rmail asks you
for the password to use.

There are two reasons for having separate Rmail files and inboxes.

1. The inbox file format varies between operating systems and according
to the other mail software in use. Only one part of Rmail needs to know
about the alternatives, and it need only understand how to convert all
of them to Rmail’s own format.

2. It is very cumbersome to access an inbox file without danger of losing
mail, because it is necessary to interlock with mail delivery. Moreover,
different operating systems use different interlocking techniques. The
strategy of moving mail out of the inbox once and for all into a separate
Rmail file avoids the need for interlocking in all the rest of Rmail, since
only Rmail operates on the Rmail file.

Rmail was written to use Babyl format as its internal format. Since then,
we have recognized that the usual inbox format on Unix and GNU systems is
adequate for the job, and we plan to change Rmail to use that as its internal
format. However, the Rmail file will still be separate from the inbox file,
even on systems where their format is the same.

298 GNU Emacs Manual

When getting new mail, Rmail first copies the new mail from the inbox
file to the Rmail file; then it saves the Rmail file; then it truncates the inbox
file. This way, a system crash may cause duplication of mail between the
inbox and the Rmail file, but cannot lose mail.

When movemail copies mail from an inbox in the system’s mailer di-
rectory, it actually puts it in an intermediate file ‘~/.newmail-inboxname’.
Once it finishes, Rmail reads that file, merges the new mail, saves the Rmail
file, and only then deletes the intermediate file. If there is a crash at the
wrong time, this file continues to exist and Rmail will use it again the next
time it gets new mail from that inbox.

26.6 Multiple Rmail Files

Rmail operates by default on your primary Rmail file, which is named
‘~/RMAIL’ and receives your incoming mail from your system inbox file. But
you can also have other Rmail files and edit them with Rmail. These files can
receive mail through their own inboxes, or you can move messages into them
with explicit Rmail commands (see Section 26.7 [Rmail Output], page 299).

i file 〈RET〉

Read file into Emacs and run Rmail on it (rmail-input).

M-x set-rmail-inbox-list 〈RET〉 files 〈RET〉

Specify inbox file names for current Rmail file to get mail from.

g Merge new mail from current Rmail file’s inboxes (rmail-get-
new-mail).

C-u g file 〈RET〉

Merge new mail from inbox file file.

To run Rmail on a file other than your primary Rmail file, you may use
the i (rmail-input) command in Rmail. This visits the file in Rmail mode.
You can use M-x rmail-input even when not in Rmail.

The file you read with i should normally be a valid Rmail file. If it is
not, Rmail tries to decompose it into a stream of messages in various known
formats. If it succeeds, it converts the whole file to an Rmail file. If you
specify a file name that doesn’t exist, i initializes a new buffer for creating
a new Rmail file.

You can also select an Rmail file from a menu. Choose first the menu
bar Classify item, then from the Classify menu choose the Input Rmail File
item; then choose the Rmail file you want. The variables rmail-secondary-
file-directory and rmail-secondary-file-regexp specify which files to
offer in the menu: the first variable says which directory to find them in; the
second says which files in that directory to offer (all those that match the

Chapter 26: Reading Mail with Rmail 299

regular expression). These variables also apply to choosing a file for output
(see Section 26.7 [Rmail Output], page 299).

Each Rmail file can contain a list of inbox file names; you can specify
this list with M-x set-rmail-inbox-list 〈RET〉 files 〈RET〉. The argument
can contain any number of file names, separated by commas. It can also
be empty, which specifies that this file should have no inboxes. Once a list
of inboxes is specified, the Rmail file remembers it permanently until you
specify a different list.

As a special exception, if your primary Rmail file does not specify any
inbox files, it uses your standard system inbox.

The g command (rmail-get-new-mail) merges mail into the current
Rmail file from its specified inboxes. If the Rmail file has no inboxes, g does
nothing. The command M-x rmail also merges new mail into your primary
Rmail file.

To merge mail from a file that is not the usual inbox, give the g key a
numeric argument, as in C-u g. Then it reads a file name and merges mail
from that file. The inbox file is not deleted or changed in any way when g
with an argument is used. This is, therefore, a general way of merging one
file of messages into another.

26.7 Copying Messages Out to Files

These commands copy messages from an Rmail file into another file.

o file 〈RET〉

Append a copy of the current message to the file file, using Rmail
file format by default (rmail-output-to-rmail-file).

C-o file 〈RET〉

Append a copy of the current message to the file file, using
system inbox file format by default (rmail-output).

The commands o and C-o copy the current message into a specified file.
This file may be an Rmail file or it may be in system inbox format; the
output commands ascertain the file’s format and write the copied message
in that format.

The o and C-o commands differ in two ways: each has its own separate
default file name, and each specifies a choice of format to use when the file
does not already exist. The o command uses Rmail format when it creates
a new file, while C-o uses system inbox format for a new file. The default
file name for o is the file name used last with o, and the default file name
for C-o is the file name used last with C-o.

300 GNU Emacs Manual

If the output file is an Rmail file currently visited in an Emacs buffer, the
output commands copy the message into that buffer. It is up to you to save
the buffer eventually in its file.

You can also output a message to an Rmail file chosen with a menu.
Choose first the menu bar Classify item, then from the Classify menu
choose the Output Rmail Menu item; then choose the Rmail file you want.
This outputs the current message to that file, like the o command. The
variables rmail-secondary-file-directory and rmail-secondary-file-
regexp specify which files to offer in the menu: the first variable says which
directory to find them in; the second says which files in that directory to
offer (all those that match the regular expression).

Copying a message gives the original copy of the message the ‘filed’
attribute, so that ‘filed’ appears in the mode line when such a message is
current. If you like to keep just a single copy of every mail message, set the
variable rmail-delete-after-output to t; then the o and C-o commands
delete the original message after copying it. (You can undelete the original
afterward if you wish.)

Copying messages into files in system inbox format uses the header fields
that are displayed in Rmail at the time. Thus, if you use the t command
to view the entire header and then copy the message, the entire header is
copied. See Section 26.12 [Rmail Display], page 307.

The variable rmail-output-file-alist lets you specify intelligent de-
faults for the output file, based on the contents of the current message. The
value should be a list whose elements have this form:

(regexp . name-exp)

If there’s a match for regexp in the current message, then the default file
name for output is name-exp. If multiple elements match the message, the
first matching element decides the default file name. The subexpression
name-exp may be a string constant giving the file name to use, or more
generally it may be any Lisp expression that returns a file name as a string.
rmail-output-file-alist applies to both o and C-o.

26.8 Labels

Each message can have various labels assigned to it as a means of clas-
sification. Each label has a name; different names are different labels. Any
given label is either present or absent on a particular message. A few label
names have standard meanings and are given to messages automatically by
Rmail when appropriate; these special labels are called attributes. All other
labels are assigned only by users.

Chapter 26: Reading Mail with Rmail 301

a label 〈RET〉

Assign the label label to the current message (rmail-add-
label).

k label 〈RET〉

Remove the label label from the current message (rmail-kill-
label).

C-M-n labels 〈RET〉

Move to the next message that has one of the labels labels
(rmail-next-labeled-message).

C-M-p labels 〈RET〉

Move to the previous message that has one of the labels labels
(rmail-previous-labeled-message).

C-M-l labels 〈RET〉

Make a summary of all messages containing any of the labels
labels (rmail-summary-by-labels).

The a (rmail-add-label) and k (rmail-kill-label) commands allow
you to assign or remove any label on the current message. If the label
argument is empty, it means to assign or remove the same label most recently
assigned or removed.

Once you have given messages labels to classify them as you wish, there
are two ways to use the labels: in moving and in summaries.

The command C-M-n labels 〈RET〉 (rmail-next-labeled-message)
moves to the next message that has one of the labels labels. The argu-
ment labels specifies one or more label names, separated by commas. C-M-p
(rmail-previous-labeled-message) is similar, but moves backwards to
previous messages. A numeric argument to either command serves as a
repeat count.

The command C-M-l labels 〈RET〉 (rmail-summary-by-labels) displays
a summary containing only the messages that have at least one of a specified
set of labels. The argument labels is one or more label names, separated by
commas. See Section 26.10 [Rmail Summary], page 304, for information on
summaries.

If the labels argument to C-M-n, C-M-p or C-M-l is empty, it means to
use the last set of labels specified for any of these commands.

Some labels such as ‘deleted’ and ‘filed’ have built-in meanings and are
assigned to or removed from messages automatically at appropriate times;
these labels are called attributes. Here is a list of Rmail attributes:

‘unseen’ Means the message has never been current. Assigned to mes-
sages when they come from an inbox file, and removed when
a message is made current. When you start Rmail, it initially
shows the first message that has this attribute.

302 GNU Emacs Manual

‘deleted’ Means the message is deleted. Assigned by deletion commands
and removed by undeletion commands (see Section 26.4 [Rmail
Deletion], page 295).

‘filed’ Means the message has been copied to some other file. Assigned
by the file output commands (see Section 26.6 [Rmail Files],
page 298).

‘answered’
Means you have mailed an answer to the message. Assigned by
the r command (rmail-reply). See Section 26.9 [Rmail Reply],
page 302.

‘forwarded’
Means you have forwarded the message. Assigned by the f
command (rmail-forward). See Section 26.9 [Rmail Reply],
page 302.

‘edited’ Means you have edited the text of the message within Rmail.
See Section 26.13 [Rmail Editing], page 308.

‘resent’ Means you have resent the message. Assigned by the command
M-x rmail-resend. See Section 26.9 [Rmail Reply], page 302.

All other labels are assigned or removed only by the user, and have no
standard meaning.

26.9 Sending Replies

Rmail has several commands that use Mail mode to send outgoing mail.
See Chapter 25 [Sending Mail], page 285, for information on using Mail
mode. What are documented here are the special commands of Rmail for
entering Mail mode. Note that the usual keys for sending mail—C-x m, C-x
4 m, and C-x 5 m—are available in Rmail mode and work just as they usually
do.

m Send a message (rmail-mail).

c Continue editing already started outgoing message (rmail-
continue).

r Send a reply to the current Rmail message (rmail-reply).

f Forward current message to other users (rmail-forward).

C-u f Resend the current message to other users (rmail-resend).

M-m Try sending a bounced message a second time (rmail-retry-
failure).

Chapter 26: Reading Mail with Rmail 303

The most common reason to send a message while in Rmail is to re-
ply to the message you are reading. To do this, type r (rmail-reply).
This displays the ‘*mail*’ buffer in another window, much like C-x 4 m, but
preinitializes the ‘Subject’, ‘To’, ‘CC’ and ‘In-reply-to’ header fields based
on the message you are replying to. The ‘To’ field starts out as the address
of the person who sent the message you received, and the ‘CC’ field starts
out with all the other recipients of that message.

You can exclude certain recipients from being placed automatically in the
‘CC’, using the variable rmail-dont-reply-to-names. Its value should be
a regular expression (as a string); any recipient that the regular expression
matches, is excluded from the ‘CC’ field. The default value matches your own
name, and any name starting with ‘info-’. (Those names are excluded be-
cause there is a convention of using them for large mailing lists to broadcast
announcements.)

To omit the ‘CC’ field completely for a particular reply, enter the reply
command with a numeric argument: C-u r or 1 r.

Once the ‘*mail*’ buffer has been initialized, editing and sending the
mail goes as usual (see Chapter 25 [Sending Mail], page 285). You can edit
the presupplied header fields if they are not right for you. You can also
use the commands of Mail mode (see Section 25.4 [Mail Mode], page 289),
including C-c C-y which yanks in the message that you are replying to. You
can switch to the Rmail buffer, select a different message there, switch back,
and yank the new current message.

Sometimes a message does not reach its destination. Mailers usually send
the failed message back to you, enclosed in a failure message. The Rmail
command M-m (rmail-retry-failure) prepares to send the same message
a second time: it sets up a ‘*mail*’ buffer with the same text and header
fields as before. If you type C-c C-c right away, you send the message again
exactly the same as the first time. Alternatively, you can edit the text or
headers and then send it. The variable rmail-retry-ignored-headers,
in the same format as rmail-ignored-headers (see Section 26.12 [Rmail
Display], page 307), controls which headers are stripped from the failed
message when retrying it; it defaults to nil.

Another frequent reason to send mail in Rmail is to forward the current
message to other users. f (rmail-forward) makes this easy by preinitializing
the ‘*mail*’ buffer with the current message as the text, and a subject
designating a forwarded message. All you have to do is fill in the recipients
and send. When you forward a message, recipients get a message which is
“from” you, and which has the original message in its contents.

Forwarding a message encloses it between two delimiter lines. It also
modifies every line that starts with a dash, by inserting ‘- ’ at the start
of the line. When you receive a forwarded message, if it contains some-
thing besides ordinary text—for example, program source code—you might

304 GNU Emacs Manual

find it useful to undo that transformation. You can do this by selecting
the forwarded message and typing M-x unforward-rmail-message. This
command extracts the original forwarded message, deleting the inserted ‘- ’
strings, and inserts it into the Rmail file as a separate message immediately
following the current one.

Resending is an alternative similar to forwarding; the difference is that re-
sending sends a message that is “from” the original sender, just as it reached
you—with a few added header fields ‘Resent-from’ and ‘Resent-to’ to in-
dicate that it came via you. To resend a message in Rmail, use C-u f. (f
runs rmail-forward, which is programmed to invoke rmail-resend if you
provide a numeric argument.)

The m (rmail-mail) command is used to start editing an outgoing mes-
sage that is not a reply. It leaves the header fields empty. Its only difference
from C-x 4 m is that it makes the Rmail buffer accessible for C-c C-y, just
as r does. Thus, m can be used to reply to or forward a message; it can do
anything r or f can do.

The c (rmail-continue) command resumes editing the ‘*mail*’ buffer,
to finish editing an outgoing message you were already composing, or to alter
a message you have sent.

If you set the variable rmail-mail-new-frame to a non-nil value, then
all the Rmail commands to start sending a message create a new frame to
edit it in. This frame is deleted when you send the message, or when you
use the ‘Don’t Send’ item in the ‘Mail’ menu.

26.10 Summaries

A summary is a buffer containing one line per message to give you an
overview of the mail in an Rmail file. Each line shows the message number,
the sender, the labels, and the subject. Almost all Rmail commands are
valid in the summary buffer also; these apply to the message described by
the current line of the summary. Moving point in the summary buffer selects
messages as you move to their summary lines.

A summary buffer applies to a single Rmail file only; if you are editing
multiple Rmail files, each one can have its own summary buffer. The sum-
mary buffer name is made by appending ‘-summary’ to the Rmail buffer’s
name. Normally only one summary buffer is displayed at a time.

26.10.1 Making Summaries

Here are the commands to create a summary for the current Rmail file.
Once the Rmail file has a summary buffer, changes in the Rmail file (such as

Chapter 26: Reading Mail with Rmail 305

deleting or expunging messages, and getting new mail) automatically update
the summary.

h
C-M-h Summarize all messages (rmail-summary).

l labels 〈RET〉

C-M-l labels 〈RET〉

Summarize message that have one or more of the specified labels
(rmail-summary-by-labels).

C-M-r rcpts 〈RET〉

Summarize messages that have one or more of the specified re-
cipients (rmail-summary-by-recipients).

C-M-t topic 〈RET〉

Summarize messages that have a match for the specified regexp
topic in their subjects (rmail-summary-by-topic).

The h or C-M-h (rmail-summary) command fills the summary buffer for
the current Rmail file with a summary of all the messages in the file. It then
displays and selects the summary buffer in another window.

C-M-l labels 〈RET〉 (rmail-summary-by-labels) makes a partial sum-
mary mentioning only the messages that have one or more of the labels
labels. labels should contain label names separated by commas.

C-M-r rcpts 〈RET〉 (rmail-summary-by-recipients) makes a partial
summary mentioning only the messages that have one or more of the recip-
ients rcpts. rcpts should contain mailing addresses separated by commas.

C-M-t topic 〈RET〉 (rmail-summary-by-topic) makes a partial summary
mentioning only the messages whose subjects have a match for the regular
expression topic.

Note that there is only one summary buffer for any Rmail file; making
one kind of summary discards any previously made summary.

The variable rmail-summary-window-size says how many lines to use
for the summary window.

26.10.2 Editing in Summaries

You can use the Rmail summary buffer to do almost anything you can do
in the Rmail buffer itself. In fact, once you have a summary buffer, there’s
no need to switch back to the Rmail buffer.

You can select and display various messages in the Rmail buffer, from
the summary buffer, just by moving point in the summary buffer to differ-
ent lines. It doesn’t matter what Emacs command you use to move point;
whichever line point is on at the end of the command, that message is se-
lected in the Rmail buffer.

306 GNU Emacs Manual

Almost all Rmail commands work in the summary buffer as well as in the
Rmail buffer. Thus, d in the summary buffer deletes the current message, u
undeletes, and x expunges. o and C-o output the current message to a file;
r starts a reply to it. You can scroll the current message while remaining in
the summary buffer using 〈SPC〉 and 〈DEL〉.

The Rmail commands to move between messages also work in the sum-
mary buffer, but with a twist: they move through the set of messages in-
cluded in the summary. They also ensure the Rmail buffer appears on the
screen (unlike cursor motion commands, which update the contents of the
Rmail buffer but don’t display it in a window unless it already appears).
Here is a list of these commands:

n Move to next line, skipping lines saying ‘deleted’, and select its
message.

p Move to previous line, skipping lines saying ‘deleted’, and select
its message.

M-n Move to next line and select its message.

M-p Move to previous line and select its message.

> Move to the last line, and select its message.

< Move to the first line, and select its message.

M-s pattern 〈RET〉

Search through messages for pattern starting with the current
message; select the message found, and move point in the sum-
mary buffer to that message’s line.

Deletion, undeletion, and getting new mail, and even selection of a differ-
ent message all update the summary buffer when you do them in the Rmail
buffer. If the variable rmail-redisplay-summary is non-nil, these actions
also bring the summary buffer back onto the screen.

When you are finished using the summary, type w (rmail-summary-wipe)
to delete the summary buffer’s window. You can also exit Rmail while in
the summary: q (rmail-summary-quit) deletes the summary window, then
exits from Rmail by saving the Rmail file and switching to another buffer.

26.11 Sorting the Rmail File

M-x rmail-sort-by-date
Sort messages of current Rmail file by date.

M-x rmail-sort-by-subject
Sort messages of current Rmail file by subject.

Chapter 26: Reading Mail with Rmail 307

M-x rmail-sort-by-author
Sort messages of current Rmail file by author’s name.

M-x rmail-sort-by-recipient
Sort messages of current Rmail file by recipient’s names.

M-x rmail-sort-by-correspondent
Sort messages of current Rmail file by the name of the other
correspondent.

M-x rmail-sort-by-lines
Sort messages of current Rmail file by size (number of lines).

M-x rmail-sort-by-keywords 〈RET〉 labels 〈RET〉

Sort messages of current Rmail file by labels. The argument
labels should be a comma-separated list of labels. The order
of these labels specifies the order of messages; messages with
the first label come first, messages with the second label come
second, and so on. Messages which have none of these labels
come last.

The Rmail sort commands perform a stable sort: if there is no reason
to prefer either one of two messages, their order remains unchanged. You
can use this to sort by more than one criterion. For example, if you use
rmail-sort-by-date and then rmail-sort-by-author, messages from the
same author appear in order by date.

With a numeric argument, all these commands reverse the order of com-
parison. This means they sort messages from newest to oldest, from biggest
to smallest, or in reverse alphabetical order.

26.12 Display of Messages

Rmail reformats the header of each message before displaying it for the
first time. Reformatting hides uninteresting header fields to reduce clutter.
You can use the t command to show the entire header or to repeat the
header reformatting operation.

t Toggle display of complete header (rmail-toggle-header).

Reformatting the header involves deleting most header fields, on the
grounds that they are not interesting. The variable rmail-ignored-headers
holds a regular expression that specifies which header fields to hide in this
way—if it matches the beginning of a header field, that whole field is hidden.

Rmail saves the complete original header before reformatting; to see it,
use the t command (rmail-toggle-header). This discards the reformatted
headers of the current message and displays it with the original header.

308 GNU Emacs Manual

Repeating t reformats the message again. Selecting the message again also
reformats.

One consequence of this is that if you edit the reformatted header (using
e; see Section 26.13 [Rmail Editing], page 308), subsequent use of t will
discard your edits. On the other hand, if you use e after t, to edit the
original (unreformatted) header, those changes are permanent.

When used with a window system that supports multiple fonts, Rmail
highlights certain header fields that are especially interesting—by default,
the ‘From’ and ‘Subject’ fields. The variable rmail-highlighted-headers
holds a regular expression that specifies the header fields to highlight; if it
matches the beginning of a header field, that whole field is highlighted.

If you specify unusual colors for your text foreground and background, the
colors used for highlighting may not go well with them. If so, specify different
colors for the highlight face. That is worth doing because the highlight
face is used for other kinds of highlighting as well. See Section 17.12 [Faces],
page 164, for how to do this.

To turn off highlighting entirely in Rmail, set rmail-highlighted-
headers to nil.

26.13 Editing Within a Message

Most of the usual Emacs commands are available in Rmail mode, though
a few, such as C-M-n and C-M-h, are redefined by Rmail for other purposes.
However, the Rmail buffer is normally read only, and most of the letters are
redefined as Rmail commands. If you want to edit the text of a message,
you must use the Rmail command e.

e Edit the current message as ordinary text.

The e command (rmail-edit-current-message) switches from Rmail
mode into Rmail Edit mode, another major mode which is nearly the same
as Text mode. The mode line indicates this change.

In Rmail Edit mode, letters insert themselves as usual and the Rmail
commands are not available. When you are finished editing the message
and are ready to go back to Rmail, type C-c C-c, which switches back to
Rmail mode. Alternatively, you can return to Rmail mode but cancel all the
editing that you have done, by typing C-c C-].

Entering Rmail Edit mode runs the hook text-mode-hook; then it runs
the hook rmail-edit-mode-hook (see Section 30.2.3 [Hooks], page 375). It
adds the attribute ‘edited’ to the message.

26.14 Digest Messages

Chapter 26: Reading Mail with Rmail 309

A digest message is a message which exists to contain and carry several
other messages. Digests are used on some moderated mailing lists; all the
messages that arrive for the list during a period of time such as one day
are put inside a single digest which is then sent to the subscribers. Trans-
mitting the single digest uses much less computer time than transmitting
the individual messages even though the total size is the same, because the
per-message overhead in network mail transmission is considerable.

When you receive a digest message, the most convenient way to read it is
to undigestify it: to turn it back into many individual messages. Then you
can read and delete the individual messages as it suits you.

To do this, select the digest message and type the command M-x
undigestify-rmail-message. This extracts the submessages as separate
Rmail messages, and inserts them following the digest. The digest message
itself is flagged as deleted.

26.15 Converting an Rmail File to Inbox Format

The command M-x unrmail converts a file in Rmail format to inbox for-
mat (also known as the system mailbox format), so that you can use it with
other mail-editing tools. You must specify two arguments, the name of the
Rmail file and the name to use for the converted file. M-x unrmail does not
alter the Rmail file itself.

26.16 Reading Rot13 Messages

Mailing list messages that might offend some readers are sometimes en-
coded in a simple code called rot13—so named because it rotates the alpha-
bet by 13 letters. This code is not for secrecy, as it provides none; rather,
it enables those who might be offended to avoid ever seeing the real text of
the message.

To view a buffer using the rot13 code, use the command M-x rot13-
other-window. This displays the current buffer in another window which
applies the code when displaying the text.

310 GNU Emacs Manual

Chapter 27: Dired, the Directory Editor 311

27 Dired, the Directory Editor

Dired makes an Emacs buffer containing a listing of a directory, and
optionally some of its subdirectories as well. You can use the normal Emacs
commands to move around in this buffer, and special Dired commands to
operate on the files listed.

27.1 Entering Dired

To invoke Dired, do C-x d or M-x dired. The command reads a directory
name or wildcard file name pattern as a minibuffer argument to specify which
files to list. Where dired differs from list-directory is in putting the
buffer into Dired mode so that the special commands of Dired are available.

The variable dired-listing-switches specifies the options to give to
ls for listing directory; this string must contain ‘-l’. If you use a numeric
prefix argument with the dired command, you can specify the ls switches
with the minibuffer after you finish entering the directory specification.

To display the Dired buffer in another window rather than in the se-
lected window, use C-x 4 d (dired-other-window) instead of C-x d. C-x 5
d (dired-other-frame) uses a separate frame to display the Dired buffer.

27.2 Commands in the Dired Buffer

The Dired buffer is “read-only”, and inserting text in it is not useful,
so ordinary printing characters such as d and x are used for special Dired
commands. Some Dired commands mark or flag the current file (that is,
the file on the current line); other commands operate on the marked files or
on the flagged files.

All the usual Emacs cursor motion commands are available in Dired
buffers. Some special purpose cursor motion commands are also provided.
The keys C-n and C-p are redefined to put the cursor at the beginning of
the file name on the line, rather than at the beginning of the line.

For extra convenience, 〈SPC〉 and n in Dired are equivalent to C-n. p is
equivalent to C-p. (Moving by lines is so common in Dired that it deserves
to be easy to type.) 〈DEL〉 (move up and unflag) is often useful simply for
moving up.

27.3 Deleting Files with Dired

312 GNU Emacs Manual

The primary use of Dired is to flag files for deletion and then delete the
files previously flagged.

d Flag this file for deletion.

u Remove deletion flag on this line.

〈DEL〉 Move point to previous line and remove the deletion flag on that
line.

x Delete the files that are flagged for deletion.

You can flag a file for deletion by moving to the line describing the file
and typing d. The deletion flag is visible as a ‘D’ at the beginning of the line.
This command moves point to the next line, so that repeated d commands
flag successive files. A numeric argument serves as a repeat count.

The files are flagged for deletion rather than deleted immediately to re-
duce the danger of deleting a file accidentally. Until you direct Dired to
expunge the flagged files, you can remove deletion flags using the commands
u and 〈DEL〉. u works just like d, but removes flags rather than making flags.
〈DEL〉 moves upward, removing flags; it is like u with numeric argument au-
tomatically negated.

To delete the flagged files, type x (dired-expunge). This command first
displays a list of all the file names flagged for deletion, and requests confir-
mation with yes. If you confirm, Dired deletes the flagged files, then deletes
their lines from the text of the Dired buffer. The shortened Dired buffer
remains selected.

If you answer no or quit with C-g when asked to confirm, you return
immediately to Dired, with the deletion flags still present in the buffer, and
no files actually deleted.

27.4 Flagging Many Files

Flag all auto-save files (files whose names start and end with ‘#’)
for deletion (see Section 14.5 [Auto Save], page 117).

~ Flag all backup files (files whose names end with ‘~’) for deletion
(see Section 14.3.1 [Backup], page 113).

. (Period) Flag excess numeric backup files for deletion. The oldest and
newest few backup files of any one file are exempt; the middle
ones are flagged.

% d regexp 〈RET〉

Flag for deletion all files whose names match the regular expres-
sion regexp (dired-flag-files-regexp).

Chapter 27: Dired, the Directory Editor 313

The #, ~ and . commands flag many files for deletion, based on their file
names. These commands are useful precisely because they do not actually
delete any files; you can remove the deletion flags from any flagged files that
you really wish to keep.

flags for deletion all files whose names look like auto-save files (see
Section 14.5 [Auto Save], page 117)—that is, files whose names begin and
end with ‘#’. ~ flags for deletion all files whose names say they are backup
files (see Section 14.3.1 [Backup], page 113)—that is, whose names end in
‘~’.

. (Period) flags just some of the backup files for deletion: all but the
oldest few and newest few backups of any one file. Normally dired-kept-
versions (not kept-new-versions; that applies only when saving) specifies
the number of newest versions of each file to keep, and kept-old-versions
specifies the number of oldest versions to keep.

Period with a positive numeric argument, as in C-u 3 ., specifies the
number of newest versions to keep, overriding dired-kept-versions. A
negative numeric argument overrides kept-old-versions, using minus the
value of the argument to specify the number of oldest versions of each file
to keep.

The % d command flags all files whose names match a specified regular
expression (dired-flag-files-regexp). Only the non-directory part of the
file name is used in matching. You can use ‘^’ and ‘$’ to anchor matches.
You can exclude subdirectories by hiding them (see Section 27.13 [Hiding
Subdirectories], page 320).

27.5 Visiting Files in Dired

There are several Dired commands for visiting or examining the files
listed in the Dired buffer. All of them apply to the current line’s file; if that
file is really a directory, these commands invoke Dired on that subdirectory
(making a separate Dired buffer).

f Visit the file described on the current line, like typing C-x C-
f and supplying that file name (dired-find-file). See Sec-
tion 14.2 [Visiting], page 108.

〈RET〉 Equivalent to f.

o Like f, but uses another window to display the file’s buffer
(dired-find-file-other-window). The Dired buffer remains
visible in the first window. This is like using C-x 4 C-f to visit
the file. See Chapter 16 [Windows], page 149.

314 GNU Emacs Manual

C-o Visit the file described on the current line, and display the buffer
in another window, but do not select that window (dired-
display-file).

Mouse-2 Visit the file named by the line you click on (dired-mouse-
find-file-other-window). This uses another window to dis-
play the file, like the o command.

v View the file described on the current line, using M-x view-file
(dired-view-file).

Viewing a file is like visiting it, but is slanted toward moving
around in the file conveniently and does not allow changing the
file. See Section 14.10 [Misc File Ops], page 138.

27.6 Dired Marks vs. Flags

Instead of flagging a file with ‘D’, you can mark the file with some other
character (usually ‘*’). Most Dired commands to operate on files, aside from
“expunge” (x), look for files marked with ‘*’.

Here are some commands for marking with ‘*’ (and also for unmarking).
(See Section 27.3 [Dired Deletion], page 312, for commands to flag and unflag
files.)

m Mark the current file with ‘*’ (dired-mark). With a numeric
argument n, mark the next n files starting with the current file.
(If n is negative, mark the previous −n files.)

* Mark all executable files with ‘*’ (dired-mark-executables).
With a numeric argument, unmark all those files.

@ Mark all symbolic links with ‘*’ (dired-mark-symlinks). With
a numeric argument, unmark all those files.

/ Mark with ‘*’ all files which are actually directories, except for
‘.’ and ‘..’ (dired-mark-directories). With a numeric argu-
ment, unmark all those files.

M-〈DEL〉 markchar
Remove all marks that use the character markchar (dired-
unmark-all-files). If you specify 〈RET〉 as markchar, this com-
mand removes all marks, no matter what the marker character
is.

With a numeric argument, this command queries about each
marked file, asking whether to remove its mark. You can answer
y meaning yes, n meaning no, ! to remove the marks from the
remaining files without asking about them.

Chapter 27: Dired, the Directory Editor 315

c old new Replace all marks that use the character old with marks that
use the character new (dired-change-marks). This command
is the primary way to create or use marks other than ‘*’ or
‘D’. The arguments are single characters—do not use 〈RET〉 to
terminate them.

You can use almost any character as a mark character by means
of this command, to distinguish various classes of files. If old is
a space (‘ ’), then the command operates on all unmarked files;
if new is a space, then the command unmarks the files it acts
on.

To illustrate the power of this command, here is how to put ‘*’
marks on all the files that are unmarked, while unmarking all
those that have ‘*’ marks:

c * t c SPC * c t SPC

% m regexp 〈RET〉

Mark (with ‘*’) all files whose names match the regular expres-
sion regexp (dired-mark-files-regexp). % m is like % d, except
that it marks files with ‘*’ instead of flagging with ‘D’. See Sec-
tion 27.4 [Flagging Many Files], page 312.

Only the non-directory part of the file name is used in match-
ing. Use ‘^’ and ‘$’ to anchor matches. Exclude subdirecto-
ries by hiding them (see Section 27.13 [Hiding Subdirectories],
page 320).

27.7 Operating on Files

This section describes the basic Dired commands to operate on one file
or several files. All of these commands are capital letters; all of them use the
minibuffer, either to read an argument or to ask for confirmation, before they
act. All use the following convention to decide which files to manipulate:

• If you give the command a numeric prefix argument n, it operates on
the next n files, starting with the current file. (If n is negative, the
command operates on the −n files preceding the current line.)

• Otherwise, if some files are marked with ‘*’, the command operates on
all those files.

• Otherwise, the command operates on the current file only.

Here are the file-manipulating commands that operate on files in this
way. (Some other Dired commands, such as ! and the ‘%’ commands, also
use these conventions to decide which files to work on.)

316 GNU Emacs Manual

C new 〈RET〉

Copy the specified files (dired-do-copy). The argument new is
the directory to copy into, or (if copying a single file) the new
name.

If dired-copy-preserve-time is non-nil, then copying with
this command sets the modification time of the new file to be
the same as that of the old file.

R new 〈RET〉

Rename the specified files (dired-do-rename). The argument
new is the directory to rename into, or (if renaming a single file)
the new name.

Dired automatically changes the visited file name of buffers as-
sociated with renamed files so that they refer to the new names.

H new 〈RET〉

Make hard links to the specified files (dired-do-hardlink). The
argument new is the directory to make the links in, or (if making
just one link) the name to give the link.

S new 〈RET〉

Make symbolic links to the specified files (dired-do-symlink).
The argument new is the directory to make the links in, or (if
making just one link) the name to give the link.

M modespec 〈RET〉

Change the mode (also called “permission bits”) of the speci-
fied files (dired-do-chmod). This uses the chmod program, so
modespec can be any argument that chmod can handle.

G newgroup 〈RET〉

Change the group of the specified files to newgroup (dired-do-
chgrp).

O newowner 〈RET〉

Change the owner of the specified files to newowner (dired-do-
chown). (On most systems, only the superuser can do this.)

The variable dired-chown-program specifies the name of the
program to use to do the work (different systems put chown in
different places).

P command 〈RET〉

Print the specified files (dired-do-print). You must specify
the command to print them with, but the minibuffer starts out
with a suitable guess made using the variables lpr-command
and lpr-switches (the same variables that lpr-file uses; see
Section 29.4 [Hardcopy], page 357).

Chapter 27: Dired, the Directory Editor 317

Z Compress or uncompress the specified files (dired-do-compress).
If the file appears to be a compressed file, it is uncompressed;
otherwise, it is compressed.

L Load the specified Emacs Lisp files (dired-do-load). See Sec-
tion 22.4 [Lisp Libraries], page 268.

B Byte compile the specified Emacs Lisp files (dired-do-byte-
compile). See section “Byte Compilation” in The Emacs Lisp
Reference Manual.

A regexp 〈RET〉

Search all the specified files for the regular expression regexp
(dired-do-search).

This command is a variant of tags-search. The search stops
at the first match it finds; use M-, to resume the search and find
the next match. See Section 21.12.5 [Tags Search], page 239.

Q from 〈RET〉 to 〈RET〉

Perform query-replace-regexp on each of the specified files,
replacing matches for from (a regular expression) with the string
to (dired-do-query-replace).

This command is a variant of tags-query-replace. If you exit
the query replace loop, you can use M-, to resume the scan
and replace more matches. See Section 21.12.5 [Tags Search],
page 239.

One special file-operation command is + (dired-create-directory).
This command reads a directory name and creates the directory if it does
not already exist.

27.8 Shell Commands in Dired

The dired command ! (dired-do-shell-command) reads a shell com-
mand string in the minibuffer and runs that shell command on all the spec-
ified files. There are two ways of applying a shell command to multiple
files:

• If you use ‘*’ in the shell command, then it runs just once, with the list
of file names substituted for the ‘*’. The order of file names is the order
of appearance in the Dired buffer.

Thus, ! tar cf foo.tar * 〈RET〉 runs tar on the entire list of file names,
putting them into one tar file ‘foo.tar’.

• If the command string doesn’t contain ‘*’, then it runs once for each
file, with the file name added at the end.

For example, ! uudecode 〈RET〉 runs uudecode on each file.

318 GNU Emacs Manual

What if you want to run the shell command once for each file but with
the file name inserted in the middle? Or if you want to use the file names
in a more complicated fashion? Use a shell loop. For example, this shell
command would run uuencode on each of the specified files, writing the
output into a corresponding ‘.uu’ file:

for file in *; uuencode $file $file >$file.uu; done

The working directory for the shell command is the top level directory of
the Dired buffer.

The ! command does not attempt to update the Dired buffer to show new
or modified files, because it doesn’t really understand shell commands, and
does not know what files the shell command changed. Use the g command
to update the Dired buffer (see Section 27.14 [Dired Updating], page 321).

27.9 Transforming File Names in Dired

Here are commands that alter file names in a systematic way:

% u Rename each of the selected files to an upper case name (dired-
upcase). If the old file names are ‘Foo’ and ‘bar’, the new names
are ‘FOO’ and ‘BAR’.

% l Rename each of the selected files to a lower case name (dired-
downcase). If the old file names are ‘Foo’ and ‘bar’, the new
names are ‘foo’ and ‘bar’.

% R from 〈RET〉 to 〈RET〉

% C from 〈RET〉 to 〈RET〉

% H from 〈RET〉 to 〈RET〉

% S from 〈RET〉 to 〈RET〉

These four commands rename, copy, make hard links and make
soft links, in each case computing the new name by regular ex-
pression substitution from the name of the old file.

The four regular expression substitution commands effectively perform a
search-and-replace on the selected file names in the Dired buffer. They read
two arguments: a regular expression from, and a substitution pattern to.

The commands match each “old” file name against the regular expression
from, and then replace the matching part with to. You can use ‘\&’ and
‘\digit’ in to to refer to all or part of what the pattern matched in the old
file name, as in query-replace-regexp (see Section 12.7.4 [Query Replace],
page 96). If the regular expression matches more than once in a file name,
only the first match is replaced.

For example, % R ^.*$ 〈RET〉 x-\& 〈RET〉 renames each selected file by
prepending ‘x-’ to its name. The inverse of this, removing ‘x-’ from the

Chapter 27: Dired, the Directory Editor 319

front of each file name, is also possible: one method is % R ^x-\(.*\)$ 〈RET〉

\1 〈RET〉; another is % R ^x- 〈RET〉 〈RET〉. (Use ‘^’ and ‘$’ to anchor matches
that should span the whole filename.)

Normally, the replacement process does not consider the files’ directory
names; it operates on the file name within the directory. If you specify a
numeric argument of zero, then replacement affects the entire absolute file
name including directory name.

Often you will want to apply the command to all files matching the same
regexp that you use in the command. To do this, mark those files with
% m regexp 〈RET〉, then use the same regular expression in the command to
operate on the files. To make this easier, the % commands to operate on files
use the last regular expression specified in any % command as a default.

27.10 File Comparison with Dired

Here are two Dired commands that compare specified files using diff.

= Compare the current file (the file at point) with another file (the
file at the mark) using the diff program (dired-diff). The file
at the mark is the first argument of diff, and the file at point
is the second argument.

M-= Compare the current file with its latest backup file (dired-
backup-diff). If the current file is itself a backup, compare
it with the file it is a backup of; this way, you can compare a file
with any backup version of your choice.

The backup file is the first file given to diff.

27.11 Subdirectories in Dired

A Dired buffer displays just one directory in the normal case; but you
can optionally include its subdirectories as well.

The simplest way to include multiple directories in one Dired buffer is to
specify the options ‘-lR’ for running ls. (If you give a numeric argument
when you run Dired, then you can specify these options in the minibuffer.)
That produces a recursive directory listing showing all subdirectories at all
levels.

But usually all the subdirectories are too many; usually you will prefer to
include specific subdirectories only. You can do this with the i command:

i Insert the contents of a subdirectory later in the buffer.

320 GNU Emacs Manual

Use the i (dired-maybe-insert-subdir) command on a line that de-
scribes a file which is a directory. It inserts the contents of that directory
into the same Dired buffer, and moves there. Inserted subdirectory contents
follow the top-level directory of the Dired buffer, just as they do in ‘ls -lR’
output.

If the subdirectory’s contents are already present in the buffer, the i
command just moves to it.

In either case, i sets the Emacs mark before moving, so C-u C-〈SPC〉

takes you back to the old position in the buffer (the line describing that
subdirectory).

Use the l command (dired-do-redisplay) to update the subdirectory’s
contents. Use k to delete the subdirectory. See Section 27.14 [Dired Updat-
ing], page 321.

27.12 Moving Over Subdirectories

When a Dired buffer lists subdirectories, you can use the page motion
commands C-x [and C-x] to move by entire directories.

The following commands move across, up and down in the tree of direc-
tories within one Dired buffer. They move to directory header lines, which
are the lines that give a directory’s name, at the beginning of the directory’s
contents.

C-M-n Go to next subdirectory header line, regardless of level (dired-
next-subdir).

C-M-p Go to previous subdirectory header line, regardless of level
(dired-prev-subdir).

C-M-u Go up to the parent directory’s header line (dired-tree-up).

C-M-d Go down in the directory tree, to the first subdirectory’s header
line (dired-tree-down).

27.13 Hiding Subdirectories

Hiding a subdirectory means to make it invisible, except for its header
line, via selective display (see Section 11.3 [Selective Display], page 79).

$ Hide or reveal the subdirectory that point is in, and move point
to the next subdirectory (dired-hide-subdir). A numeric ar-
gument serves as a repeat count.

Chapter 27: Dired, the Directory Editor 321

M-$ Hide all subdirectories in this Dired buffer, leaving only their
header lines (dired-hide-all). Or, if any subdirectory is cur-
rently hidden, make all subdirectories visible again. You can use
this command to get an overview in very deep directory trees or
to move quickly to subdirectories far away.

Ordinary Dired commands never consider files inside a hidden subdirec-
tory. For example, the commands to operate on marked files ignore files in
hidden directories even if they are marked. Thus you can use hiding to tem-
porarily exclude subdirectories from operations without having to remove
the markers.

The subdirectory hiding commands toggle; that is, they hide what was
visible, and show what was hidden.

27.14 Updating the Dired Buffer

This section describes commands to update the Dired buffer to reflect
outside (non-Dired) changes in the directories and files, and to delete part
of the Dired buffer.

g Update the entire contents of the Dired buffer (revert-buffer).

l Update the specified files (dired-do-redisplay).

k Delete the specified file lines—not the files, just the lines (dired-
do-kill-lines).

s Toggle between sorting by file name and sorting by date/time
(dired-sort-toggle-or-edit).

C-u s switches 〈RET〉

Refresh the Dired buffer using switches as dired-listing-
switches.

Type g (revert-buffer) to update the contents of the Dired buffer,
based on changes in the files and directories listed. This preserves all marks
except for those on files that have vanished. Hidden subdirectories are up-
dated but remain hidden.

To update only some of the files, type l (dired-do-redisplay). This
command applies to the next n files, or to the marked files if any, or to the
current file. Updating them means reading their current status from the file
system and changing the buffer to reflect it properly.

If you use l on a subdirectory header line, it updates the contents of the
corresponding subdirectory.

To delete the specified file lines—not the files, just the lines—type k
(dired-do-kill-lines). This command applies to the next n files, or to
the marked files if any, or to the current file.

322 GNU Emacs Manual

If you kill the line for a file that is a directory, the directory’s contents
are also deleted from the buffer. Typing C-u k on the header line for a
subdirectory is another way to delete a subdirectory from the Dired buffer.

The g command brings back any individual lines that you have killed in
this way, but not subdirectories—you must use i to reinsert each subdirec-
tory.

The files in a Dired buffers are normally in listed alphabetical order by
file names. Alternatively Dired can sort them by date/time. The Dired com-
mand s (dired-sort-toggle-or-edit) switches between these two sorting
modes. The mode line in a Dired buffer indicates which way it is currently
sorted—by name, or by date.

C-u s switches 〈RET〉 lets you specify a new value for dired-listing-
switches.

27.15 Dired and find

You can select a set of files for display in a Dired buffer more flexibly by
using the find utility to choose the files.

To search for files with names matching a wildcard pattern use M-x find-
name-dired. It reads arguments directory and pattern, and chooses all the
files in directory or its subdirectories whose individual names match pattern.

The files thus chosen are displayed in a Dired buffer in which the ordinary
Dired commands are available.

If you want to test the contents of files, rather than their names, use M-x
find-grep-dired. This command reads two minibuffer arguments, direc-
tory and regexp; it chooses all the files in directory or its subdirectories that
contain a match for regexp. It works by running the programs find and
grep.

The most general command in this series is M-x find-dired, which lets
you specify any condition that find can test. It takes two minibuffer argu-
ments, directory and find-args; it runs find in directory, passing find-args
to tell find what condition to test. To use this command, you need to know
how to use find.

The format of listing produced by these commands is controlled by the
variable find-ls-option, whose default value specifies using options ‘-ldi’
for ls. If your listings are corrupted, you may need to change the value of
this variable.

Chapter 28: The Calendar and the Diary 323

28 The Calendar and the Diary

Emacs provides the functions of a desk calendar, with a diary of planned
or past events. To enter the calendar, type M-x calendar; this displays
a three-month calendar centered on the current month, with point on the
current date. With a numeric argument, as in C-u M-x calendar, it prompts
you for the month and year to be the center of the three-month calendar.
The calendar uses its own buffer, whose major mode is Calendar mode.

Mouse-2 in the calendar brings up a menu of operations on a particular
date; C-Mouse-3 brings up a menu of commonly used calendar features that
are independent of any particular date. To exit the calendar, type q. See
section “Calendar” in The Emacs Lisp Reference Manual, for customization
information about the calendar and diary.

28.1 Movement in the Calendar

Calendar mode lets you move through the calendar in logical units of time
such as days, weeks, months, and years. If you move outside the three months
originally displayed, the calendar display “scrolls” automatically through
time to make the selected date visible. Moving to a date lets you view its
holidays or diary entries, convert it to other calendars; moving longer time
periods is also useful simply to scroll the calendar.

28.1.1 Motion by Standard Lengths of Time

The commands for movement in the calendar buffer parallel the com-
mands for movement in text. You can move forward and backward by days,
weeks, months, and years.

C-f Move point one day forward (calendar-forward-day).

C-b Move point one day backward (calendar-backward-day).

C-n Move point one week forward (calendar-forward-week).

C-p Move point one week backward (calendar-backward-week).

M-} Move point one month forward (calendar-forward-month).

M-{ Move point one month backward (calendar-backward-month).

C-x] Move point one year forward (calendar-forward-year).

C-x [Move point one year backward (calendar-forward-year).

324 GNU Emacs Manual

The day and week commands are natural analogues of the usual Emacs
commands for moving by characters and by lines. Just as C-n usually moves
to the same column in the following line, in Calendar mode it moves to the
same day in the following week. And C-p moves to the same day in the
previous week.

The arrow keys are equivalent to C-f, C-b, C-n and C-p, just as they
normally are in other modes.

The commands for motion by months and years work like those for weeks,
but move a larger distance. The month commands M-} and M-{ move forward
or backward by an entire month’s time. The year commands C-x] and C-x
[move forward or backward a whole year.

The easiest way to remember these commands is to consider months
and years analogous to paragraphs and pages of text, respectively. But
the commands themselves are not quite analogous. The ordinary Emacs
paragraph commands move to the beginning or end of a paragraph, whereas
these month and year commands move by an entire month or an entire year,
which usually involves skipping across the end of a month or year.

All these commands accept a numeric argument as a repeat count. For
convenience, the digit keys and the minus sign specify numeric arguments
in Calendar mode even without the Meta modifier. For example, 100 C-f
moves point 100 days forward from its present location.

28.1.2 Beginning or End of Week, Month or Year

A week (or month, or year) is not just a quantity of days; we think of
weeks (months, years) as starting on particular dates. So Calendar mode
provides commands to move to the beginning or end of a week, month or
year:

C-a Move point to start of week (calendar-beginning-of-week).

C-e Move point to end of week (calendar-end-of-week).

M-a Move point to start of month (calendar-beginning-of-
month).

M-e Move point to end of month (calendar-end-of-month).

M-< Move point to start of year (calendar-beginning-of-year).

M-> Move point to end of year (calendar-end-of-year).

These commands also take numeric arguments as repeat counts, with the
repeat count indicating how many weeks, months, or years to move backward
or forward.

By default, weeks begin on Sunday. To make them begin on Monday
instead, set the variable calendar-week-start-day to 1.

Chapter 28: The Calendar and the Diary 325

28.1.3 Specified Dates

Calendar mode provides commands for moving to a particular date spec-
ified in various ways.

g d Move point to specified date (calendar-goto-date).

o Center calendar around specified month (calendar-other-
month).

. Move point to today’s date (calendar-goto-today).

g d (calendar-goto-date) prompts for a year, a month, and a day of
the month, and then moves to that date. Because the calendar includes all
dates from the beginning of the current era, you must type the year in its
entirety; that is, type ‘1990’, not ‘90’.

o (calendar-other-month) prompts for a month and year, then centers
the three-month calendar around that month.

You can return to today’s date with . (calendar-goto-today).

28.2 Scrolling in the Calendar

The calendar display scrolls automatically through time when you move
out of the visible portion. You can also scroll it manually. Imagine that
the calendar window contains a long strip of paper with the months on it.
Scrolling it means moving the strip so that new months become visible in
the window.

C-x < Scroll calendar one month forward (scroll-calendar-left).

C-x > Scroll calendar one month backward (scroll-calendar-
right).

C-v
〈NEXT〉 Scroll calendar three months forward (scroll-calendar-left-

three-months).

M-v
〈PRIOR〉 Scroll calendar three months backward (scroll-calendar-

right-three-months).

The most basic calendar scroll commands scroll by one month at a time.
This means that there are two months of overlap between the display before
the command and the display after. C-x < scrolls the calendar contents one
month to the left; that is, it moves the display forward in time. C-x > scrolls
the contents to the right, which moves backwards in time.

326 GNU Emacs Manual

The commands C-v and M-v scroll the calendar by an entire “screenful”—
three months—in analogy with the usual meaning of these commands. C-v
makes later dates visible and M-v makes earlier dates visible. These com-
mands take a numeric argument as a repeat count; in particular, since C-u
multiplies the next command by four, typing C-u C-v scrolls the calendar
forward by a year and typing C-u M-v scrolls the calendar backward by a
year.

The function keys 〈NEXT〉 and 〈PRIOR〉 are equivalent to C-v and M-v, just
as they are in other modes.

28.3 Counting Days

M-= Display the number of days in the current region (calendar-
count-days-region).

To determine the number of days in the region, type M-= (calendar-
count-days-region). The numbers of days printed is inclusive; that is, it
includes the days specified by mark and point.

28.4 Miscellaneous Calendar Commands

p d Display day-in-year (calendar-print-day-of-year).

C-c C-l Regenerate the calendar window (redraw-calendar).

SPC Scroll the next window (scroll-other-window).

q Exit from calendar (exit-calendar).

To print the number of days elapsed since the start of the year, or the
number of days remaining in the year, type the p d command (calendar-
print-day-of-year). This displays both of those numbers in the echo area.
The number of days elapsed includes the selected date. The number of days
remaining does not include that date.

If the calendar window text gets corrupted, type C-c C-l (redraw-
calendar) to redraw it. (This can only happen if you use non-Calendar-
mode editing commands.)

In Calendar mode, you can use SPC (scroll-other-window) to scroll the
other window. This is handy when you display a list of holidays or diary
entries in another window.

To exit from the calendar, type q (exit-calendar). This buries all
buffers related to the calendar, selecting other buffers. (If a frame con-
tains a dedicated calendar window, exiting from the calendar iconifies that
frame.)

Chapter 28: The Calendar and the Diary 327

28.5 TeX Calendar

The Calendar TEX commands produce a buffer of LaTeX code that prints
as a calendar. Depending on the command you use, the printed calendar
covers the day, week, month or year that point is in.

t m Generate a one-month calendar (cal-tex-cursor-month).

t M Generate a sideways-printing one-month calendar (cal-tex-
cursor-month-landscape).

t d Generate a one-day calendar (cal-tex-cursor-day).

t w 1 Generate a one-page calendar for one week (cal-tex-cursor-
week).

t w 2 Generate a two-page calendar for one week (cal-tex-cursor-
week2).

t w 3 Generate an ISO-style calendar for one week (cal-tex-cursor-
week-iso).

t w 4 Generate a calendar for one Monday-starting week (cal-tex-
cursor-week-monday).

t f w Generate a Filofax-style two-weeks-at-a-glance calendar (cal-
tex-cursor-filofax-2week).

t f W Generate a Filofax-style one-week-at-a-glance calendar (cal-
tex-cursor-filofax-week).

t y Generate a calendar for one year (cal-tex-cursor-year).

t Y Generate a sideways-printing calendar for one year (cal-tex-
cursor-landscape-year).

t f y Generate a Filofax-style calendar for one year (cal-tex-
cursor-filofax-year).

Some of these commands print the calendar sideways (in “landscape
mode”), so it can be wider than it is long. Some of them use Filofax paper
size (3.75in x 6.75in). All of these commands accept a prefix argument which
specifies how many days, weeks, months or years to print (starting always
with the selected one).

If the variable cal-tex-holidays is non-nil (the default), then the
printed calendars show the holidays in calendar-holidays. If the variable
cal-tex-diary is non-nil (the default is nil), diary entries are included
also (in weekly and monthly calendars only).

328 GNU Emacs Manual

28.6 Holidays

The Emacs calendar knows about all major and many minor holidays,
and can display them.

h Display holidays for the selected date (calendar-cursor-
holidays).

Mouse-2 Holidays
Display any holidays for the date you click on.

x Mark holidays in the calendar window (mark-calendar-
holidays).

u Unmark calendar window (calendar-unmark).

a List all holidays for the displayed three months in another win-
dow (list-calendar-holidays).

M-x holidays
List all holidays for three months around today’s date in another
window.

To see if any holidays fall on a given date, position point on that date in
the calendar window and use the h command. Alternatively, click on that
date with Mouse-2 and then choose Holidays from the menu that appears.
Either way, this displays the holidays for that date, in the echo area if they
fit there, otherwise in a separate window.

To view the distribution of holidays for all the dates shown in the cal-
endar, use the x command. This displays the dates that are holidays in a
different face (or places a ‘*’ after these dates, if display with multiple faces
is not available). The command applies both to the currently visible months
and to other months that subsequently become visible by scrolling. To turn
marking off and erase the current marks, type u, which also erases any diary
marks (see Section 28.10 [Diary], page 335).

To get even more detailed information, use the a command, which dis-
plays a separate buffer containing a list of all holidays in the current three-
month range. You can use 〈SPC〉 in the calendar window to scroll that list.

The command M-x holidays displays the list of holidays for the current
month and the preceding and succeeding months; this works even if you don’t
have a calendar window. If you want the list of holidays centered around a
different month, use C-u M-x holidays, which prompts for the month and
year.

The holidays known to Emacs include American holidays and the major
Christian, Jewish, and Islamic holidays; also the solstices and equinoxes.

The dates used by Emacs for holidays are based on current practice, not
historical fact. Historically, for instance, the start of daylight savings time

Chapter 28: The Calendar and the Diary 329

and even its existence have varied from year to year, but present American
law mandates that daylight savings time begins on the first Sunday in April.
In an American locale, Emacs always uses this definition, even though it is
wrong for some prior years.

28.7 Times of Sunrise and Sunset

Special calendar commands can tell you, to within a minute or two, the
times of sunrise and sunset for any date.

S Display times of sunrise and sunset for the selected date
(calendar-sunrise-sunset).

Mouse-2 Sunrise/Sunset
Display times of sunrise and sunset for the date you click on.

M-x sunrise-sunset
Display times of sunrise and sunset for today’s date.

C-u M-x sunrise-sunset
Display times of sunrise and sunset for a specified date.

Within the calendar, to display the local times of sunrise and sunset in
the echo area, move point to the date you want, and type S. Alternatively,
click Mouse-2 on the date, then choose Sunrise/Sunset from the menu
that appears. The command M-x sunrise-sunset is available outside the
calendar to display this information for today’s date or a specified date.
To specify a date other than today, use C-u M-x sunrise-sunset, which
prompts for the year, month, and day.

You can display the times of sunrise and sunset for any location and
any date with C-u C-u M-x sunrise-sunset. This asks you for a longitude,
latitude, number of minutes difference from Coordinated Universal Time,
and date, and then tells you the times of sunrise and sunset for that location
on that date.

Because the times of sunrise and sunset depend on the location on earth,
you need to tell Emacs your latitude, longitude, and location name before
using these commands. Here is an example of what to set:

(setq calendar-latitude 40.1)
(setq calendar-longitude -88.2)
(setq calendar-location-name "Urbana, IL")

Use one decimal place in the values of calendar-latitude and calendar-
longitude.

Your time zone also affects the local time of sunrise and sunset. Emacs
usually gets time zone information from the operating system, but if these
values are not what you want (or if the operating system does not supply
them), you must set them yourself. Here is an example:

330 GNU Emacs Manual

(setq calendar-time-zone -360)
(setq calendar-standard-time-zone-name "CST")
(setq calendar-daylight-time-zone-name "CDT")

The value of calendar-time-zone is the number of minutes difference be-
tween your local standard time and Coordinated Universal Time (Greenwich
time). The values of calendar-standard-time-zone-name and calendar-
daylight-time-zone-name are the abbreviations used in your time zone.
Emacs displays the times of sunrise and sunset corrected for daylight sav-
ings time. See Section 28.12 [Daylight Savings], page 343, for how daylight
savings time is determined.

As a user, you might find it convenient to set the calendar location vari-
ables for your usual physical location in your ‘.emacs’ file. And when you
install Emacs on a machine, you can create a ‘default.el’ file which sets
them properly for the typical location of most users of that machine. See
Section 30.7 [Init File], page 395.

28.8 Phases of the Moon

These calendar commands display the dates and times of the phases of
the moon (new moon, first quarter, full moon, last quarter). This feature is
useful for debugging problems that “depend on the phase of the moon.”

M Display the dates and times for all the quarters of the moon for
the three-month period shown (calendar-phases-of-moon).

M-x phases-of-moon
Display dates and times of the quarters of the moon for three
months around today’s date.

Within the calendar, use the M command to display a separate buffer of
the phases of the moon for the current three-month range. The dates and
times listed are accurate to within a few minutes.

Outside the calendar, use the command M-x phases-of-moon to display
the list of the phases of the moon for the current month and the preceding
and succeeding months. For information about a different month, use C-u
M-x phases-of-moon, which prompts for the month and year.

The dates and times given for the phases of the moon are given in local
time (corrected for daylight savings, when appropriate); but if the variable
calendar-time-zone is void, Coordinated Universal Time (the Greenwich
time zone) is used. See Section 28.12 [Daylight Savings], page 343.

28.9 Conversion To and From Other Calendars

Chapter 28: The Calendar and the Diary 331

The Emacs calendar displayed is always the Gregorian calendar, some-
times called the “new style” calendar, which is used in most of the world
today. However, this calendar did not exist before the sixteenth century and
was not widely used before the eighteenth century; it did not fully displace
the Julian calendar and gain universal acceptance until the early twentieth
century. The Emacs calendar can display any month since January, year 1
of the current era, but the calendar displayed is the Gregorian, even for a
date at which the Gregorian calendar did not exist.

While Emacs cannot display other calendars, it can convert dates to and
from several other calendars.

28.9.1 Supported Calendar Systems

The ISO commercial calendar is used largely in Europe.

The Julian calendar, named after Julius Caesar, was the one used in
Europe throughout medieval times, and in many countries up until the nine-
teenth century.

Astronomers use a simple counting of days elapsed since noon, Monday,
January 1, 4713 B.C. on the Julian calendar. The number of days elapsed
is called the Julian day number or the Astronomical day number.

The Hebrew calendar is used by tradition in the Jewish religion. The
Emacs calendar program uses the Hebrew calendar to determine the dates
of Jewish holidays. Hebrew calendar dates begin and end at sunset.

The Islamic calendar is used in many predominantly Islamic countries.
Emacs uses it to determine the dates of Islamic holidays. There is no univer-
sal agreement in the Islamic world about the calendar; Emacs uses a widely
accepted version, but the precise dates of Islamic holidays often depend on
proclamation by religious authorities, not on calculations. As a consequence,
the actual dates of observance can vary slightly from the dates computed by
Emacs. Islamic calendar dates begin and end at sunset.

The French Revolutionary calendar was created by the Jacobins after
the 1789 revolution, to represent a more secular and nature-based view of
the annual cycle, and to install a 10-day week in a rationalization measure
similar to the metric system. The French government officially abandoned
this calendar at the end of 1805.

The Maya of Central America used three separate, overlapping calendar
systems, the long count, the tzolkin, and the haab. Emacs knows about
all three of these calendars. Experts dispute the exact correlation between
the Mayan calendar and our calendar; Emacs uses the Goodman-Martinez-
Thompson correlation in its calculations.

332 GNU Emacs Manual

The Copts use a calendar based on the ancient Egyptian solar calendar.
Their calendar consists of twelve 30-day months followed by an extra five
day period. Once every fourth year they add a leap day to this extra period
to make it six days. The Ethiopic calendar is identical in structure, but has
different year numbers and month names.

The Persians use a solar calendar based on a design of Omar Khayyam.
Their calendar consists of twelve months of which the first six have 31 days,
the next five have 30 days, and the last has 29 in ordinary years and 30
in leap years. Leap years occur in a complicated pattern every four or five
years.

The Chinese calendar is a complicated system of lunar months arranged
into solar years. The years go in cycles of sixty, each year containing either
twelve months in an ordinary year or thirteen months in a leap year; each
month has either 29 or 30 days. Years, ordinary months, and days are named
by combining one of ten “celestial stems” with one of twelve “terrestrial
branches” for a total of sixty names that are repeated in a cycle of sixty.

28.9.2 Converting To Other Calendars

The following commands describe the selected date (the date at point)
in various other calendar systems:

Mouse-2 Other Calendars
Display the date that you click on, expressed in various other
calendars.

p c Display ISO commercial calendar equivalent for selected day
(calendar-print-iso-date).

p j Display Julian date for selected day (calendar-print-julian-
date).

p a Display astronomical (Julian) day number for selected day
(calendar-print-astro-day-number).

p h Display Hebrew date for selected day (calendar-print-
hebrew-date).

p i Display Islamic date for selected day (calendar-print-
islamic-date).

p f Display French Revolutionary date for selected day (calendar-
print-french-date).

p C Display Chinese date for selected day (calendar-print-
chinese-date).

p k Display Coptic date for selected day (calendar-print-coptic-
date).

Chapter 28: The Calendar and the Diary 333

p e Display Ethiopic date for selected day (calendar-print-
ethiopic-date).

p p Display Persian date for selected day (calendar-print-
persian-date).

p m Display Mayan date for selected day (calendar-print-mayan-
date).

If you are using X, the easiest way to translate a date into other cal-
endars is to click on it with Mouse-2, then choose Other Calendars from
the menu that appears. This displays the equivalent forms of the date in
all the calendars Emacs understands, in the form of a menu. (Choosing an
alternative from this menu doesn’t actually do anything—the menu is used
only for display.)

Put point on the desired date of the Gregorian calendar, then type the
appropriate keys. The p is a mnemonic for “print” since Emacs “prints” the
equivalent date in the echo area.

28.9.3 Converting From Other Calendars

You can use the other supported calendars to specify a date to move to.
This section describes the commands for doing this using calendars other
than Mayan; for the Mayan calendar, see the following section.

g c Move to a date specified in the ISO commercial calendar
(calendar-goto-iso-date).

g j Move to a date specified in the Julian calendar (calendar-goto-
julian-date).

g a Move to a date specified in astronomical (Julian) day number
(calendar-goto-astro-day-number).

g h Move to a date specified in the Hebrew calendar (calendar-
goto-hebrew-date).

g i Move to a date specified in the Islamic calendar (calendar-
goto-islamic-date).

g f Move to a date specified in the French Revolutionary calendar
(calendar-goto-french-date).

g C Move to a date specified in the Chinese calendar (calendar-
goto-chinese-date).

g p Move to a date specified in the Persian calendar (calendar-
goto-persian-date).

334 GNU Emacs Manual

g k Move to a date specified in the Coptic calendar (calendar-
goto-coptic-date).

g e Move to a date specified in the Ethiopic calendar (calendar-
goto-ethiopic-date).

These commands ask you for a date on the other calendar, move point
to the Gregorian calendar date equivalent to that date, and display the
other calendar’s date in the echo area. Emacs uses strict completion (see
Section 5.3 [Completion], page 41) whenever it asks you to type a month
name, so you don’t have to worry about the spelling of Hebrew, Islamic, or
French names.

One common question concerning the Hebrew calendar is the computa-
tion of the anniversary of a date of death, called a “yahrzeit.” The Emacs
calendar includes a facility for such calculations. If you are in the calendar,
the command M-x list-yahrzeit-dates asks you for a range of years and
then displays a list of the yahrzeit dates for those years for the date given
by point. If you are not in the calendar, this command first asks you for the
date of death and the range of years, and then displays the list of yahrzeit
dates.

28.9.4 Converting from the Mayan Calendar

Here are the commands to select dates based on the Mayan calendar:

g m l Move to a date specified by the long count calendar (calendar-
goto-mayan-long-count-date).

g m n t Move to the next occurrence of a place in the tzolkin calendar
(calendar-next-tzolkin-date).

g m p t Move to the previous occurrence of a place in the tzolkin calen-
dar (calendar-previous-tzolkin-date).

g m n h Move to the next occurrence of a place in the haab calendar
(calendar-next-haab-date).

g m p h Move to the previous occurrence of a place in the haab calendar
(calendar-previous-haab-date).

g m n c Move to the next occurrence of a place in the calendar round
(calendar-next-calendar-round-date).

g m p c Move to the previous occurrence of a place in the calendar round
(calendar-previous-calendar-round-date).

To understand these commands, you need to understand the Mayan cal-
endars. The long count is a counting of days with these units:

Chapter 28: The Calendar and the Diary 335

1 kin = 1 day 1 uinal = 20 kin 1 tun = 18 uinal
1 katun = 20 tun 1 baktun = 20 katun

Thus, the long count date 12.16.11.16.6 means 12 baktun, 16 katun, 11 tun,
16 uinal, and 6 kin. The Emacs calendar can handle Mayan long count dates
as early as 7.17.18.13.1, but no earlier. When you use the g m l command,
type the Mayan long count date with the baktun, katun, tun, uinal, and kin
separated by periods.

The Mayan tzolkin calendar is a cycle of 260 days formed by a pair of
independent cycles of 13 and 20 days. Since this cycle repeats endlessly,
Emacs provides commands to move backward and forward to the previous
or next point in the cycle. Type g m p t to go to the previous tzolkin date;
Emacs asks you for a tzolkin date and moves point to the previous occurrence
of that date. Similarly, type g m n t to go to the next occurrence of a tzolkin
date.

The Mayan haab calendar is a cycle of 365 days arranged as 18 months
of 20 days each, followed a 5-day monthless period. Like the tzolkin cycle,
this cycle repeats endlessly, and there are commands to move backward and
forward to the previous or next point in the cycle. Type g m p h to go to the
previous haab date; Emacs asks you for a haab date and moves point to the
previous occurrence of that date. Similarly, type g m n h to go to the next
occurrence of a haab date.

The Maya also used the combination of the tzolkin date and the haab
date. This combination is a cycle of about 52 years called a calendar round.
If you type g m p c, Emacs asks you for both a haab and a tzolkin date and
then moves point to the previous occurrence of that combination. Use g
m n c to move point to the next occurrence of a combination. These com-
mands signal an error if the haab/tzolkin date combination you have typed
is impossible.

Emacs uses strict completion (see Section 5.3.3 [Strict Completion],
page 43) whenever it asks you to type a Mayan name, so you don’t have
to worry about spelling.

28.10 The Diary

The Emacs diary keeps track of appointments or other events on a daily
basis, in conjunction with the calendar. To use the diary feature, you must
first create a diary file containing a list of events and their dates. Then
Emacs can automatically pick out and display the events for today, for the
immediate future, or for any specified date.

By default, Emacs uses ‘~/diary’ as the diary file. This is the same file
that the calendar utility uses. A sample ‘~/diary’ file is:

12/22/1988 Twentieth wedding anniversary!!

336 GNU Emacs Manual

&1/1. Happy New Year!
10/22 Ruth’s birthday.
* 21, *: Payday
Tuesday--weekly meeting with grad students at 10am

Supowit, Shen, Bitner, and Kapoor to attend.
1/13/89 Friday the thirteenth!!
&thu 4pm squash game with Lloyd.
mar 16 Dad’s birthday
April 15, 1989 Income tax due.
&* 15 time cards due.

This example uses extra spaces to align the event descriptions of most of the
entries. Such formatting is purely a matter of taste.

Although you probably will start by creating a diary manually, Emacs
provides a number of commands to let you view, add, and change diary
entries.

28.10.1 Commands Displaying Diary Entries

Once you have created a ‘~/diary’ file, you can use the calendar to view
it. You can also view today’s events outside of Calendar mode.

d Display all diary entries for the selected date (view-diary-
entries).

Mouse-2 Diary
Display all diary entries for the date you click on.

s Display the entire diary file (show-all-diary-entries).

m Mark all visible dates that have diary entries (mark-diary-
entries).

u Unmark the calendar window (calendar-unmark).

M-x print-diary-entries
Print hard copy of the diary display as it appears.

M-x diary Display all diary entries for today’s date.

Displaying the diary entries with d shows in a separate window the diary
entries for the selected date in the calendar. The mode line of the new
window shows the date of the diary entries and any holidays that fall on
that date. If you specify a numeric argument with d, it shows all the diary
entries for that many successive days. Thus, 2 d displays all the entries for
the selected date and for the following day.

Another way to display the diary entries for a date is to click Mouse-2
on the date, and then choose Diary from the menu that appears.

Chapter 28: The Calendar and the Diary 337

To get a broader view of which days are mentioned in the diary, use
the m command. This displays the dates that have diary entries fall in a
different face (or places a ‘+’ after these dates, if display with multiple faces
is not available). The command applies both to the currently visible months
and to other months that subsequently become visible by scrolling. To turn
marking off and erase the current marks, type u, which also turns off holiday
marks (see Section 28.6 [Holidays], page 328).

To see the full diary file, rather than just some of the entries, use the s
command.

Display of selected diary entries uses the selective display feature to hide
entries that don’t apply. This is the same feature that Outline mode uses to
show part of an outline (see Section 20.8 [Outline Mode], page 192).

The diary buffer as you see it is an illusion, so simply printing the buffer
does not print what you see on your screen. There is a special command
to print hard copy of the diary buffer as it appears; this command is M-x
print-diary-entries. It sends the data directly to the printer. You can
customize it like lpr-region (see Section 29.4 [Hardcopy], page 357).

The command M-x diary displays the diary entries for the current date,
independently of the calendar display, and optionally for the next few days
as well; the variable number-of-diary-entries specifies how many days to
include. See section “Calendar/Diary Options” in The Emacs Lisp Reference
Manual.

If you put (diary) in your ‘.emacs’ file, this automatically displays a
window with the day’s diary entries, when you enter Emacs. The mode line
of the displayed window shows the date and any holidays that fall on that
date.

28.10.2 The Diary File

Your diary file is a file that records events associated with particular
dates. The name of the diary file is specified by the variable diary-file;
‘~/diary’ is the default. The calendar utility program supports a subset of
the format allowed by the Emacs diary facilities, so you can use that utility
to view the diary file, with reasonable results aside from the entries it cannot
understand.

Each entry in the diary file describes one event and consists of one or more
lines. An entry always begins with a date specification at the left margin.
The rest of the entry is simply text to describe the event. If the entry has
more than one line, then the lines after the first must begin with whitespace
to indicate they continue a previous entry. Lines that do not begin with
valid dates and do not continue a preceding entry are ignored.

338 GNU Emacs Manual

You can inhibit the marking of certain diary entries in the calendar win-
dow; to do this, insert an ampersand (‘&’) at the beginning of the entry,
before the date. This has no effect on display of the entry in the diary win-
dow; it affects only marks on dates in the calendar window. Nonmarking
entries are especially useful for generic entries that would otherwise mark
many different dates.

If the first line of a diary entry consists only of the date or day name with
no following blanks or punctuation, then the diary window display doesn’t
include that line; only the continuation lines appear. For example, this entry:

02/11/1989
Bill B. visits Princeton today
2pm Cognitive Studies Committee meeting
2:30-5:30 Liz at Lawrenceville
4:00pm Dentist appt
7:30pm Dinner at George’s
8:00-10:00pm concert

appears in the diary window without the date line at the beginning. This
style of entry looks neater when you display just a single day’s entries, but
can cause confusion if you ask for more than one day’s entries.

You can edit the diary entries as they appear in the window, but it is
important to remember that the buffer displayed contains the entire diary
file, with portions of it concealed from view. This means, for instance, that
the C-f (forward-char) command can put point at what appears to be the
end of the line, but what is in reality the middle of some concealed line.

Be careful when editing the diary entries! Inserting additional lines or
adding/deleting characters in the middle of a visible line cannot cause prob-
lems, but editing at the end of a line may not do what you expect. Deleting
a line may delete other invisible entries that follow it. Before editing the
diary, it is best to display the entire file with s (show-all-diary-entries).

28.10.3 Date Formats

Here are some sample diary entries, illustrating different ways of format-
ting a date. The examples all show dates in American order (month, day,
year), but Calendar mode supports European order (day, month, year) as
an option.

4/20/93 Switch-over to new tabulation system
apr. 25 Start tabulating annual results
4/30 Results for April are due
*/25 Monthly cycle finishes
Friday Don’t leave without backing up files

Chapter 28: The Calendar and the Diary 339

The first entry appears only once, on April 20, 1993. The second and
third appear every year on the specified dates, and the fourth uses a wildcard
(asterisk) for the month, so it appears on the 25th of every month. The final
entry appears every week on Friday.

You can use just numbers to express a date, as in ‘month/day ’ or
‘month/day/year’. This must be followed by a nondigit. In the date it-
self, month and day are numbers of one or two digits. The optional year is
also a number, and may be abbreviated to the last two digits; that is, you
can use ‘11/12/1989’ or ‘11/12/89’.

Dates can also have the form ‘monthname day ’ or ‘monthname day,
year’, where the month’s name can be spelled in full or abbreviated to three
characters (with or without a period). Case is not significant.

A date may be generic; that is, partially unspecified. Then the entry
applies to all dates that match the specification. If the date does not contain
a year, it is generic and applies to any year. Alternatively, month, day, or
year can be a ‘*’; this matches any month, day, or year, respectively. Thus,
a diary entry ‘3/*/*’ matches any day in March of any year; so does ‘march
*’.

If you prefer the European style of writing dates—in which the day comes
before the month—type M-x european-calendar while in the calendar, or
set the variable european-calendar-style to t before using any calendar or
diary command. This mode interprets all dates in the diary in the European
manner, and also uses European style for displaying diary dates. (Note that
there is no comma after the monthname in the European style.) To go
back to the (default) American style of writing dates, type M-x american-
calendar.

You can use the name of a day of the week as a generic date which applies
to any date falling on that day of the week. You can abbreviate the day of
the week to three letters (with or without a period) or spell it in full; case
is not significant.

28.10.4 Commands to Add to the Diary

While in the calendar, there are several commands to create diary entries:

i d Add a diary entry for the selected date (insert-diary-entry).

i w Add a diary entry for the selected day of the week (insert-
weekly-diary-entry).

i m Add a diary entry for the selected day of the month (insert-
monthly-diary-entry).

i y Add a diary entry for the selected day of the year (insert-
yearly-diary-entry).

340 GNU Emacs Manual

You can make a diary entry for a specific date by selecting that date in
the calendar window and typing the i d command. This command displays
the end of your diary file in another window and inserts the date; you can
then type the rest of the diary entry.

If you want to make a diary entry that applies to a specific day of the
week, select that day of the week (any occurrence will do) and type i w.
This inserts the day-of-week as a generic date; you can then type the rest of
the diary entry. You can make a monthly diary entry in the same fashion.
Select the day of the month, use the i m command, and type rest of the
entry. Similarly, you can insert a yearly diary entry with the i y command.

All of the above commands make marking diary entries by default. To
make a nonmarking diary entry, give a numeric argument to the command.
For example, C-u i w makes a nonmarking weekly diary entry.

When you modify the diary file, be sure to save the file before exiting
Emacs.

28.10.5 Special Diary Entries

In addition to entries based on calendar dates, the diary file can contain
sexp entries for regular events such as anniversaries. These entries are based
on Lisp expressions (sexps) that Emacs evaluates as it scans the diary file.
Instead of a date, a sexp entry contains ‘%%’ followed by a Lisp expression
which must begin and end with parentheses. The Lisp expression determines
which dates the entry applies to.

Calendar mode provides commands to insert certain commonly used sexp
entries:

i a Add an anniversary diary entry for the selected date (insert-
anniversary-diary-entry).

i b Add a block diary entry for the current region (insert-block-
diary-entry).

i c Add a cyclic diary entry starting at the date (insert-cyclic-
diary-entry).

If you want to make a diary entry that applies to the anniversary of a spe-
cific date, move point to that date and use the i a command. This displays
the end of your diary file in another window and inserts the anniversary
description; you can then type the rest of the diary entry. The entry looks
like this:

%%(diary-anniversary 10 31 1948) Arthur’s birthday

This entry applies to October 31 in any year after 1948; ‘10 31 1948’ specifies
the date. (If you are using the European calendar style, the month and day
are interchanged.) The reason this expression requires a beginning year is

Chapter 28: The Calendar and the Diary 341

that advanced diary functions can use it to calculate the number of elapsed
years.

A block diary entry applies to a specified range of consecutive dates. Here
is a block diary entry that applies to all dates from June 24, 1990 through
July 10, 1990:

%%(diary-block 6 24 1990 7 10 1990) Vacation

The ‘6 24 1990’ indicates the starting date and the ‘7 10 1990’ indicates
the stopping date. (Again, if you are using the European calendar style, the
month and day are interchanged.)

To insert a block entry, place point and the mark on the two dates that
begin and end the range, and type i b. This command displays the end of
your diary file in another window and inserts the block description; you can
then type the diary entry.

Cyclic diary entries repeat after a fixed interval of days. To create one,
select the starting date and use the i c command. The command prompts
for the length of interval, then inserts the entry, which looks like this:

%%(diary-cyclic 50 3 1 1990) Renew medication

This entry applies to March 1, 1990 and every 50th day following; ‘3 1 1990’
specifies the starting date. (If you are using the European calendar style,
the month and day are interchanged.)

All three of these commands make marking diary entries. To insert a
nonmarking entry, give a numeric argument to the command. For example,
C-u i a makes a nonmarking anniversary diary entry.

Marking sexp diary entries in the calendar is extremely time-consuming,
since every date visible in the calendar window must be individually checked.
So it’s a good idea to make sexp diary entries nonmarking (with ‘&’) when
possible.

Another sophisticated kind of sexp entry, a floating diary entry, specifies
a regularly-occurring event by offsets specified in days, weeks, and months.
It is comparable to a crontab entry interpreted by the cron utility. Here
is a nonmarking, floating diary entry that applies to the last Thursday in
November:

&%%(diary-float 11 4 -1) American Thanksgiving

The 11 specifies November (the eleventh month), the 4 specifies Thursday
(the fourth day of the week, where Sunday is numbered zero), and the −1
specifies “last” (1 would mean “first”, 2 would mean “second”, −2 would
mean “second-to-last”, and so on). The month can be a single month or a
list of months. Thus you could change the 11 above to ‘’(1 2 3)’ and have
the entry apply to the last Thursday of January, February, and March. If
the month is t, the entry applies to all months of the year.

342 GNU Emacs Manual

Most generally, sexp diary entries can perform arbitrary computations to
determine when they apply. See section “Sexp Diary Entries” in The Emacs
Lisp Reference Manual.

28.11 Appointments

If you have a diary entry for an appointment, and that diary entry be-
gins with a recognizable time of day, Emacs can warn you, several minutes
beforehand, that that appointment is pending. Emacs alerts you to the
appointment by displaying a message in the mode line.

To enable appointment notification, you must enable the time display
feature of Emacs, M-x display-time (see Section 1.3 [Mode Line], page 17).
You must also add the function appt-make-list to the diary-hook, like
this:

(add-hook ’diary-hook ’appt-make-list)

With these preparations done, when you display the diary (either with
the d command in the calendar window or with the M-x diary command), it
sets up an appointment list of all the diary entries found with recognizable
times of day, and reminds you just before each of them.

For example, suppose the diary file contains these lines:

Monday
9:30am Coffee break

12:00pm Lunch

Then on Mondays, after you have displayed the diary, you will be reminded
at 9:20am about your coffee break and at 11:50am about lunch.

You can write times in am/pm style (with ‘12:00am’ standing for mid-
night and ‘12:00pm’ standing for noon), or 24-hour European/military style.
You need not be consistent; your diary file can have a mixture of the two
styles.

Emacs updates the appointments list automatically just after midnight.
This also displays the next day’s diary entries in the diary buffer, unless you
set appt-display-diary to nil.

You can also use the appointment notification facility like an alarm clock.
The command M-x appt-add adds entries to the appointment list without
affecting your diary file. You delete entries from the appointment list with
M-x appt-delete.

You can turn off the appointment notification feature at any time by
setting appt-issue-message to nil.

28.12 Daylight Savings Time

Chapter 28: The Calendar and the Diary 343

Emacs understands the difference between standard time and daylight
savings time—the times given for sunrise, sunset, solstices, equinoxes, and
the phases of the moon take that into account. The rules for daylight savings
time vary from place to place and have also varied historically from year to
year. To do the job properly, Emacs needs to know which rules to use.

Some operating systems keep track of the rules that apply to the place
where you are; on these systems, Emacs gets the information it needs from
the system automatically. If some or all of this information is missing, Emacs
fills in the gaps with the rules currently used in Cambridge, Massachusetts.
If the resulting rules are not what you want, you can tell Emacs the rules to
use by setting certain variables.

These values should be Lisp expressions that refer to the variable year,
and evaluate to the Gregorian date on which daylight savings time starts
or (respectively) ends, in the form of a list (month day year). The values
should be nil if your area does not use daylight savings time.

Emacs uses these expressions to determine the starting date of daylight
savings time for the holiday list and for correcting times of day in the solar
and lunar calculations.

The values for Cambridge, Massachusetts are as follows:

(calendar-nth-named-day 1 0 4 year)
(calendar-nth-named-day -1 0 10 year)

That is, the first 0th day (Sunday) of the fourth month (April) in the year
specified by year, and the last Sunday of the tenth month (October) of that
year. If daylight savings time were changed to start on October 1, you would
set calendar-daylight-savings-starts to this:

(list 10 1 year)

If there is no daylight savings time at your location, or if you want
all times in standard time, set calendar-daylight-savings-starts and
calendar-daylight-savings-ends to nil.

The variable calendar-daylight-time-offset specifies the difference
between daylight savings time and standard time, measured in minutes. The
value for Cambridge, Massachusetts is 60.

The two variables calendar-daylight-savings-starts-time and
calendar-daylight-savings-ends-time specify the number of minutes
after midnight local time when the transition to and from daylight savings
time should occur. For Cambridge, Massachusetts both variables’ values are
120.

344 GNU Emacs Manual

Chapter 29: Miscellaneous Commands 345

29 Miscellaneous Commands

This chapter contains several brief topics that do not fit anywhere else:
reading netnews, running shell commands and shell subprocesses, using a
single shared Emacs for utilities that expect to run an editor as a subpro-
cess, printing hardcopy, sorting text, narrowing display to part of the buffer,
editing double-column files and binary files, saving an Emacs session for later
resumption, emulating other editors, various diversions and amusements.

29.1 Gnus

Gnus is an Emacs package primarily designed for reading and posting
Usenet news. It can also be used to read and respond to messages from a
number of other sources—mail, remote directories, digests, and so on.

Here we introduce Gnus and describe several basic features. For full
details on Gnus, type M-x info and then select the Gnus manual.

To start Gnus, type M-x gnus 〈RET〉.

29.1.1 Gnus Buffers

As opposed to most normal Emacs packages, Gnus uses a number of
different buffers to display information and to receive commands. The three
buffers users spend most of their time in are the group buffer, the summary
buffer and the article buffer.

The group buffer contains a list of groups. This is the first buffer Gnus
displays when it starts up. It normally displays only the groups to which
you subscribe and that contain unread articles. Use this buffer to select a
specific group.

The summary buffer lists one line for each article in a single group. By
default, the author, the subject and the line number are displayed for each
article, but this is customizable, like most aspects of Gnus display. The
summary buffer is created when you select a group in the group buffer, and
is killed when you exit the group. Use this buffer to select an article.

The article buffer displays the article. In normal Gnus usage, you don’t
select this buffer—all useful article-oriented commands work in the summary
buffer. But you can select the article buffer, and execute all Gnus commands
from that buffer, if you want to.

29.1.2 When Gnus Starts Up

346 GNU Emacs Manual

At startup, Gnus reads your ‘.newsrc’ news initialization file and at-
tempts to communicate with the local news server, which is a repository
of news articles. The news server need not be the same computer you are
logged in on.

If you start Gnus and connect to the server, but do not see any newsgroups
listed in the group buffer, type L or A k to get a listing of all the groups.
Then type u to toggle subscription to groups.

The first time you start Gnus, Gnus subscribes you to a few selected
groups. All other groups start out as killed groups for you; you can list them
with A k. All new groups that subsequently come to exist at the news server
become zombie groups for you; type A z to list them. You can subscribe to
a group shown in these lists using the u command.

When you quit Gnus with q, it automatically records in your ‘.newsrc’
and ‘.newsrc.eld’ initialization files the subscribed or unsubscribed status
of all groups. You should normally not edit these files manually, but you
may if you know how.

29.1.3 Summary of Gnus Commands

Reading news is a two step process:

1. Choose a group in the group buffer.

2. Select articles from the summary buffer. Each article selected is dis-
played in the article buffer in a large window, below the summary buffer
in its small window.

Each Gnus buffer has its own special commands; however, the meanings
of any given key in the various Gnus buffers are usually analogous, even if
not identical. Here are commands for the group and summary buffers:

q In the group buffer, update your ‘.newsrc’ initialization file and
quit Gnus.

In the summary buffer, exit the current group and return to the
group buffer. Thus, typing q twice quits Gnus.

L In the group buffer, list all the groups available on your news
server (except those you have killed). This may be a long list!

l In the group buffer, list only the groups to which you subscribe
and which contain unread articles.

u In the group buffer, unsubscribe from (or subscribe to) the group
listed in the line that point is on. When you quit Gnus by
typing q, Gnus lists in your ‘.newsrc’ file which groups you
have subscribed to. The next time you start Gnus, you won’t

Chapter 29: Miscellaneous Commands 347

see this group, because Gnus normally displays only subscribed-
to groups.

C-k In the group buffer, “kill” the current line’s group—don’t even
list it in ‘.newsrc’ from now on. This affects future Gnus ses-
sions as well as the present session.

When you quit Gnus by typing q, Gnus writes information in the
file ‘.newsrc’ describing all newsgroups except those you have
“killed.”

〈SPC〉 In the group buffer, select the group on the line under the cursor
and display the first unread article in that group.

In the summary buffer,

• Select the article on the line under the cursor if none is
selected.

• Scroll the text of the selected article (if there is one).

• Select the next unread article if at the end of the current
article.

Thus, you can move through all the articles by repeatedly typing
〈SPC〉.

〈DEL〉 In the group buffer, move point to the previous group containing
unread articles.

In the summary buffer, scroll the text of the article backwards.

n Move point to the next unread group, or select the next unread
article.

p Move point to the previous unread group, or select the previous
unread article.

C-n
C-p Move point to the next or previous item, even if it is marked as

read. This does not select the article or group on that line.

s In the summary buffer, do an incremental search of the current
text in the article buffer, just as if you switched to the article
buffer and typed C-s.

M-s regexp RET
In the summary buffer, search forward for articles containing a
match for regexp.

29.2 Running Shell Commands from Emacs

348 GNU Emacs Manual

Emacs has commands for passing single command lines to inferior shell
processes; it can also run a shell interactively with input and output to an
Emacs buffer named ‘*shell*’.

M-! cmd 〈RET〉

Run the shell command line cmd and display the output (shell-
command).

M-| cmd 〈RET〉

Run the shell command line cmd with region contents as input;
optionally replace the region with the output (shell-command-
on-region).

M-x shell Run a subshell with input and output through an Emacs buffer.
You can then give commands interactively.

29.2.1 Single Shell Commands

M-! (shell-command) reads a line of text using the minibuffer and ex-
ecutes it as a shell command in a subshell made just for that command.
Standard input for the command comes from the null device. If the shell
command produces any output, the output goes into an Emacs buffer named
‘*Shell Command Output*’, which is displayed in another window but not
selected. A numeric argument, as in M-1 M-!, directs this command to in-
sert any output into the current buffer. In that case, point is left before the
output and the mark is set after the output.

If the shell command line ends in ‘&’, it runs asynchronously.

M-| (shell-command-on-region) is like M-! but passes the contents of
the region as the standard input to the shell command, instead of no input.
If a numeric argument is used, meaning insert the output in the current
buffer, then the old region is deleted first and the output replaces it as the
contents of the region.

Both M-! and M-| use shell-file-name to specify the shell to use. This
variable is initialized based on your SHELL environment variable when Emacs
is started. If the file name does not specify a directory, the directories in the
list exec-path are searched; this list is initialized based on the environment
variable PATH when Emacs is started. Your ‘.emacs’ file can override either
or both of these default initializations.

Both M-! and M-| wait for the shell command to complete. To stop
waiting, type C-g to quit; that terminates the shell command with the signal
SIGINT—the same signal that C-c normally generates in the shell. Emacs
waits until the command actually terminates. If the shell command doesn’t
stop (because it ignores the SIGINT signal), type C-g again; this sends the
command a SIGKILL signal which is impossible to ignore.

Chapter 29: Miscellaneous Commands 349

29.2.2 Interactive Inferior Shell

To run a subshell interactively, putting its typescript in an Emacs buffer,
use M-x shell. This creates (or reuses) a buffer named ‘*shell*’ and runs a
subshell with input coming from and output going to that buffer. That is to
say, any “terminal output” from the subshell goes into the buffer, advancing
point, and any “terminal input” for the subshell comes from text in the
buffer. To give input to the subshell, go to the end of the buffer and type
the input, terminated by 〈RET〉.

Emacs does not wait for the subshell to do anything. You can switch
windows or buffers and edit them while the shell is waiting, or while it is
running a command. Output from the subshell waits until Emacs has time
to process it; this happens whenever Emacs is waiting for keyboard input or
for time to elapse.

To make multiple subshells, rename the buffer ‘*shell*’ to something
different using M-x rename-uniquely. Then type M-x shell again to create
a new buffer ‘*shell*’ with its own subshell. If you rename this buffer as
well, you can create a third one, and so on. All the subshells run indepen-
dently and in parallel.

The file name used to load the subshell is the value of the variable
explicit-shell-file-name, if that is non-nil. Otherwise, the environ-
ment variable ESHELL is used, or the environment variable SHELL if there
is no ESHELL. If the file name specified is relative, the directories in the
list exec-path are searched; this list is initialized based on the environment
variable PATH when Emacs is started. Your ‘.emacs’ file can override either
or both of these default initializations.

As soon as the subshell is started, it is sent as input the contents of the
file ‘~/.emacs_shellname’, if that file exists, where shellname is the name of
the file that the shell was loaded from. For example, if you use bash, the file
sent to it is ‘~/.emacs_bash’.

cd, pushd and popd commands given to the inferior shell are watched by
Emacs so it can keep the ‘*shell*’ buffer’s default directory the same as the
shell’s working directory. These commands are recognized syntactically by
examining lines of input that are sent. If you use aliases for these commands,
you can tell Emacs to recognize them also. For example, if the value of the
variable shell-pushd-regexp matches the beginning of a shell command
line, that line is regarded as a pushd command. Change this variable when
you add aliases for ‘pushd’. Likewise, shell-popd-regexp and shell-cd-
regexp are used to recognize commands with the meaning of ‘popd’ and ‘cd’.
These commands are recognized only at the beginning of a shell command
line.

350 GNU Emacs Manual

If Emacs gets an error while trying to handle what it believes is a ‘cd’,
‘pushd’ or ‘popd’ command, it runs the hook shell-set-directory-error-
hook (see Section 30.2.3 [Hooks], page 375).

If Emacs does not properly track changes in the current directory of
the subshell, use the command M-x dirs to ask the shell what its current
directory is. This command works for shells that support the most common
command syntax; it may not work for unusual shells.

29.2.3 Shell Mode

Shell buffers use Shell mode, which defines several special keys attached
to the C-c prefix. They are chosen to resemble the usual editing and job
control characters present in shells that are not under Emacs, except that
you must type C-c first. Here is a complete list of the special key bindings
of Shell mode:

〈RET〉 At end of buffer send line as input; otherwise, copy current line
to end of buffer and send it (comint-send-input). When a line
is copied, any text at the beginning of the line that matches the
variable shell-prompt-pattern is left out; this variable’s value
should be a regexp string that matches the prompts that your
shell uses.

〈TAB〉 Complete the command name or file name before point in the
shell buffer (comint-dynamic-complete). 〈TAB〉 also completes
history references (see Section 29.2.4.3 [History References],
page 354) and environment variable names.

The variable shell-completion-fignore specifies a list of file
name extensions to ignore in Shell mode completion. The default
setting ignores file names ending in ‘~’, ‘#’ or ‘%’. Other related
Comint modes use the variable comint-completion-fignore
instead.

M-? Display temporarily a list of the possible completions of the file
name before point in the shell buffer (comint-dynamic-list-
filename-completions).

C-d Either delete a character or send EOF (comint-delchar-or-
maybe-eof). Typed at the end of the shell buffer, C-d sends
EOF to the subshell. Typed at any other position in the buffer,
C-d deletes a character as usual.

C-c C-a Move to the beginning of the line, but after the prompt if any
(comint-bol).

C-c C-u Kill all text pending at end of buffer to be sent as input (comint-
kill-input).

Chapter 29: Miscellaneous Commands 351

C-c C-w Kill a word before point (backward-kill-word).

C-c C-c Interrupt the shell or its current subjob if any (comint-
interrupt-subjob).

C-c C-z Stop the shell or its current subjob if any (comint-stop-
subjob).

C-c C-\ Send quit signal to the shell or its current subjob if any (comint-
quit-subjob).

C-c C-o Kill the last batch of output from a shell command (comint-
kill-output). This is useful if a shell command spews out lots
of output that just gets in the way.

C-c C-r
C-M-l Scroll to display the beginning of the last batch of output at the

top of the window; also move the cursor there (comint-show-
output).

C-c C-e Scroll to put the end of the buffer at the bottom of the window
(comint-show-maximum-output).

C-c C-f Move forward across one shell command, but not beyond the
current line (shell-forward-command). The variable shell-
command-regexp specifies how to recognize the end of a com-
mand.

C-c C-b Move backward across one shell command, but not beyond the
current line (shell-backward-command).

C-c C-l Display the buffer’s history of shell commands in another win-
dow (comint-dynamic-list-input-ring).

M-x dirs Ask the shell what its current directory is, so that Emacs can
agree with the shell.

M-x send-invisible 〈RET〉 text 〈RET〉

Send text as input to the shell, after reading it without echoing.
This is useful when a shell command runs a program that asks
for a password.

Alternatively, you can arrange for Emacs to notice password
prompts and turn off echoing for them, as follows:

(add-hook ’comint-output-filter-functions
’comint-watch-for-password-prompt)

352 GNU Emacs Manual

M-x comint-continue-subjob
Continue the shell process. This is useful if you accidentally
suspend the shell process.1

M-x comint-strip-ctrl-m
Discard all control-m characters from the current group of shell
output. The most convenient way to use this command is to
make it run automatically when you get output from the sub-
shell. To do that, evaluate this Lisp expression:

(add-hook ’comint-output-filter-functions
’comint-strip-ctrl-m)

M-x comint-truncate-buffer
This command truncates the shell buffer to a certain maxi-
mum number of lines, specified by the variable comint-buffer-
maximum-size. Here’s how to do this automatically each time
you get output from the subshell:

(add-hook ’comint-output-filter-functions
’comint-truncate-buffer)

Shell mode also customizes the paragraph commands so that only shell
prompts start new paragraphs. Thus, a paragraph consists of an input com-
mand plus the output that follows it in the buffer.

Shell mode is a derivative of Comint mode, a general purpose mode for
communicating with interactive subprocesses. Most of the features of Shell
mode actually come from Comint mode, as you can see from the command
names listed above. The special features of Shell mode in particular include
the choice of regular expression for detecting prompts, the directory tracking
feature, and a few user commands.

Other Emacs features that use variants of Comint mode include GUD
(see Section 22.2 [Debuggers], page 263) and M-x run-lisp (see Section 22.7
[External Lisp], page 271).

You can use M-x comint-run to execute any program of your choice in a
subprocess using unmodified Comint mode—without the specializations of
Shell mode.

29.2.4 Shell Command History

Shell buffers support three ways of repeating earlier commands. You can
use the same keys used in the minibuffer; these work much as they do in the

1 You should not suspend the shell process. Suspending a subjob of the
shell is a completely different matter—that is normal practice, but you
must use the shell to continue the subjob; this command won’t do it.

Chapter 29: Miscellaneous Commands 353

minibuffer, inserting text from prior commands while point remains always
at the end of the buffer. You can move through the buffer to previous inputs
in their original place, then resubmit them or copy them to the end. Or you
can use a ‘!’-style history reference.

29.2.4.1 Shell History Ring

M-p Fetch the next earlier old shell command.

M-n Fetch the next later old shell command.

M-r regexp 〈RET〉

M-s regexp 〈RET〉

Search backwards or forwards for old shell commands that match
regexp.

Shell buffers provide a history of previously entered shell commands. To
reuse shell commands from the history, use the editing commands M-p, M-n,
M-r and M-s. These work just like the minibuffer history commands except
that they operate on the text at the end of the shell buffer, where you would
normally insert text to send to the shell.

M-p fetches an earlier shell command to the end of the shell buffer. Suc-
cessive use of M-p fetches successively earlier shell commands, each replacing
any text that was already present as potential shell input. M-n does likewise
except that it finds successively more recent shell commands from the buffer.

The history search commands M-r and M-s read a regular expression and
search through the history for a matching command. Aside from the choice
of which command to fetch, they work just like M-p and M-r. If you enter
an empty regexp, these commands reuse the same regexp used last time.

When you find the previous input you want, you can resubmit it by typing
〈RET〉, or you can edit it first and then resubmit it if you wish.

These commands get the text of previous shell commands from a special
history list, not from the shell buffer itself. Thus, editing the shell buffer, or
even killing large parts of it, does not affect the history that these commands
access.

Some shells store their command histories in files so that you can refer
to previous commands from previous shell sessions. Emacs reads the com-
mand history file for your chosen shell, to initialize its own command history.
The file name is ‘~/.bash_history’ for bash, ‘~/.sh_history’ for ksh, and
‘~/.history’ for other shells.

29.2.4.2 Shell History Copying

354 GNU Emacs Manual

C-c C-p Move point to the previous prompt (comint-previous-prompt).

C-c C-n Move point to the following prompt (comint-next-prompt).

C-c 〈RET〉 Copy the input command which point is in, inserting the copy at
the end of the buffer (comint-copy-old-input). This is useful
if you move point back to a previous command. After you copy
the command, you can submit the copy as input with 〈RET〉. If
you wish, you can edit the copy before resubmitting it.

Moving to a previous input and then copying it with C-c 〈RET〉 produces
the same results—the same buffer contents—that you would get by using M-
p enough times to fetch that previous input from the history list. However,
C-c 〈RET〉 copies the text from the buffer, which can be different from what
is in the history list if you edit the input text in the buffer after it has been
sent.

29.2.4.3 Shell History References

Various shells including csh and bash support history references that
begin with ‘!’ and ‘^’. Shell mode can understand these constructs and
perform the history substitution for you. If you insert a history reference
and type 〈TAB〉, this searches the input history for a matching command,
performs substitution if necessary, and places the result in the buffer in
place of the history reference. For example, you can fetch the most recent
command beginning with ‘mv’ with ! m v 〈TAB〉. You can edit the command
if you wish, and then resubmit the command to the shell by typing 〈RET〉.

History references take effect only following a shell prompt. The variable
shell-prompt-pattern specifies how to recognize a shell prompt. Comint
modes in general use the variable comint-prompt-regexp to specify how to
find a prompt; Shell mode uses shell-prompt-pattern to set up the local
value of comint-prompt-regexp.

Shell mode can optionally expand history references in the buffer when
you send them to the shell. To request this, set the variable comint-input-
autoexpand to input.

You can make 〈SPC〉 perform history expansion by binding 〈SPC〉 to the
command comint-magic-space.

29.2.5 Shell Mode Options

If the variable comint-scroll-to-bottom-on-input is non-nil, inser-
tion and yank commands scroll the selected window to the bottom before
inserting.

Chapter 29: Miscellaneous Commands 355

If comint-scroll-show-maximum-output is non-nil, then scrolling due
to arrival of output tries to place the last line of text at the bottom line of
the window, so as to show as much useful text as possible. (This mimics the
scrolling behavior of many terminals.) The default is nil.

By setting comint-scroll-to-bottom-on-output, you can opt for hav-
ing point jump to the end of the buffer whenever output arrives—no matter
where in the buffer point was before. If the value is this, point jumps in the
selected window. If the value is all, point jumps in each window that shows
the comint buffer. If the value is other, point jumps in all nonselected win-
dows that show the current buffer. The default value is nil, which means
point does not jump to the end.

The variable comint-input-ignoredups controls whether successive
identical inputs are stored in the input history. A non-nil value means
to omit an input that is the same as the previous input. The default is nil,
which means to store each input even if it is equal to the previous input.

Three variables customize file name completion. The variable comint-
completion-addsuffix controls whether completion inserts a space or a
slash to indicate a fully completed file or directory name (non-nil means do
insert a space or slash). comint-completion-recexact, if non-nil, directs
〈TAB〉 to choose the shortest possible completion if the usual Emacs com-
pletion algorithm cannot add even a single character. comint-completion-
autolist, if non-nil, says to list all the possible completions whenever
completion is not exact.

The command comint-dynamic-complete-variable does variable name
completion using the environment variables as set within Emacs. The vari-
ables controlling file name completion apply to variable name completion
too. This command is normally available through the menu bar.

Command completion normally considers only executable files. If you set
shell-command-execonly to nil, it considers nonexecutable files as well.

You can configure the behavior of ‘pushd’. Variables control whether
‘pushd’ behaves like ‘cd’ if no argument is given (shell-pushd-tohome),
pop rather than rotate with a numeric argument (shell-pushd-dextract),
and only add directories to the directory stack if they are not already on it
(shell-pushd-dunique). The values you choose should match the underly-
ing shell, of course.

29.2.6 Remote Host Shell

Emacs provides two commands for logging in to another computer and
communicating with it through an Emacs buffer.

M-x telnet 〈RET〉 hostname 〈RET〉

Set up a Telnet connection to the computer named hostname.

356 GNU Emacs Manual

M-x rlogin 〈RET〉 hostname 〈RET〉

Set up an Rlogin connection to the computer named hostname.

Use M-x telnet to set up a Telnet connection to another computer. (Tel-
net is the standard Internet protocol for remote login.) It reads the host
name of the other computer as an argument with the minibuffer. Once the
connection is established, talking to the other computer works like talking to
a subshell: you can edit input with the usual Emacs commands, and send it
a line at a time by typing 〈RET〉. The output is inserted in the Telnet buffer
interspersed with the input.

Use M-x rlogin to set up an Rlogin connection. Rlogin is another remote
login communication protocol, essentially much like the Telnet protocol but
incompatible with it, and supported only by certain systems. Rlogin’s ad-
vantages are that you can arrange not to have to give your user name and
password when communicating between two machines you frequently use,
and that you can make an 8-bit-clean connection. (To do that in Emacs, set
rlogin-explicit-args to ("-8") before you run Rlogin.)

M-x rlogin sets up the default file directory of the Emacs buffer to access
the remote host via FTP (see Section 14.1 [File Names], page 107), and it
tracks the shell commands that change the current directory just like Shell
mode.

There are two ways of doing directory tracking in an Rlogin buffer—either
with remote directory names ‘/host:dir/’ or with local names (that works if
the “remote” machine shares file systems with your machine of origin). You
can use the command rlogin-directory-tracking-mode to switch modes.
No argument means use remote directory names, a positive argument means
use local names, and a negative argument means turn off directory tracking.

29.3 Using Emacs as a Server

Various programs such as mail can invoke your choice of editor to edit
a particular piece of text, such as a message that you are sending. By
convention, most of these programs use the environment variable EDITOR
to specify which editor to run. If you set EDITOR to ‘emacs’, they invoke
Emacs—but in an inconvenient fashion, by starting a new, separate Emacs
process. This is inconvenient because it takes time and because the new
Emacs process doesn’t share the buffers in the existing Emacs process.

You can arrange to use your existing Emacs process as the editor for
programs like mail by using the Emacs client and Emacs server programs.
Here is how.

First, the preparation. Within Emacs, call the function server-start.
(Your ‘.emacs’ file can do this automatically if you add the expression
(server-start) to it.) Then, outside Emacs, set the EDITOR environment

Chapter 29: Miscellaneous Commands 357

variable to ‘emacsclient’. (Note that some programs use a different envi-
ronment variable; for example, to make TEX use ‘emacsclient’, you should
set the TEXEDIT environment variable to ‘emacsclient +%d %s’.)

Then, whenever any program invokes your specified EDITOR program, the
effect is to send a message to your principal Emacs telling it to visit a file.
(That’s what the program emacsclient does.) Emacs displays the buffer
immediately and you can immediately begin editing it.

When you’ve finished editing that buffer, type C-x # (server-edit).
This saves the file and sends a message back to the emacsclient program
telling it to exit. The programs that use EDITOR wait for the “editor” (ac-
tually, emacsclient) to exit. C-x # also checks for other pending external
requests to edit various files, and selects the next such file.

You can switch to a server buffer manually if you wish; you don’t have
to arrive at it with C-x #. But C-x # is the only way to say that you are
“finished” with one.

If you set the variable server-window to a window or a frame, C-x #
displays the server buffer in that window or in that frame.

While mail or another application is waiting for emacsclient to finish,
emacsclient does not read terminal input. So the terminal that mail was
using is effectively blocked for the duration. In order to edit with your
principal Emacs, you need to be able to use it without using that terminal.
There are two ways to do this:

• Using a window system, run mail and the principal Emacs in two sep-
arate windows. While mail is waiting for emacsclient, the window
where it was running is blocked, but you can use Emacs by switching
windows.

• Use Shell mode in Emacs to run the other program such as mail; then,
emacsclient blocks only the subshell under Emacs, and you can still
use Emacs to edit the file.

Some programs write temporary files for you to edit. After you edit the
temporary file, the program reads it back and deletes it. If the Emacs server
is later asked to edit the same file name, it should assume this has nothing
to do with the previous occasion for that file name. The server accomplishes
this by killing the temporary file’s buffer when you finish with the file. Use
the variable server-temp-file-regexp to specify which files are temporary
in this sense; its value should be a regular expression that matches file names
that are temporary.

29.4 Hardcopy Output

The Emacs commands for making hardcopy let you print either an entire
buffer or just part of one, either with or without page headers. See also the

358 GNU Emacs Manual

hardcopy commands of Dired (see Section 14.10 [Misc File Ops], page 138)
and the diary (see Section 28.10.1 [Diary Commands], page 336).

M-x print-buffer
Print hardcopy of current buffer with page headings containing
the file name and page number.

M-x lpr-buffer
Print hardcopy of current buffer without page headings.

M-x print-region
Like print-buffer but print only the current region.

M-x lpr-region
Like lpr-buffer but print only the current region.

The hardcopy commands (aside from the Postscript commands) pass ex-
tra switches to the lpr program based on the value of the variable lpr-
switches. Its value should be a list of strings, each string an option starting
with ‘-’. For example, to use a printer named ‘nearme’, set lpr-switches
like this:

(setq lpr-switches ’("-Pnearme"))

The variable lpr-command specifies the name of the printer program to
run; the default value depends on your operating system type. On most sys-
tems, the default is "lpr". The variable lpr-headers-switches similarly
specifies the extra switches to use to make page headers. The variable lpr-
add-switches controls whether to supply ‘-T’ and ‘-J’ options (suitable for
lpr) to the printer program: nil means don’t add them. lpr-add-switches
should be nil if your printer program is not compatible with lpr.

29.5 Postscript Hardcopy

These commands convert buffer contents to Postscript, either printing it
or leaving it in another Emacs buffer.

M-x ps-print-buffer
Print hardcopy of the current buffer in Postscript form.

M-x ps-print-region
Print hardcopy of the current region in Postscript form.

M-x ps-print-buffer-with-faces
Print hardcopy of the current buffer in Postscript form, showing
the faces used in the text by means of Postscript features.

M-x ps-print-region-with-faces
Print hardcopy of the current region in Postscript form, showing
the faces used in the text.

Chapter 29: Miscellaneous Commands 359

M-x ps-spool-buffer
Generate Postscript for the current buffer text.

M-x ps-spool-region
Generate Postscript for the current region.

M-x ps-spool-buffer-with-faces
Generate Postscript for the current buffer, showing the faces
used.

M-x ps-spool-region-with-faces
Generate Postscript for the current region, showing the faces
used.

The Postscript commands, ps-print-buffer and ps-print-region,
print buffer contents in Postscript form. One command prints the entire
buffer; the other, just the region. The corresponding ‘-with-faces’ com-
mands, ps-print-buffer-with-faces and ps-print-region-with-faces,
use Postscript features to show the faces (fonts and colors) in the text prop-
erties of the text being printed.

If you are using a color display, you can print a buffer of program code
with color highlighting by turning on Font-Lock mode in that buffer, and
using ps-print-buffer-with-faces.

All four of the commands above use the variables ps-lpr-command and
ps-lpr-switches to specify how to print the output. ps-lpr-command spec-
ifies the command name to run, and ps-lpr-switches specifies command
line options to use. If you don’t set these variables yourself, they take their
initial values from lpr-command and lpr-switches.

The variable ps-print-header controls whether these commands add
header lines to each page—set it to nil to turn headers off. You can turn
off color processing by setting ps-print-color-p to nil. Many other cus-
tomization variables for these commands are defined and described in the
Lisp file ‘ps-print.el’.

The commands whose names have ‘spool’ instead of ‘print’ generate the
Postscript output in an Emacs buffer instead of sending it to the printer.

29.6 Sorting Text

Emacs provides several commands for sorting text in the buffer. All
operate on the contents of the region (the text between point and the mark).
They divide the text of the region into many sort records, identify a sort key
for each record, and then reorder the records into the order determined by
the sort keys. The records are ordered so that their keys are in alphabetical
order, or, for numeric sorting, in numeric order. In alphabetic sorting, all

360 GNU Emacs Manual

upper case letters ‘A’ through ‘Z’ come before lower case ‘a’, in accord with
the ASCII character sequence.

The various sort commands differ in how they divide the text into sort
records and in which part of each record is used as the sort key. Most of the
commands make each line a separate sort record, but some commands use
paragraphs or pages as sort records. Most of the sort commands use each
entire sort record as its own sort key, but some use only a portion of the
record as the sort key.

M-x sort-lines
Divide the region into lines, and sort by comparing the entire
text of a line. A numeric argument means sort into descending
order.

M-x sort-paragraphs
Divide the region into paragraphs, and sort by comparing the
entire text of a paragraph (except for leading blank lines). A
numeric argument means sort into descending order.

M-x sort-pages
Divide the region into pages, and sort by comparing the entire
text of a page (except for leading blank lines). A numeric argu-
ment means sort into descending order.

M-x sort-fields
Divide the region into lines, and sort by comparing the con-
tents of one field in each line. Fields are defined as separated
by whitespace, so the first run of consecutive non-whitespace
characters in a line constitutes field 1, the second such run con-
stitutes field 2, etc.

Specify which field to sort by with a numeric argument: 1 to
sort by field 1, etc. A negative argument means count fields
from the right instead of from the left; thus, minus 1 means sort
by the last field. If several lines have identical contents in the
field being sorted, they keep same relative order that they had
in the original buffer.

A negative argument means count fields from the right (from
the end of the line).

M-x sort-numeric-fields
Like M-x sort-fields except the specified field is converted to
an integer for each line, and the numbers are compared. ‘10’
comes before ‘2’ when considered as text, but after it when con-
sidered as a number.

Chapter 29: Miscellaneous Commands 361

M-x sort-columns
Like M-x sort-fields except that the text within each line used
for comparison comes from a fixed range of columns. See below
for an explanation.

M-x reverse-region
Reverse the order of the lines in the region. This is useful for
sorting into descending order by fields or columns, since those
sort commands do not have a feature for doing that.

For example, if the buffer contains this:

On systems where clash detection (locking of files being edited) is

implemented, Emacs also checks the first time you modify a buffer

whether the file has changed on disk since it was last visited or

saved. If it has, you are asked to confirm that you want to change

the buffer.

applying M-x sort-lines to the entire buffer produces this:

On systems where clash detection (locking of files being edited) is

implemented, Emacs also checks the first time you modify a buffer

saved. If it has, you are asked to confirm that you want to change

the buffer.

whether the file has changed on disk since it was last visited or

where the upper case ‘O’ sorts before all lower case letters. If you use C-u 2
M-x sort-fields instead, you get this:

implemented, Emacs also checks the first time you modify a buffer

saved. If it has, you are asked to confirm that you want to change

the buffer.

On systems where clash detection (locking of files being edited) is

whether the file has changed on disk since it was last visited or

where the sort keys were ‘Emacs’, ‘If’, ‘buffer’, ‘systems’ and ‘the’.

M-x sort-columns requires more explanation. You specify the columns
by putting point at one of the columns and the mark at the other column.
Because this means you cannot put point or the mark at the beginning of
the first line to sort, this command uses an unusual definition of ‘region’: all
of the line point is in is considered part of the region, and so is all of the line
the mark is in, as well as all the lines in between.

For example, to sort a table by information found in columns 10 to 15,
you could put the mark on column 10 in the first line of the table, and point
on column 15 in the last line of the table, and then run sort-columns.
Equivalently, you could run it with the mark on column 15 in the first line
and point on column 10 in the last line.

This can be thought of as sorting the rectangle specified by point and the
mark, except that the text on each line to the left or right of the rectangle

362 GNU Emacs Manual

moves along with the text inside the rectangle. See Section 9.4 [Rectangles],
page 69.

Many of the sort commands ignore case differences when comparing, if
sort-fold-case is non-nil.

29.7 Narrowing

Narrowing means focusing in on some portion of the buffer, making the
rest temporarily inaccessible. The portion which you can still get to is called
the accessible portion. Canceling the narrowing, which makes the entire
buffer once again accessible, is called widening. The amount of narrowing in
effect in a buffer at any time is called the buffer’s restriction.

Narrowing can make it easier to concentrate on a single subroutine or
paragraph by eliminating clutter. It can also be used to restrict the range
of operation of a replace command or repeating keyboard macro.

C-x n n Narrow down to between point and mark (narrow-to-region).

C-x n w Widen to make the entire buffer accessible again (widen).

C-x n p Narrow down to the current page (narrow-to-page).

When you have narrowed down to a part of the buffer, that part appears
to be all there is. You can’t see the rest, you can’t move into it (motion
commands won’t go outside the accessible part), you can’t change it in any
way. However, it is not gone, and if you save the file all the inaccessible
text will be saved. The word ‘Narrow’ appears in the mode line whenever
narrowing is in effect.

The primary narrowing command is C-x n n (narrow-to-region). It sets
the current buffer’s restrictions so that the text in the current region remains
accessible but all text before the region or after the region is inaccessible.
Point and mark do not change.

Alternatively, use C-x n p (narrow-to-page) to narrow down to the cur-
rent page. See Section 20.4 [Pages], page 185, for the definition of a page.

The way to cancel narrowing is to widen with C-x n w (widen). This
makes all text in the buffer accessible again.

You can get information on what part of the buffer you are narrowed
down to using the C-x = command. See Section 4.9 [Position Info], page 35.

Because narrowing can easily confuse users who do not understand it,
narrow-to-region is normally a disabled command. Attempting to use
this command asks for confirmation and gives you the option of enabling it;
if you enable the command, confirmation will no longer be required for it.
See Section 30.4.10 [Disabling], page 393.

Chapter 29: Miscellaneous Commands 363

29.8 Two-Column Editing

Two-column mode lets you conveniently edit two side-by-side columns of
text. It uses two side-by-side windows, each showing its own buffer.

There are three ways to enter two-column mode:

f2 2 or C-x 6 2
Enter two-column mode with the current buffer on the left, and
on the right, a buffer whose name is based on the current buffer’s
name (2C-two-columns). If the right-hand buffer doesn’t al-
ready exist, it starts out empty; the current buffer’s contents
are not changed.

This command is appropriate when the current buffer is empty
or contains just one column and you want to add another col-
umn.

f2 s or C-x 6 s
Split the current buffer, which contains two-column text, into
two buffers, and display them side by side (2C-split). The
current buffer becomes the left-hand buffer, but the text in the
right-hand column is moved into the right-hand buffer. The
current column specifies the split point. Splitting starts with
the current line and continues to the end of the buffer.

This command is appropriate when you have a buffer that al-
ready contains two-column text, and you wish to separate the
columns temporarily.

f2 b buffer 〈RET〉

C-x 6 b buffer 〈RET〉

Enter two-column mode using the current buffer as the left-
hand buffer, and using buffer buffer as the right-hand buffer
(2C-associate-buffer).

f2 s or C-x 6 s looks for a column separator which is a string that appears
on each line between the two columns. You can specify the width of the
separator with a numeric argument to f2 s; that many characters, before
point, constitute the separator string. By default, the width is 1, so the
column separator is the character before point.

When a line has the separator at the proper place, f2 s puts the text after
the separator into the right-hand buffer, and deletes the separator. Lines
that don’t have the column separator at the proper place remain unsplit;
they stay in the left-hand buffer, and the right-hand buffer gets an empty
line to correspond. (This is the way to write a line which “spans both
columns while in two-column mode”: write it in the left-hand buffer, and
put an empty line in the right-hand buffer.)

364 GNU Emacs Manual

The command C-x 6 〈RET〉 or f2 〈RET〉 (2C-newline) inserts a newline in
each of the two buffers at corresponding positions. This is the easiest way
to add a new line to the two-column text while editing it in split buffers.

When you have edited both buffers as you wish, merge them with f2 1
or C-x 6 1 (2C-merge). This copies the text from the right-hand buffer as a
second column in the other buffer. To go back to two-column editing, use
f2 s.

Use f2 d or C-x 6 d to disassociate the two buffers, leaving each as it
stands (2C-dissociate). If the other buffer, the one not current when you
type f2 d, is empty, f2 d kills it.

29.9 Editing Binary Files

There is a special major mode for editing binary files: Hexl mode. To
use it, use M-x hexl-find-file instead of C-x C-f to visit the file. This
command converts the file’s contents to hexadecimal and lets you edit the
translation. When you save the file, it is converted automatically back to
binary.

You can also use M-x hexl-mode to translate an existing buffer into hex.
This is useful if you visit a file normally and then discover it is a binary file.

Ordinary text characters overwrite in Hexl mode. This is to reduce the
risk of accidentally spoiling the alignment of data in the file. There are
special commands for insertion. Here is a list of the commands of Hexl
mode:

C-M-d Insert a byte with a code typed in decimal.

C-M-o Insert a byte with a code typed in octal.

C-M-x Insert a byte with a code typed in hex.

C-x [Move to the beginning of a 1k-byte “page”.

C-x] Move to the end of a 1k-byte “page”.

M-g Move to an address specified in hex.

M-j Move to an address specified in decimal.

C-c C-c Leave Hexl mode, going back to the major mode this buffer had
before you invoked hexl-mode.

29.10 Saving Emacs Sessions

You can use the Desktop library to save the state of Emacs from one ses-
sion to another. Saving the state means that Emacs starts up with the same

Chapter 29: Miscellaneous Commands 365

set of buffers, major modes, buffer positions, and so on that the previous
Emacs session had.

To use Desktop, you should first add these lines at the end of your
‘.emacs’ file:

(load "desktop")
(desktop-load-default)
(desktop-read)

The first time you save the state of the Emacs session, you must do it
manually, with the command M-x desktop-save. Once you have done that,
exiting Emacs will save the state again—not only the present Emacs session,
but also subsequent sessions. You can also save the state at any time, without
exiting Emacs, by typing M-x desktop-save again.

In order for Emacs to recover the state from a previous session, you must
start it with the same current directory as you used when you started the
previous session.

The variable desktop-files-not-to-save controls which files are ex-
cluded from state saving. Its value is a regular expression that matches the
files to exclude. By default, remote (ftp-accessed) files are excluded; this is
because visiting them again in the subsequent session would be slow. If you
want to include these files in state saving, set desktop-files-not-to-save
to "^$".

29.11 Recursive Editing Levels

A recursive edit is a situation in which you are using Emacs commands to
perform arbitrary editing while in the middle of another Emacs command.
For example, when you type C-r inside of a query-replace, you enter a
recursive edit in which you can change the current buffer. On exiting from
the recursive edit, you go back to the query-replace.

Exiting the recursive edit means returning to the unfinished com-
mand, which continues execution. The command to exit is C-M-c (exit-
recursive-edit).

You can also abort the recursive edit. This is like exiting, but also
quits the unfinished command immediately. Use the command C-] (abort-
recursive-edit) to do this. See Section 31.1 [Quitting], page 401.

The mode line shows you when you are in a recursive edit by displaying
square brackets around the parentheses that always surround the major and
minor mode names. Every window’s mode line shows this, in the same way,
since being in a recursive edit is true of Emacs as a whole rather than any
particular window or buffer.

It is possible to be in recursive edits within recursive edits. For exam-
ple, after typing C-r in a query-replace, you may type a command that

366 GNU Emacs Manual

enters the debugger. This begins a recursive editing level for the debugger,
within the recursive editing level for C-r. Mode lines display a pair of square
brackets for each recursive editing level currently in progress.

Exiting the inner recursive edit (such as, with the debugger c command)
resumes the command running in the next level up. When that command
finishes, you can then use C-M-c to exit another recursive editing level, and
so on. Exiting applies to the innermost level only. Aborting also gets out
of only one level of recursive edit; it returns immediately to the command
level of the previous recursive edit. If you wish, you can then abort the next
recursive editing level.

Alternatively, the command M-x top-level aborts all levels of recursive
edits, returning immediately to the top level command reader.

The text being edited inside the recursive edit need not be the same text
that you were editing at top level. It depends on what the recursive edit
is for. If the command that invokes the recursive edit selects a different
buffer first, that is the buffer you will edit recursively. In any case, you can
switch buffers within the recursive edit in the normal manner (as long as the
buffer-switching keys have not been rebound). You could probably do all
the rest of your editing inside the recursive edit, visiting files and all. But
this could have surprising effects (such as stack overflow) from time to time.
So remember to exit or abort the recursive edit when you no longer need it.

In general, we try to minimize the use of recursive editing levels in GNU
Emacs. This is because they constrain you to “go back” in a particular order–
from the innermost level toward the top level. When possible, we present
different activities in separate buffers so that you can switch between them
as you please. Some commands switch to a new major mode which provides
a command to switch back. These approaches give you more flexibility to
go back to unfinished tasks in the order you choose.

29.12 Emulation

GNU Emacs can be programmed to emulate (more or less) most other
editors. Standard facilities can emulate these:

EDT (DEC VMS editor)
Turn on EDT emulation with M-x edt-emulation-on. M-x
edt-emulation-off restores normal Emacs command bindings.

Most of the EDT emulation commands are keypad keys, and
most standard Emacs key bindings are still available. The EDT
emulation rebindings are done in the global keymap, so there
is no problem switching buffers or major modes while in EDT
emulation.

Chapter 29: Miscellaneous Commands 367

vi (Berkeley editor)
Viper is the newest emulator for vi. It implements several levels
of emulation; level 1 is closest to vi itself, while level 5 departs
somewhat from strict emulation to take advantage of the capa-
bilities of Emacs. To invoke Viper, type M-x viper-mode; it will
guide you the rest of the way and ask for the emulation level.

vi (another emulator)
M-x vi-mode enters a major mode that replaces the previously
established major mode. All of the vi commands that, in real
vi, enter “input” mode are programmed instead to return to
the previous major mode. Thus, ordinary Emacs serves as vi’s
“input” mode.

Because vi emulation works through major modes, it does not
work to switch buffers during emulation. Return to normal
Emacs first.

If you plan to use vi emulation much, you probably want to bind
a key to the vi-mode command.

vi (alternate emulator)
M-x vip-mode invokes another vi emulator, said to resemble real
vi more thoroughly than M-x vi-mode. “Input” mode in this
emulator is changed from ordinary Emacs so you can use 〈ESC〉

to go back to emulated vi command mode. To get from emulated
vi command mode back to ordinary Emacs, type C-z.

This emulation does not work through major modes, and it is
possible to switch buffers in various ways within the emulator.
It is not so necessary to assign a key to the command vip-mode
as it is with vi-mode because terminating insert mode does not
use it.

For full information, see the long comment at the beginning of
the source file, which is ‘lisp/vip.el’ in the Emacs distribution.

29.13 Dissociated Press

M-x dissociated-press is a command for scrambling a file of text either
word by word or character by character. Starting from a buffer of straight
English, it produces extremely amusing output. The input comes from the
current Emacs buffer. Dissociated Press writes its output in a buffer named
‘*Dissociation*’, and redisplays that buffer after every couple of lines (ap-
proximately) so you can read the output as it comes out.

Dissociated Press asks every so often whether to continue generating out-
put. Answer n to stop it. You can also stop at any time by typing C-g. The

368 GNU Emacs Manual

dissociation output remains in the ‘*Dissociation*’ buffer for you to copy
elsewhere if you wish.

Dissociated Press operates by jumping at random from one point in the
buffer to another. In order to produce plausible output rather than gibberish,
it insists on a certain amount of overlap between the end of one run of
consecutive words or characters and the start of the next. That is, if it has
just printed out ‘president’ and then decides to jump to a different point
in the file, it might spot the ‘ent’ in ‘pentagon’ and continue from there,
producing ‘presidentagon’.2 Long sample texts produce the best results.

A positive argument to M-x dissociated-press tells it to operate char-
acter by character, and specifies the number of overlap characters. A neg-
ative argument tells it to operate word by word and specifies the number
of overlap words. In this mode, whole words are treated as the elements
to be permuted, rather than characters. No argument is equivalent to an
argument of two. For your againformation, the output goes only into the
buffer ‘*Dissociation*’. The buffer you start with is not changed.

Dissociated Press produces nearly the same results as a Markov chain
based on a frequency table constructed from the sample text. It is, how-
ever, an independent, ignoriginal invention. Dissociated Press techniqui-
tously copies several consecutive characters from the sample between random
choices, whereas a Markov chain would choose randomly for each word or
character. This makes for more plausible sounding results, and runs faster.

It is a mustatement that too much use of Dissociated Press can be a
developediment to your real work. Sometimes to the point of outragedy.
And keep dissociwords out of your documentation, if you want it to be well
userenced and properbose. Have fun. Your buggestions are welcome.

29.14 Other Amusements

If you are a little bit bored, you can try M-x hanoi. If you are consider-
ably bored, give it a numeric argument. If you are very very bored, try an
argument of 9. Sit back and watch.

If you want a little more personal involvement, try M-x gomoku, which
plays the game Go Moku with you.

M-x blackbox and M-x mpuz are two kinds of puzzles. blackbox chal-
lenges you to determine the location of objects inside a box by tomography.
mpuz displays a multiplication puzzle with letters standing for digits in a
code that you must guess—to guess a value, type a letter and then the digit
you think it stands for.

2 This dissociword actually appeared during the Vietnam War, when it was
very appropriate.

Chapter 29: Miscellaneous Commands 369

M-x dunnet runs an adventure-style exploration game, which is a bigger
sort of puzzle.

When you are frustrated, try the famous Eliza program. Just do M-x
doctor. End each input by typing RET twice.

When you are feeling strange, type M-x yow.

370 GNU Emacs Manual

Chapter 30: Customization 371

30 Customization

This chapter talks about various topics relevant to adapting the behavior
of Emacs in minor ways. See The Emacs Lisp Reference Manual for how to
make more far-reaching changes.

All kinds of customization affect only the particular Emacs session that
you do them in. They are completely lost when you kill the Emacs session,
and have no effect on other Emacs sessions you may run at the same time
or later. The only way an Emacs session can affect anything outside of it
is by writing a file; in particular, the only way to make a customization
‘permanent’ is to put something in your ‘.emacs’ file or other appropriate
file to do the customization in each session. See Section 30.7 [Init File],
page 395.

30.1 Minor Modes

Minor modes are optional features which you can turn on or off. For
example, Auto Fill mode is a minor mode in which 〈SPC〉 breaks lines between
words as you type. All the minor modes are independent of each other and
of the selected major mode. Most minor modes say in the mode line when
they are on; for example, ‘Fill’ in the mode line means that Auto Fill mode
is on.

Append -mode to the name of a minor mode to get the name of a com-
mand function that turns the mode on or off. Thus, the command to enable
or disable Auto Fill mode is called M-x auto-fill-mode. These commands
are usually invoked with M-x, but you can bind keys to them if you wish.
With no argument, the function turns the mode on if it was off and off if it
was on. This is known as toggling. A positive argument always turns the
mode on, and an explicit zero argument or a negative argument always turns
it off.

Enabling or disabling some minor modes applies only to the current
buffer; each buffer is independent of the other buffers. Therefore, you can
enable the mode in particular buffers and disable it in others. The per-buffer
minor modes include Auto Fill mode, Auto Save mode, Font-Lock mode, ISO
Accents mode, Outline minor mode, Overwrite mode, and Binary Overwrite
mode.

Auto Fill mode allows you to enter filled text without breaking lines ex-
plicitly. Emacs inserts newlines as necessary to prevent lines from becoming
too long. See Section 20.5 [Filling], page 186.

Auto Save mode causes the contents of a buffer to be saved periodically
to reduce the amount of work you can lose in case of a system crash. See
Section 14.5 [Auto Save], page 117.

372 GNU Emacs Manual

Enriched mode enables editing and saving of formatted text. See Sec-
tion 20.11 [Formatted Text], page 202.

Font-Lock mode automatically highlights certain textual units found in
programs, such as comments, strings, and function names being defined.
This requires a window system that can display multiple fonts. See Sec-
tion 17.12 [Faces], page 164.

ISO Accents mode makes the characters ‘‘’, ‘’’, ‘"’, ‘^’, ‘/’ and ‘~’ com-
bine with the following letter, to produce an accented letter in the ISO
Latin-1 character set. See Section 11.4 [European Display], page 79.

Outline minor mode provides the same facilities as the major mode called
Outline mode; but since it is a minor mode instead, you can combine it with
any major mode. See Section 20.8 [Outline Mode], page 192.

Overwrite mode causes ordinary printing characters to replace existing
text instead of shoving it to the right. For example, if point is in front of the
‘B’ in ‘FOOBAR’, then in Overwrite mode typing a G changes it to ‘FOOGAR’,
instead of producing it ‘FOOGBAR’ as usual. Binary Overwrite mode is a
variant of Overwrite mode for editing binary files; it treats newlines and
tabs like other characters, so that they overwrite other characters and can
be overwritten by them.

The following minor modes normally apply to all buffers at once. Since
each is enabled or disabled by the value of a variable, you can set them differ-
ently for particular buffers, by explicitly making the corresponding variables
local in those buffers. See Section 30.2.4 [Locals], page 376.

Abbrev mode allows you to define abbreviations that automatically ex-
pand as you type them. For example, ‘amd’ might expand to ‘abbrev mode’.
See Chapter 23 [Abbrevs], page 273, for full information.

Icomplete mode displays an indication of available completions when you
are in the minibuffer and completion is active. See Section 5.3.4 [Completion
Options], page 44.

Line Number mode enables continuous display in the mode line of the
line number of point. See Section 1.3 [Mode Line], page 17.

Resize-Minibuffer mode makes the minibuffer expand as necessary to hold
the text that you put in it. See Section 5.2 [Minibuffer Edit], page 40.

Scroll Bar mode gives each window a scroll bar (see Section 17.10 [Scroll
Bars], page 163). Menu Bar mode gives each frame a menu bar (see Sec-
tion 17.11 [Menu Bars], page 164). Both of these modes are enabled by
default when you use the X Window System.

In Transient Mark mode, every change in the buffer contents “deacti-
vates” the mark, so that commands that operate on the region will get an
error. This means you must either set the mark, or explicitly “reactivate”
it, before each command that uses the region. The advantage of Transient
Mark mode is that Emacs can display the region highlighted (currently only
when using X). See Section 8.1 [Setting Mark], page 57.

Chapter 30: Customization 373

For most minor modes, the command name is also the name of a variable
which directly controls the mode. The mode is enabled whenever this vari-
able’s value is non-nil, and the minor mode command works by setting the
variable. For example, the command outline-minor-mode works by setting
the value of outline-minor-mode as a variable; it is this variable that di-
rectly turns Outline minor mode on and off. To check whether a given minor
mode works this way, use C-h v to ask for documentation on the variable
name.

These minor mode variables provide a good way for Lisp programs to
turn minor modes on and off; they are also useful in a file’s local variables
list. But please think twice before setting minor modes with a local variables
list, because most minor modes are matter of user preference—other users
editing the same file might not want the same minor modes you prefer.

30.2 Variables

A variable is a Lisp symbol which has a value. The symbol’s name is also
called the name of the variable. A variable name can contain any characters
that can appear in a file, but conventionally variable names consist of words
separated by hyphens. A variable can have a documentation string which
describes what kind of value it should have and how the value will be used.

Lisp allows any variable to have any kind of value, but most variables
that Emacs uses require a value of a certain type. Often the value should
always be a string, or should always be a number. Sometimes we say that
a certain feature is turned on if a variable is “non-nil,” meaning that if the
variable’s value is nil, the feature is off, but the feature is on for any other
value. The conventional value to use to turn on the feature—since you have
to pick one particular value when you set the variable—is t.

Emacs uses many Lisp variables for internal record keeping, as any Lisp
program must, but the most interesting variables for you are the ones that
exist for the sake of customization. Emacs does not (usually) change the
values of these variables; instead, you set the values, and thereby alter and
control the behavior of certain Emacs commands. These variables are called
user options. Most user options are documented in this manual, and appear
in the Variable Index (see [Variable Index], page 497).

One example of a variable which is a user option is fill-column, which
specifies the position of the right margin (as a number of characters from
the left margin) to be used by the fill commands (see Section 20.5 [Filling],
page 186).

30.2.1 Examining and Setting Variables

374 GNU Emacs Manual

C-h v var 〈RET〉

Display the value and documentation of variable var (describe-
variable).

M-x set-variable 〈RET〉 var 〈RET〉 value 〈RET〉

Change the value of variable var to value.

To examine the value of a single variable, use C-h v (describe-
variable), which reads a variable name using the minibuffer, with comple-
tion. It displays both the value and the documentation of the variable. For
example,

C-h v fill-column 〈RET〉

displays something like this:

fill-column’s value is 75

Documentation:

*Column beyond which automatic line-wrapping should happen.

Automatically becomes buffer-local when set in any fashion.

The star at the beginning of the documentation indicates that this variable
is a user option. C-h v is not restricted to user options; it allows any variable
name.

The most convenient way to set a specific user option is with M-x set-
variable. This reads the variable name with the minibuffer (with comple-
tion), and then reads a Lisp expression for the new value using the minibuffer
a second time. For example,

M-x set-variable 〈RET〉 fill-column 〈RET〉 75 〈RET〉

sets fill-column to 75.

M-x set-variable is limited to user option variables. You can set any
variable with a Lisp expression using the function setq. Here’s how to use
it to set fill-column:

(setq fill-column 75)

Setting variables, like all means of customizing Emacs except where oth-
erwise stated, affects only the current Emacs session.

30.2.2 Editing Variable Values

These two functions make it easy to display all the Emacs user option
variables, and to change some of them if you wish.

M-x list-options
Display a buffer listing names, values and documentation of all
options.

Chapter 30: Customization 375

M-x edit-options
Change user option values by editing a list of user option vari-
ables.

M-x list-options displays a list of all Emacs option variables, in an
Emacs buffer named ‘*List Options*’. Each user option is shown with its
documentation and its current value. Here is what a portion of it might look
like:

;; exec-path:

("." "/usr/local/bin" "/usr/ucb" "/bin" "/usr/bin" "/u2/emacs/etc")

*List of directories to search programs to run in subprocesses.

Each element is a string (directory name)

or nil (try the default directory).

;;

;; fill-column:

75

*Column beyond which automatic line-wrapping should happen.

Automatically becomes buffer-local when set in any fashion.

;;

M-x edit-options goes one step further and immediately selects the
‘*List Options*’ buffer; this buffer uses the major mode Options mode,
which provides commands that allow you to point at a user option variable
and change its value:

s Set the variable point is in or near to a new value read using the
minibuffer.

x Toggle the variable point is in or near: if the value was nil, it
becomes t; otherwise it becomes nil.

1 Set the variable point is in or near to t.

0 Set the variable point is in or near to nil.

n
p Move to the next or previous user option.

Any changes take effect immediately, and last until you exit from Emacs.

30.2.3 Hooks

A hook is a variable where you can store a function or functions to be
called on a particular occasion by an existing program. Emacs provides a
number of hooks for the sake of customization.

Most of the hooks in Emacs are normal hooks. These variables contain
lists of functions to be called with no arguments. The reason most hooks are

376 GNU Emacs Manual

normal hooks is so that you can use them in a uniform way. Every variable
in Emacs whose name ends in ‘-hook’ is a normal hook.

Most major modes run hooks as the last step of initialization. This makes
it easy for a user to customize the behavior of the mode, by overriding the
local variable assignments already made by the mode. But hooks may also
be used in other contexts. For example, the hook suspend-hook runs just
before Emacs suspends itself (see Section 3.1 [Exiting], page 26).

The recommended way to add a hook function to a normal hook is by
calling add-hook. You can use any valid Lisp function as the hook function.
For example, here’s how to set up a hook to turn on Auto Fill mode when
entering Text mode and other modes based on Text mode:

(add-hook ’text-mode-hook ’turn-on-auto-fill)

The next example shows how to use a hook to customize the indentation
of C code. (People often have strong personal preferences for one format
compared to another.) Here the hook function is an anonymous lambda
expression.

(setq my-c-style
’((c-comment-only-line-offset . 4)

(c-cleanup-list . (scope-operator
empty-defun-braces
defun-close-semi))

(c-offsets-alist . ((arglist-close . c-lineup-arglist)
(substatement-open . 0)))))

(add-hook ’c-mode-common-hook
(function (lambda ()
(c-add-style "my-style" my-c-style t))))

It is best to design your hook functions so that the order in which they
are executed does not matter. Any dependence on the order is “asking for
trouble.” However, the order is predictable: the most recently added hook
functions are executed first.

30.2.4 Local Variables

M-x make-local-variable 〈RET〉 var 〈RET〉

Make variable var have a local value in the current buffer.

M-x kill-local-variable 〈RET〉 var 〈RET〉

Make variable var use its global value in the current buffer.

M-x make-variable-buffer-local 〈RET〉 var 〈RET〉

Mark variable var so that setting it will make it local to the
buffer that is current at that time.

Chapter 30: Customization 377

Almost any variable can be made local to a specific Emacs buffer. This
means that its value in that buffer is independent of its value in other buffers.
A few variables are always local in every buffer. Every other Emacs variable
has a global value which is in effect in all buffers that have not made the
variable local.

M-x make-local-variable reads the name of a variable and makes it
local to the current buffer. Further changes in this buffer will not affect
others, and further changes in the global value will not affect this buffer.

M-x make-variable-buffer-local reads the name of a variable and
changes the future behavior of the variable so that it will become local au-
tomatically when it is set. More precisely, once a variable has been marked
in this way, the usual ways of setting the variable automatically do make-
local-variable first. We call such variables per-buffer variables.

Major modes (see Chapter 18 [Major Modes], page 173) always make
variables local to the buffer before setting the variables. This is why changing
major modes in one buffer has no effect on other buffers. Minor modes also
work by setting variables—normally, each minor mode has one controlling
variable which is non-nil when the mode is enabled (see Section 30.1 [Minor
Modes], page 371). For most minor modes, the controlling variable is per
buffer.

Emacs contains a number of variables that are always per-buffer. These
include abbrev-mode, auto-fill-function, case-fold-search, comment-
column, ctl-arrow, fill-column, fill-prefix, indent-tabs-mode,
left-margin, mode-line-format, overwrite-mode, selective-display-
ellipses, selective-display, tab-width, and truncate-lines. Some
other variables are always local in every buffer, but they are used for internal
purposes.

A few variables cannot be local to a buffer because they are always local to
each display instead (See Section 17.7 [Multiple Displays], page 160). If you
try to make one of these variables buffer-local, you’ll get an error message.

M-x kill-local-variable reads the name of a variable and makes it
cease to be local to the current buffer. The global value of the variable
henceforth is in effect in this buffer. Setting the major mode kills all the
local variables of the buffer except for a few variables specially marked as
permanent locals.

To set the global value of a variable, regardless of whether the variable
has a local value in the current buffer, you can use the Lisp construct setq-
default. This construct is used just like setq, but it sets variables’ global
values instead of their local values (if any). When the current buffer does
have a local value, the new global value may not be visible until you switch
to another buffer. Here is an example:

(setq-default fill-column 75)

378 GNU Emacs Manual

setq-default is the only way to set the global value of a variable that has
been marked with make-variable-buffer-local.

Lisp programs can use default-value to look at a variable’s default
value. This function takes a symbol as argument and returns its default
value. The argument is evaluated; usually you must quote it explicitly. For
example, here’s how to obtain the default value of fill-column:

(default-value ’fill-column)

30.2.5 Local Variables in Files

A file can specify local variable values for use when you edit the file
with Emacs. Visiting the file checks for local variables specifications; it
automatically makes these variables local to the buffer, and sets them to the
values specified in the file.

There are two ways to specify local variable values: in the first line, or
with a local variables list. Here’s how to specify them in the first line:

-*- mode: modename; var: value; . . . -*-

You can specify any number of variables/value pairs in this way, each pair
with a colon and semicolon as shown above. mode: modename; specifies the
major mode; this should come first in the line. The values are not evaluated;
they are used literally. Here is an example that specifies Lisp mode and sets
two variables with numeric values:

;; -*-mode: Lisp; fill-column: 75; comment-column: 50; -*-

A local variables list goes near the end of the file, in the last page. (It
is often best to put it on a page by itself.) The local variables list starts
with a line containing the string ‘Local Variables:’, and ends with a line
containing the string ‘End:’. In between come the variable names and values,
one set per line, as ‘variable: value’. The values are not evaluated; they
are used literally. If a file has both a local variables list and a ‘-*-’ line,
Emacs processes everything in the ‘-*-’ line first, and everything in the local
variables list afterward.

Here is an example of a local variables list:

;;; Local Variables: ***
;;; mode:lisp ***
;;; comment-column:0 ***
;;; comment-start: ";;; " ***
;;; comment-end:"***" ***
;;; End: ***

As you see, each line starts with the prefix ‘;;; ’ and each line ends with
the suffix ‘ ***’. Emacs recognizes these as the prefix and suffix based on
the first line of the list, by finding them surrounding the magic string ‘Local

Chapter 30: Customization 379

Variables:’; then it automatically discards them from the other lines of the
list.

The usual reason for using a prefix and/or suffix is to embed the local
variables list in a comment, so it won’t confuse other programs that the file is
intended as input for. The example above is for a language where comment
lines start with ‘;;; ’ and end with ‘***’; the local values for comment-start
and comment-end customize the rest of Emacs for this unusual syntax. Don’t
use a prefix (or a suffix) if you don’t need one.

Two “variable names” have special meanings in a local variables list: a
value for the variable mode really sets the major mode, and a value for the
variable eval is simply evaluated as an expression and the value is ignored.
mode and eval are not real variables; setting variables named mode and eval
in any other context has no special meaning. If mode is used to set a major
mode, it should be the first “variable” in the list.

You can use the mode “variable” to set minor modes as well as major
modes; in fact, you can use it more than once, first to set the major mode
and then to set minor modes which are specific to particular buffers. But
most minor modes should not be specified in the file in any fashion, because
they represent user preferences. For example, you should not try to specify
Auto Fill mode with file local variables, because whether to use Auto Fill
mode for editing a particular kind of text is a matter of personal taste, not
an aspect of the format of the text.

The start of the local variables list must be no more than 3000 characters
from the end of the file, and must be in the last page if the file is divided
into pages. Otherwise, Emacs will not notice it is there. The purpose of
this rule is so that a stray ‘Local Variables:’ not in the last page does not
confuse Emacs, and so that visiting a long file that is all one page and has
no local variables list need not take the time to search the whole file.

You may be tempted to try to turn on Auto Fill mode with a local
variable list. That is a mistake. The choice of Auto Fill mode or not is a
matter of individual taste, not a matter of the contents of particular files. If
you want to use Auto Fill, set up major mode hooks with your ‘.emacs’ file
to turn it on (when appropriate) for you alone (see Section 30.7 [Init File],
page 395). Don’t try to use a local variable list that would impose your taste
on everyone.

The variable enable-local-variables controls whether to process local
variables lists, and thus gives you a chance to override them. Its default value
is t, which means do process local variables lists. If you set the value to nil,
Emacs simply ignores local variables lists. Any other value says to query
you about each local variables list, showing you the local variables list to
consider.

The eval “variable”, and certain actual variables, create a special risk;
when you visit someone else’s file, local variable specifications for these could

380 GNU Emacs Manual

affect your Emacs in arbitrary ways. Therefore, the option enable-local-
eval controls whether Emacs processes eval variables, as well variables
with names that end in ‘-hook’, ‘-hooks’, ‘-function’ or ‘-functions’,
and certain other variables. The three possibilities for the option’s value
are t, nil, and anything else, just as for enable-local-variables. The
default is maybe, which is neither t nor nil, so normally Emacs does ask for
confirmation about file settings for these variables.

Use the command normal-mode to reset the local variables and major
mode of a buffer according to the file name and contents, including the local
variables list if any. See Section 18.1 [Choosing Modes], page 173.

30.3 Keyboard Macros

A keyboard macro is a command defined by the user to stand for another
sequence of keys. For example, if you discover that you are about to type
C-n C-d forty times, you can speed your work by defining a keyboard macro
to do C-n C-d and calling it with a repeat count of forty.

C-x (Start defining a keyboard macro (start-kbd-macro).

C-x) End the definition of a keyboard macro (end-kbd-macro).

C-x e Execute the most recent keyboard macro (call-last-kbd-
macro).

C-u C-x (Re-execute last keyboard macro, then add more keys to its def-
inition.

C-x q When this point is reached during macro execution, ask for con-
firmation (kbd-macro-query).

M-x name-last-kbd-macro
Give a command name (for the duration of the session) to the
most recently defined keyboard macro.

M-x insert-kbd-macro
Insert in the buffer a keyboard macro’s definition, as Lisp code.

C-x C-k Edit a previously defined keyboard macro (edit-kbd-macro).

M-x apply-macro-to-region-lines
Run the last keyboard macro on each complete line in the region.

Keyboard macros differ from ordinary Emacs commands in that they are
written in the Emacs command language rather than in Lisp. This makes
it easier for the novice to write them, and makes them more convenient
as temporary hacks. However, the Emacs command language is not pow-
erful enough as a programming language to be useful for writing anything
intelligent or general. For such things, Lisp must be used.

Chapter 30: Customization 381

You define a keyboard macro while executing the commands which are
the definition. Put differently, as you define a keyboard macro, the definition
is being executed for the first time. This way, you can see what the effects
of your commands are, so that you don’t have to figure them out in your
head. When you are finished, the keyboard macro is defined and also has
been, in effect, executed once. You can then do the whole thing over again
by invoking the macro.

30.3.1 Basic Use

To start defining a keyboard macro, type the C-x (command (start-
kbd-macro). From then on, your keys continue to be executed, but also
become part of the definition of the macro. ‘Def’ appears in the mode line to
remind you of what is going on. When you are finished, the C-x) command
(end-kbd-macro) terminates the definition (without becoming part of it!).
For example,

C-x (M-f foo C-x)

defines a macro to move forward a word and then insert ‘foo’.

The macro thus defined can be invoked again with the C-x e command
(call-last-kbd-macro), which may be given a repeat count as a numeric
argument to execute the macro many times. C-x) can also be given a repeat
count as an argument, in which case it repeats the macro that many times
right after defining it, but defining the macro counts as the first repetition
(since it is executed as you define it). Therefore, giving C-x) an argument
of 4 executes the macro immediately 3 additional times. An argument of
zero to C-x e or C-x) means repeat the macro indefinitely (until it gets an
error or you type C-g).

If you wish to repeat an operation at regularly spaced places in the text,
define a macro and include as part of the macro the commands to move to
the next place you want to use it. For example, if you want to change each
line, you should position point at the start of a line, and define a macro to
change that line and leave point at the start of the next line. Then repeating
the macro will operate on successive lines.

After you have terminated the definition of a keyboard macro, you can
add to the end of its definition by typing C-u C-x (. This is equivalent to
plain C-x (followed by retyping the whole definition so far. As a consequence
it re-executes the macro as previously defined.

You can use function keys in a keyboard macro, just like keyboard keys.
You can even use mouse events, but be careful about that: when the macro
replays the mouse event, it uses the original mouse position of that event,
the position that the mouse had while you were defining the macro. The

382 GNU Emacs Manual

effect of this may be hard to predict. (Using the current mouse position
would be even less predictable.)

One thing that doesn’t always work well in a keyboard macro is the com-
mand C-M-c (exit-recursive-edit). When this command exits a recursive
edit that started within the macro, it works as you’d expect. But if it exits
a recursive edit that started before you invoked the keyboard macro, it also
necessarily exits the keyboard macro as part of the process.

You can edit a keyboard macro already defined by typing C-x C-k (edit-
kbd-macro). Follow that with the keyboard input that you would use to
invoke the macro—C-x e or M-x name or some other key sequence. This
formats the macro definition in a buffer and enters a specialized major mode
for editing it. Type C-h m once in that buffer to display details of how to
edit the macro. When you are finished editing, type C-c C-c.

The command M-x apply-macro-to-region-lines repeats the last de-
fined keyboard macro on each complete line within the current region. It
does this line by line, by moving point to the beginning of the line and then
executing the macro.

30.3.2 Naming and Saving Keyboard Macros

If you wish to save a keyboard macro for longer than until you define the
next one, you must give it a name using M-x name-last-kbd-macro. This
reads a name as an argument using the minibuffer and defines that name
to execute the macro. The macro name is a Lisp symbol, and defining it in
this way makes it a valid command name for calling with M-x or for binding
a key to with global-set-key (see Section 30.4.1 [Keymaps], page 384). If
you specify a name that has a prior definition other than another keyboard
macro, an error message is printed and nothing is changed.

Once a macro has a command name, you can save its definition in a file.
Then it can be used in another editing session. First, visit the file you want
to save the definition in. Then use this command:

M-x insert-kbd-macro 〈RET〉 macroname 〈RET〉

This inserts some Lisp code that, when executed later, will define the same
macro with the same definition it has now. (You need not understand Lisp
code to do this, because insert-kbd-macro writes the Lisp code for you.)
Then save the file. You can load the file later with load-file (see Sec-
tion 22.4 [Lisp Libraries], page 268). If the file you save in is your init file
‘~/.emacs’ (see Section 30.7 [Init File], page 395) then the macro will be
defined each time you run Emacs.

If you give insert-kbd-macro a numeric argument, it makes additional
Lisp code to record the keys (if any) that you have bound to the keyboard

Chapter 30: Customization 383

macro, so that the macro will be reassigned the same keys when you load
the file.

30.3.3 Executing Macros with Variations

Using C-x q (kbd-macro-query), you can get an effect similar to that
of query-replace, where the macro asks you each time around whether to
make a change. While defining the macro, type C-x q at the point where you
want the query to occur. During macro definition, the C-x q does nothing,
but when you run the macro later, C-x q asks you interactively whether to
continue.

The valid responses when C-x q asks are 〈SPC〉 (or y), 〈DEL〉 (or n), 〈RET〉

(or q), C-l and C-r. The answers are the same as in query-replace, though
not all of the query-replace options are meaningful.

These responses include 〈SPC〉 to continue, and 〈DEL〉 to skip the remainder
of this repetition of the macro and start right away with the next repetition.
〈RET〉 means to skip the remainder of this repetition and cancel further rep-
etitions. C-l redraws the screen and asks you again for a character to say
what to do.

C-r enters a recursive editing level, in which you can perform editing
which is not part of the macro. When you exit the recursive edit using C-
M-c, you are asked again how to continue with the keyboard macro. If you
type a 〈SPC〉 at this time, the rest of the macro definition is executed. It is
up to you to leave point and the text in a state such that the rest of the
macro will do what you want.

C-u C-x q, which is C-x q with a numeric argument, performs a com-
pletely different function. It enters a recursive edit reading input from the
keyboard, both when you type it during the definition of the macro, and
when it is executed from the macro. During definition, the editing you do
inside the recursive edit does not become part of the macro. During macro
execution, the recursive edit gives you a chance to do some particularized
editing on each repetition. See Section 29.11 [Recursive Edit], page 365.

30.4 Customizing Key Bindings

This section describes key bindings which map keys to commands, and
the keymaps which record key bindings. It also explains how to customize
key bindings.

Recall that a command is a Lisp function whose definition provides for
interactive use. Like every Lisp function, a command has a function name
which usually consists of lower case letters and hyphens.

384 GNU Emacs Manual

30.4.1 Keymaps

The bindings between key sequences and command functions are recorded
in data structures called keymaps. Emacs has many of these, each used on
particular occasions.

Recall that a key sequence (key, for short) is a sequence of input events
that have a meaning as a unit. Input events include characters, function
keys and mouse buttons—all the inputs that you can send to the computer
with your terminal. A key sequence gets its meaning from its binding, which
says what command it runs. The function of keymaps is to record these
bindings.

The global keymap is the most important keymap because it is always
in effect. The global keymap defines keys for Fundamental mode; most of
these definitions are common to most or all major modes. Each major or
minor mode can have its own keymap which overrides the global definitions
of some keys.

For example, a self-inserting character such as g is self-inserting be-
cause the global keymap binds it to the command self-insert-command.
The standard Emacs editing characters such as C-a also get their standard
meanings from the global keymap. Commands to rebind keys, such as M-x
global-set-key, actually work by storing the new binding in the proper
place in the global map. See Section 30.4.5 [Rebinding], page 387.

Meta characters work differently; Emacs translates each Meta character
into a pair of characters starting with 〈ESC〉. When you type the character
M-a in a key sequence, Emacs replaces it with 〈ESC〉 a. A meta key comes in
as a single input event, but becomes two events for purposes of key bindings.
The reason for this is historical, and we might change it someday.

Most modern keyboards have function keys as well as character keys.
Function keys send input events just as character keys do, and keymaps can
have bindings for them.

On many terminals, typing a function key actually sends the computer a
sequence of characters; the precise details of the sequence depends on which
function key and on the model of terminal you are using. (Often the sequence
starts with 〈ESC〉 [.) If Emacs understands your terminal type properly,
it recognizes the character sequences forming function keys wherever they
occur in a key sequence (not just at the beginning). Thus, for most purposes,
you can pretend the function keys reach Emacs directly and ignore their
encoding as character sequences.

Mouse buttons also produce input events. These events come with other
data—the window and position where you pressed or released the button,
and a time stamp. But only the choice of button matters for key bindings;

Chapter 30: Customization 385

the other data matters only if a command looks at it. (Commands designed
for mouse invocation usually do look at the other data.)

A keymap records definitions for single events. Interpreting a key se-
quence of multiple events involves a chain of keymaps. The first keymap
gives a definition for the first event; this definition is another keymap, which
is used to look up the second event in the sequence, and so on.

Key sequences can mix function keys and characters. For example, C-x
〈SELECT〉 makes sense. If you make 〈SELECT〉 a prefix key, then 〈SELECT〉 C-n
makes sense. You can even mix mouse events with keyboard events, but we
recommend against it, because such sequences are inconvenient to type in.

As a user, you can redefine any key; but it might be best to stick to key
sequences that consist of C-c followed by a letter. These keys are “reserved
for users,”, so they won’t conflict with any properly designed Emacs exten-
sion. If you redefine some other key, your definition may be overridden by
certain extensions or major modes which redefine the same key.

30.4.2 Prefix Keymaps

A prefix key such as C-x or 〈ESC〉 has its own keymap, which holds the
definition for the event that immediately follows that prefix.

The definition of a prefix key is usually the keymap to use for looking up
the following event. The definition can also be a Lisp symbol whose function
definition is the following keymap; the effect is the same, but it provides a
command name for the prefix key that can be used as a description of what
the prefix key is for. Thus, the binding of C-x is the symbol Ctl-X-Prefix,
whose function definition is the keymap for C-x commands. The definitions
of C-c, C-x, C-h and 〈ESC〉 as prefix keys appear in the global map, so these
prefix keys are always available.

Aside from ordinary prefix keys, there is a fictitious “prefix key” which
represents the menu bar; see section “Menu Bar” in The Emacs Lisp Refer-
ence Manual, for special information about menu bar key bindings. Mouse
button events that invoke pop-up menus are also prefix keys; see section
“Menu Keymaps” in The Emacs Lisp Reference Manual, for more details.

Some prefix keymaps are stored in variables with names:

• ctl-x-map is the variable name for the map used for characters that
follow C-x.

• help-map is for characters that follow C-h.

• esc-map is for characters that follow 〈ESC〉. Thus, all Meta characters
are actually defined by this map.

• ctl-x-4-map is for characters that follow C-x 4.

• mode-specific-map is for characters that follow C-c.

386 GNU Emacs Manual

30.4.3 Local Keymaps

So far we have explained the ins and outs of the global map. Major modes
customize Emacs by providing their own key bindings in local keymaps. For
example, C mode overrides 〈TAB〉 to make it indent the current line for C code.
Portions of text in the buffer can specify their own keymaps to substitute
for the keymap of the buffer’s major mode.

Minor modes can also have local keymaps. Whenever a minor mode is
in effect, the definitions in its keymap override both the major mode’s local
keymap and the global keymap.

The local keymaps for Lisp mode and several other major modes always
exist even when not in use. These are kept in variables named lisp-mode-
map and so on. For major modes less often used, the local keymap is normally
constructed only when the mode is used for the first time in a session. This
is to save space. If you wish to change one of these keymaps, you must use
the major mode’s mode hook—see below.

All minor mode keymaps are created in advance. There is no way to defer
their creation until the first time the minor mode is enabled.

A local keymap can locally redefine a key as a prefix key by defining it as
a prefix keymap. If the key is also defined globally as a prefix, then its local
and global definitions (both keymaps) effectively combine: both of them are
used to look up the event that follows the prefix key. Thus, if the mode’s
local keymap defines C-c as another keymap, and that keymap defines C-z as
a command, this provides a local meaning for C-c C-z. This does not affect
other sequences that start with C-c; if those sequences don’t have their own
local bindings, their global bindings remain in effect.

Another way to think of this is that Emacs handles a multi-event key
sequence by looking in several keymaps, one by one, for a binding of the
whole key sequence. First it checks the minor mode keymaps for minor
modes that are enabled, then it checks the major mode’s keymap, and then
it checks the global keymap. This is not precisely how key lookup works,
but it’s good enough for understanding ordinary circumstances.

To change the local bindings of a major mode, you must change the
mode’s local keymap. Normally you must wait until the first time the mode
is used, because most major modes don’t create their keymaps until then.
If you want to specify something in your ‘~/.emacs’ file to change a major
mode’s bindings, you must use the mode’s mode hook to delay the change
until the mode is first used.

For example, the command texinfo-mode to select Texinfo mode runs
the hook texinfo-mode-hook. Here’s how you can use the hook to add local
bindings (not very useful, we admit) for C-c n and C-c p in Texinfo mode:

(add-hook ’texinfo-mode-hook

Chapter 30: Customization 387

’(lambda ()
(define-key texinfo-mode-map

"\C-cp"
’backward-paragraph)

(define-key texinfo-mode-map
"\C-cn"
’forward-paragraph)

))

See Section 30.2.3 [Hooks], page 375.

30.4.4 Minibuffer Keymaps

The minibuffer has its own set of local keymaps; they contain various
completion and exit commands.

• minibuffer-local-map is used for ordinary input (no completion).

• minibuffer-local-ns-map is similar, except that 〈SPC〉 exits just like
〈RET〉. This is used mainly for Mocklisp compatibility.

• minibuffer-local-completion-map is for permissive completion.

• minibuffer-local-must-match-map is for strict completion and for
cautious completion.

30.4.5 Changing Key Bindings Interactively

The way to redefine an Emacs key is to change its entry in a keymap. You
can change the global keymap, in which case the change is effective in all
major modes (except those that have their own overriding local definitions
for the same key). Or you can change the current buffer’s local map, which
affects all buffers using the same major mode.

M-x global-set-key 〈RET〉 key cmd 〈RET〉

Define key globally to run cmd.

M-x local-set-key 〈RET〉 key cmd 〈RET〉

Define key locally (in the major mode now in effect) to run cmd.

M-x global-unset-key 〈RET〉 key
Make key undefined in the global map.

M-x local-unset-key 〈RET〉 key
Make key undefined locally (in the major mode now in effect).

For example, suppose you like to execute commands in a subshell within
an Emacs buffer, instead of suspending Emacs and executing commands in
your login shell. Normally, C-z is bound to the function suspend-emacs

388 GNU Emacs Manual

(when not using the X Window System), but you can change C-z to invoke
an interactive subshell within Emacs, by binding it to shell as follows:

M-x global-set-key 〈RET〉 C-z shell 〈RET〉

global-set-key reads the command name after the key. After you press
the key, a message like this appears so that you can confirm that you are
binding the key you want:

Set key C-z to command:

You can redefine function keys and mouse events in the same way; just
type the function key or click the mouse when it’s time to specify the key to
rebind.

You can rebind a key that contains more than one event in the same way.
Emacs keeps reading the key to rebind until it is a complete key (that is, not
a prefix key). Thus, if you type C-f for key, that’s the end; the minibuffer
is entered immediately to read cmd. But if you type C-x, another character
is read; if that is 4, another character is read, and so on. For example,

M-x global-set-key 〈RET〉 C-x 4 $ spell-other-window 〈RET〉

redefines C-x 4 $ to run the (fictitious) command spell-other-window.

The two-character keys consisting of C-c followed by a letter are reserved
for user customizations. Lisp programs are not supposed to define these
keys, so the bindings you make for them will be available in all major modes
and will never get in the way of anything.

You can remove the global definition of a key with global-unset-key.
This makes the key undefined; if you type it, Emacs will just beep. Similarly,
local-unset-key makes a key undefined in the current major mode keymap,
which makes the global definition (or lack of one) come back into effect in
that major mode.

If you have redefined (or undefined) a key and you subsequently wish
to retract the change, undefining the key will not do the job—you need
to redefine the key with its standard definition. To find the name of the
standard definition of a key, go to a Fundamental mode buffer and use C-
h c. The documentation of keys in this manual also lists their command
names.

If you want to prevent yourself from invoking a command by mistake,
it is better to disable the command than to undefine the key. A disabled
command is less work to invoke when you really want to. See Section 30.4.10
[Disabling], page 393.

30.4.6 Rebinding Keys in Your Init File

If you have a set of key bindings that you like to use all the time, you
can specify them in your ‘.emacs’ file by using their Lisp syntax.

Chapter 30: Customization 389

The simplest method for doing this works for ASCII characters and Meta-
modified ASCII characters only. This method uses a string to represent the
key sequence you want to rebind. For example, here’s how to bind C-z to
shell:

(global-set-key "\C-z" ’shell)

This example uses a string constant containing one character, C-z. The
single-quote before the command name, shell, marks it as a constant symbol
rather than a variable. If you omit the quote, Emacs would try to evaluate
shell immediately as a variable. This probably causes an error; it certainly
isn’t what you want.

Here is another example that binds a key sequence two characters long:

(global-set-key "\C-xl" ’make-symbolic-link)

When the key sequence includes function keys or mouse button events,
or non-ASCII characters such as C-= or H-a, you must use the more general
method of rebinding, which uses a vector to specify the key sequence.

The way to write a vector in Emacs Lisp is with square brackets around
the vector elements. Use spaces to separate the elements. If an element is a
symbol, simply write the symbol’s name—no other delimiters or punctuation
are needed. If a vector element is a character, write it as a Lisp character
constant: ‘?’ followed by the character as it would appear in a string.

Here are examples of using vectors to rebind C-= (a control character
outside of ASCII), H-a (a Hyper character; ASCII doesn’t have Hyper at all);
〈f7〉 (a function key), and C-Mouse-1 (a keyboard-modified mouse button):

(global-set-key [?\C-=] ’make-symbolic-link)
(global-set-key [?\H-a] ’make-symbolic-link)
(global-set-key [f7] ’make-symbolic-link)
(global-set-key [C-mouse-1] ’make-symbolic-link)

You can use a vector for the simple cases too. Here’s how to rewrite the
first two examples, above, to use vectors:

(global-set-key [?\C-z] ’shell)

(global-set-key [?\C-x ?l] ’make-symbolic-link)

30.4.7 Rebinding Function Keys

Key sequences can contain function keys as well as ordinary characters.
Just as Lisp characters (actually integers) represent keyboard characters,
Lisp symbols represent function keys. If the function key has a word as its
label, then that word is also the name of the corresponding Lisp symbol.
Here are the conventional Lisp names for common function keys:

390 GNU Emacs Manual

left, up, right, down
Cursor arrow keys.

begin, end, home, next, prior
Other cursor repositioning keys.

select, print, execute, backtab
insert, undo, redo, clearline
insertline, deleteline, insertchar, deletechar,

Miscellaneous function keys.

f1, f2, . . . f35
Numbered function keys (across the top of the keyboard).

kp-add, kp-subtract, kp-multiply, kp-divide
kp-backtab, kp-space, kp-tab, kp-enter
kp-separator, kp-decimal, kp-equal

Keypad keys (to the right of the regular keyboard), with names
or punctuation.

kp-0, kp-1, . . . kp-9
Keypad keys with digits.

kp-f1, kp-f2, kp-f3, kp-f4
Keypad PF keys.

These names are conventional, but some systems (especially when using
X windows) may use different names. To make certain what symbol is used
for a given function key on your terminal, type C-h c followed by that key.

A key sequence which contains function key symbols (or anything but
ASCII characters) must be a vector rather than a string. The vector syntax
uses spaces between the elements, and square brackets around the whole
vector. Thus, to bind function key ‘f1’ to the command rmail, write the
following:

(global-set-key [f1] ’rmail)

To bind the right-arrow key to the command forward-char, you can use
this expression:

(global-set-key [right] ’forward-char)

This uses the Lisp syntax for a vector containing the symbol right. (This
binding is present in Emacs by default.)

See Section 30.4.6 [Init Rebinding], page 388, for more information about
using vectors for rebinding.

You can mix function keys and characters in a key sequence. This example
binds C-x 〈NEXT〉 to the command forward-page.

(global-set-key [?\C-x next] ’forward-page)

where ?\C-x is the Lisp character constant for the character C-x. The vector
element next is a symbol and therefore does not take a question mark.

Chapter 30: Customization 391

You can use the modifier keys 〈CTRL〉, 〈META〉, 〈HYPER〉, 〈SUPER〉, 〈ALT〉 and
〈SHIFT〉 with function keys. To represent these modifiers, add the strings ‘C-’,
‘M-’, ‘H-’, ‘s-’, ‘A-’ and ‘S-’ at the front of the symbol name. Thus, here is
how to make Hyper-Meta-〈RIGHT〉 move forward a word:

(global-set-key [H-M-right] ’forward-word)

30.4.8 Named ASCII Control Characters

〈TAB〉, 〈RET〉, 〈BS〉, 〈LFD〉, 〈ESC〉 and 〈DEL〉 started out as names for certain
ASCII control characters, used so often that they have special keys of their
own. Later, users found it convenient to distinguish in Emacs between these
keys and the “same” control characters typed with the 〈CTRL〉 key.

Emacs 19 distinguishes these two kinds of input, when used with the X
Window System. It treats the “special” keys as function keys named tab,
return, backspace, linefeed, escape, and delete. These function keys
translate automatically into the corresponding ASCII characters if they have
no bindings of their own. As a result, neither users nor Lisp programs need
to pay attention to the distinction unless they care to.

If you do not want to distinguish between (for example) 〈TAB〉 and C-i,
make just one binding, for the ASCII character 〈TAB〉 (octal code 011). If
you do want to distinguish, make one binding for this ASCII character, and
another for the “function key” tab.

With an ordinary ASCII terminal, there is no way to distinguish between
〈TAB〉 and C-i (and likewise for other such pairs), because the terminal sends
the same character in both cases.

30.4.9 Rebinding Mouse Buttons

Emacs uses Lisp symbols to designate mouse buttons, too. The ordinary
mouse events in Emacs are click events; these happen when you press a
button and release it without moving the mouse. You can also get drag
events, when you move the mouse while holding the button down. Drag
events happen when you finally let go of the button.

The symbols for basic click events are mouse-1 for the leftmost button,
mouse-2 for the next, and so on. Here is how you can redefine the second
mouse button to split the current window:

(global-set-key [mouse-2] ’split-window-vertically)

The symbols for drag events are similar, but have the prefix ‘drag-’
before the word ‘mouse’. For example, dragging the first button generates a
drag-mouse-1 event.

392 GNU Emacs Manual

You can also define bindings for events that occur when a mouse button
is pressed down. These events start with ‘down-’ instead of ‘drag-’. Such
events are generated only if they have key bindings. When you get a button-
down event, a corresponding click or drag event will always follow.

If you wish, you can distinguish single, double, and triple clicks. A double
click means clicking a mouse button twice in approximately the same place.
The first click generates an ordinary click event. The second click, if it comes
soon enough, generates a double-click event instead. The event type for a
double click event starts with ‘double-’: for example, double-mouse-3.

This means that you can give a special meaning to the second click at
the same place, but it must act on the assumption that the ordinary single
click definition has run when the first click was received.

This constrains what you can do with double clicks, but user interface
designers say that this constraint ought to be followed in any case. A double
click should do something similar to the single click, only “more so”. The
command for the double-click event should perform the extra work for the
double click.

If a double-click event has no binding, it changes to the corresponding
single-click event. Thus, if you don’t define a particular double click specially,
it executes the single-click command twice.

Emacs also supports triple-click events whose names start with ‘triple-’.
Emacs does not distinguish quadruple clicks as event types; clicks beyond
the third generate additional triple-click events. However, the full number
of clicks is recorded in the event list, so you can distinguish if you really
want to. We don’t recommend distinct meanings for more than three clicks,
but sometimes it is useful for subsequent clicks to cycle through the same
set of three meanings, so that four clicks are equivalent to one click, five are
equivalent to two, and six are equivalent to three.

Emacs also records multiple presses in drag and button-down events. For
example, when you press a button twice, then move the mouse while holding
the button, Emacs gets a ‘double-drag-’ event. And at the moment when
you press it down for the second time, Emacs gets a ‘double-down-’ event
(which is ignored, like all button-down events, if it has no binding).

The variable double-click-time specifies how long may elapse between
clicks that are recognized as a pair. Its value is measured in milliseconds. If
the value is nil, double clicks are not detected at all. If the value is t, then
there is no time limit.

The symbols for mouse events also indicate the status of the modifier
keys, with the usual prefixes ‘C-’, ‘M-’, ‘H-’, ‘s-’, ‘A-’ and ‘S-’. These always
precede ‘double-’ or ‘triple-’, which always precede ‘drag-’ or ‘down-’.

A frame includes areas that don’t show text from the buffer, such as the
mode line and the scroll bar. You can tell whether a mouse button comes
from a special area of the screen by means of dummy “prefix keys.” For

Chapter 30: Customization 393

example, if you click the mouse in the mode line, you get the prefix key
mode-line before the ordinary mouse-button symbol. Thus, here is how
to define the command for clicking the first button in a mode line to run
scroll-up:

(global-set-key [mode-line mouse-1] ’scroll-up)

Here is the complete list of these dummy prefix keys and their meanings:

mode-line
The mouse was in the mode line of a window.

vertical-line
The mouse was in the vertical line separating side-by-side win-
dows. (If you use scroll bars, they appear in place of these
vertical lines.)

vertical-scroll-bar
The mouse was in a vertical scroll bar. (This is the only kind of
scroll bar Emacs currently supports.)

You can put more than one mouse button in a key sequence, but it isn’t
usual to do so.

30.4.10 Disabling Commands

Disabling a command marks the command as requiring confirmation be-
fore it can be executed. The purpose of disabling a command is to prevent
beginning users from executing it by accident and being confused.

An attempt to invoke a disabled command interactively in Emacs displays
a window containing the command’s name, its documentation, and some
instructions on what to do immediately; then Emacs asks for input saying
whether to execute the command as requested, enable it and execute it, or
cancel. If you decide to enable the command, you are asked whether to
do this permanently or just for the current session. Enabling permanently
works by automatically editing your ‘.emacs’ file.

The direct mechanism for disabling a command is to put a non-nil
disabled property on the Lisp symbol for the command. Here is the Lisp
program to do this:

(put ’delete-region ’disabled t)

If the value of the disabled property is a string, that string is included
in the message printed when the command is used:

(put ’delete-region ’disabled
"It’s better to use ‘kill-region’ instead.\n")

You can make a command disabled either by editing the ‘.emacs’ file di-
rectly or with the command M-x disable-command, which edits the ‘.emacs’

394 GNU Emacs Manual

file for you. Likewise, M-x enable-command edits ‘.emacs’ to enable a com-
mand permanently. See Section 30.7 [Init File], page 395.

Whether a command is disabled is independent of what key is used to in-
voke it; disabling also applies if the command is invoked using M-x. Disabling
a command has no effect on calling it as a function from Lisp programs.

30.5 Keyboard Translations

Some keyboards do not make it convenient to send all the special charac-
ters that Emacs uses. The most common problem case is the 〈DEL〉 charac-
ter. Some keyboards provide no convenient way to type this very important
character—usually because they were designed to expect the character C-h
to be used for deletion. On these keyboard, if you press the key normally
used for deletion, Emacs handles the C-h as a prefix character and offers you
a list of help options, which is not what you want.

You can work around this problem within Emacs by setting up keyboard
translations to turn C-h into 〈DEL〉 and 〈DEL〉 into C-h, as follows:

;; Translate C-h to 〈DEL〉.
(keyboard-translate ?\C-h ?\C-?)

;; Translate 〈DEL〉 to C-h.
(keyboard-translate ?\C-? ?\C-h)

Keyboard translations are not the same as key bindings in keymaps (see
Section 30.4.1 [Keymaps], page 384). Emacs contains numerous keymaps
that apply in different situations, but there is only one set of keyboard
translations, and it applies to every character that Emacs reads from the
terminal. Keyboard translations take place at the lowest level of input pro-
cessing; the keys that are looked up in keymaps contain the characters that
result from keyboard translation.

Under X, the keyboard key named 〈DELETE〉 is a function key and is
distinct from the ASCII character named 〈DEL〉. See Section 30.4.8 [Named
ASCII Chars], page 391. Keyboard translations affect only ASCII character
input, not function keys; thus, the above example used under X does not
affect the 〈DELETE〉 key. However, the translation above isn’t necessary under
X, because Emacs can also distinguish between the 〈BACKSPACE〉 key and C-h;
and it normally treats 〈BACKSPACE〉 as 〈DEL〉.

For full information about how to use keyboard translations, see section
“Translating Input” in The Emacs Lisp Reference Manual.

30.6 The Syntax Table

Chapter 30: Customization 395

All the Emacs commands which parse words or balance parentheses are
controlled by the syntax table. The syntax table says which characters are
opening delimiters, which are parts of words, which are string quotes, and so
on. Each major mode has its own syntax table (though sometimes related
major modes use the same one) which it installs in each buffer that uses that
major mode. The syntax table installed in the current buffer is the one that
all commands use, so we call it “the” syntax table. A syntax table is a Lisp
object, a vector of length 256 whose elements are numbers.

To display a description of the contents of the current syntax table, type
C-h s (describe-syntax). The description of each character includes both
the string you would have to give to modify-syntax-entry to set up that
character’s current syntax, and some English to explain that string if neces-
sary.

For full information on the syntax table, see section “Syntax Tables” in
The Emacs Lisp Reference Manual.

30.7 The Init File, ‘~/.emacs’

When Emacs is started, it normally loads a Lisp program from the file
‘.emacs’ in your home directory. We call this file your init file because it
specifies how to initialize Emacs for you. You can use the command line
switches ‘-q’ and ‘-u’ to tell Emacs whether to load an init file, and which
one (see Chapter 3 [Entering Emacs], page 25).

There can also be a default init file, which is the library named
‘default.el’, found via the standard search path for libraries. The Emacs
distribution contains no such library; your site may create one for local cus-
tomizations. If this library exists, it is loaded whenever you start Emacs
(except when you specify ‘-q’). But your init file, if any, is loaded first; if it
sets inhibit-default-init non-nil, then ‘default’ is not loaded.

Your site may also have a site startup file; this is named ‘site-start.el’,
if it exists. Emacs loads this library before it loads your init file. To inhibit
loading of this library, use the option ‘-no-site-file’.

If you have a large amount of code in your ‘.emacs’ file, you should move
it into another file such as ‘~/something.el’, byte-compile it, and make
your ‘.emacs’ file load it with (load "~/something"). See section “Byte
Compilation” in the Emacs Lisp Reference Manual, for more information
about compiling Emacs Lisp programs.

30.7.1 Init File Syntax

396 GNU Emacs Manual

The ‘.emacs’ file contains one or more Lisp function call expressions.
Each of these consists of a function name followed by arguments, all sur-
rounded by parentheses. For example, (setq fill-column 60) calls the
function setq to set the variable fill-column (see Section 20.5 [Filling],
page 186) to 60.

The second argument to setq is an expression for the new value of the
variable. This can be a constant, a variable, or a function call expression.
In ‘.emacs’, constants are used most of the time. They can be:

Numbers: Numbers are written in decimal, with an optional initial minus
sign.

Strings: Lisp string syntax is the same as C string syntax with a few
extra features. Use a double-quote character to begin and end
a string constant.

In a string, you can include newlines and special characters liter-
ally. But often it is cleaner to use backslash sequences for them:
‘\n’ for newline, ‘\b’ for backspace, ‘\r’ for carriage return, ‘\t’
for tab, ‘\f’ for formfeed (control-L), ‘\e’ for escape, ‘\\’ for a
backslash, ‘\"’ for a double-quote, or ‘\ooo’ for the character
whose octal code is ooo. Backslash and double-quote are the
only characters for which backslash sequences are mandatory.

‘\C-’ can be used as a prefix for a control character, as in ‘\C-s’
for ASCII control-S, and ‘\M-’ can be used as a prefix for a Meta
character, as in ‘\M-a’ for Meta-A or ‘\M-\C-a’ for Control-
Meta-A.

Characters:
Lisp character constant syntax consists of a ‘?’ followed by either
a character or an escape sequence starting with ‘\’. Examples:
?x, ?\n, ?\", ?\). Note that strings and characters are not
interchangeable in Lisp; some contexts require one and some
contexts require the other.

True: t stands for ‘true’.

False: nil stands for ‘false’.

Other Lisp objects:
Write a single-quote (’) followed by the Lisp object you want.

30.7.2 Init File Examples

Here are some examples of doing certain commonly desired things with
Lisp expressions:

Chapter 30: Customization 397

• Make 〈TAB〉 in C mode just insert a tab if point is in the middle of a
line.

(setq c-tab-always-indent nil)

Here we have a variable whose value is normally t for ‘true’ and the
alternative is nil for ‘false’.

• Make searches case sensitive by default (in all buffers that do not over-
ride this).

(setq-default case-fold-search nil)

This sets the default value, which is effective in all buffers that do not
have local values for the variable. Setting case-fold-search with setq
affects only the current buffer’s local value, which is not what you prob-
ably want to do in an init file.

• Specify your own email address, if Emacs can’t figure it out correctly.

(setq user-mail-address "coon@yoyodyne.com")

Various Emacs packages that need your own email address use the value
of user-mail-address.

• Make Text mode the default mode for new buffers.

(setq default-major-mode ’text-mode)

Note that text-mode is used because it is the command for entering
Text mode. The single-quote before it makes the symbol a constant;
otherwise, text-mode would be treated as a variable name.

• Turn on Auto Fill mode automatically in Text mode and related modes.

(add-hook ’text-mode-hook
’(lambda () (auto-fill-mode 1)))

This shows how to add a hook function to a normal hook variable (see
Section 30.2.3 [Hooks], page 375). The function we supply is a list
starting with lambda, with a single-quote in front of it to make it a list
constant rather than an expression.

It’s beyond the scope of this manual to explain Lisp functions, but for
this example it is enough to know that the effect is to execute (auto-
fill-mode 1) when Text mode is entered. You can replace that with
any other expression that you like, or with several expressions in a row.

Emacs comes with a function named turn-on-auto-fill whose def-
inition is (lambda () (auto-fill-mode 1)). Thus, a simpler way to
write the above example is as follows:

(add-hook ’text-mode-hook ’turn-on-auto-fill)

• Load the installed Lisp library named ‘foo’ (actually a file ‘foo.elc’ or
‘foo.el’ in a standard Emacs directory).

(load "foo")

398 GNU Emacs Manual

When the argument to load is a relative file name, not starting with
‘/’ or ‘~’, load searches the directories in load-path (see Section 22.4
[Lisp Libraries], page 268).

• Load the compiled Lisp file ‘foo.elc’ from your home directory.

(load "~/foo.elc")

Here an absolute file name is used, so no searching is done.

• Rebind the key C-x l to run the function make-symbolic-link.

(global-set-key "\C-xl" ’make-symbolic-link)

or

(define-key global-map "\C-xl" ’make-symbolic-link)

Note once again the single-quote used to refer to the symbol make-
symbolic-link instead of its value as a variable.

• Do the same thing for Lisp mode only.

(define-key lisp-mode-map "\C-xl" ’make-symbolic-link)

• Redefine all keys which now run next-line in Fundamental mode so
that they run forward-line instead.

(substitute-key-definition ’next-line ’forward-line
global-map)

• Make C-x C-v undefined.

(global-unset-key "\C-x\C-v")

One reason to undefine a key is so that you can make it a prefix. Simply
defining C-x C-v anything will make C-x C-v a prefix, but C-x C-v must
first be freed of its usual non-prefix definition.

• Make ‘$’ have the syntax of punctuation in Text mode. Note the use of
a character constant for ‘$’.

(modify-syntax-entry ?\$ "." text-mode-syntax-table)

• Enable the use of the command eval-expression without confirma-
tion.

(put ’eval-expression ’disabled nil)

30.7.3 Terminal-specific Initialization

Each terminal type can have a Lisp library to be loaded into Emacs when
it is run on that type of terminal. For a terminal type named termtype, the
library is called ‘term/termtype’ and it is found by searching the directories
load-path as usual and trying the suffixes ‘.elc’ and ‘.el’. Normally it ap-
pears in the subdirectory ‘term’ of the directory where most Emacs libraries
are kept.

Chapter 30: Customization 399

The usual purpose of the terminal-specific library is to map the escape
sequences used by the terminal’s function keys onto more meaningful names,
using function-key-map. See the file ‘term/lk201.el’ for an example of
how this is done. Many function keys are mapped automatically according
to the information in the Termcap data base; the terminal-specific library
needs to map only the function keys that Termcap does not specify.

When the terminal type contains a hyphen, only the part of the name
before the first hyphen is significant in choosing the library name. Thus,
terminal types ‘aaa-48’ and ‘aaa-30-rv’ both use the library ‘term/aaa’.
The code in the library can use (getenv "TERM") to find the full terminal
type name.

The library’s name is constructed by concatenating the value of the
variable term-file-prefix and the terminal type. Your ‘.emacs’ file can
prevent the loading of the terminal-specific library by setting term-file-
prefix to nil.

Emacs runs the hook term-setup-hook at the end of initialization, after
both your ‘.emacs’ file and any terminal-specific library have been read in.
Add hook functions to this hook if you wish to override part of any of the
terminal-specific libraries and to define initializations for terminals that do
not have a library. See Section 30.2.3 [Hooks], page 375.

30.7.4 How Emacs Finds Your Init File

Normally Emacs uses the environment variable HOME to find ‘.emacs’;
that’s what ‘~’ means in a file name. But if you have done su, Emacs tries
to find your own ‘.emacs’, not that of the user you are currently pretending
to be. The idea is that you should get your own editor customizations even
if you are running as the super user.

More precisely, Emacs first determines which user’s init file to use. It gets
the user name from the environment variables LOGNAME and USER; if neither
of those exists, it uses effective user-ID. If that user name matches the real
user-ID, then Emacs uses HOME; otherwise, it looks up the home directory
corresponding to that user name in the system’s data base of users.

400 GNU Emacs Manual

Chapter 31: Dealing with Common Problems 401

31 Dealing with Common Problems

If you type an Emacs command you did not intend, the results are often
mysterious. This chapter tells what you can do to cancel your mistake or
recover from a mysterious situation. Emacs bugs and system crashes are
also considered.

31.1 Quitting and Aborting

C-g Quit. Cancel running or partially typed command.

C-] Abort innermost recursive editing level and cancel the command
which invoked it (abort-recursive-edit).

〈ESC〉 〈ESC〉 〈ESC〉

Either quit or abort, whichever makes sense (keyboard-escape-
quit).

M-x top-level
Abort all recursive editing levels that are currently executing.

C-x u Cancel a previously made change in the buffer contents (undo).

There are two ways of canceling commands which are not finished execut-
ing: quitting with C-g, and aborting with C-] or M-x top-level. Quitting
cancels a partially typed command or one which is already running. Abort-
ing exits a recursive editing level and cancels the command that invoked the
recursive edit. (See Section 29.11 [Recursive Edit], page 365.)

Quitting with C-g is used for getting rid of a partially typed command, or
a numeric argument that you don’t want. It also stops a running command
in the middle in a relatively safe way, so you can use it if you accidentally
give a command which takes a long time. In particular, it is safe to quit out
of killing; either your text will all still be in the buffer, or it will all be in
the kill ring (or maybe both). Quitting an incremental search does special
things documented under searching; in general, it may take two successive
C-g characters to get out of a search (see Section 12.1 [Incremental Search],
page 85).

C-g works by setting the variable quit-flag to t the instant C-g is typed;
Emacs Lisp checks this variable frequently and quits if it is non-nil. C-g is
only actually executed as a command if you type it while Emacs is waiting
for input.

If you quit with C-g a second time before the first C-g is recognized,
you activate the “emergency escape” feature and return to the shell. See
Section 31.2.8 [Emergency Escape], page 405.

402 GNU Emacs Manual

There may be times when you cannot quit. When Emacs is waiting for
the operating system to do something, quitting is impossible unless special
pains are taken for the particular system call within Emacs where the waiting
occurs. We have done this for the system calls that users are likely to want
to quit from, but it’s possible you will find another. In one very common
case—waiting for file input or output using NFS—Emacs itself knows how
to quit, but most NFS implementations simply do not allow user programs
to stop waiting for NFS when the NFS server is hung.

Aborting with C-] (abort-recursive-edit) is used to get out of a re-
cursive editing level and cancel the command which invoked it. Quitting
with C-g does not do this, and could not do this, because it is used to cancel
a partially typed command within the recursive editing level. Both opera-
tions are useful. For example, if you are in a recursive edit and type C-u 8
to enter a numeric argument, you can cancel that argument with C-g and
remain in the recursive edit.

The command 〈ESC〉 〈ESC〉 〈ESC〉 (keyboard-escape-quit) can either quit
or abort. This key was defined because 〈ESC〉 is used to “get out” in many
PC programs. It can cancel a prefix argument, clear a selected region, or
get out of a Query Replace, like C-g. It can get out of the minibuffer or a
recursive edit, like C-]. It can also get out of splitting the frame into multiple
windows, like C-x 1. One thing it cannot do, however, is stop a command
that is running. That’s because it executes as an ordinary command, and
Emacs doesn’t notice it until it is ready for a command.

The command M-x top-level is equivalent to “enough” C-] commands
to get you out of all the levels of recursive edits that you are in. C-] gets
you out one level at a time, but M-x top-level goes out all levels at once.
Both C-] and M-x top-level are like all other commands, and unlike C-g,
in that they take effect only when Emacs is ready for a command. C-] is an
ordinary key and has its meaning only because of its binding in the keymap.
See Section 29.11 [Recursive Edit], page 365.

C-x u (undo) is not strictly speaking a way of canceling a command, but
you can think of it as canceling a command that already finished executing.
See Section 4.4 [Undo], page 32.

31.2 Dealing with Emacs Trouble

This section describes various conditions in which Emacs fails to work
normally, and how to recognize them and correct them.

31.2.1 If 〈DEL〉 Fails to Delete

Chapter 31: Dealing with Common Problems 403

If you find that 〈DEL〉 enters Help like Control-h instead of deleting a
character, your terminal is sending the wrong code for 〈DEL〉. You can work
around this problem by changing the keyboard translation table (see Sec-
tion 30.5 [Keyboard Translations], page 394).

31.2.2 Recursive Editing Levels

Recursive editing levels are important and useful features of Emacs, but
they can seem like malfunctions to the user who does not understand them.

If the mode line has square brackets ‘[. . .]’ around the parentheses that
contain the names of the major and minor modes, you have entered a re-
cursive editing level. If you did not do this on purpose, or if you don’t
understand what that means, you should just get out of the recursive edit-
ing level. To do so, type M-x top-level. This is called getting back to top
level. See Section 29.11 [Recursive Edit], page 365.

31.2.3 Garbage on the Screen

If the data on the screen looks wrong, the first thing to do is see whether
the text is really wrong. Type C-l, to redisplay the entire screen. If the
screen appears correct after this, the problem was entirely in the previous
screen update. (Otherwise, see Section 31.2.4 [Text Garbled], page 403.)

Display updating problems often result from an incorrect termcap entry
for the terminal you are using. The file ‘etc/TERMS’ in the Emacs distri-
bution gives the fixes for known problems of this sort. ‘INSTALL’ contains
general advice for these problems in one of its sections. Very likely there is
simply insufficient padding for certain display operations. To investigate the
possibility that you have this sort of problem, try Emacs on another termi-
nal made by a different manufacturer. If problems happen frequently on one
kind of terminal but not another kind, it is likely to be a bad termcap entry,
though it could also be due to a bug in Emacs that appears for terminals
that have or that lack specific features.

31.2.4 Garbage in the Text

If C-l shows that the text is wrong, try undoing the changes to it using
C-x u until it gets back to a state you consider correct. Also try C-h l to
find out what command you typed to produce the observed results.

If a large portion of text appears to be missing at the beginning or end
of the buffer, check for the word ‘Narrow’ in the mode line. If it appears,

404 GNU Emacs Manual

the text you don’t see is probably still present, but temporarily off-limits.
To make it accessible again, type C-x n w. See Section 29.7 [Narrowing],
page 362.

31.2.5 Spontaneous Entry to Incremental Search

If Emacs spontaneously displays ‘I-search:’ at the bottom of the screen,
it means that the terminal is sending C-s and C-q according to the poorly
designed xon/xoff “flow control” protocol.

If this happens to you, your best recourse is to put the terminal in a
mode where it will not use flow control, or give it so much padding that it
will never send a C-s. (One way to increase the amount of padding is to set
the variable baud-rate to a larger value. Its value is the terminal output
speed, measured in the conventional units of baud.)

If you don’t succeed in turning off flow control, the next best thing is
to tell Emacs to cope with it. To do this, call the function enable-flow-
control.

Typically there are particular terminal types with which you must use
flow control. You can conveniently ask for flow control on those terminal
types only, using enable-flow-control-on. For example, if you find you
must use flow control on VT-100 and H19 terminals, put the following in
your ‘.emacs’ file:

(enable-flow-control-on "vt100" "h19")

When flow control is enabled, you must type C-\ to get the effect of a
C-s, and type C-^ to get the effect of a C-q. (These aliases work by means of
keyboard translations; see Section 30.5 [Keyboard Translations], page 394.)

31.2.6 Running out of Memory

If you get the error message ‘Virtual memory exceeded’, save your mod-
ified buffers with C-x s. This method of saving them has the smallest need
for additional memory. Emacs keeps a reserve of memory which it makes
available when this error happens; that should be enough to enable C-x s to
complete its work.

Once you have saved your modified buffers, you can exit this Emacs job
and start another, or you can use M-x kill-some-buffers to free space in
the current Emacs job. If you kill buffers containing a substantial amount
of text, you can safely go on editing. Emacs refills its memory reserve auto-
matically when it sees sufficient free space available, in case you run out of
memory another time.

Chapter 31: Dealing with Common Problems 405

Do not use M-x buffer-menu to save or kill buffers when you run out of
memory, because the buffer menu needs a fair amount memory itself, and
the reserve supply may not be enough.

31.2.7 Recovery After a Crash

If Emacs or the computer crashes, you can recover the files you were
editing at the time of the crash from their auto-save files. To do this, start
Emacs again and type the command M-x recover-session.

This command initially displays a buffer which lists interrupted session
files, each with its date. You must choose which session to recover from.
Typically the one you want is the most recent one. Move point to the one
you choose, and type C-c C-c.

Then recover-session asks about each of the files that you were editing
during that session; it asks whether to recover that file. If you answer y for a
file, it shows the dates of that file and its auto-save file, then asks once again
whether to recover that file. For the second question, you must confirm with
yes. If you do, Emacs visits the file but gets the text from the auto-save file.

When recover-session is done, the files you’ve chosen to recover are
present in Emacs buffers. You should then save them. Only this—saving
them—updates the files themselves.

31.2.8 Emergency Escape

Because at times there have been bugs causing Emacs to loop without
checking quit-flag, a special feature causes Emacs to be suspended im-
mediately if you type a second C-g while the flag is already set, so you
can always get out of GNU Emacs. Normally Emacs recognizes and clears
quit-flag (and quits!) quickly enough to prevent this from happening.

When you resume Emacs after a suspension caused by multiple C-g, it
asks two questions before going back to what it had been doing:

Auto-save? (y or n)
Abort (and dump core)? (y or n)

Answer each one with y or n followed by 〈RET〉.

Saying y to ‘Auto-save?’ causes immediate auto-saving of all modified
buffers in which auto-saving is enabled.

Saying y to ‘Abort (and dump core)?’ causes an illegal instruction to be
executed, dumping core. This is to enable a wizard to figure out why Emacs
was failing to quit in the first place. Execution does not continue after a core
dump. If you answer n, execution does continue. With luck, GNU Emacs

406 GNU Emacs Manual

will ultimately check quit-flag and quit normally. If not, and you type
another C-g, it is suspended again.

If Emacs is not really hung, just slow, you may invoke the double C-g
feature without really meaning to. Then just resume and answer n to both
questions, and you will arrive at your former state. Presumably the quit you
requested will happen soon.

The double-C-g feature is turned off when Emacs is running under the X
Window System, since you can use the window manager to kill Emacs or to
create another window and run another program.

31.2.9 Help for Total Frustration

If using Emacs (or something else) becomes terribly frustrating and none
of the techniques described above solve the problem, Emacs can still help
you.

First, if the Emacs you are using is not responding to commands, type
C-g C-g to get out of it and then start a new one.

Second, type M-x doctor 〈RET〉.

The doctor will help you feel better. Each time you say something to the
doctor, you must end it by typing 〈RET〉 〈RET〉. This lets the doctor know
you are finished.

31.3 Reporting Bugs

Sometimes you will encounter a bug in Emacs. Although we cannot
promise we can or will fix the bug, and we might not even agree that it is a
bug, we want to hear about problems you encounter. Often we agree they
are bugs and want to fix them.

To make it possible for us to fix a bug, you must report it. In order to
do so effectively, you must know when and how to do it.

31.3.1 When Is There a Bug

If Emacs executes an illegal instruction, or dies with an operating sys-
tem error message that indicates a problem in the program (as opposed to
something like “disk full”), then it is certainly a bug.

If Emacs updates the display in a way that does not correspond to what
is in the buffer, then it is certainly a bug. If a command seems to do the
wrong thing but the problem corrects itself if you type C-l, it is a case of
incorrect display updating.

Chapter 31: Dealing with Common Problems 407

Taking forever to complete a command can be a bug, but you must make
certain that it was really Emacs’s fault. Some commands simply take a long
time. Type C-g and then C-h l to see whether the input Emacs received was
what you intended to type; if the input was such that you know it should
have been processed quickly, report a bug. If you don’t know whether the
command should take a long time, find out by looking in the manual or by
asking for assistance.

If a command you are familiar with causes an Emacs error message in a
case where its usual definition ought to be reasonable, it is probably a bug.

If a command does the wrong thing, that is a bug. But be sure you
know for certain what it ought to have done. If you aren’t familiar with the
command, or don’t know for certain how the command is supposed to work,
then it might actually be working right. Rather than jumping to conclusions,
show the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for editing
with. This is a very important sort of problem, but it is also a matter of
judgment. Also, it is easy to come to such a conclusion out of ignorance of
some of the existing features. It is probably best not to complain about such
a problem until you have checked the documentation in the usual ways, feel
confident that you understand it, and know for certain that what you want
is not available. If you are not sure what the command is supposed to do
after a careful reading of the manual, check the index and glossary for any
terms that may be unclear.

If after careful rereading of the manual you still do not understand what
the command should do, that indicates a bug in the manual, which you
should report. The manual’s job is to make everything clear to people who
are not Emacs experts—including you. It is just as important to report
documentation bugs as program bugs.

If the on-line documentation string of a function or variable disagrees
with the manual, one of them must be wrong; that is a bug.

31.3.2 Understanding Bug Reporting

When you decide that there is a bug, it is important to report it and to
report it in a way which is useful. What is most useful is an exact description
of what commands you type, starting with the shell command to run Emacs,
until the problem happens.

The most important principle in reporting a bug is to report facts, not
hypotheses or categorizations. It is always easier to report the facts, but
people seem to prefer to strain to posit explanations and report them instead.
If the explanations are based on guesses about how Emacs is implemented,
they will be useless; we will have to try to figure out what the facts must

408 GNU Emacs Manual

have been to lead to such speculations. Sometimes this is impossible. But
in any case, it is unnecessary work for us.

For example, suppose that you type C-x C-f /glorp/baz.ugh 〈RET〉, vis-
iting a file which (you know) happens to be rather large, and Emacs prints
out ‘I feel pretty today’. The best way to report the bug is with a sen-
tence like the preceding one, because it gives all the facts and nothing but
the facts.

Do not assume that the problem is due to the size of the file and say,
“When I visit a large file, Emacs prints out ‘I feel pretty today’.” This
is what we mean by “guessing explanations”. The problem is just as likely
to be due to the fact that there is a ‘z’ in the file name. If this is so, then
when we got your report, we would try out the problem with some “large
file”, probably with no ‘z’ in its name, and not find anything wrong. There
is no way in the world that we could guess that we should try visiting a file
with a ‘z’ in its name.

Alternatively, the problem might be due to the fact that the file starts
with exactly 25 spaces. For this reason, you should make sure that you
inform us of the exact contents of any file that is needed to reproduce the
bug. What if the problem only occurs when you have typed the C-x C-a
command previously? This is why we ask you to give the exact sequence of
characters you typed since starting the Emacs session.

You should not even say “visit a file” instead of C-x C-f unless you know
that it makes no difference which visiting command is used. Similarly, rather
than saying “if I have three characters on the line,” say “after I type 〈RET〉

A B C 〈RET〉 C-p,” if that is the way you entered the text.

31.3.3 Checklist for Bug Reports

The best way to send a bug report is to mail it electronically to the Emacs
maintainers at ‘bug-gnu-emacs@prep.ai.mit.edu’. (If you want to suggest
a change as an improvement, use the same address.)

If you’d like to read the bug reports, you can find them on the newsgroup
‘gnu.emacs.bug’; keep in mind, however, that as a spectator you should not
criticize anything about what you see there. The purpose of bug reports is
to give information to the Emacs maintainers. Spectators are welcome only
as long as they do not interfere with this. In particular, some bug reports
contain large amounts of data; spectators should not complain about this.

Please do not post bug reports using netnews; mail is more reliable than
netnews about reporting your correct address, which we may need in order
to ask you for more information.

If you can’t send electronic mail, then mail the bug report on paper or
machine-readable media to this address:

Chapter 31: Dealing with Common Problems 409

GNU Emacs Bugs
Free Software Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA

We do not promise to fix the bug; but if the bug is serious, or ugly, or
easy to fix, chances are we will want to.

A convenient way to send a bug report for Emacs is to use the command
M-x report-emacs-bug. This sets up a mail buffer (see Chapter 25 [Sending
Mail], page 285) and automatically inserts some of the essential information.
However, it cannot supply all the necessary information; you should still
read and follow the guidelines below, so you can enter the other crucial
information by hand before you send the message.

To enable maintainers to investigate a bug, your report should include
all these things:

• The version number of Emacs. Without this, we won’t know whether
there is any point in looking for the bug in the current version of GNU
Emacs.

You can get the version number by typing M-x emacs-version 〈RET〉. If
that command does not work, you probably have something other than
GNU Emacs, so you will have to report the bug somewhere else.

• The type of machine you are using, and the operating system name and
version number. M-x emacs-version 〈RET〉 provides this information
too. Copy its output from the ‘*Messages*’ buffer, so that you get it
all and get it accurately.

• The operands given to the configure command when Emacs was in-
stalled.

• A complete list of any modifications you have made to the Emacs source.
(We may not have time to investigate the bug unless it happens in an
unmodified Emacs. But if you’ve made modifications and you don’t tell
us, you are sending us on a wild goose chase.)

Be precise about these changes. A description in English is not enough—
send a context diff for them.

Adding files of your own, or porting to another machine, is a modifica-
tion of the source.

• Details of any other deviations from the standard procedure for in-
stalling GNU Emacs.

• The complete text of any files needed to reproduce the bug.

If you can tell us a way to cause the problem without visiting any files,
please do so. This makes it much easier to debug. If you do need files,
make sure you arrange for us to see their exact contents. For example,
it can often matter whether there are spaces at the ends of lines, or a

410 GNU Emacs Manual

newline after the last line in the buffer (nothing ought to care whether
the last line is terminated, but try telling the bugs that).

• The precise commands we need to type to reproduce the bug.

The easy way to record the input to Emacs precisely is to write a dribble
file. To start the file, execute the Lisp expression

(open-dribble-file "~/dribble")

using M-: or from the ‘*scratch*’ buffer just after starting Emacs.
From then on, Emacs copies all your input to the specified dribble file
until the Emacs process is killed.

• For possible display bugs, the terminal type (the value of environ-
ment variable TERM), the complete termcap entry for the terminal from
‘/etc/termcap’ (since that file is not identical on all machines), and the
output that Emacs actually sent to the terminal.

The way to collect the terminal output is to execute the Lisp expression

(open-termscript "~/termscript")

using M-: or from the ‘*scratch*’ buffer just after starting Emacs.
From then on, Emacs copies all terminal output to the specified
termscript file as well, until the Emacs process is killed. If the problem
happens when Emacs starts up, put this expression into your ‘.emacs’
file so that the termscript file will be open when Emacs displays the
screen for the first time.

Be warned: it is often difficult, and sometimes impossible, to fix a
terminal-dependent bug without access to a terminal of the type that
stimulates the bug.

• A description of what behavior you observe that you believe is incorrect.
For example, “The Emacs process gets a fatal signal,” or, “The resulting
text is as follows, which I think is wrong.”

Of course, if the bug is that Emacs gets a fatal signal, then one can’t
miss it. But if the bug is incorrect text, the maintainer might fail to
notice what is wrong. Why leave it to chance?

Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as, your
copy of the source is out of sync, or you have encountered a bug in
the C library on your system. (This has happened!) Your copy might
crash and the copy here might not. If you said to expect a crash, then
when Emacs here fails to crash, we would know that the bug was not
happening. If you don’t say to expect a crash, then we would not know
whether the bug was happening—we would not be able to draw any
conclusion from our observations.

• If the manifestation of the bug is an Emacs error message, it is important
to report the precise text of the error message, and a backtrace showing
how the Lisp program in Emacs arrived at the error.

Chapter 31: Dealing with Common Problems 411

To get the error message text accurately, copy it from the ‘*Messages*’
buffer into the bug report. Copy all of it, not just part.

To make a backtrace for the error, evaluate the Lisp expression (setq
debug-on-error t) before the error happens (that is to say, you must
execute that expression and then make the bug happen). This causes
the error to run the Lisp debugger, which shows you a backtrace. Copy
the text of the debugger’s backtrace into the bug report.

This use of the debugger is possible only if you know how to make the
bug happen again. If you can’t make it happen again, at least copy the
whole error message.

• Check whether any programs you have loaded into the Lisp world, in-
cluding your ‘.emacs’ file, set any variables that may affect the func-
tioning of Emacs. Also, see whether the problem happens in a freshly
started Emacs without loading your ‘.emacs’ file (start Emacs with the
-q switch to prevent loading the init file.) If the problem does not oc-
cur then, you must report the precise contents of any programs that you
must load into the Lisp world in order to cause the problem to occur.

• If the problem does depend on an init file or other Lisp programs that
are not part of the standard Emacs system, then you should make sure it
is not a bug in those programs by complaining to their maintainers first.
After they verify that they are using Emacs in a way that is supposed
to work, they should report the bug.

• If you wish to mention something in the GNU Emacs source, show the
line of code with a few lines of context. Don’t just give a line number.

The line numbers in the development sources don’t match those in your
sources. It would take extra work for the maintainers to determine
what code is in your version at a given line number, and we could not
be certain.

• Additional information from a C debugger such as GDB might enable
someone to find a problem on a machine which he does not have avail-
able. If you don’t know how to use GDB, please read the GDB manual—
it is not very long, and using GDB is easy. You can find the GDB
distribution, including the GDB manual in online form, in most of the
same places you can find the Emacs distribution.

However, you need to think when you collect the additional information
if you want it to show what causes the bug.

For example, many people send just a backtrace, but that is not very
useful by itself. A simple backtrace with arguments often conveys little
about what is happening inside GNU Emacs, because most of the argu-
ments listed in the backtrace are pointers to Lisp objects. The numeric
values of these pointers have no significance whatever; all that matters
is the contents of the objects they point to (and most of the contents
are themselves pointers).

412 GNU Emacs Manual

To provide useful information, you need to show the values of Lisp
objects in Lisp notation. Do this for each variable which is a Lisp
object, in several stack frames near the bottom of the stack. Look at
the source to see which variables are Lisp objects, because the debugger
thinks of them as integers.

To show a variable’s value in Lisp syntax, first print its value, then
use the user-defined GDB command pr to print the Lisp object in Lisp
syntax. (If you must use another debugger, call the function debug_
print with the object as an argument.) The pr command is defined by
the file ‘.gdbinit’ in the ‘src’ subdirectory, and it works only if you
are debugging a running process (not with a core dump).

To make Lisp errors stop Emacs and return to GDB, put a breakpoint
at Fsignal.

To find out which Lisp functions are running, using GDB, move up the
stack, and each time you get to a frame for the function Ffuncall, type
these GDB commands:

p *args
pr

To print the first argument that the function received, use these com-
mands:

p args[1]
pr

You can print the other arguments likewise. The argument nargs of
Ffuncall says how many arguments Ffuncall received; these include
the Lisp function itself and the arguments for that function.

• If the symptom of the bug is that Emacs fails to respond, don’t assume
Emacs is “hung”—it may instead be in an infinite loop. To find out
which, make the problem happen under GDB and stop Emacs once it
is not responding. (If Emacs is using X Windows directly, you can stop
Emacs by typing C-c at the GDB job.) Then try stepping with ‘step’.
If Emacs is hung, the ‘step’ command won’t return. If it is looping,
‘step’ will return.

If this shows Emacs is hung in a system call, stop it again and examine
the arguments of the call. In your bug report, state exactly where in
the source the system call is, and what the arguments are.

If Emacs is in an infinite loop, please determine where the loop starts
and ends. The easiest way to do this is to use the GDB command
‘finish’. Each time you use it, Emacs resumes execution until it exits
one stack frame. Keep typing ‘finish’ until it doesn’t return—that
means the infinite loop is in the stack frame which you just tried to
finish.

Chapter 31: Dealing with Common Problems 413

Stop Emacs again, and use ‘finish’ repeatedly again until you get back
to that frame. Then use ‘next’ to step through that frame. By stepping,
you will see where the loop starts and ends. Also please examine the
data being used in the loop and try to determine why the loop does not
exit when it should. Include all of this information in your bug report.

Here are some things that are not necessary in a bug report:

• A description of the envelope of the bug—this is not necessary for a
reproducible bug.

Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.

This is often time consuming and not very useful, because the way we
will find the bug is by running a single example under the debugger
with breakpoints, not by pure deduction from a series of examples. You
might as well save time by not searching for additional examples.

Of course, if you can find a simpler example to report instead of the
original one, that is a convenience. Errors in the output will be easier
to spot, running under the debugger will take less time, etc.

However, simplification is not vital; if you can’t do this or don’t have
time to try, please report the bug with your original test case.

• A system call trace of Emacs execution.

System call traces are very useful for certain special kinds of debugging,
but in most cases they give little useful information. It is therefore
strange that many people seem to think that the way to report infor-
mation about a crash is to send a system call trace.

In most programs, a backtrace is normally far, far more informative
than a system call trace. Even in Emacs, a simple backtrace is generally
more informative, though to give full information you should supplement
the backtrace by displaying variable values and printing them as Lisp
objects with pr (see above).

• A patch for the bug.

A patch for the bug is useful if it is a good one. But don’t omit the
other information that a bug report needs, such as the test case, on
the assumption that a patch is sufficient. We might see problems with
your patch and decide to fix the problem another way, or we might not
understand it at all. And if we can’t understand what bug you are
trying to fix, or why your patch should be an improvement, we mustn’t
install it.

• A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even experts can’t guess right about
such things without first using the debugger to find the facts.

414 GNU Emacs Manual

31.3.4 Sending Patches for GNU Emacs

If you would like to write bug fixes or improvements for GNU Emacs, that
is very helpful. When you send your changes, please follow these guidelines
to make it easy for the maintainers to use them. If you don’t follow these
guidelines, your information might still be useful, but using it will take extra
work. Maintaining GNU Emacs is a lot of work in the best of circumstances,
and we can’t keep up unless you do your best to help.

• Send an explanation with your changes of what problem they fix or
what improvement they bring about. For a bug fix, just include a copy
of the bug report, and explain why the change fixes the bug.

(Referring to a bug report is not as good as including it, because then
we will have to look it up, and we have probably already deleted it if
we’ve already fixed the bug.)

• Always include a proper bug report for the problem you think you have
fixed. We need to convince ourselves that the change is right before
installing it. Even if it is correct, we might have trouble understanding
it if we don’t have a way to reproduce the problem.

• Include all the comments that are appropriate to help people reading
the source in the future understand why this change was needed.

• Don’t mix together changes made for different reasons. Send them in-
dividually.

If you make two changes for separate reasons, then we might not want
to install them both. We might want to install just one. If you send
them all jumbled together in a single set of diffs, we have to do extra
work to disentangle them—to figure out which parts of the change serve
which purpose. If we don’t have time for this, we might have to ignore
your changes entirely.

If you send each change as soon as you have written it, with its own
explanation, then two changes never get tangled up, and we can consider
each one properly without any extra work to disentangle them.

• Send each change as soon as that change is finished. Sometimes people
think they are helping us by accumulating many changes to send them
all together. As explained above, this is absolutely the worst thing you
could do.

Since you should send each change separately, you might as well send it
right away. That gives us the option of installing it immediately if it is
important.

• Use ‘diff -c’ to make your diffs. Diffs without context are hard to
install reliably. More than that, they are hard to study; we must always
study a patch to decide whether we want to install it. Unidiff format is
better than contextless diffs, but not as easy to read as ‘-c’ format.

Chapter 31: Dealing with Common Problems 415

If you have GNU diff, use ‘diff -c -F’^[_a-zA-Z0-9$]+ *(’’ when
making diffs of C code. This shows the name of the function that each
change occurs in.

• Write the change log entries for your changes. This is both to save us
the extra work of writing them, and to help explain your changes so we
can understand them.

The purpose of the change log is to show people where to find what was
changed. So you need to be specific about what functions you changed;
in large functions, it’s often helpful to indicate where within the function
the change was.

On the other hand, once you have shown people where to find the
change, you need not explain its purpose in the change log. Thus, if
you add a new function, all you need to say about it is that it is new. If
you feel that the purpose needs explaining, it probably does—but put
the explanation in comments in the code. It will be more useful there.

Please read the ‘ChangeLog’ files in the ‘src’ and ‘lisp’ directories to see
what sorts of information to put in, and to learn the style that we use.
If you would like your name to appear in the header line, showing who
made the change, send us the header line. See Section 21.11 [Change
Log], page 232.

• When you write the fix, keep in mind that we can’t install a change that
would break other systems. Please think about what effect your change
will have if compiled on another type of system.

Sometimes people send fixes that might be an improvement in general—
but it is hard to be sure of this. It’s hard to install such changes because
we have to study them very carefully. Of course, a good explanation of
the reasoning by which you concluded the change was correct can help
convince us.

The safest changes are changes to the configuration files for a particular
machine. These are safe because they can’t create new bugs on other
machines.

Please help us keep up with the workload by designing the patch in a
form that is clearly safe to install.

31.4 Contributing to Emacs Development

If you would like to help pretest Emacs releases to assure they work
well, or if you would like to work on improving Emacs, please contact the
maintainers at bug-gnu-emacs@prep.ai.mit.edu. A pretester should be
prepared to investigate bugs as well as report them. If you’d like to work
on improving Emacs, please ask for suggested projects or suggest your own
ideas.

416 GNU Emacs Manual

If you have already written an improvement, please tell us about
it. If you have not yet started work, it is useful to contact bug-gnu-
emacs@prep.ai.mit.edu before you start; it might be possible to suggest
ways to make your extension fit in better with the rest of Emacs.

31.5 How To Get Help with GNU Emacs

If you need help installing, using or changing GNU Emacs, there are two
ways to find it:

• Send a message to the mailing list help-gnu-emacs@prep.ai.mit.edu,
or post your request on newsgroup gnu.emacs.help. (This mailing list
and newsgroup interconnect, so it does not matter which one you use.)

• Look in the service directory for someone who might help you for a fee.
The service directory is found in the file named ‘etc/SERVICE’ in the
Emacs distribution.

Appendix A: Command Line Arguments 417

Appendix A Command Line Arguments

GNU Emacs supports command line arguments to request various actions
when invoking Emacs. These are for compatibility with other editors and
for sophisticated activities. We don’t recommend using them for ordinary
editing.

Arguments starting with ‘-’ are options. Other arguments specify files to
visit. Emacs visits the specified files while it starts up. The last file name
on your command line becomes the current buffer; the other files are also
present in other buffers.

You can use options to specify various other things, such as the size and
position of the X window Emacs uses, its colors, and so on. A few options
support advanced usage, such as running Lisp functions on files in batch
mode. The sections of this chapter describe the available options, arranged
according to their purpose.

There are two ways of writing options: the short forms that start with
a single ‘-’, and the long forms that start with ‘--’. For example, ‘-d’ is a
short form and ‘--display’ is the corresponding long form.

The long forms with ‘--’ are easier to remember, but longer to type.
However, you don’t have to spell out the whole option name; any unambigu-
ous abbreviation is enough. When a long option takes an argument, you
can use either a space or an equal sign to separate the option name and
the argument. Thus, you can write either ‘--display sugar-bombs:0.0’
or ‘--display=sugar-bombs:0.0’. We recommend an equal sign because it
makes the relationship clearer, and the tables below always show an equal
sign.

Most options specify how to initialize Emacs, or set parameters for the
Emacs session. We call them initial options. A few options specify things
to do: for example, load libraries, call functions, or exit Emacs. These
are called action options. These and file names together are called action
arguments. Emacs processes all the action arguments in the order they are
written.

A.1 Action Arguments

Here is a table of the action arguments and options:

‘file’ Visit file using find-file. See Section 14.2 [Visiting], page 108.

‘+linenum file’
Visit file using find-file, then go to line number linenum in
it.

418 GNU Emacs Manual

‘-l file’
‘--load=file’

Load a file file of Lisp code with the function load. See Sec-
tion 22.4 [Lisp Libraries], page 268.

‘-f function’
‘--funcall=function’

Call Lisp function function with no arguments.

‘--eval expression’
Evaluate Lisp expression expression.

‘--insert=file’
Insert the contents of file into the current buffer. This is like
what M-x insert-file does. See Section 14.10 [Misc File Ops],
page 138.

‘--kill’ Exit from Emacs without asking for confirmation.

The init file can access the values of the action arguments as the elements
of a list in the variable command-line-args. The init file can override the
normal processing of the action arguments, or define new ones, by reading
and setting this variable.

A.2 Initial Options

The initial options specify parameter for the Emacs session. This section
describes the more general initial options; some other options specifically
related to X Windows appear in the following sections.

Some initial options affect the loading of init files. The normal actions of
Emacs are to first load ‘site-start.el’ if it exists, then your own init file
‘~/.emacs’ if it exists, and finally ‘default.el’ if it exists; certain options
prevent loading of some of these files or substitute other files for them.

‘-t device’
‘--terminal=device’

Use device as the device for terminal input and output.

‘-d display ’
‘--display=display ’

Use the X Window System and use the display named display
to open the initial Emacs frame.

‘-nw’
‘--no-windows’

Don’t communicate directly with X, disregarding the DISPLAY
environment variable even if it is set.

Appendix “char65: Command Line Arguments 419

‘-batch’
‘--batch’ Run Emacs in batch mode, which means that the text being

edited is not displayed and the standard terminal interrupt char-
acters such as C-z and C-c continue to have their normal effect.
Emacs in batch mode outputs to stderr only what would nor-
mally be printed in the echo area under program control.

Batch mode is used for running programs written in Emacs Lisp
from shell scripts, makefiles, and so on. Normally the ‘-l’ option
or ‘-f’ option will be used as well, to invoke a Lisp program to
do the batch processing.

‘-batch’ implies ‘-q’ (do not load an init file). It also causes
Emacs to kill itself after all command options have been pro-
cessed. In addition, auto-saving is not done except in buffers for
which it has been explicitly requested.

‘-q’
‘--no-init-file’

Do not load your Emacs init file ‘~/.emacs’, or ‘default.el’
either.

‘--no-site-file’
Do not load ‘site-start.el’. The options ‘-q’, ‘-u’ and
‘-batch’ have no effect on the loading of this file—this is the
only option that blocks it.

‘-u user’
‘--user=user’

Load user’s Emacs init file ‘~user/.emacs’ instead of your own.

‘--debug-init’
Enable the Emacs Lisp debugger for errors in the init file.

A.3 Command Argument Example

Here is an example of using Emacs with arguments and options. It as-
sumes you have a Lisp program file called ‘hack-c.el’ which, when loaded,
performs some useful operation on current buffer, expected to be a C pro-
gram.

emacs -batch foo.c -l hack-c -f save-buffer >& log

This says to visit ‘foo.c’, load ‘hack-c.el’ (which makes changes in the
visited file), save ‘foo.c’ (note that save-buffer is the function that C-
x C-s is bound to), and then exit back to the shell (because of ‘-batch’).
‘-batch’ also guarantees there will be no problem redirecting output to ‘log’,
because Emacs will not assume that it has a display terminal to work with.

420 GNU Emacs Manual

A.4 Resuming Emacs with Arguments

You can specify action arguments for Emacs when you resume it after a
suspension. To prepare for this, put the following code in your ‘.emacs’ file
(see Section 30.2.3 [Hooks], page 375):

(add-hook ’suspend-hook ’resume-suspend-hook)
(add-hook ’suspend-resume-hook ’resume-process-args)

As further preparation, you must execute the shell script ‘emacs.csh’ (if
you use csh as your shell) or ‘emacs.bash’ (if you use bash as your shell).
These scripts define an alias named edit, which will resume Emacs giving
it new command line arguments such as files to visit.

Only action arguments work properly when you resume Emacs. Initial
arguments are not recognized—it’s too late to execute them anyway.

Note that resuming Emacs (with or without arguments) must be done
from within the shell that is the parent of the Emacs job. This is why edit
is an alias rather than a program or a shell script. It is not possible to
implement a resumption command that could be run from other subjobs
of the shell; no way to define a command that could be made the value of
EDITOR, for example. Therefore, this feature does not take the place of the
Emacs Server feature (see Section 29.3 [Emacs Server], page 356).

The aliases use the Emacs Server feature if you appear to have a server
Emacs running. However, they cannot determine this with complete accu-
racy. They may think that a server is still running when in actuality you
have killed that Emacs, because the file ‘/tmp/.esrv. . .’ still exists. If this
happens, find that file and delete it.

A.5 Environment Variables

This appendix describes how Emacs uses environment variables. An en-
vironment variable is a string passed from the operating system to Emacs,
and the collection of environment variables is known as the environment.
Environment variable names are case sensitive and it is conventional to use
upper case letters only.

Because environment variables come from the operating system there is
no general way to set them; it depends on the operating system and especially
the shell that you are using. For example, here’s how to set the environment
variable ORGANIZATION to ‘not very much’ using bash:

export ORGANIZATION="not very much"

and here’s how to do it in csh or tcsh:

setenv ORGANIZATION "not very much"

Appendix A: Command Line Arguments 421

When Emacs is set-up to use the X windowing system, it inherits the use
of a large number of environment variables from the X library. See the X
documentation for more information.

A.5.1 General Variables

AUTHORCOPY
The name of a file used to archive news articles posted with the
gnus package.

CDPATH Used by the cd command.

DOMAINNAME
The name of the internet domain that the machine running
Emacs is located in. Used by the gnus package.

EMACSDATA
Used to initialize the variable data-directory used to locate
the architecture-independent files that come with Emacs. Set-
ting this variable overrides the setting in ‘paths.h’ when Emacs
was built.

EMACSLOADPATH
A colon-separated list of directories from which to load Emacs
Lisp files. Setting this variable overrides the setting in ‘paths.h’
when Emacs was built.

EMACSLOCKDIR
The directory that Emacs places lock files—files used to pro-
tect users from editing the same files simultaneously. Setting
this variable overrides the setting in ‘paths.h’ when Emacs was
built.

EMACSPATH
The location of Emacs-specific binaries. Setting this variable
overrides the setting in ‘paths.h’ when Emacs was built.

ESHELL Used for shell-mode to override the SHELL environment variable.

HISTFILE The name of the file that shell commands are saved in between
logins. This variable defaults to ‘~/.history’ if you use (t)csh as
shell, to ‘~/.bash_history’ if you use bash, to ‘~/.sh_history’
if you use ksh, and to ‘~/.history’ otherwise.

HOME The location of the user’s files in the directory tree; used for
expansion of file names starting with a tilde (‘~’). On MS-DOS,
it defaults to the directory from which Emacs was started, with
‘/bin’ removed from the end if it was present.

422 GNU Emacs Manual

HOSTNAME The name of the machine that Emacs is running on.

INCPATH A colon-separated list of directories. Used by the complete
package to search for files.

INFOPATH A colon separated list of directories holding info files. Setting
this variable overrides the setting in ‘paths.el’ when Emacs
was built.

LOGNAME The user’s login name. See also USER.

MAIL The name of the user’s system mail box.

MAILRC Name of file containing mail aliases. This defaults to
‘~/.mailrc’.

MH Name of setup file for the mh system. This defaults to
‘~/.mh_profile’.

NAME The real-world name of the user.

NNTPSERVER
The name of the news server. Used by the mh and gnus pack-
ages.

ORGANIZATION
The name of the organization to which you belong. Used for
setting the ‘Organization:’ header in your posts from the gnus
package.

PATH A colon-separated list of directories in which executables reside.
(On MS-DOS, it is semicolon-separated instead.) This variable
is used to set the Emacs Lisp variable exec-path which you
should consider to use instead.

PWD If set, this should be the default directory when Emacs was
started.

REPLYTO If set, this specifies an initial value for the variable mail-
default-reply-to. See Section 25.2 [Mail Headers], page 286.

SAVEDIR The name of a directory in which news articles are saved by
default. Used by the gnus package.

SHELL The name of an interpreter used to parse and execute programs
run from inside Emacs.

TERM The name of the terminal that Emacs is running on. The vari-
able must be set unless Emacs is run in batch mode. On MS-
DOS, it defaults to ‘internal’, which specifies a built-in termi-
nal emulation that handles the machine’s own display.

Appendix A: Command Line Arguments 423

TERMCAP The name of the termcap library file describing how to program
the terminal specified by the TERM variable. This defaults to
‘/etc/termcap’.

TMPDIR Used by the Emerge package as a prefix for temporary files.

TZ This specifies the current time zone and possibly also daylight
savings information. On MS-DOS, the default is based on coun-
try code; see the file ‘msdos.c’ for details.

USER The user’s login name. See also LOGNAME. On MS-DOS, this
defaults to ‘root’.

VERSION_CONTROL
Used to initialize the version-control variable (see Sec-
tion 14.3.1.1 [Backup Names], page 113).

A.5.2 Misc Variables

These variables are used only on particular configurations:

COMSPEC On MS-DOS, the name of the command interpreter to use. This
is used to make a default value for the SHELL environment vari-
able.

NAME On MS-DOS, this variable defaults to the value of the USER
variable.

TEMP
TMP On MS-DOS, these specify the name of the directory for storing

temporary files in.

EMACSTEST
On MS-DOS, this specifies a file to use to log the operation of the
internal terminal emulator. This feature is useful for submitting
bug reports.

EMACSCOLORS
Used on MS-DOS systems to set screen colors early, so that the
screen won’t momentarily flash the default colors when Emacs
starts up. The value of this variable should be two-character
encoding of the foreground (the first character) and the back-
ground (the second character) colors of the default face. Each
character should be the hexadecimal code for the desired color
on a standard PC text-mode display.

Only the low three bits of the background color are actually
used, because the PC display supports only eight background
colors.

424 GNU Emacs Manual

WINDOW_GFX
Used when initializing the Sun windows system.

A.6 Specifying the Display Name

The environment variable DISPLAY tells all X clients, including Emacs,
where to display their windows. Its value is set up by default in ordinary
circumstances, when you start an X server and run jobs locally. Occasionally
you may need to specify the display yourself; for example, if you do a remote
login and want to run a client program remotely, displaying on your local
screen.

With Emacs, the main reason people change the default display is to
let them log into another system, run Emacs on that system, but have the
window displayed at their local terminal. You might need to use login to
another system because the files you want to edit are there, or because the
Emacs executable file you want to run is there.

The syntax of the DISPLAY environment variable is ‘host:display.screen’,
where host is the host name of the X Window System server machine, display
is an arbitrarily-assigned number that distinguishes your server (X terminal)
from other servers on the same machine, and screen is a rarely-used field that
allows an X server to control multiple terminal screens. The period and the
screen field are optional. If included, screen is usually zero.

For example, if your host is named ‘glasperle’ and your server is the
first (or perhaps the only) server listed in the configuration, your DISPLAY
is ‘glasperle:0.0’.

You can specify the display name explicitly when you run Emacs, ei-
ther by changing the DISPLAY variable, or with the option ‘-d display ’ or
‘--display=display ’. Here is an example:

emacs --display=glasperle:0 &

You can inhibit the direct use of X with the ‘-nw’ option. This is also
an initial option. It tells Emacs to display using ordinary ASCII on its
controlling terminal.

Sometimes, security arrangements prevent a program on a remote system
from displaying on your local system. In this case, trying to run Emacs
produces messages like this:

Xlib: connection to "glasperle:0.0" refused by server

You might be able to overcome this problem by using the xhost command
on the local system to give permission for access from your remote machine.

A.7 Font Specification Options

Appendix A: Command Line Arguments 425

By default, Emacs displays text in the font named ‘9x15’, which makes
each character nine pixels wide and fifteen pixels high. You can specify a
different font on your command line through the option ‘-fn name’.

‘-fn name’
Use font name as the default font.

‘--font=name’
‘--font’ is an alias for ‘-fn’.

Under X, each font has a long name which consists of eleven words or
numbers, separated by dashes. Some fonts also have shorter nicknames—
‘9x15’ is such a nickname. You can use either kind of name. You can use
wild card patterns for the font name; then Emacs lets X choose one of the
fonts that match the pattern. Here is an example, which happens to specify
the font whose nickname is ‘6x13’:

emacs -fn "-misc-fixed-medium-r-semicondensed--13-*-*-*-c-60-iso8859-1" &

You can also specify the font in your ‘.Xdefaults’ file:

emacs.font: -misc-fixed-medium-r-semicondensed--13-*-*-*-c-60-iso8859-1

A long font name has the following form:

-maker-family-weight-slant-widthtype-style. . .

. . .-pixels-height-horiz-vert-spacing-width-charset

family This is the name of the font family–for example, ‘courier’.

weight This is normally ‘bold’, ‘medium’ or ‘light’. Other words may
appear here in some font names.

slant This is ‘r’ (roman), ‘i’ (italic), ‘o’ (oblique), ‘ri’ (reverse italic),
or ‘ot’ (other).

widthtype This is normally ‘condensed’, ‘extended’, ‘semicondensed’ or
‘normal’. Other words may appear here in some font names.

style This is an optional additional style name. Usually it is empty—
most long font names have two hyphens in a row at this point.

pixels This is the font height, in pixels.

height This is the font height on the screen, measured in printer’s points
(approximately 1/72 of an inch), times ten. For a given vertical
resolution, height and pixels are proportional; therefore, it is
common to specify just one of them and use ‘*’ for the other.

horiz This is the horizontal resolution, in pixels per inch, of the screen
for which the font is intended.

vert This is the vertical resolution, in dots per inch, of the screen for
which the font is intended. Normally the resolution of the fonts

426 GNU Emacs Manual

on your system is the right value for your screen; therefore, you
normally specify ‘*’ for this and horiz.

spacing This is ‘m’ (monospace), ‘p’ (proportional) or ‘c’ (character cell).
Emacs can use ‘m’ and ‘c’ fonts.

width This is the average character width, in pixels, times ten.

charset This is the character set that the font depicts. Normally you
should use ‘iso8859-1’.

Use only fixed width fonts—that is, fonts in which all characters have the
same width; Emacs cannot yet handle display properly for variable width
fonts. Any font with ‘m’ or ‘c’ in the spacing field of the long name is a fixed
width font. Here’s how to use the xlsfonts program to list all the fixed
width fonts available on your system:

xlsfonts -fn ’*x*’
xlsfonts -fn ’*-*-*-*-*-*-*-*-*-*-*-m*’
xlsfonts -fn ’*-*-*-*-*-*-*-*-*-*-*-c*’

To see what a particular font looks like, use the xfd command. For example:

xfd -fn 6x13

displays the entire font ‘6x13’.

While running Emacs, you can set the font of the current frame (see
Section 17.9 [Frame Parameters], page 162) or for a specific kind of text (see
Section 17.12 [Faces], page 164).

A.8 Window Color Options

On a color display, you can specify which color to use for various parts
of the Emacs display. To find out what colors are available on your system,
look at the ‘/usr/lib/X11/rgb.txt’ file. If you do not specify colors, the
default for the background is white and the default for all other colors is
black. On a monochrome display, the foreground is black, the background
is white, and the border is gray if the display supports that.

Here is a list of the options for specifying colors:

‘-fg color’
‘--foreground-color=color’

Specify the foreground color.

‘-bg color’
‘--background-color=color’

Specify the background color.

‘-bd color’
‘--border-color=color’

Specify the color of the border of the X window.

Appendix A: Command Line Arguments 427

‘-cr color’
‘--cursor-color=color’

Specify the color of the Emacs cursor which indicates where
point is.

‘-ms color’
‘--mouse-color=color’

Specify the color for the mouse cursor when the mouse is in the
Emacs window.

‘-r’
‘--reverse-video’

Reverse video—swap the foreground and background colors.

For example, to use a coral mouse cursor and a slate blue text cursor,
enter:

emacs -ms coral -cr ’slate blue’ &

You can reverse the foreground and background colors through the ‘-r’
option or with the X resource ‘reverseVideo’.

A.9 Options for Window Geometry

The ‘-geometry’ option controls the size and position of the initial Emacs
frame. Here is the format for specifying the window geometry:

‘-g widthxheight{+-}xoffset{+-}yoffset’
Specify window size width and height (measured in character
columns and lines), and positions xoffset and yoffset (measured
in pixels).

‘--geometry=widthxheight{+-}xoffset{+-}yoffset’
This is another way of writing the same thing.

{+-} means either a plus sign or a minus sign. A plus sign before xoffset
means it is the distance from the left side of the screen; a minus sign means
it counts from the right side. A plus sign before yoffset means it is the
distance from the top of the screen, and a minus sign there indicates the
distance from the bottom. The values xoffset and yoffset may themselves
be positive or negative, but that doesn’t change their meaning, only their
direction.

Emacs uses the same units as xterm does to interpret the geometry. The
width and height are measured in characters, so a large font creates a larger
frame than a small font. The xoffset and yoffset are measured in pixels.

Since the mode line and the echo area occupy the last 2 lines of the frame,
the height of the initial text window is 2 less than the height specified in

428 GNU Emacs Manual

your geometry. In non-X-toolkit versions of Emacs, the menu bar also takes
one line of the specified number.

You do not have to specify all of the fields in the geometry specification.

If you omit both xoffset and yoffset, the window manager decides where
to put the Emacs frame, possibly by letting you place it with the mouse.
For example, ‘164x55’ specifies a window 164 columns wide, enough for two
ordinary width windows side by side, and 55 lines tall.

The default width for Emacs is 80 characters and the default height is
40 lines. You can omit either the width or the height or both. If you start
the geometry with an integer, Emacs interprets it as the width. If you start
with an ‘x’ followed by an integer, Emacs interprets it as the height. Thus,
‘81’ specifies just the width; ‘x45’ specifies just the height.

If you start with ‘+’ or ‘-’, that introduces an offset, which means both
sizes are omitted. Thus, ‘-3’ specifies the xoffset only. (If you give just one
offset, it is always xoffset.) ‘+3-3’ specifies both the xoffset and the yoffset,
placing the frame near the bottom left of the screen.

You can specify a default for any or all of the fields in ‘.Xdefaults’ file,
and then override selected fields with a ‘--geometry’ option.

A.10 Internal and External Borders

An Emacs frame has an internal border and an external border. The
internal border is an extra strip of the background color around all four
edges of the frame. Emacs itself adds the internal border. The external
border is added by the window manager outside the internal border; it may
contain various boxes you can click on to move or iconify the window.

‘-ib width’

‘--internal-border=width’
Specify width as the width of the internal border.

‘-bw width’

‘--border-width=width’
Specify width as the width of the main border.

When you specify the size of the frame, that does not count the bor-
ders. The frame’s position is measured from the outside edge of the external
border.

Use the ‘-ib n’ option to specify an internal border n pixels wide. The
default is 1. Use ‘-bw n’ to specify the width of the external border (though
the window manager may not pay attention to what you specify). The
default width of the external border is 2.

Appendix A: Command Line Arguments 429

A.11 Frame Titles

An Emacs frame may or may not have a specified title. The frame title, if
specified, appears in window decorations and icons as the name of the frame.
If an Emacs frame has no specified title, the default title is the name of the
executable program (if there is only one frame) or the selected window’s
buffer name (if there is more than one frame).

You can specify a title for the initial Emacs frame with a command line
option:

‘-title title’
‘--title=title’
‘-T title’ Specify title as the title for the initial Emacs frame.

The ‘--name’ option (see Section A.13 [Resources X], page 430) also spec-
ifies the title for the initial Emacs frame.

A.12 Icons

Most window managers allow the user to “iconify” a frame, removing
it from sight, and leaving a small, distinctive “icon” window in its place.
Clicking on the icon window makes the frame itself appear again. If you
have many clients running at once, you can avoid cluttering up the screen
by iconifying most of the clients.

‘-i’
‘--icon-type’

Use a picture of a gnu as the Emacs icon.

‘-iconic’
‘--iconic’

Start Emacs in iconified state.

The ‘-i’ or ‘--icon-type’ option tells Emacs to use an icon window
containing a picture of the GNU gnu. If omitted, Emacs lets the window
manager choose what sort of icon to use—usually just a small rectangle
containing the frame’s title.

The ‘-iconic’ option tells Emacs to begin running as an icon, rather than
opening a frame right away. In this situation, the icon window provides only
indication that Emacs has started; the usual text frame doesn’t appear until
you deiconify it.

A.13 X Resources

430 GNU Emacs Manual

Programs running under the X Window System organize their user op-
tions under a hierarchy of classes and resources. You can specify default val-
ues for these options in your X resources file, usually named ‘~/.Xdefaults’.

Each line in the file specifies a value for one option or for a collection of
related options, for one program or for several programs (optionally even for
all programs).

Programs define named resources with particular meanings. They also
define how to group resources into named classes. For instance, in Emacs,
the ‘internalBorder’ resource controls the width of the internal border, and
the ‘borderWidth’ resource controls the width of the external border. Both
of these resources are part of the ‘BorderWidth’ class. Case distinctions are
significant in these names.

In ‘~/.Xdefaults’, you can specify a value for a single resource on one
line, like this:

emacs.borderWidth: 2

Or you can use a class name to specify the same value for all resources in
that class. Here’s an example:

emacs.BorderWidth: 2

If you specify a value for a class, it becomes the default for all resources
in that class. You can specify values for individual resources as well; these
override the class value, for those particular resources. Thus, this example
specifies 2 as the default width for all borders, but overrides this value with
4 for the external border:

emacs.Borderwidth: 2
emacs.borderwidth: 4

The order in which the lines appear in the file does not matter. Also,
command-line options always override the X resources file.

The string ‘emacs’ in the examples above is also a resource name. It
actually represents the name of the executable file that you invoke to run
Emacs. If Emacs is installed under a different name, it looks for resources
under that name instead of ‘emacs’.

‘-name name’
‘--name=name’

Use name as the resource name (and the title) for the initial
Emacs frame. This option does not affect subsequent frames,
but Lisp programs can specify frame names when they create
frames.

If you don’t specify this option, the default is to use the Emacs
executable’s name as the resource name.

Appendix A: Command Line Arguments 431

‘-xrm resource-values’
‘--xrm=resource-values’

Specify X resource values for this Emacs job (see below).

For consistency, ‘-name’ also specifies the name to use for other resource
values that do not belong to any particular frame.

The resources that name Emacs invocations also belong to a class; its
name is ‘Emacs’. If you write ‘Emacs’ instead of ‘emacs’, the resource applies
to all frames in all Emacs jobs, regardless of frame titles and regardless of
the name of the executable file. Here is an example:

Emacs.BorderWidth: 2
Emacs.borderWidth: 4

You can specify a string of additional resource values for Emacs to use
with the command line option ‘-xrm resources’. The text resources should
have the same format that you would use inside a file of X resources. To
include multiple resource specifications in data, put a newline between them,
just as you would in a file. You can also use ‘#include "filename"’ to include
a file full of resource specifications. Resource values specified with ‘-xrm’ take
precedence over all other resource specifications.

The following table lists the resource names that designate options for
Emacs, each with the class that it belongs to:

background (class Background)
Background color name.

bitmapIcon (class BitmapIcon)
Use a bitmap icon (a picture of a gnu) if ‘on’, let the window
manager choose an icon if ‘off’.

borderColor (class BorderColor)
Color name for the external border.

borderWidth (class BorderWidth)
Width in pixels of the external border.

cursorColor (class Foreground)
Color name for text cursor (point).

font (class Font)
Font name for text.

foreground (class Foreground)
Color name for text.

geometry (class Geometry)
Window size and position. Be careful not to specify this resource
as ‘emacs*geometry’, because that may affect individual menus
as well as the Emacs frame itself.

432 GNU Emacs Manual

If this resource specifies a position, that position applies only to
the initial Emacs frame (or, in the case of a resource for a specific
frame name, only that frame). However, the size if specified here
applies to all frames.

iconName (class Title)
Name to display in the icon.

internalBorder (class BorderWidth)
Width in pixels of the internal border.

menuBar (class MenuBar)
Give frames menu bars if ‘on’; don’t have menu bars if ‘off’.

paneFont (class Font)
Font name for menu pane titles, in non-toolkit versions of Emacs.

pointerColor (class Foreground)
Color of the mouse cursor.

reverseVideo (class ReverseVideo)
Switch foreground and background default colors if ‘on’, use
colors as specified if ‘off’.

verticalScrollBars (class ScrollBars)
Give frames scroll bars if ‘on’; don’t have scroll bars if ‘off’.

selectionFont (class Font)
Font name for pop-up menu items, in non-toolkit versions of
Emacs. (For toolkit versions, see Section A.14 [Lucid Resources],
page 433, also see Section A.15 [Motif Resources], page 434.)

title (class Title)
Name to display in the title bar of the initial Emacs frame.

Here are resources for controlling the appearance of particular faces (see
Section 17.12 [Faces], page 164):

face.attributeFont
Font for face face.

face.attributeForeground
Foreground color for face face.

face.attributeBackground
Background color for face face.

face.attributeUnderline
Underline flag for face face. Use ‘on’ or ‘true’ for yes.

Appendix A: Command Line Arguments 433

A.14 Lucid Menu X Resources

If the Emacs installed at your site was built to use the X toolkit with
the Lucid menu widgets, then the menu bar is a separate widget and has
its own resources. The resource names contain ‘pane.menubar’ (following,
as always, the name of the Emacs invocation or ‘Emacs’ which stands for all
Emacs invocations). Specify them like this:

Emacs.pane.menubar.resource: value

For example, to specify the font ‘8x16’ for the menu bar items, write this:

Emacs.pane.menubar.font: 8x16

Resources for non-menubar toolkit popup menus have ‘menu*’, in like
fashion. For example, to specify the font ‘8x16’ for the popup menu items,
write this:

Emacs.menu*.font: 8x16

For dialog boxes, use ‘dialog’ instead of ‘menu’:

Emacs.dialog*.font: 8x16

Experience shows that on some systems you may need to add ‘shell.’
before the ‘pane.menubar’ or ‘menu*’. On some other systems, you must not
add ‘shell.’.

Here is a list of the specific resources for menu bars and popup menus:

font Font for menu item text.

foreground
Color of the foreground.

background
Color of the background.

buttonForeground
In the menu bar, the color of the foreground for a selected item.

horizontalSpacing
Horizontal spacing in pixels between items. Default is 3.

verticalSpacing
Vertical spacing in pixels between items. Default is 1.

arrowSpacing
Horizontal spacing between the arrow (which indicates a sub-
menu) and the associated text. Default is 10.

shadowThickness
Thickness of shadow line around the widget.

434 GNU Emacs Manual

A.15 Motif Menu X Resources

If the Emacs installed at your site was built to use the X toolkit with
the Motif widgets, then the menu bar is a separate widget and has its own
resources. The resource names contain ‘pane.menubar’ (following, as always,
the name of the Emacs invocation or ‘Emacs’ which stands for all Emacs
invocations). Specify them like this:

Emacs.pane.menubar.subwidget.resource: value

Each individual string in the menu bar is a subwidget; the subwidget’s
name is the same as the menu item string. For example, the word ‘Files’ in
the menu bar is part of a subwidget named ‘emacs.pane.menubar.Files’.
Most likely, you want to specify the same resources for the whole menu bar.
To do this, use ‘*’ instead of a specific subwidget name. For example, to
specify the font ‘8x16’ for the menu bar items, write this:

Emacs.pane.menubar.*.fontList: 8x16

This also specifies the resource value for submenus.

Each item in a submenu in the menu bar also has its own name for
X resources; for example, the ‘Files’ submenu has an item named ‘Save
Buffer’. A resource specification for a submenu item looks like this:

Emacs.pane.menubar.popup_*.menu.item.resource: value

For example, here’s how to specify the font for the ‘Save Buffer’ item:

Emacs.pane.menubar.popup_*.Files.Save Buffer.fontList: 8x16

For an item in a second-level submenu, such as ‘Check Message’ under
‘Spell’ under ‘Edit’, the resource fits this template:

Emacs.pane.menubar.popup_*.popup_*.menu.resource: value

For example,

Emacs.pane.menubar.popup_*.popup_*.Spell.Check Message: value

It’s impossible to specify a resource for all the menu bar items without
also specifying it for the submenus as well. So if you want the submenu
items to look different from the menu bar itself, you must ask for that in two
steps. First, specify the resource for all of them; then, override the value for
submenus alone. Here is an example:

Emacs.pane.menubar.*.fontList: 8x16

Emacs.pane.menubar.popup_*.fontList: 8x16

For toolkit popup menus, use ‘menu*’ instead of ‘pane.menubar’. For
example, to specify the font ‘8x16’ for the popup menu items, write this:

Emacs.menu*.fontList: 8x16

Here is a list of the specific resources for menu bars and popup menus:

armColor The color to show in an armed button.

fontList The font to use.

Appendix A: Command Line Arguments 435

marginBottom
marginHeight
marginLeft
marginRight
marginTop
marginWidth

Amount of space to leave around the item, within the border.

borderWidth
The width of border around the menu item, on all sides.

shadowThickness
The width of the border shadow.

bottomShadowColor
The color for the border shadow, on the bottom and the right.

topShadowColor
The color for the border shadow, on the bottom and the right.

436 GNU Emacs Manual

Appendix B: Emacs 19.28 and 19.29 Antinews 437

Appendix B Emacs 19.28 and 19.29
Antinews

For those users who live backwards in time, here is information about
downgrading to Emacs version 19.28 or 19.29. We hope you will enjoy the
greater simplicity that results from the absence of certain Emacs 19.34 fea-
tures.

• This version doesn’t support Windows NT, or the DEC Alpha.

• In Emacs 19.28, or even 19.29, the features for controlling indentation
in C are much simpler. There is a separate variable for each aspect of
indentation which you can control. Here is a list of them:

c-indent-level
Level of indentation of C statements with respect to con-
taining block.

c-label-offset
Offset of C label lines and case statements relative to usual
indentation.

c-continued-brace-offset
Extra indentation for substatements that start with open-
braces. This is in addition to c-continued-statement-
offset.

c-continued-statement-offset
Extra indentation for lines not starting new statements.

c-brace-offset
Extra indentation for braces, compared with other text in
same context.

c-brace-imaginary-offset
Imagined indentation of a C open brace that actually follows
a statement.

c-argdecl-indent
Indentation level of declarations of C function arguments.

• There is no support for editing formatted text. The text formatter TEX
does a much better job of formatting than any formatted text editor;
we recommend you learn to use it.

• C-Mouse-2 now runs the menu for setting the default font.

• 〈F1〉 is no longer an alias for the Help key; you must actually type C-h
if you want help.

• Integers and buffer sizes are limited to 24 bits on most machines. But
as memory gets more expensive, you won’t want to edit such large files
any more.

438 GNU Emacs Manual

• There are no indirect buffers, so you can only display one view of an
outline. Meanwhile, the prefix key for Outline minor mode is now C-c
C-o.

• When you are in Transient Mark mode, incremental search always de-
activates the mark.

• Dynamic abbrev completion has been eliminated in 19.28, and some of
the other dynamic abbrev customization features are also gone.

• In Dired, Occur mode, Compilation mode, and other such modes, you
must use C-c C-c to select the item point is on. 〈RET〉 won’t do it.

• M-x buffer-menu now displays the menu buffer in another window.

• The VC (version control) package no longer supports CVS or selecting
branches other than the principal branch.

• There is no recover-session command; if Emacs crashes, you simply
have to remember which files you were editing before the crash, and use
recover-file on the individual files.

• In Emacs Lisp mode, C-M-x now lets defvar operate as it usually does—
setting the value of the variable only if it has no value yet. Use 〈ESC〉

〈ESC〉 to evaluate a Lisp expression, instead of M-:.

• GNU-standard long option names are not supported. (Real hackers
prefer the shorter single-dash names, to save typing.) All the initial
options must come before all the action options, and whatever initial
options you use must appear in this order: ‘-t’, ‘-d’, ‘-nw’, ‘-batch’, ‘-q’
or ‘-no-init-file’, ‘-no-site-file’, ‘-u’ or ‘-user’, ‘-debug-init’.

• Many special-case kludges for MS-DOS have been removed. This means
that many features don’t work on MS-DOS; however, the code of Emacs
is much simpler.

For instance, you cannot print from within Emacs, Dired doesn’t sup-
port shell wildcards in filenames, some Lisp packages won’t work because
their standard filenames are invalid on MS-DOS, display-time doesn’t
work, Font Lock mode won’t work unless you create some faces by hand
first, and call-process cannot redirect stderr.

As an additional bonus, you get random characters inserted into the
buffer without a warning (unless you’re clever enough to discover that
setting visible-bell makes this problem to go away).

In a word, it’s a great relief for those who still need proof that MS-DOG
isn’t a real operating system.

Appendix C: MS-DOS Issues 439

Appendix C MS-DOS Issues

This section briefly describes the peculiarities of using Emacs under
the MS-DOS “operating system” (also known as “MS-DOG”). If you build
Emacs for MS-DOS, the binary will also run on Windows 3, Windows NT,
Windows 95, or OS-2 as a DOS application; the information in this chap-
ter applies for all of those systems, if you use an Emacs that was built for
MS-DOS.

Note that it is possible to build Emacs specifically for Windows NT or
Windows 95. If you do that, most of this chapter does not apply; instead, you
get behavior much closer to what is documented in the rest of the manual,
including support for long file names, multiple frames, scroll bars, mouse
menus, and subprocesses. However, the section on text files and binary files
does still apply. There are also two sections at the end of this chapter which
apply specifically for Windows NT and 95.

C.1 Keyboard and Mouse on MS-DOS

The PC keyboard maps use the left 〈Alt〉 key as the 〈META〉 key. You have
two choices for emulating the 〈SUPER〉 and 〈HYPER〉 keys: either the right
〈CONTROL〉 key or the right 〈ALT〉 key by setting the variables dos-hyper-
key and dos-super-key to 1 or 2 respectively.

The variable dos-keypad-mode is a flag variable which controls what key
codes are returned by keys in the numeric keypad. There is no dedicated
〈LFD〉 key; use C-j instead. You can also define the 〈kp-enter〉 key to act as
〈LFD〉, by putting the following line into your ‘_emacs’ file:

;; Make the Enter key from the Numeric keypad act as LFD.

(define-key function-key-map [kp-enter] [?\C-j])

The key which is called 〈DEL〉 in Emacs (because that’s how it is designated
on most workstations) is known as 〈BS〉 (backspace) on a PC. That is why
the PC-specific terminal initialization remaps the 〈BS〉 key to act as 〈DEL〉;
the 〈DEL〉 key is remapped to act as C-d for the same reasons.

Emacs on MS-DOS supports a mouse (on the default terminal only). The
mouse commands work as documented, including those that use menus and
the menu bar (see Section 17.11 [Menu Bars], page 164). Scroll bars don’t
work in MS-DOS Emacs. PC mice usually have only two buttons; these act
as Mouse-1 and Mouse-2, but if you press both of them together, that has
the effect of Mouse-3.

The variable dos-display-scancodes, when non-nil, directs Emacs to
display the ASCII value and the keyboard scan code of each keystroke; this

440 GNU Emacs Manual

feature serves as a complement to the view-lossage command, for debug-
ging.

C.2 Display on MS-DOS

Display on MS-DOS cannot use multiple fonts, but it does support mul-
tiple faces, each of which can specify a foreground and a background color.
Therefore, you can get the full functionality of Emacs packages which use
fonts (such as font-lock, Enriched Text mode, and others) by defining
the relevant faces to use different colors. Use the list-colors-display
and list-faces-display commands (see Section 17.13 [Modifying Faces],
page 166) to see what colors and faces are available and what they look like.

Multiple frames (see Chapter 17 [Frames], page 155) are supported on
MS-DOS, but they all overlap, so you only see a single frame at any given
moment. That single visible frame occupies the entire screen. When you run
Emacs under Windows version 3, you can make the visible frame smaller than
the full screen, but Emacs still cannot display more than a single frame at
a time.

The mode4350 command switches the display to 43 or 50 lines, depending
on your hardware; the mode25 command switches to the default 80x25 screen
size.

By default, Emacs only knows how to set screen sizes of 80 columns by 25
or 43/50 rows. However, if your video adapter has special video modes that
will switch the display to other sizes, you can have Emacs support those too.
When you ask Emacs to switch the frame to n rows by m cols dimensions,
it checks if there is a variable called screen-dimensions-nxm, and if so,
uses its value (which must be an integer) as the video mode to switch to.
(Emacs switches to that video mode by calling the BIOS Set Video Mode
function with the value of screen-dimensions-nxm in the AL register.) For
example, suppose your adapter will switch to 66x80 dimensions when put
into video mode 85. Then you can make Emacs support this screen size by
putting the following into your ‘_emacs’ file:

(setq screen-dimensions-66x80 85)

Since Emacs on MS-DOS can only set the frame size to specific supported
dimensions, it cannot honor every possible frame resizing request. When an
unsupported size is requested, Emacs chooses the next larger supported size
beyond the specified size. For example, if you ask for 36x80 frame, you will
get 50x80 instead.

The variables screen-dimensions-nxm are used only when they exactly
match the specified size; the search for the next larger supported size ignores
them. In the above example, even if your VGA supports 44x80 dimensions
and you define a variable screen-dimensions-44x80 with a suitable value,

Appendix C: MS-DOS Issues 441

you will still get 50x80 screen when you ask for a 36x80 frame. If you want to
get the 44x80 size in this case, you can do it by setting the variable named
screen-dimensions-36x80 with the same video mode value as screen-
dimensions-44x80.

Changing frame dimensions on MS-DOS has the effect of changing all the
other frames to the new dimensions.

C.3 File Names on MS-DOS

MS-DOS normally uses a backslash, ‘\’, to separate name units within a
file name, instead of the slash used on other systems. Emacs on MS-DOS
permits use of either slash or backslash, and also knows about drive letters
in file names.

On MS-DOS, file names are case-insensitive and limited to eight charac-
ters, plus optionally a period and three more characters. Emacs knows
enough about these limitations to handle file names that were meant
for other operating systems. For instance, leading dots ‘.’ in file names
are invalid in MS-DOS, so Emacs transparently converts them to un-
derscores ‘_’; thus your default init file (see Section 30.7 [Init File],
page 395) is called ‘_emacs’ on MS-DOS. Excess characters before or af-
ter the period are generally ignored by MS-DOS itself, so if you, e.g.,
visit a file ‘LongFileName.EvenLongerExtension’, you will silently get
‘longfile.eve’; but Emacs will still display the long file name on the mode
line. Other than that, it’s up to you to specify file names which are valid
under MS-DOS; the transparent conversion as described above only works
on file names built into Emacs.

The above restrictions on the file names on MS-DOS make it almost im-
possible to construct the name of a backup file (see Section 14.3.1.1 [Backup
Names], page 113) without losing some of the original file name characters.
For example, the name of a backup file for ‘docs.txt’ is ‘docs.tx~’ even if
single backup is used.

If you run Emacs as a DOS application under Windows 95 or NT, you can
turn on support for long file names. If you do that, Emacs doesn’t truncate
file names or convert them to lower case; instead, it uses the file names that
you specify, verbatim. To enable long file name support, set the environment
variable LFN to ‘y’ before starting Emacs.

MS-DOS has no notion of home directory, so Emacs on MS-DOS pre-
tends that the directory where it is installed is the value of HOME envi-
ronment variable. That is, if your Emacs binary, ‘emacs.exe’, is in the
directory ‘c:/utils/emacs/bin’, then Emacs acts as if HOME were set to
‘c:/utils/emacs’. In particular, that is where Emacs looks for the init file
‘_emacs’. With this in mind, you can use ‘~’ in file names as an alias for the

442 GNU Emacs Manual

home directory, as you would in Unix. You can also set HOME variable in the
environment before starting Emacs; its value will then override the above
default behavior.

C.4 Text Files and Binary Files

Emacs on MS-DOS distinguishes between text and binary files. This dis-
tinction is not part of MS-DOS; it is made by Emacs only. Emacs treats
files of human-readable text (including program source code) as text files,
and treats executable programs, compressed archives, etc., as binary files.
Emacs uses the file name to decide whether to treat a file as text or binary:
the variable file-name-buffer-file-type-alist defines the file name pat-
terns which denote binary files.

Emacs reads and writes binary files verbatim. Text files use a two char-
acter sequence to end a line: carriage-return (control-m) followed by newline
(control-j). When you visit a text file, Emacs strips off these control-m char-
acters; when you write a text file to disk, Emacs puts them back in. Thus,
the text appears within Emacs with just a newline character at the end of
each line.

You can tell whether Emacs considers the visited file as text or binary
based on the mode line (see Section 1.3 [Mode Line], page 17). Text files
have a ‘T:’ marker prefixed to the major mode name; binary files have a ‘B:’
prefix.

One consequence of this special format-conversion of text files is that
character positions as reported by Emacs (see Section 4.9 [Position Info],
page 35) do not agree with the file size information known to the operating
system.

C.5 Printing and MS-DOS

Printing commands, such as lpr-buffer (see Section 29.4 [Hardcopy],
page 357) and ps-print-buffer (see Section 29.5 [Postscript], page 358)
can work in MS-DOS by sending the output to one of the printer ports, if a
Unix-style lpr program is unavailable. A few DOS-specific variables control
how this works.

If you want to use your local printer, printing on it in the usual DOS
manner, then set the Lisp variable dos-printer to the name of the printer
port—for example. "PRN", the usual local printer port (that’s the default),
or "LPT2" or "COM1" for a serial printer. You can also set dos-printer to a
file name, in which case “printed” output is actually appended to that file.
If you set dos-printer to "NUL", printed output is silently discarded.

Appendix C: MS-DOS Issues 443

If you set dos-printer to a file name, it’s best to use an absolute file
name. Emacs changes the working directory according to the default direc-
tory of the current buffer, so if the file name in dos-printer is relative, you
will end up with several such files, each one in the directory of the buffer
from which the printing was done.

The commands print-buffer and print-region call the pr program, or
use special switches to the lpr program, to produce headers on each printed
page. MS-DOS doesn’t normally have these programs, so by default, the
variable lpr-headers-switches is set so that the requests to print page
headers are silently ignored. Thus, print-buffer and print-region pro-
duce the same output as lpr-buffer and lpr-region, respectively. If you
do have a suitable pr program (e.g., from GNU Textutils), set lpr-headers-
switches to nil; Emacs will then call pr to produce the page headers, and
print the resulting output as specified by dos-printer.

Finally, if you do have an lpr work-alike, you can set print-region-
function to nil. Then Emacs uses lpr for printing, as on other systems.
(If the name of the program isn’t lpr, set the lpr-command variable to
specify where to find it.)

A separate variable, dos-ps-printer, defines how PostScript files should
be printed. If its value is a string, it is used as the name of the device
(or file) to which PostScript output is sent, just as dos-printer is used
for non-PostScript printing. (These are two distinct variables in case you
have two printers attached to two different ports, and only one of them
is a PostScript printer.) If the value of dos-ps-printer is not a string,
then the variables ps-lpr-command and ps-lpr-switches (see Section 29.5
[Postscript], page 358) control how to print PostScript files. Thus, if you have
a non-PostScript printer, you can set these variables to the name and the
switches appropriate for a PostScript interpreter program (e.g., Ghostscript).

For example, to use Ghostscript for printing on an Epson printer con-
nected to ‘LPT2’ port, put this on your ‘.emacs’ file:

(setq dos-ps-printer t) ; Anything but a string.
(setq ps-lpr-command "c:/gs/gs386")
(setq ps-lpr-switches ’("-q" "-dNOPAUSE"
"-sDEVICE=epson"
"-r240x72"
"-sOutputFile=LPT2"
"-Ic:/gs"
"-"))

(This assumes that Ghostscript is installed in the ‘"c:/gs"’ directory.)

C.6 Subprocesses on MS-DOS

444 GNU Emacs Manual

Because MS-DOS is a single-process “operating system”, asynchronous
subprocesses are not available. In particular, Shell mode and its variants
do not work. Most Emacs features that use asynchronous subprocesses also
don’t work on MS-DOS, including spelling correction and GUD. When in
doubt, try and see; commands that don’t work print an error message saying
that asynchronous processes aren’t supported.

Compilation under Emacs with M-x compile and grep with M-x grep
do work, by running the inferior processes synchronously. This means you
cannot do any more editing until the compilation or the grep process finishes.

Printing commands, such as lpr-buffer (see Section 29.4 [Hardcopy],
page 357) and ps-print-buffer (see Section 29.5 [Postscript], page 358),
work in MS-DOS by sending the output to one of the printer ports. See
Section C.5 [Printing and MS-DOS], page 442.

When you run a subprocess synchronously on MS-DOS, make sure the
program terminates and does not try to read keyboard input. If the program
does not terminate on its own, you will be unable to terminate it, because
MS-DOS provides no general way to terminate a process.

Accessing files on other machines is not supported on MS-DOS. Other
network-oriented commands such as sending mail, Web browsing, remote
login, etc., don’t work either, unless network access is built into MS-DOS
with some network redirector.

Dired on MS-DOS uses the ls-lisp package where other platforms use
the system ls command. Therefore, Dired on MS-DOS supports only some
of the possible options you can mention in the dired-listing-switches
variable. The options that work are ‘-A’, ‘-a’, ‘-c’, ‘-i’, ‘-r’, ‘-S’, ‘-s’, ‘-t’,
and ‘-u’.

C.7 Subprocesses on Windows 95 and Windows
NT

Subprocesses, both synchronous and asynchronous, work fine on both
Windows 95 and Windows NT as long as you run only 32-bit Windows
applications. However, when you run a DOS application in a subprocess,
you may encounter problems or be unable to run the application at all; and
if you run two DOS applications at the same time in two subprocesses, you
may have to reboot your system.

Since the standard command interpreter (and most command line util-
ities) on Windows 95 are DOS applications, these problems are significant
when using that system. But there’s nothing we can do about them; only
Microsoft can fix them.

Appendix C: MS-DOS Issues 445

If you run just one DOS application subprocess, the subprocess should
work as expected as long as it is “well-behaved” and does not perform di-
rect screen access or other unusual actions. If you have a CPU monitor
application, your machine will appear to be 100% busy even when the DOS
application is idle, but this is only an artefact of the way CPU monitors
measure processor load.

You must terminate the DOS application before you start any other DOS
application in a different subprocess. Emacs is unable to interrupt or termi-
nate a DOS subprocess. The only way you can terminate such a subprocess
is by giving it a command that tells its program to exit.

If you attempt to run two DOS applications at the same time in separate
subprocesses, the second one that is started will be suspended until the first
one finishes, even if either or both of them are asynchronous.

If you can go to the first subprocess, and tell it to exit, the second sub-
process should continue normally. However, if the second subprocess is syn-
chronous, Emacs itself will be hung until the first subprocess finishes. If it
will not finish without user input, then you have no choice but to reboot
if you are running on Windows 95. If you are running on Windows NT,
you can use a process viewer application to kill the appropriate instance of
ntvdm instead (this will terminate both DOS subprocesses).

If you have to reboot Windows 95 in this situation, do not use the
Shutdown command on the Start menu; that usually hangs the system. In-
stead, type CTL-ALT-〈DEL〉 and then choose Shutdown. That usually works,
although it may take a few minutes to do its job.

C.8 Using the System Menu on Windows

Emacs normally turns off the Windows feature that tapping the 〈ALT〉

key invokes the Windows menu. The reason is that the 〈ALT〉 also serves
as 〈META〉 in Emacs. When using Emacs, users often press the 〈META〉 key
temporarily and then change their minds; if this has the effect of bringing up
the Windows menu, it alters the meaning of subsequent commands. Many
users find this frustrating.

You can reenable Windows’s default handling of tapping the 〈ALT〉 key by
setting win32-pass-alt-to-system to a non-nil value.

446 GNU Emacs Manual

The GNU Manifesto 447

The GNU Manifesto

The GNU Manifesto which appears below was written by Richard
Stallman at the beginning of the GNU project, to ask for participa-
tion and support. For the first few years, it was updated in minor
ways to account for developments, but now it seems best to leave
it unchanged as most people have seen it.

Since that time, we have learned about certain common misunder-
standings that different wording could help avoid. Footnotes added
in 1993 help clarify these points.

For up-to-date information about the available GNU software,
please see the latest issue of the GNU’s Bulletin. The list is much
too long to include here.

What’s GNU? Gnu’s Not Unix!

GNU, which stands for Gnu’s Not Unix, is the name for the complete
Unix-compatible software system which I am writing so that I can give it
away free to everyone who can use it.1 Several other volunteers are helping
me. Contributions of time, money, programs and equipment are greatly
needed.

So far we have an Emacs text editor with Lisp for writing editor com-
mands, a source level debugger, a yacc-compatible parser generator, a linker,
and around 35 utilities. A shell (command interpreter) is nearly completed.
A new portable optimizing C compiler has compiled itself and may be re-
leased this year. An initial kernel exists but many more features are needed
to emulate Unix. When the kernel and compiler are finished, it will be pos-
sible to distribute a GNU system suitable for program development. We will

1 The wording here was careless. The intention was that nobody would
have to pay for permission to use the GNU system. But the words don’t
make this clear, and people often interpret them as saying that copies of
GNU should always be distributed at little or no charge. That was never
the intent; later on, the manifesto mentions the possibility of companies
providing the service of distribution for a profit. Subsequently I have
learned to distinguish carefully between “free” in the sense of freedom
and “free” in the sense of price. Free software is software that users have
the freedom to distribute and change. Some users may obtain copies at no
charge, while others pay to obtain copies—and if the funds help support
improving the software, so much the better. The important thing is that
everyone who has a copy has the freedom to cooperate with others in
using it.

448 GNU Emacs Manual

use TEX as our text formatter, but an nroff is being worked on. We will
use the free, portable X window system as well. After this we will add a
portable Common Lisp, an Empire game, a spreadsheet, and hundreds of
other things, plus on-line documentation. We hope to supply, eventually,
everything useful that normally comes with a Unix system, and more.

GNU will be able to run Unix programs, but will not be identical to
Unix. We will make all improvements that are convenient, based on our ex-
perience with other operating systems. In particular, we plan to have longer
file names, file version numbers, a crashproof file system, file name comple-
tion perhaps, terminal-independent display support, and perhaps eventually
a Lisp-based window system through which several Lisp programs and ordi-
nary Unix programs can share a screen. Both C and Lisp will be available
as system programming languages. We will try to support UUCP, MIT
Chaosnet, and Internet protocols for communication.

GNU is aimed initially at machines in the 68000/16000 class with virtual
memory, because they are the easiest machines to make it run on. The extra
effort to make it run on smaller machines will be left to someone who wants
to use it on them.

To avoid horrible confusion, please pronounce the ‘G’ in the word ‘GNU’
when it is the name of this project.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must
share it with other people who like it. Software sellers want to divide the
users and conquer them, making each user agree not to share with others. I
refuse to break solidarity with other users in this way. I cannot in good con-
science sign a nondisclosure agreement or a software license agreement. For
years I worked within the Artificial Intelligence Lab to resist such tendencies
and other inhospitalities, but eventually they had gone too far: I could not
remain in an institution where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have decided
to put together a sufficient body of free software so that I will be able to get
along without any software that is not free. I have resigned from the AI lab
to deny MIT any legal excuse to prevent me from giving GNU away.

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features
of Unix seem to be good ones, and I think I can fill in what Unix lacks without
spoiling them. And a system compatible with Unix would be convenient for
many other people to adopt.

The GNU Manifesto 449

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to mod-
ify and redistribute GNU, but no distributor will be allowed to restrict its
further redistribution. That is to say, proprietary modifications will not be
allowed. I want to make sure that all versions of GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and
want to help.

Many programmers are unhappy about the commercialization of system
software. It may enable them to make more money, but it requires them
to feel in conflict with other programmers in general rather than feel as
comrades. The fundamental act of friendship among programmers is the
sharing of programs; marketing arrangements now typically used essentially
forbid programmers to treat others as friends. The purchaser of software
must choose between friendship and obeying the law. Naturally, many decide
that friendship is more important. But those who believe in law often do
not feel at ease with either choice. They become cynical and think that
programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can
be hospitable to everyone and obey the law. In addition, GNU serves as an
example to inspire and a banner to rally others to join us in sharing. This
can give us a feeling of harmony which is impossible if we use software that
is not free. For about half the programmers I talk to, this is an important
happiness that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and
money. I’m asking individuals for donations of programs and work.

One consequence you can expect if you donate machines is that GNU
will run on them at an early date. The machines should be complete, ready
to use systems, approved for use in a residential area, and not in need of
sophisticated cooling or power.

I have found very many programmers eager to contribute part-time work
for GNU. For most projects, such part-time distributed work would be
very hard to coordinate; the independently-written parts would not work
together. But for the particular task of replacing Unix, this problem is ab-
sent. A complete Unix system contains hundreds of utility programs, each
of which is documented separately. Most interface specifications are fixed by
Unix compatibility. If each contributor can write a compatible replacement

450 GNU Emacs Manual

for a single Unix utility, and make it work properly in place of the original
on a Unix system, then these utilities will work right when put together.
Even allowing for Murphy to create a few unexpected problems, assembling
these components will be a feasible task. (The kernel will require closer
communication and will be worked on by a small, tight group.)

If I get donations of money, I may be able to hire a few people full or
part time. The salary won’t be high by programmers’ standards, but I’m
looking for people for whom building community spirit is as important as
making money. I view this as a way of enabling dedicated people to devote
their full energies to working on GNU by sparing them the need to make a
living in another way.

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system soft-
ware free, just like air.2

This means much more than just saving everyone the price of a Unix
license. It means that much wasteful duplication of system programming
effort will be avoided. This effort can go instead into advancing the state of
the art.

Complete system sources will be available to everyone. As a result, a user
who needs changes in the system will always be free to make them himself,
or hire any available programmer or company to make them for him. Users
will no longer be at the mercy of one programmer or company which owns
the sources and is in sole position to make changes.

Schools will be able to provide a much more educational environment by
encouraging all students to study and improve the system code. Harvard’s
computer lab used to have the policy that no program could be installed on
the system if its sources were not on public display, and upheld it by actually
refusing to install certain programs. I was very much inspired by this.

Finally, the overhead of considering who owns the system software and
what one is or is not entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing
of copies, always incur a tremendous cost to society through the cumbersome
mechanisms necessary to figure out how much (that is, which programs) a
person must pay for. And only a police state can force everyone to obey
them. Consider a space station where air must be manufactured at great
cost: charging each breather per liter of air may be fair, but wearing the

2 This is another place I failed to distinguish carefully between the two
different meanings of “free”. The statement as it stands is not false—you
can get copies of GNU software at no charge, from your friends or over
the net. But it does suggest the wrong idea.

The GNU Manifesto 451

metered gas mask all day and all night is intolerable even if everyone can
afford to pay the air bill. And the TV cameras everywhere to see if you ever
take the mask off are outrageous. It’s better to support the air plant with a
head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as
breathing, and as productive. It ought to be as free.

Some Easily Rebutted Objections to GNU’s Goals

“Nobody will use it if it is free, because that means they can’t rely
on any support.”

“You have to charge for the program to pay for providing the sup-
port.”

If people would rather pay for GNU plus service than get GNU free with-
out service, a company to provide just service to people who have obtained
GNU free ought to be profitable.3

We must distinguish between support in the form of real programming
work and mere handholding. The former is something one cannot rely on
from a software vendor. If your problem is not shared by enough people, the
vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have
all the necessary sources and tools. Then you can hire any available person to
fix your problem; you are not at the mercy of any individual. With Unix, the
price of sources puts this out of consideration for most businesses. With GNU
this will be easy. It is still possible for there to be no available competent
person, but this problem cannot be blamed on distribution arrangements.
GNU does not eliminate all the world’s problems, only some of them.

Meanwhile, the users who know nothing about computers need handhold-
ing: doing things for them which they could easily do themselves but don’t
know how.

Such services could be provided by companies that sell just hand-holding
and repair service. If it is true that users would rather spend money and get
a product with service, they will also be willing to buy the service having got
the product free. The service companies will compete in quality and price;
users will not be tied to any particular one. Meanwhile, those of us who
don’t need the service should be able to use the program without paying for
the service.

“You cannot reach many people without advertising, and you must
charge for the program to support that.”

“It’s no use advertising a program people can get free.”

3 Several such companies now exist.

452 GNU Emacs Manual

There are various forms of free or very cheap publicity that can be used to
inform numbers of computer users about something like GNU. But it may be
true that one can reach more microcomputer users with advertising. If this
is really so, a business which advertises the service of copying and mailing
GNU for a fee ought to be successful enough to pay for its advertising and
more. This way, only the users who benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and
such companies don’t succeed, this will show that advertising was not really
necessary to spread GNU. Why is it that free market advocates don’t want
to let the free market decide this?4

“My company needs a proprietary operating system to get a com-
petitive edge.”

GNU will remove operating system software from the realm of competi-
tion. You will not be able to get an edge in this area, but neither will your
competitors be able to get an edge over you. You and they will compete in
other areas, while benefiting mutually in this one. If your business is selling
an operating system, you will not like GNU, but that’s tough on you. If
your business is something else, GNU can save you from being pushed into
the expensive business of selling operating systems.

I would like to see GNU development supported by gifts from many man-
ufacturers and users, reducing the cost to each.5

“Don’t programmers deserve a reward for their creativity?”

If anything deserves a reward, it is social contribution. Creativity can be
a social contribution, but only in so far as society is free to use the results.
If programmers deserve to be rewarded for creating innovative programs, by
the same token they deserve to be punished if they restrict the use of these
programs.

“Shouldn’t a programmer be able to ask for a reward for his cre-
ativity?”

There is nothing wrong with wanting pay for work, or seeking to maximize
one’s income, as long as one does not use means that are destructive. But
the means customary in the field of software today are based on destruction.

4 The Free Software Foundation raises most of its funds from a distribution
service, although it is a charity rather than a company. If no one chooses
to obtain copies by ordering from the FSF, it will be unable to do its
work. But this does not mean that proprietary restrictions are justified
to force every user to pay. If a small fraction of all the users order copies
from the FSF, that is sufficient to keep the FSF afloat. So we ask users
to choose to support us in this way. Have you done your part?

5 A group of computer companies recently pooled funds to support main-
tenance of the GNU C Compiler.

The GNU Manifesto 453

Extracting money from users of a program by restricting their use of it
is destructive because the restrictions reduce the amount and the ways that
the program can be used. This reduces the amount of wealth that humanity
derives from the program. When there is a deliberate choice to restrict, the
harmful consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become
wealthier is that, if everyone did so, we would all become poorer from the
mutual destructiveness. This is Kantian ethics; or, the Golden Rule. Since
I do not like the consequences that result if everyone hoards information, I
am required to consider it wrong for one to do so. Specifically, the desire
to be rewarded for one’s creativity does not justify depriving the world in
general of all or part of that creativity.

“Won’t programmers starve?”

I could answer that nobody is forced to be a programmer. Most of us
cannot manage to get any money for standing on the street and making
faces. But we are not, as a result, condemned to spend our lives standing
on the street making faces, and starving. We do something else.

But that is the wrong answer because it accepts the questioner’s implicit
assumption: that without ownership of software, programmers cannot pos-
sibly be paid a cent. Supposedly it is all or nothing.

The real reason programmers will not starve is that it will still be possible
for them to get paid for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is
the most common basis because it brings in the most money. If it were
prohibited, or rejected by the customer, software business would move to
other bases of organization which are now used less often. There are always
numerous ways to organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is
now. But that is not an argument against the change. It is not considered an
injustice that sales clerks make the salaries that they now do. If programmers
made the same, that would not be an injustice either. (In practice they would
still make considerably more than that.)

“Don’t people have a right to control how their creativity is used?”

“Control over the use of one’s ideas” really constitutes control over other
people’s lives; and it is usually used to make their lives more difficult.

People who have studied the issue of intellectual property rights carefully
(such as lawyers) say that there is no intrinsic right to intellectual prop-
erty. The kinds of supposed intellectual property rights that the government
recognizes were created by specific acts of legislation for specific purposes.

For example, the patent system was established to encourage inventors to
disclose the details of their inventions. Its purpose was to help society rather
than to help inventors. At the time, the life span of 17 years for a patent

454 GNU Emacs Manual

was short compared with the rate of advance of the state of the art. Since
patents are an issue only among manufacturers, for whom the cost and effort
of a license agreement are small compared with setting up production, the
patents often do not do much harm. They do not obstruct most individuals
who use patented products.

The idea of copyright did not exist in ancient times, when authors fre-
quently copied other authors at length in works of non-fiction. This practice
was useful, and is the only way many authors’ works have survived even in
part. The copyright system was created expressly for the purpose of encour-
aging authorship. In the domain for which it was invented—books, which
could be copied economically only on a printing press—it did little harm,
and did not obstruct most of the individuals who read the books.

All intellectual property rights are just licenses granted by society because
it was thought, rightly or wrongly, that society as a whole would benefit by
granting them. But in any particular situation, we have to ask: are we really
better off granting such license? What kind of act are we licensing a person
to do?

The case of programs today is very different from that of books a hundred
years ago. The fact that the easiest way to copy a program is from one
neighbor to another, the fact that a program has both source code and
object code which are distinct, and the fact that a program is used rather
than read and enjoyed, combine to create a situation in which a person
who enforces a copyright is harming society as a whole both materially and
spiritually; in which a person should not do so regardless of whether the law
enables him to.

“Competition makes things get done better.”

The paradigm of competition is a race: by rewarding the winner, we
encourage everyone to run faster. When capitalism really works this way, it
does a good job; but its defenders are wrong in assuming it always works this
way. If the runners forget why the reward is offered and become intent on
winning, no matter how, they may find other strategies—such as, attacking
other runners. If the runners get into a fist fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runners in a
fist fight. Sad to say, the only referee we’ve got does not seem to object to
fights; he just regulates them (“For every ten yards you run, you can fire
one shot”). He really ought to break them up, and penalize runners for even
trying to fight.

“Won’t everyone stop programming without a monetary incen-
tive?”

Actually, many people will program with absolutely no monetary incen-
tive. Programming has an irresistible fascination for some people, usually
the people who are best at it. There is no shortage of professional musicians
who keep at it even though they have no hope of making a living that way.

The GNU Manifesto 455

But really this question, though commonly asked, is not appropriate to
the situation. Pay for programmers will not disappear, only become less. So
the right question is, will anyone program with a reduced monetary incen-
tive? My experience shows that they will.

For more than ten years, many of the world’s best programmers worked
at the Artificial Intelligence Lab for far less money than they could have had
anywhere else. They got many kinds of non-monetary rewards: fame and
appreciation, for example. And creativity is also fun, a reward in itself.

Then most of them left when offered a chance to do the same interesting
work for a lot of money.

What the facts show is that people will program for reasons other than
riches; but if given a chance to make a lot of money as well, they will come to
expect and demand it. Low-paying organizations do poorly in competition
with high-paying ones, but they do not have to do badly if the high-paying
ones are banned.

“We need the programmers desperately. If they demand that we
stop helping our neighbors, we have to obey.”

You’re never so desperate that you have to obey this sort of demand.
Remember: millions for defense, but not a cent for tribute!

“Programmers need to make a living somehow.”

In the short run, this is true. However, there are plenty of ways that
programmers could make a living without selling the right to use a program.
This way is customary now because it brings programmers and businessmen
the most money, not because it is the only way to make a living. It is easy
to find other ways if you want to find them. Here are a number of examples.

A manufacturer introducing a new computer will pay for the porting of
operating systems onto the new hardware.

The sale of teaching, hand-holding and maintenance services could also
employ programmers.

People with new ideas could distribute programs as freeware, asking for
donations from satisfied users, or selling hand-holding services. I have met
people who are already working this way successfully.

Users with related needs can form users’ groups, and pay dues. A group
would contract with programming companies to write programs that the
group’s members would like to use.

All sorts of development can be funded with a Software Tax:

Suppose everyone who buys a computer has to pay x percent of the
price as a software tax. The government gives this to an agency
like the NSF to spend on software development.

But if the computer buyer makes a donation to software develop-
ment himself, he can take a credit against the tax. He can donate
to the project of his own choosing—often, chosen because he hopes

456 GNU Emacs Manual

to use the results when it is done. He can take a credit for any
amount of donation up to the total tax he had to pay.

The total tax rate could be decided by a vote of the payers of the
tax, weighted according to the amount they will be taxed on.

The consequences:

• The computer-using community supports software develop-
ment.

• This community decides what level of support is needed.

• Users who care which projects their share is spent on can
choose this for themselves.

In the long run, making programs free is a step toward the post-scarcity
world, where nobody will have to work very hard just to make a living. Peo-
ple will be free to devote themselves to activities that are fun, such as pro-
gramming, after spending the necessary ten hours a week on required tasks
such as legislation, family counseling, robot repair and asteroid prospecting.
There will be no need to be able to make a living from programming.

We have already greatly reduced the amount of work that the whole
society must do for its actual productivity, but only a little of this has
translated itself into leisure for workers because much nonproductive activity
is required to accompany productive activity. The main causes of this are
bureaucracy and isometric struggles against competition. Free software will
greatly reduce these drains in the area of software production. We must do
this, in order for technical gains in productivity to translate into less work
for us.

Glossary 457

Glossary

Abbrev An abbrev is a text string which expands into a different text
string when present in the buffer. For example, you might define
a few letters as an abbrev for a long phrase that you want to
insert frequently. See Chapter 23 [Abbrevs], page 273.

Aborting Aborting means getting out of a recursive edit (q.v.). The
commands C-] and M-x top-level are used for this. See Sec-
tion 31.1 [Quitting], page 401.

Alt Alt is the name of a modifier bit which a keyboard input char-
acter may have. To make a character Alt, type it while holding
down the 〈ALT〉 key. Such characters are given names that start
with Alt- (usually written A- for short). (Note that many ter-
minals have a key labeled 〈ALT〉 which is really a 〈META〉 key.)
See Section 2.1 [User Input], page 21.

Auto Fill Mode
Auto Fill mode is a minor mode in which text that you insert is
automatically broken into lines of fixed width. See Section 20.5
[Filling], page 186.

Auto Saving
Auto saving is the practice of saving the contents of an Emacs
buffer in a specially-named file, so that the information will not
be lost if the buffer is lost due to a system error or user error.
See Section 14.5 [Auto Save], page 117.

Backup File
A backup file records the contents that a file had before the cur-
rent editing session. Emacs makes backup files automatically to
help you track down or cancel changes you later regret making.
See Section 14.3.1 [Backup], page 113.

Balance Parentheses
Emacs can balance parentheses manually or automatically.
Manual balancing is done by the commands to move over bal-
anced expressions (see Section 21.2 [Lists], page 212). Automatic
balancing is done by blinking or highlighting the parenthesis that
matches one just inserted (see Section 21.6 [Matching Parens],
page 227).

Bind To bind a key sequence means to give it a binding (q.v.). See
Section 30.4.5 [Rebinding], page 387.

Binding A key sequence gets its meaning in Emacs by having a binding,
which is a command (q.v.), a Lisp function that is run when the

458 GNU Emacs Manual

user types that sequence. See Section 2.3 [Commands], page 23.
Customization often involves rebinding a character to a differ-
ent command function. The bindings of all key sequences are
recorded in the keymaps (q.v.). See Section 30.4.1 [Keymaps],
page 384.

Blank Lines
Blank lines are lines that contain only whitespace. Emacs has
several commands for operating on the blank lines in the buffer.

Buffer The buffer is the basic editing unit; one buffer corresponds to one
text being edited. You can have several buffers, but at any time
you are editing only one, the ‘selected’ buffer, though several
can be visible when you are using multiple windows (q.v.). Most
buffers are visiting (q.v.) some file. See Chapter 15 [Buffers],
page 141.

Buffer Selection History
Emacs keeps a buffer selection history which records how re-
cently each Emacs buffer has been selected. This is used for
choosing a buffer to select. See Chapter 15 [Buffers], page 141.

Button Down Event
A button down event is the kind of input event generated right
away when you press a mouse button. See Section 30.4.9 [Mouse
Buttons], page 391.

C- C- in the name of a character is an abbreviation for Control. See
Section 2.1 [User Input], page 21.

C-M- C-M- in the name of a character is an abbreviation for Control-
Meta. See Section 2.1 [User Input], page 21.

Case Conversion
Case conversion means changing text from upper case to lower
case or vice versa. See Section 20.6 [Case], page 190, for the
commands for case conversion.

Character Characters form the contents of an Emacs buffer; see Section 2.4
[Text Characters], page 24. Also, key sequences (q.v.) are usu-
ally made up of characters (though they may include other input
events as well). See Section 2.1 [User Input], page 21.

Click Event
A click event is the kind of input event generated when you press
a mouse button and release it without moving the mouse. See
Section 30.4.9 [Mouse Buttons], page 391.

Command A command is a Lisp function specially defined to be able to
serve as a key binding in Emacs. When you type a key sequence

Glossary 459

(q.v.), its binding (q.v.) is looked up in the relevant keymaps
(q.v.) to find the command to run. See Section 2.3 [Commands],
page 23.

Command Name
A command name is the name of a Lisp symbol which is a
command (see Section 2.3 [Commands], page 23). You can in-
voke any command by its name using M-x (see Chapter 6 [M-x],
page 47).

Comment A comment is text in a program which is intended only for hu-
mans reading the program, and which is marked specially so
that it will be ignored when the program is loaded or compiled.
Emacs offers special commands for creating, aligning and killing
comments. See Section 21.7 [Comments], page 228.

Compilation
Compilation is the process of creating an executable program
from source code. Emacs has commands for compiling files of
Emacs Lisp code (see section “Byte Compilation” in the Emacs
Lisp Reference Manual) and programs in C and other languages
(see Section 22.1 [Compilation], page 261).

Complete Key
A complete key is a key sequence which fully specifies one action
to be performed by Emacs. For example, X and C-f and C-x m
are complete keys. Complete keys derive their meanings from
being bound (q.v.) to commands (q.v.). Thus, X is convention-
ally bound to a command to insert ‘X’ in the buffer; C-x m is
conventionally bound to a command to begin composing a mail
message. See Section 2.2 [Keys], page 22.

Completion
Completion is what Emacs does when it automatically fills out
an abbreviation for a name into the entire name. Completion
is done for minibuffer (q.v.) arguments when the set of possible
valid inputs is known; for example, on command names, buffer
names, and file names. Completion occurs when 〈TAB〉, 〈SPC〉 or
〈RET〉 is typed. See Section 5.3 [Completion], page 41.

Continuation Line
When a line of text is longer than the width of the window, it
takes up more than one screen line when displayed. We say that
the text line is continued, and all screen lines used for it after the
first are called continuation lines. See Chapter 4 [Basic Editing],
page 29.

460 GNU Emacs Manual

Control Character
ASCII characters with octal codes 0 through 037, and also code
0177, do not have graphic images assigned to them. These are
the Control characters. To type a Control character, hold down
the 〈CTRL〉 key and type the corresponding non-Control charac-
ter. 〈RET〉, 〈TAB〉, 〈ESC〉, 〈LFD〉 and 〈DEL〉 are all control characters.
See Section 2.1 [User Input], page 21.

When you are using the X Window System, every non-control
character has a corresponding control character variant.

Copyleft A copyleft is a notice giving the public legal permission to re-
distribute a program or other work of art. Copylefts are used
by left-wing programmers to give people equal rights, just as
copyrights are used by right-wing programmers to gain power
over other people.

The particular form of copyleft used by the GNU project is called
the GNU General Public License. See [Copying], page 5.

Current Buffer
The current buffer in Emacs is the Emacs buffer on which most
editing commands operate. You can select any Emacs buffer as
the current one. See Chapter 15 [Buffers], page 141.

Current Line
The line point is on (see Section 1.1 [Point], page 15).

Current Paragraph
The paragraph that point is in. If point is between paragraphs,
the current paragraph is the one that follows point. See Sec-
tion 20.3 [Paragraphs], page 184.

Current Defun
The defun (q.v.) that point is in. If point is between defuns,
the current defun is the one that follows point. See Section 21.4
[Defuns], page 214.

Cursor The cursor is the rectangle on the screen which indicates the
position called point (q.v.) at which insertion and deletion takes
place. The cursor is on or under the character that follows point.
Often people speak of ‘the cursor’ when, strictly speaking, they
mean ‘point’. See Chapter 4 [Basic Editing], page 29.

Customization
Customization is making minor changes in the way Emacs works.
It is often done by setting variables (see Section 30.2 [Variables],
page 373) or by rebinding key sequences (see Section 30.4.1
[Keymaps], page 384).

Glossary 461

Default Argument
The default for an argument is the value that will be assumed if
you do not specify one. When the minibuffer is used to read an
argument, the default argument is used if you just type 〈RET〉.
See Chapter 5 [Minibuffer], page 39.

Default Directory
When you specify a file name that does not start with ‘/’ or ‘~’,
it is interpreted relative to the current buffer’s default directory.
See Section 5.1 [Minibuffer File], page 39.

Defun A defun is a list at the top level of parenthesis or bracket struc-
ture in a program. It is so named because most such lists in Lisp
programs are calls to the Lisp function defun. See Section 21.4
[Defuns], page 214.

〈DEL〉 〈DEL〉 is a character that runs the command to delete one char-
acter of text. See Chapter 4 [Basic Editing], page 29.

Deletion Deletion means erasing text without copying it into the kill ring
(q.v.). The alternative is killing (q.v.). See Section 9.1 [Killing],
page 63.

Deletion of Files
Deleting a file means erasing it from the file system. See Sec-
tion 14.10 [Misc File Ops], page 138.

Deletion of Messages
Deleting a message means flagging it to be eliminated from your
mail file. Until you expunge (q.v.) the Rmail file, you can still
undelete the messages you have deleted. See Section 26.4 [Rmail
Deletion], page 295.

Deletion of Windows
Deleting a window means eliminating it from the screen. Other
windows expand to use up the space. The deleted window can
never come back, but no actual text is thereby lost. See Chap-
ter 16 [Windows], page 149.

Directory File directories are named collections in the file system, within
which you can place individual files or subdirectories. See Sec-
tion 14.8 [Directories], page 136.

Dired Dired is the Emacs facility that displays the contents of a file
directory and allows you to “edit the directory”, performing op-
erations on the files in the directory. See Chapter 27 [Dired],
page 311.

Disabled Command
A disabled command is one that you may not run without spe-
cial confirmation. The usual reason for disabling a command

462 GNU Emacs Manual

is that it is confusing for beginning users. See Section 30.4.10
[Disabling], page 393.

Down Event
Short for ‘button down event’.

Drag Event
A drag event is the kind of input event generated when you press
a mouse button, move the mouse, and then release the button.
See Section 30.4.9 [Mouse Buttons], page 391.

Dribble File
A file into which Emacs writes all the characters that the user
types on the keyboard. Dribble files are used to make a record
for debugging Emacs bugs. Emacs does not make a dribble file
unless you tell it to. See Section 31.3 [Bugs], page 406.

Echo Area The echo area is the bottom line of the screen, used for echoing
the arguments to commands, for asking questions, and printing
brief messages (including error messages). The messages are
stored in the buffer ‘*Messages*’ so you can review them later.
See Section 1.2 [Echo Area], page 16.

Echoing Echoing is acknowledging the receipt of commands by displaying
them (in the echo area). Emacs never echoes single-character
key sequences; longer key sequences echo only if you pause while
typing them.

Error An error occurs when an Emacs command cannot execute in the
current circumstances. When an error occurs, execution of the
command stops (unless the command has been programmed to
do otherwise) and Emacs reports the error by printing an error
message (q.v.). Type-ahead is discarded. Then Emacs is ready
to read another editing command.

Error Message
An error message is a single line of output displayed by Emacs
when the user asks for something impossible to do (such as,
killing text forward when point is at the end of the buffer).
They appear in the echo area, accompanied by a beep.

〈ESC〉 〈ESC〉 is a character used as a prefix for typing Meta charac-
ters on keyboards lacking a 〈META〉 key. Unlike the 〈META〉 key
(which, like the 〈SHIFT〉 key, is held down while another character
is typed), the 〈ESC〉 key is pressed once and applies to the next
character typed.

Expunging
Expunging an Rmail file or Dired buffer means really discarding
the messages or files you have previously flagged for deletion.

Glossary 463

File Name A file name is a name that refers to a file. File names may be
relative or absolute; the meaning of a relative file name depends
on the current directory, but an absolute file name refers to the
same file regardless of which directory is current. On GNU and
Unix systems, an absolute file name starts with a slash (the root
directory) or with ‘~/’ or ‘~user/’ (a home directory).

Some people use the term “pathname” for file names, but we
do not; we use the word “path” only in the term “search path”
(q.v.).

File Name Component
A file name component names a file directly within a particular
directory. On GNU and Unix systems, a file name is a sequence
of file name components, separated by slashes. For example,
‘foo/bar’ is a file name containing two components, ‘foo’ and
‘bar’; it refers to the file named ‘bar’ in the directory named
‘foo’ in the current directory.

Fill Prefix The fill prefix is a string that should be expected at the beginning
of each line when filling is done. It is not regarded as part of the
text to be filled. See Section 20.5 [Filling], page 186.

Filling Filling text means shifting text between consecutive lines so that
all the lines are approximately the same length. See Section 20.5
[Filling], page 186.

Formatted Text
Formatted text is text that displays with formatting informa-
tion while you edit. Formatting information includes fonts, col-
ors, and specified margins. See Section 20.11 [Formatted Text],
page 202.

Frame A frame is a rectangular cluster of Emacs windows. Emacs starts
out with one frame, but you can create more. You can subdivide
each frame into Emacs windows (q.v.). When you are using X
windows, all the frames can be visible at the same time. See
Chapter 17 [Frames], page 155.

Function Key
A function key is a key on the keyboard that sends input but does
not correspond to any character. See Section 30.4.7 [Function
Keys], page 389.

Global Global means ‘independent of the current environment; in effect
throughout Emacs’. It is the opposite of local (q.v.). Particular
examples of the use of ‘global’ appear below.

464 GNU Emacs Manual

Global Abbrev
A global definition of an abbrev (q.v.) is effective in all major
modes that do not have local (q.v.) definitions for the same
abbrev. See Chapter 23 [Abbrevs], page 273.

Global Keymap
The global keymap (q.v.) contains key bindings that are in effect
except when overridden by local key bindings in a major mode’s
local keymap (q.v.). See Section 30.4.1 [Keymaps], page 384.

Global Mark Ring
The global mark ring records the series of buffers you have re-
cently set a mark in. In many cases you can use this to backtrack
through buffers you have been editing in, or in which you have
found tags. See Section 8.6 [Global Mark Ring], page 62.

Global Substitution
Global substitution means replacing each occurrence of one
string by another string through a large amount of text. See
Section 12.7 [Replace], page 95.

Global Variable
The global value of a variable (q.v.) takes effect in all buffers
that do not have their own local (q.v.) values for the variable.
See Section 30.2 [Variables], page 373.

Graphic Character
Graphic characters are those assigned pictorial images rather
than just names. All the non-Meta (q.v.) characters except for
the Control (q.v.) characters are graphic characters. These in-
clude letters, digits, punctuation, and spaces; they do not in-
clude 〈RET〉 or 〈ESC〉. In Emacs, typing a graphic character in-
serts that character (in ordinary editing modes). See Chapter 4
[Basic Editing], page 29.

Highlighting
Highlighting text means displaying it with a different foreground
and/or background color to make it stand out from the rest of
the text in the buffer.

Hardcopy Hardcopy means printed output. Emacs has commands for mak-
ing printed listings of text in Emacs buffers. See Section 29.4
[Hardcopy], page 357.

〈HELP〉 You can type 〈HELP〉 at any time to ask what options you have,
or to ask what any command does. The character 〈HELP〉 is really
C-h. See Chapter 7 [Help], page 49.

Hyper Hyper is the name of a modifier bit which a keyboard input
character may have. To make a character Hyper, type it while

Glossary 465

holding down the 〈HYPER〉 key. Such characters are given names
that start with Hyper- (usually written H- for short). See Sec-
tion 2.1 [User Input], page 21.

Inbox An inbox is a file in which mail is delivered by the operating
system. Rmail transfers mail from inboxes to Rmail files (q.v.)
in which the mail is then stored permanently or until explicitly
deleted. See Section 26.5 [Rmail Inbox], page 296.

Indentation
Indentation means blank space at the beginning of a line. Most
programming languages have conventions for using indentation
to illuminate the structure of the program, and Emacs has spe-
cial commands to adjust indentation. See Chapter 19 [Indenta-
tion], page 177.

Indirect Buffer
An indirect buffer is a buffer that shares the text of another
buffer, called its base buffer. See Section 15.6 [Indirect Buffers],
page 146.

Input Event
An input event represents, within Emacs, one action taken by
the user on the terminal. Input events include typing characters,
typing function keys, pressing or releasing mouse buttons, and
switching between Emacs frames. See Section 2.1 [User Input],
page 21.

Insertion Insertion means copying text into the buffer, either from the
keyboard or from some other place in Emacs.

Justification
Justification means adding extra spaces to lines of text to make
them come exactly to a specified width. See Section 20.5 [Fill-
ing], page 186.

Keyboard Macro
Keyboard macros are a way of defining new Emacs commands
from sequences of existing ones, with no need to write a Lisp
program. See Section 30.3 [Keyboard Macros], page 380.

Key Sequence
A key sequence (key, for short) is a sequence of input events
(q.v.) that are meaningful as a single unit. If the key sequence
is enough to specify one action, it is a complete key (q.v.); if it
is not enough, it is a prefix key (q.v.). See Section 2.2 [Keys],
page 22.

Keymap The keymap is the data structure that records the bindings (q.v.)
of key sequences to the commands that they run. For exam-

466 GNU Emacs Manual

ple, the global keymap binds the character C-n to the command
function next-line. See Section 30.4.1 [Keymaps], page 384.

Keyboard Translation Table
The keyboard translation table is an array that translates the
character codes that come from the terminal into the character
codes that make up key sequences. See Section 30.5 [Keyboard
Translations], page 394.

Kill Ring The kill ring is where all text you have killed recently is saved.
You can reinsert any of the killed text still in the ring; this is
called yanking (q.v.). See Section 9.2 [Yanking], page 65.

Killing Killing means erasing text and saving it on the kill ring so it can
be yanked (q.v.) later. Some other systems call this “cutting”.
Most Emacs commands to erase text do killing, as opposed to
deletion (q.v.). See Section 9.1 [Killing], page 63.

Killing Jobs
Killing a job (such as, an invocation of Emacs) means making it
cease to exist. Any data within it, if not saved in a file, is lost.
See Section 3.1 [Exiting], page 26.

List A list is, approximately, a text string beginning with an open
parenthesis and ending with the matching close parenthesis. In
C mode and other non-Lisp modes, groupings surrounded by
other kinds of matched delimiters appropriate to the language,
such as braces, are also considered lists. Emacs has special com-
mands for many operations on lists. See Section 21.2 [Lists],
page 212.

Local Local means ‘in effect only in a particular context’; the relevant
kind of context is a particular function execution, a particular
buffer, or a particular major mode. It is the opposite of ‘global’
(q.v.). Specific uses of ‘local’ in Emacs terminology appear be-
low.

Local Abbrev
A local abbrev definition is effective only if a particular major
mode is selected. In that major mode, it overrides any global def-
inition for the same abbrev. See Chapter 23 [Abbrevs], page 273.

Local Keymap
A local keymap is used in a particular major mode; the key
bindings (q.v.) in the current local keymap override global bind-
ings of the same key sequences. See Section 30.4.1 [Keymaps],
page 384.

Glossary 467

Local Variable
A local value of a variable (q.v.) applies to only one buffer. See
Section 30.2.4 [Locals], page 376.

M- M- in the name of a character is an abbreviation for 〈META〉, one
of the modifier keys that can accompany any character. See
Section 2.1 [User Input], page 21.

M-C- M-C- in the name of a character is an abbreviation for Control-
Meta; it means the same thing as C-M-. If your terminal lacks
a real 〈META〉 key, you type a Control-Meta character by typing
〈ESC〉 and then typing the corresponding Control character. See
Section 2.1 [User Input], page 21.

M-x M-x is the key sequence which is used to call an Emacs command
by name. This is how you run commands that are not bound to
key sequences. See Chapter 6 [M-x], page 47.

Mail Mail means messages sent from one user to another through
the computer system, to be read at the recipient’s convenience.
Emacs has commands for composing and sending mail, and for
reading and editing the mail you have received. See Chapter 25
[Sending Mail], page 285. See Chapter 26 [Rmail], page 293, for
how to read mail.

Major Mode
The Emacs major modes are a mutually exclusive set of options,
each of which configures Emacs for editing a certain sort of text.
Ideally, each programming language has its own major mode.
See Chapter 18 [Major Modes], page 173.

Mark The mark points to a position in the text. It specifies one end
of the region (q.v.), point being the other end. Many commands
operate on all the text from point to the mark. Each buffer has
its own mark. See Chapter 8 [Mark], page 57.

Mark Ring
The mark ring is used to hold several recent previous locations
of the mark, just in case you want to move back to them. Each
buffer has its own mark ring; in addition, there is a single global
mark ring (q.v.). See Section 8.5 [Mark Ring], page 61.

Menu Bar The menu bar is the line at the top of an Emacs frame. It
contains words you can click on with the mouse to bring up
menus. The menu bar feature is supported only with X. See
Section 17.11 [Menu Bars], page 164.

Message See ‘mail’.

468 GNU Emacs Manual

Meta Meta is the name of a modifier bit which a command charac-
ter may have. It is present in a character if the character is
typed with the 〈META〉 key held down. Such characters are given
names that start with Meta- (usually written M- for short). For
example, M-< is typed by holding down 〈META〉 and at the same
time typing < (which itself is done, on most terminals, by hold-
ing down 〈SHIFT〉 and typing ,). See Section 2.1 [User Input],
page 21.

Meta Character
A Meta character is one whose character code includes the Meta
bit.

Minibuffer The minibuffer is the window that appears when necessary inside
the echo area (q.v.), used for reading arguments to commands.
See Chapter 5 [Minibuffer], page 39.

Minibuffer History
The minibuffer history records the text you have specified in the
past for minibuffer arguments, so you can conveniently use the
same text again. See Section 5.4 [Minibuffer History], page 44.

Minor Mode
A minor mode is an optional feature of Emacs which can be
switched on or off independently of all other features. Each
minor mode has a command to turn it on or off. See Section 30.1
[Minor Modes], page 371.

Minor Mode Keymap
A keymap that belongs to a minor mode and is active when that
mode is enabled. Minor mode keymaps take precedence over the
buffer’s local keymap, just as the local keymap takes precedence
over the global keymap. See Section 30.4.1 [Keymaps], page 384.

Mode Line
The mode line is the line at the bottom of each window (q.v.),
giving status information on the buffer displayed in that window.
See Section 1.3 [Mode Line], page 17.

Modified Buffer
A buffer (q.v.) is modified if its text has been changed since the
last time the buffer was saved (or since when it was created, if
it has never been saved). See Section 14.3 [Saving], page 111.

Moving Text
Moving text means erasing it from one place and inserting it in
another. The usual way to move text by killing (q.v.) and then
yanking (q.v.). See Section 9.1 [Killing], page 63.

Glossary 469

Named Mark
A named mark is a register (q.v.) in its role of recording a lo-
cation in text so that you can move point to that location. See
Chapter 10 [Registers], page 73.

Narrowing Narrowing means creating a restriction (q.v.) that limits editing
in the current buffer to only a part of the text in the buffer. Text
outside that part is inaccessible to the user until the boundaries
are widened again, but it is still there, and saving the file saves
it all. See Section 29.7 [Narrowing], page 362.

Newline Linefeed characters in the buffer terminate lines of text and are
therefore also called newlines. See Section 2.4 [Text Characters],
page 24.

Numeric Argument
A numeric argument is a number, specified before a command, to
change the effect of the command. Often the numeric argument
serves as a repeat count. See Section 4.10 [Arguments], page 37.

Overwrite Mode
Overwrite mode is a minor mode. When it is enabled, ordi-
nary text characters replace the existing text after point rather
than pushing it to the right. See Section 30.1 [Minor Modes],
page 371.

Page A page is a unit of text, delimited by formfeed characters (ASCII
control-L, code 014) coming at the beginning of a line. Some
Emacs commands are provided for moving over and operating
on pages. See Section 20.4 [Pages], page 185.

Paragraph Paragraphs are the medium-size unit of English text. There
are special Emacs commands for moving over and operating on
paragraphs. See Section 20.3 [Paragraphs], page 184.

Parsing We say that certain Emacs commands parse words or expressions
in the text being edited. Really, all they know how to do is find
the other end of a word or expression. See Section 30.6 [Syntax],
page 395.

Point Point is the place in the buffer at which insertion and deletion
occur. Point is considered to be between two characters, not at
one character. The terminal’s cursor (q.v.) indicates the location
of point. See Chapter 4 [Basic], page 29.

Prefix Argument
See ‘numeric argument’.

Prefix Key
A prefix key is a key sequence (q.v.) whose sole function is to in-
troduce a set of longer key sequences. C-x is an example of prefix

470 GNU Emacs Manual

key; any two-character sequence starting with C-x is therefore a
legitimate key sequence. See Section 2.2 [Keys], page 22.

Primary Rmail File
Your primary Rmail file is the file named ‘RMAIL’ in your home
directory. That’s where Rmail stores your incoming mail, un-
less you specify a different file name. See Chapter 26 [Rmail],
page 293.

Primary Selection
The primary selection is one particular X selection (q.v.); it is
the selection that most X applications use for transferring text
to and from other applications.

The Emacs kill commands set the primary selection and the
yank command uses the primary selection when appropriate.
See Section 9.1 [Killing], page 63.

Prompt A prompt is text printed to ask the user for input. Displaying
a prompt is called prompting. Emacs prompts always appear in
the echo area (q.v.). One kind of prompting happens when the
minibuffer is used to read an argument (see Chapter 5 [Minibuf-
fer], page 39); the echoing which happens when you pause in the
middle of typing a multi-character key sequence is also a kind
of prompting (see Section 1.2 [Echo Area], page 16).

Quitting Quitting means canceling a partially typed command or a run-
ning command, using C-g. See Section 31.1 [Quitting], page 401.

Quoting Quoting means depriving a character of its usual special signifi-
cance. In Emacs this is usually done with C-q. What constitutes
special significance depends on the context and on convention.
For example, an “ordinary” character as an Emacs command in-
serts itself; so in this context, a special character is any character
that does not normally insert itself (such as 〈DEL〉, for example),
and quoting it makes it insert itself as if it were not special.
Not all contexts allow quoting. See Chapter 4 [Basic Editing],
page 29.

Read-Only Buffer
A read-only buffer is one whose text you are not allowed to
change. Normally Emacs makes buffers read-only when they
contain text which has a special significance to Emacs; for ex-
ample, Dired buffers. Visiting a file that is write protected also
makes a read-only buffer. See Chapter 15 [Buffers], page 141.

Rectangle A rectangle consists of the text in a given range of columns on a
given range of lines. Normally you specify a rectangle by putting
point at one corner and putting the mark at the opposite corner.
See Section 9.4 [Rectangles], page 69.

Glossary 471

Recursive Editing Level
A recursive editing level is a state in which part of the execu-
tion of a command involves asking the user to edit some text.
This text may or may not be the same as the text to which the
command was applied. The mode line indicates recursive edit-
ing levels with square brackets (‘[’ and ‘]’). See Section 29.11
[Recursive Edit], page 365.

Redisplay Redisplay is the process of correcting the image on the screen
to correspond to changes that have been made in the text being
edited. See Chapter 1 [Screen], page 15.

Regexp See ‘regular expression’.

Region The region is the text between point (q.v.) and the mark (q.v.).
Many commands operate on the text of the region. See Chap-
ter 8 [Mark], page 57.

Registers Registers are named slots in which text or buffer positions or
rectangles can be saved for later use. See Chapter 10 [Registers],
page 73.

Regular Expression
A regular expression is a pattern that can match various text
strings; for example, ‘l[0-9]+’ matches ‘l’ followed by one or
more digits. See Section 12.5 [Regexps], page 90.

Repeat Count
See ‘numeric argument’.

Replacement
See ‘global substitution’.

Restriction
A buffer’s restriction is the amount of text, at the beginning or
the end of the buffer, that is temporarily inaccessible. Giving a
buffer a nonzero amount of restriction is called narrowing (q.v.).
See Section 29.7 [Narrowing], page 362.

〈RET〉 〈RET〉 is a character that in Emacs runs the command to insert
a newline into the text. It is also used to terminate most argu-
ments read in the minibuffer (q.v.). See Section 2.1 [User Input],
page 21.

Rmail File An Rmail file is a file containing text in a special format used
by Rmail for storing mail. See Chapter 26 [Rmail], page 293.

Saving Saving a buffer means copying its text into the file that was
visited (q.v.) in that buffer. This is the way text in files actually
gets changed by your Emacs editing. See Section 14.3 [Saving],
page 111.

472 GNU Emacs Manual

Scroll Bar A scroll bar is a tall thin hollow box that appears at the side
of a window. You can use mouse commands in the scroll bar to
scroll the window. The scroll bar feature is supported only with
X. See Section 17.10 [Scroll Bars], page 163.

Scrolling Scrolling means shifting the text in the Emacs window so as
to see a different part of the buffer. See Chapter 11 [Display],
page 77.

Searching Searching means moving point to the next occurrence of a spec-
ified string or the next match for a specified regular expression.
See Chapter 12 [Search], page 85.

Search Path
A search path is a list of directory names, to be used for searching
for files for certain purposes. For example, the variable load-
path holds a search path for finding Lisp library files. See Sec-
tion 22.4 [Lisp Libraries], page 268.

Secondary Selection
The secondary selection is one particular X selection; some X
applications can use it for transferring text to and from other ap-
plications. Emacs has special mouse commands for transferring
text using the secondary selection. See Section 17.2 [Secondary
Selection], page 157.

Selecting Selecting a buffer means making it the current (q.v.) buffer. See
Chapter 15 [Buffers], page 141.

Selection The X window system allows an application program to specify
named selections whose values are text. A program can also
read the selections that other programs have set up. This is the
principal way of transferring text between window applications.
Emacs has commands to work with the primary (q.v.) selection
and the secondary (q.v.) selection.

Self-Documentation
Self-documentation is the feature of Emacs which can tell you
what any command does, or give you a list of all commands
related to a topic you specify. You ask for self-documentation
with the help character, C-h. See Chapter 7 [Help], page 49.

Sentences Emacs has commands for moving by or killing by sentences. See
Section 20.2 [Sentences], page 183.

Sexp A sexp (short for ‘s-expression’) is the basic syntactic unit of
Lisp in its textual form: either a list, or Lisp atom. Many Emacs
commands operate on sexps. The term ‘sexp’ is generalized to
languages other than Lisp, to mean a syntactically recognizable
expression. See Section 21.2 [Lists], page 212.

Glossary 473

Simultaneous Editing
Simultaneous editing means two users modifying the same file
at once. Simultaneous editing if not detected can cause one user
to lose his work. Emacs detects all cases of simultaneous editing
and warns one of the users to investigate. See Section 14.3.2
[Simultaneous Editing], page 115.

String A string is a kind of Lisp data object which contains a sequence
of characters. Many Emacs variables are intended to have strings
as values. The Lisp syntax for a string consists of the characters
in the string with a ‘"’ before and another ‘"’ after. A ‘"’ that
is part of the string must be written as ‘\"’ and a ‘\’ that is
part of the string must be written as ‘\\’. All other characters,
including newline, can be included just by writing them inside
the string; however, backslash sequences as in C, such as ‘\n’ for
newline or ‘\241’ using an octal character code, are allowed as
well.

String Substitution
See ‘global substitution’.

Syntax Table
The syntax table tells Emacs which characters are part of a
word, which characters balance each other like parentheses, etc.
See Section 30.6 [Syntax], page 395.

Super Super is the name of a modifier bit which a keyboard input
character may have. To make a character Super, type it while
holding down the 〈SUPER〉 key. Such characters are given names
that start with Super- (usually written s- for short). See Sec-
tion 2.1 [User Input], page 21.

Tags Table
A tags table is a file that serves as an index to the function
definitions in one or more other files. See Section 21.12 [Tags],
page 233.

Termscript File
A termscript file contains a record of all characters sent by
Emacs to the terminal. It is used for tracking down bugs in
Emacs redisplay. Emacs does not make a termscript file unless
you tell it to. See Section 31.3 [Bugs], page 406.

Text Two meanings (see Chapter 20 [Text], page 181):

• Data consisting of a sequence of characters, as opposed to
binary numbers, images, graphics commands, executable
programs, and the like. The contents of an Emacs buffer
are always text in this sense.

474 GNU Emacs Manual

• Data consisting of written human language, as opposed to
programs, or following the stylistic conventions of human
language.

Top Level Top level is the normal state of Emacs, in which you are edit-
ing the text of the file you have visited. You are at top level
whenever you are not in a recursive editing level (q.v.) or the
minibuffer (q.v.), and not in the middle of a command. You can
get back to top level by aborting (q.v.) and quitting (q.v.). See
Section 31.1 [Quitting], page 401.

Transposition
Transposing two units of text means putting each one into the
place formerly occupied by the other. There are Emacs com-
mands to transpose two adjacent characters, words, sexps (q.v.)
or lines (see Section 13.2 [Transpose], page 101).

Truncation
Truncating text lines in the display means leaving out any text
on a line that does not fit within the right margin of the window
displaying it. See also ‘continuation line’. See Chapter 4 [Basic
Editing], page 29.

Undoing Undoing means making your previous editing go in reverse,
bringing back the text that existed earlier in the editing ses-
sion. See Section 4.4 [Undo], page 32.

User Option
A user option is a variable (q.v.) that exists so that you can
customize Emacs by setting it to a new value. See Section 30.2
[Variables], page 373.

Variable A variable is an object in Lisp that can store an arbitrary value.
Emacs uses some variables for internal purposes, and has others
(known as ‘user options’ (q.v.)) just so that you can set their
values to control the behavior of Emacs. The variables used in
Emacs that you are likely to be interested in are listed in the
Variables Index in this manual. See Section 30.2 [Variables],
page 373, for information on variables.

Version Control
Version control systems keep track of multiple versions of a
source file. They provide a more powerful alternative to keeping
backup files (q.v.). See Section 14.7 [Version Control], page 120.

Visiting Visiting a file means loading its contents into a buffer (q.v.)
where they can be edited. See Section 14.2 [Visiting], page 108.

Glossary 475

Whitespace
Whitespace is any run of consecutive formatting characters
(space, tab, newline, and backspace).

Widening Widening is removing any restriction (q.v.) on the current buffer;
it is the opposite of narrowing (q.v.). See Section 29.7 [Narrow-
ing], page 362.

Window Emacs divides a frame (q.v.) into one or more windows, each of
which can display the contents of one buffer (q.v.) at any time.
See Chapter 1 [Screen], page 15, for basic information on how
Emacs uses the screen. See Chapter 16 [Windows], page 149, for
commands to control the use of windows.

Word Abbrev
Synonymous with ‘abbrev’.

Word Search
Word search is searching for a sequence of words, considering
the punctuation between them as insignificant. See Section 12.3
[Word Search], page 88.

WYSIWYG
WYSIWYG stands for “What you see is what you get.” Emacs
generally provides WYSIWYG editing for files of characters; in
Enriched mode (see Section 20.11 [Formatted Text], page 202),
it provides WYSIWYG editing for files that include text format-
ting information.

Yanking Yanking means reinserting text previously killed. It can be used
to undo a mistaken kill, or for copying or moving text. Some
other systems call this “pasting”. See Section 9.2 [Yanking],
page 65.

476 GNU Emacs Manual

Key (Character) Index 477

Key (Character) Index

!
! (Dired) . 315

#
(Dired) . 310

$
$ (Dired) . 318

%
% C (Dired) . 316

% d (Dired) . 311

% H (Dired) . 316

% l (Dired) . 316

% m (Dired) . 313

% R (Dired) . 316

% S (Dired) . 316

% u (Dired) . 316

*
* (Dired) . 312

.

. (Calendar mode) 323

. (Dired) . 310

. (Rmail) . 292

/
/ (Dired) . 312

=
= (Dired) . 317

"
" (TEX mode) . 195

@
@ (Dired) . 312

~
~ (Dired) . 310

+
+ (Dired) . 315

>
> (Rmail) . 293

<
< (Rmail) . 293

A
a (Calendar mode) 326

A (Dired) . 314

a (Rmail) . 299

B
B (Dired) . 314

b (Rmail) . 291

〈BOTTOM〉 . 30

BS (MS-DOS). 435

C
c (Dired) . 312

C (Dired) . 313

c (Rmail) . 302

C-] . 398

C- . 32

C-@ . 58

C-a . 30

C-a (Calendar mode) 322

C-b . 30

C-b (Calendar mode) 321

C-c ’ (Picture mode) 280

C-c . (Picture mode) 280

C-c / (Picture mode) 280

C-c : (C mode) . 246

C-c ; (Fortran mode) 254

478 GNU Emacs Manual

C-c ‘ (Picture mode) 280

C-c @ (Outline minor mode) 190

C-c { (TEX mode) 196

C-c } (TEX mode) 196

C-c > (GUD) . 264

C-c > (Picture mode) 280

C-c ^ (Picture mode) 280

C-c \ (Picture mode) 280

C-c < (GUD) . 264

C-c < (Picture mode) 280

C-c C-\ (C mode) 248

C-c C-\ (Shell mode) 349

C-c C-a (C mode) 246

C-c C-a (Mail mode) 287

C-c C-a (Outline mode) 194

C-c C-a (Shell mode) 348

C-c C-b (Outline mode) 192

C-c C-b (Picture mode) 281

C-c C-b (Shell mode) 349

C-c C-b (TEX mode) 197

C-c C-c (Edit Abbrevs) 274

C-c C-c (Edit Tab Stops) 177

C-c C-c (Mail mode) 288

C-c C-c (Outline mode) 193

C-c C-c (Shell mode) 348

C-c C-d . 247

C-c C-d (GUD) . 264

C-c C-d (Outline mode) 193

C-c C-d (Picture mode) 280

C-c C-e (C mode) 248

C-c C-e (LaTEX mode) 197

C-c C-e (Outline mode) 193

C-c C-e (Shell mode) 349

C-c C-f (GUD) . 264

C-c C-f (Outline mode) 192

C-c C-f (Picture mode) 281

C-c C-f (Shell mode) 349

C-c C-f (TEX mode) 198

C-c C-f C-b (Mail mode) 288

C-c C-f C-c (Mail mode) 288

C-c C-f C-f (Mail mode) 288

C-c C-f C-s (Mail mode) 288

C-c C-f C-t (Mail mode) 288

C-c C-i (GUD) . 264

C-c C-i (Outline mode) 193

C-c C-k (Outline mode) 193

C-c C-k (Picture mode) 282

C-c C-k (TEX mode) 198

C-c C-l (Calendar mode) 324

C-c C-l (GUD) . 263

C-c C-l (Outline mode) 193

C-c C-l (Shell mode) 349

C-c C-l (TEX mode) 198

C-c C-n . 245

C-c C-n (Fortran mode) 250

C-c C-n (GUD) . 263

C-c C-n (Outline mode) 192

C-c C-n (Shell mode) 351

C-c C-o . 220

C-c C-o (LaTEX mode) 196

C-c C-o (Outline mode) 194

C-c C-o (Shell mode) 349

C-c C-p . 245

C-c C-p (Fortran mode) 250

C-c C-p (Outline mode) 192

C-c C-p (Shell mode) 351

C-c C-p (TEX mode) 197

C-c C-q . 216

C-c C-q (Mail mode) 289

C-c C-q (Outline mode) 194

C-c C-q (TEX mode) 197

C-c C-r (Fortran mode) 256

C-c C-r (GUD) . 264

C-c C-r (Shell mode) 349

C-c C-r (TEX mode) 198

C-c C-s (C mode) 248

C-c C-s (GUD) . 263

C-c C-s (Mail mode) 288

C-c C-s (Outline mode) 193

C-c C-t . 248

C-c C-t (GUD) . 264

C-c C-t (Mail mode) 289

C-c C-t (Outline mode) 194

C-c C-u . 245

C-c C-u (Outline mode) 192

C-c C-u (Shell mode) 348

C-c C-v (TEX mode) 197

C-c C-w (Fortran mode) 256

Key (Character) Index 479

C-c C-w (Mail mode) 289

C-c C-w (Picture mode) 282

C-c C-w (Shell mode) 348

C-c C-x (Picture mode) 282

C-c C-y (Mail mode) 289

C-c C-y (Picture mode) 282

C-c C-z (Shell mode) 348

C-c 〈RET〉 (Shell mode) 351

C-c TAB (Picture mode) 281

C-c TAB (TEX mode) 199

C-d . 63

C-d (Rmail) . 294

C-d (Shell mode) . 348

C-e . 30

C-e (Calendar mode) 322

C-f . 30

C-f (Calendar mode) 321

C-g . 39, 397

C-h . 49

C-h a . 51

C-h b . 54

C-h c . 50

C-h C-c . 55

C-h C-d . 55

C-h C-f . 54

C-h C-h . 49

C-h C-k . 54

C-h C-p . 55

C-h C-w . 55

C-h f . 50

C-h i . 54

C-h k . 50

C-h l . 54

C-h m . 54

C-h n . 55

C-h p . 52

C-h s . 391

C-h t . 29

C-h w . 51

C-k . 64

C-k (Gnus) . 344

C-l . 77

C-M-. 237

C-M-/ . 275

C-M-@ . 212

C-M-\ . 176

C-M-a . 212

C-M-a (Fortran mode) 250

C-M-b . 211

C-M-c . 363

C-M-d . 212

C-M-d (Dired) . 318

C-M-〈DEL〉 . 211

C-M-e . 212

C-M-e (Fortran mode) 250

C-M-f . 211

C-M-g . 165

C-M-h . 212

C-M-h (C mode) . 248

C-M-h (Fortran mode) 250

C-M-k . 211

C-M-l . 78

C-M-l (Rmail) . 303

C-M-l (Shell mode) 349

C-M-n . 211

C-M-n (Dired) . 318

C-M-n (Rmail) . 299

C-M-o . 176

C-M-p . 211

C-M-p (Dired) . 318

C-M-p (Rmail) . 299

C-M-q. 214, 216

C-M-q (Fortran mode) 251

C-M-r . 89

C-M-r (Rmail) . 303

C-M-s . 89

C-M-t. 100, 212

C-M-t (Rmail) . 303

C-M-u . 212

C-M-u (Dired) . 318

C-M-v . 149

C-M-w . 67

C-M-x (Emacs-Lisp mode) 268

C-M-x (Lisp mode) 270

C-Mouse-2 (scroll bar) 148

C-Mouse-3 . 156

C-n . 30

C-n (Calendar mode) 321

480 GNU Emacs Manual

C-n (Dired) . 309

C-n (Gnus Group mode) 345

C-n (Gnus Summary mode) 345

C-o . 34

C-o (Dired) . 311

C-o (Rmail) . 297

C-p . 30

C-p (Calendar mode) 321

C-p (Dired) . 309

C-p (Gnus Group mode) 345

C-p (Gnus Summary mode) 345

C-q . 29

C-r . 87

C-s . 85

C-SPC . 57

C-t . 30, 100

C-u . 37

C-u - C-x ; . 227

C-u C-@ . 61

C-u C-SPC . 61

C-u C-x C-q . 120

C-u TAB . 214

C-v . 77

C-v (Calendar mode) 323

C-w . 65

C-x # . 354

C-x $. 79

C-x (. 377

C-x) . 377

C-x . 187

C-x ; . 227

C-x = . 36

C-x [. 183

C-x [(Calendar mode) 322

C-x] . 183

C-x] (Calendar mode) 322

C-x ‘ . 260

C-x } . 151

C-x > . 78

C-x > (Calendar mode) 323

C-x ^ . 151

C-x < . 78

C-x < (Calendar mode) 323

C-x 0 . 151

C-x 1 . 151

C-x 2 . 148

C-x 3 . 148

C-x 4 . 149

C-x 4 .. 237

C-x 4 a. 230

C-x 4 b. 139

C-x 4 d. 309

C-x 4 f. 108

C-x 4 m. 283

C-x 5 . 157

C-x 5 .. 237

C-x 5 0. 168

C-x 5 2. 157

C-x 5 b. 139

C-x 5 d. 309

C-x 5 f. 108

C-x 5 m. 283

C-x 5 o. 168

C-x 5 r. 158

C-x 6 1. 361

C-x 6 2. 360

C-x 6 b. 361

C-x 6 d. 361

C-x 6 〈RET〉 . 361

C-x 6 s. 360

C-x 8 . 80

C-x a g. 272

C-x a i g . 272

C-x a i l . 272

C-x a l. 272

C-x b . 139

C-x C-a (GUD) . 263

C-x C-b . 140

C-x C-c . 26

C-x C-d . 134

C-x C-e . 268

C-x C-f . 107

C-x C-k . 378

C-x C-l . 189

C-x C-n . 31

C-x C-o . 34

C-x C-p . 183

C-x C-q . 141

Key (Character) Index 481

C-x C-q (version control) 120

C-x C-r . 108

C-x C-s . 109

C-x C-t . 100

C-x C-u . 189

C-x C-v . 108

C-x C-w . 110

C-x C-x . 58

C-x C-z . 269

C-x d . 309

C-x DEL . 181

C-x e . 377

C-x ESC ESC . 45

C-x f . 186

C-x h . 60

C-x k . 142

C-x l . 183

C-x m . 283

C-x n n. 360

C-x n p. 360

C-x n w. 360

C-x o . 149

C-x q . 379

C-x r b . 75

C-x r d . 70

C-x r f . 74

C-x r i . 73

C-x r j . 73

C-x r k . 70

C-x r l . 75

C-x r m . 75

C-x r o . 70

C-x r r . 74

C-x r s . 73

C-x r 〈SPC〉 . 73

C-x r w . 74

C-x r y . 70

C-x s . 109

C-x 〈SPC〉 . 263

C-x TAB . 176

C-x 〈TAB〉 (Enriched mode) 204

C-x u . 32

C-x v =. 126

C-x v ~. 126

C-x v a. 125

C-x v c. 122

C-x v d. 129

C-x v h. 131

C-x v i. 121

C-x v l. 129

C-x v r. 130

C-x v s. 130

C-x v u. 122

C-y . 66

C-z . 26

C-z (X windows) . 168

D
d (Calendar mode) 334

d (Dired) . 310

d (Rmail) . 294

DEL . 63

DEL (and major modes) 171

〈DEL〉 (Dired) . 310

DEL (Gnus) . 345

DEL (MS-DOS) . 435

DEL (programming modes) 210

DEL (Rmail) . 292

E
e (Rmail) . 306

ESC a . 245

ESC e . 245

〈ESC〉 〈ESC〉 〈ESC〉 398

F
f (Dired) . 311

f (Rmail) . 301

〈F1〉 . 49

f2 1 . 361

f2 2 . 360

f2 b . 361

f2 d . 361

f2 〈RET〉 . 361

f2 s . 360

G
g (Dired) . 319

482 GNU Emacs Manual

G (Dired) . 314

g (Rmail) . 297

g char (Calendar mode) 331

g d (Calendar mode) 323

g m (Calendar mode) 332

H
h (Calendar mode) 326

H (Dired) . 314

h (Rmail) . 303

Help . 49

I
i (Dired) . 317

i (Rmail) . 296

i a (Calendar mode) 338

i b (Calendar mode) 339

i c (Calendar mode) 339

i d (Calendar mode) 337

i m (Calendar mode) 337

i w (Calendar mode) 337

i y (Calendar mode) 337

J
j (Rmail) . 293

K
k (Dired) . 319

k (Rmail) . 299

L
l (Dired) . 319

L (Dired) . 314

l (Gnus Group mode) 344

L (Gnus Group mode) 344

l (Rmail) . 303

〈LEFT〉 . 30

LFD . 214

LFD (and major modes) 171

LFD (Fortran mode) 250

LFD (MS-DOS) . 435

LFD (TEX mode) . 196

M
m (Calendar mode) 334

M (Calendar mode) 328

m (Dired) . 312

M (Dired) . 314

m (Rmail) . 302

M-! . 346

M-$. 101

M-$ (Dired) . 318

M-% . 96

M-’ . 273

M-(. 229

M-) . 229

M-, . 237

M-- . 37

M-- M-c. 100

M-- M-l. 100

M-- M-u. 100

M-. 236

M-/ . 275

M-: . 268

M-; . 226

M-= . 36

M-= (Calendar mode) 324

M-= (Dired) . 317

M-? (Nroff mode) . 200

M-? (Shell mode) . 348

M-‘ . 162

M-@ . 180

M-{ . 182

M-{ (Calendar mode) 322

M-| . 346

M-} . 182

M-} (Calendar mode) 322

M-~ . 110

M-> . 30

M-> (Calendar mode) 322

M-^ . 176

M-\ . 64

M-< . 30

M-< (Calendar mode) 322

M-1 . 37

M-a . 181

M-a (Calendar mode) 322

Key (Character) Index 483

M-b . 180

M-c . 188

M-d . 180

M-DEL . 180

M-〈DEL〉 (Dired) . 312

M-Drag-Mouse-1 . 155

M-e . 181

M-e (Calendar mode) 322

M-f . 180

M-g b (Enriched mode) 203

M-g d (Enriched mode) 203

M-g i (Enriched mode) 203

M-g l (Enriched mode) 203

M-g o (Enriched mode) 203

M-g u (Enriched mode) 203

M-h . 182

M-i . 177

M-j c (Enriched mode) 206

M-j f (Enriched mode) 206

M-j l (Enriched mode) 206

M-j r (Enriched mode) 206

M-j u (Enriched mode) 206

M-k . 181

M-l . 188

M-LFD . 227

M-LFD (Fortran mode) 251

M-m . 175

M-m (Rmail) . 301

M-Mouse-1 . 155

M-Mouse-2 . 156

M-Mouse-3 . 156

M-n (minibuffer history) 44

M-n (Nroff mode) . 200

M-n (Rmail) . 293

M-n (Shell mode) . 350

M-p (minibuffer history) 44

M-p (Nroff mode) . 200

M-p (Rmail) . 293

M-p (Shell mode) . 350

M-q . 185

M-q (C mode) . 248

M-r . 30

M-r (minibuffer history) 45

M-r (Shell mode) . 350

M-S (Enriched mode) 206

M-s (Gnus Summary mode) 345

M-s (minibuffer history) 45

M-s (Rmail) . 293

M-s (Shell mode) . 350

M-s (Text mode) . 186

M-SPC . 64

M-t . 100, 180

M-TAB . 229

M-〈TAB〉 . 288

M-TAB (Picture mode) 281

M-TAB (Text mode) 189

M-u . 188

M-v . 77

M-v (Calendar mode) 323

M-w . 66

M-x . 47

M-y . 67

M-z . 65

Mouse-1 . 153

Mouse-2 . 153

Mouse-2 (selection) 156

Mouse-3 . 153

N
n (Gnus) . 345

n (Rmail) . 293

〈NEXT〉 . 77

O
o (Calendar mode) 323

o (Dired) . 311

O (Dired) . 314

o (Rmail) . 297

P
p (Calendar mode) 330

P (Dired) . 314

p (Gnus) . 345

p (Rmail) . 293

p d (Calendar mode) 324

〈PRIOR〉 . 77

484 GNU Emacs Manual

Q
q (Calendar mode) 324

Q (Dired) . 314

q (Gnus Group mode) 344

q (Rmail summary) 304

q (Rmail) . 291

R
R (Dired) . 313

r (Rmail) . 300

RET . 29

〈RET〉 (Dired) . 311

〈RET〉 (Occur mode) 98

〈RET〉 (Shell mode) 348

〈RIGHT〉 . 30

S
s (Calendar mode) 335

S (Calendar mode) 327

s (Dired) . 319

S (Dired) . 314

s (Gnus Summary mode) 345

s (Rmail) . 291

S-Mouse-1 . 160

SPC . 42

SPC (Calendar mode) 324

〈SPC〉 (Dired) . 309

SPC (Gnus) . 345

SPC (Rmail) . 292

T
t (Calendar mode) 325

t (Rmail) . 305

TAB . 175

TAB (and major modes) 171

TAB (completion) . 41

〈TAB〉 (GUD) . 264

TAB (Indented Text mode) 189

TAB (programming modes) 214

〈TAB〉 (Shell mode) 348

〈TOP〉 . 30

U
u (Calendar mode) 326

u (Dired) . 310

u (Gnus Group mode) 344

u (Rmail) . 294

V
v (Dired) . 312

W
w (Rmail summary) 304

X
x (Calendar mode) 326

x (Dired) . 310

x (Rmail) . 294

Z
Z (Dired) . 314

Command and Function Index 485

Command and Function Index

2
2C-associate-buffer 361

2C-dissociate . 361

2C-merge . 361

2C-newline . 361

2C-split . 360

2C-two-columns . 360

A
abbrev-mode . 271

abbrev-prefix-mark 273

abort-recursive-edit 398

add-change-log-entry-other-window

. 230

add-global-abbrev 272

add-mode-abbrev. 272

add-name-to-file 136

american-calendar 337

append-next-kill 67

append-to-buffer 68

append-to-file . 68

apply-macro-to-region-lines 378

appt-add . 340

appt-delete . 340

appt-make-list . 340

apropos . 52

apropos-command . 51

apropos-documentation 52

apropos-value . 52

ask-user-about-lock 113

auto-compression-mode 109, 136

auto-fill-mode . 184

auto-lower-mode. 160

auto-raise-mode. 160

auto-save-mode . 116

B
back-to-indentation 175

backward-char . 30

backward-delete-char-untabify . . . 210

backward-kill-sentence 181

backward-kill-sexp 211

backward-kill-word 180

backward-list . 211

backward-page . 183

backward-paragraph 182

backward-sentence 181

backward-sexp . 211

backward-text-line 200

backward-up-list 212

backward-word . 180

beginning-of-buffer 30

beginning-of-defun 212

beginning-of-fortran-subprogram

. 250

beginning-of-line 30

binary-overwrite-mode 368

blackbox . 366

bookmark-delete . 76

bookmark-insert . 76

bookmark-insert-location 76

bookmark-jump . 75

bookmark-load . 76

bookmark-save . 75

bookmark-set . 75

bookmark-write . 76

buffer-menu . 143

C
c-add-style . 224

c-backslash-region 248

c-backward-conditional 245

c-backward-into-nomenclature 245

c-beginning-of-statement 245

c-end-of-statement 245

c-fill-paragraph 248

c-forward-conditional 245

c-forward-into-nomenclature 246

c-indent-command 216

c-indent-defun . 216

486 GNU Emacs Manual

c-indent-exp . 216

c-indent-line . 214

c-macro-expand . 248

c-mark-function. 248

c-scope-operator 246

c-set-offset . 220

c-set-style . 224

c-show-syntactic-information 248

c-toggle-auto-hungry-state 248

c-toggle-auto-state 246

c-toggle-hungry-state 247

c-up-conditional 245

calendar . 321

calendar-backward-day 321

calendar-backward-month 322

calendar-backward-week 321

calendar-beginning-of-month 322

calendar-beginning-of-week 322

calendar-beginning-of-year 322

calendar-count-days-region 324

calendar-cursor-holidays 326

calendar-end-of-month 322

calendar-end-of-week 322

calendar-end-of-year 322

calendar-forward-day 321

calendar-forward-month 322

calendar-forward-week 321

calendar-forward-year 322

calendar-goto-astro-day-number . . 331

calendar-goto-chinese-date 331

calendar-goto-coptic-date 331

calendar-goto-date 323

calendar-goto-ethiopic-date 331

calendar-goto-french-date 331

calendar-goto-hebrew-date 331

calendar-goto-islamic-date 331

calendar-goto-iso-date 331

calendar-goto-julian-date 331

calendar-goto-mayan-long-count-date

. 332

calendar-goto-persian-date 331

calendar-goto-today 323

calendar-next-calendar-round-date

. 333

calendar-next-haab-date 333

calendar-next-tzolkin-date 333

calendar-other-month 323

calendar-phases-of-moon 328

calendar-previous-haab-date 333

calendar-previous-tzolkin-date . . 333

calendar-print-astro-day-number

. 330

calendar-print-chinese-date 330

calendar-print-coptic-date 330

calendar-print-day-of-year 324

calendar-print-ethiopic-date 330

calendar-print-french-date 330

calendar-print-hebrew-date 330

calendar-print-islamic-date 330

calendar-print-iso-date 330

calendar-print-julian-date 330

calendar-print-mayan-date 331

calendar-print-persian-date 331

calendar-sunrise-sunset 327

calendar-unmark. 326

call-last-kbd-macro 377

capitalize-word. 188

center-line . 186

change-log-mode. 231

choose-completion 43

clear-rectangle . 70

column-number-mode 81

comint-bol . 348

comint-continue-subjob 349

comint-copy-old-input 351

comint-delchar-or-maybe-eof 348

comint-dynamic-complete 348

comint-dynamic-complete-variable

. 353

comint-dynamic-list-filename. 348

comint-dynamic-list-input-ring . . 349

comint-interrupt-subjob 348

comint-kill-input 348

comint-kill-output 349

comint-magic-space 352

comint-next-input 350

comint-next-matching-input 350

comint-next-prompt 351

Command and Function Index 487

comint-previous-input 350

comint-previous-matching-input . . 350

comint-previous-prompt 351

comint-quit-subjob 349

comint-run . 350

comint-send-input 348

comint-show-maximum-output 349

comint-show-output 349

comint-stop-subjob 348

comint-strip-ctrl-m 349

comint-truncate-buffer 350

comment-region . 227

compare-windows. 135

compile . 259

compile (MS-DOS) 439

compile-goto-error 260

complete-tag . 229

copy-file . 136

copy-rectangle-to-register 74

copy-to-buffer . 68

copy-to-register 73

count-lines-page 183

count-lines-region 36

count-matches . 98

count-text-lines 200

cpp-highlight-buffer 248

D
dabbrev-completion 275

dabbrev-expand . 275

dbx . 262

debug print . 407

default-value . 373

define-abbrevs . 275

define-key . 384

define-mail-abbrev 287

define-mail-alias 286

delete-backward-char 63

delete-blank-lines 34

delete-char . 63

delete-file . 136

delete-frame . 168

delete-horizontal-space 64

delete-indentation 176

delete-matching-lines 98

delete-non-matching-lines 98

delete-other-windows 151

delete-rectangle 70

delete-window . 151

describe-bindings 54

describe-copying 55

describe-distribution 55

describe-function 50

describe-key . 50

describe-key-briefly 50

describe-mode . 54

describe-no-warranty 55

describe-project 55

describe-syntax. 391

desktop-save . 362

diary . 335

diary-anniversary 338

diary-block . 338

diary-cyclic . 339

diary-float . 339

diff . 134

diff-backup . 135

digit-argument . 37

dired . 309

dired-backup-diff 317

dired-change-marks 312

dired-create-directory 315

dired-diff . 317

dired-display-file 311

dired-do-byte-compile 314

dired-do-chgrp . 314

dired-do-chmod . 314

dired-do-chown . 314

dired-do-compress 314

dired-do-copy . 313

dired-do-copy-regexp 316

dired-do-hardlink 314

dired-do-hardlink-regexp 316

dired-do-kill-lines 319

dired-do-load . 314

dired-do-print . 314

dired-do-query-replace 314

dired-do-redisplay 319

488 GNU Emacs Manual

dired-do-rename. 313

dired-do-rename-regexp 316

dired-do-search. 314

dired-do-shell-command 315

dired-do-symlink 314

dired-do-symlink-regexp 316

dired-downcase . 316

dired-expunge . 310

dired-find-file. 311

dired-find-file-other-window 311

dired-flag-auto-save-files 310

dired-flag-backup-files 310

dired-flag-clean-directory 310

dired-flag-files-regexp 311

dired-hide-all . 318

dired-hide-subdir 318

dired-mark . 312

dired-mark-directories 312

dired-mark-executables 312

dired-mark-files-regexp 313

dired-mark-symlinks 312

dired-maybe-insert-subdir 317

dired-mouse-find-file-other-window

. 311

dired-next-subdir 318

dired-other-frame 309

dired-other-window 309

dired-prev-subdir 318

dired-sort-toggle-or-edit 319

dired-tree-down. 318

dired-tree-up . 318

dired-unmark-all-files 312

dired-upcase . 316

dired-view-file. 312

dirs . 347

disable-command. 389

display-time . 82

dissociated-press 365

do-auto-save . 116

doctor . 402

down-list . 212

downcase-region. 189

downcase-word . 188

dunnet . 366

E
edit-abbrevs . 274

edit-kbd-macro . 378

edit-options . 371

edit-picture . 279

edit-tab-stops . 177

edit-tab-stops-note-changes 177

edt-emulation-off 364

edt-emulation-on 364

electric-nroff-mode 200

emacs-lisp-mode. 267

emacs-version . 403

emerge-auto-advance-mode 241

emerge-buffers . 239

emerge-buffers-with-ancestor 239

emerge-files . 239

emerge-files-with-ancestor 239

emerge-skip-prefers-mode 241

enable-command . 389

enable-flow-control 400

enable-flow-control-on 400

enable-local-eval 375

enable-local-variables 375

end-kbd-macro . 377

end-of-buffer . 30

end-of-defun . 212

end-of-fortran-subprogram 250

end-of-line . 30

enlarge-window . 151

enlarge-window-horizontally 151

enriched-mode . 201

european-calendar 337

eval-current-buffer 268

eval-defun . 268

eval-expression. 268

eval-last-sexp . 268

eval-region . 268

exchange-point-and-mark 58

execute-extended-command 48

exit-calendar . 324

exit-recursive-edit 363

expand-abbrev . 273

expand-region-abbrevs 273

Command and Function Index 489

F
facemenu-remove-all 202

facemenu-remove-props 202

facemenu-set-background 204

facemenu-set-bold 203

facemenu-set-bold-italic 203

facemenu-set-default 203

facemenu-set-face 203

facemenu-set-foreground 204

facemenu-set-italic 203

facemenu-set-underline 203

fast-lock-mode . 166

fill-individual-paragraphs 188

fill-nonuniform-paragraphs 188

fill-paragraph . 185

fill-region . 185

fill-region-as-paragraph 185

find-alternate-file 108

find-dired . 320

find-file . 107

find-file-other-frame 108

find-file-other-window 108

find-file-read-only 108

find-file-read-only-other-frame

. 158

find-grep-dired. 320

find-name-dired. 319

find-tag . 236

find-tag-other-frame 237

find-tag-other-window 237

find-tag-regexp. 237

finder-by-keyword 52

flush-lines . 98

font-lock-fontify-block 165

font-lock-mode . 165

format-find-file 207

fortran-auto-fill-mode 255

fortran-column-ruler 256

fortran-comment-region 254

fortran-indent-line 250

fortran-indent-new-line 250

fortran-indent-subprogram 251

fortran-mode . 250

fortran-next-statement 250

fortran-previous-statement 250

fortran-split-line 251

fortran-window-create 256

forward-char . 30

forward-list . 211

forward-page . 183

forward-paragraph 182

forward-sentence 181

forward-sexp . 211

forward-text-line 200

forward-word . 180

frame-configuration-to-register . . 74

G
gdb . 262

global-font-lock-mode 165

global-set-key . 383

global-unset-key 383

gnus . 343

gnus-group-exit. 344

gnus-group-kill-group 344

gnus-group-list-all-groups 344

gnus-group-list-groups 344

gnus-group-next-group 345

gnus-group-next-unread-group 345

gnus-group-prev-group 345

gnus-group-prev-unread-group 345

gnus-group-read-group 345

gnus-group-unsubscribe-current-group

. 344

gnus-summary-isearch-article 345

gnus-summary-next-subject 345

gnus-summary-next-unread-article

. 345

gnus-summary-prev-page 345

gnus-summary-prev-subject 345

gnus-summary-prev-unread-article

. 345

gnus-summary-search-article-forward

. 345

gomoku . 366

goto-char . 30

goto-line . 30

grep . 260

490 GNU Emacs Manual

grep (MS-DOS) . 439

gud-cont . 264

gud-def . 265

gud-down . 264

gud-finish . 264

gud-gdb-complete-command 264

gud-next . 263

gud-refresh . 263

gud-remove . 264

gud-step . 263

gud-stepi . 264

gud-tbreak . 264

gud-up . 264

H
hanoi . 366

help-command . 49

help-for-help . 49

help-with-tutorial 29

hide-body . 194

hide-entry . 193

hide-leaves . 193

hide-other . 194

hide-sublevels . 194

hide-subtree . 193

holidays . 326

I
iconify-or-deiconify-frame 168

ielm . 269

increase-left-margin 204

indent-c-exp . 214

indent-for-comment 226

indent-new-comment-line 227

indent-region . 176

indent-relative. 176

indent-rigidly . 176

indent-sexp . 214

indented-text-mode 189

info . 54

Info-goto-emacs-command-node 54

Info-goto-emacs-key-command-node

. 54

insert-abbrevs . 275

insert-anniversary-diary-entry . . 338

insert-block-diary-entry 339

insert-cyclic-diary-entry 339

insert-diary-entry 337

insert-file . 135

insert-kbd-macro 378

insert-monthly-diary-entry 337

insert-parentheses 229

insert-register . 73

insert-weekly-diary-entry 337

insert-yearly-diary-entry 337

inverse-add-global-abbrev 272

inverse-add-mode-abbrev 272

invert-face . 164

isearch-backward 87

isearch-backward-regexp 89

isearch-forward . 85

isearch-forward-regexp 89

iso-accents-mode 80

ispell-buffer . 101

ispell-complete-word 102

ispell-kill-ispell 102

ispell-message . 289

ispell-region . 101

ispell-word . 101

J
jump-to-register 73

just-one-space . 64

K
kbd-macro-query. 379

keep-lines . 98

keyboard-escape-quit 398

keyboard-translate 390

kill-all-abbrevs 272

kill-buffer . 142

kill-comment . 227

kill-compilation 260

kill-line . 64

kill-local-variable 373

kill-rectangle . 70

kill-region . 65

kill-ring-save . 66

Command and Function Index 491

kill-sentence . 181

kill-sexp . 211

kill-some-buffers 142

kill-word . 180

L
latex-mode . 195

lazy-lock-mode . 167

line-number-mode 81

lisp-complete-symbol 229

lisp-eval-defun. 270

lisp-indent-line 214

lisp-interaction-mode 269

lisp-mode . 270

list-abbrevs . 274

list-bookmarks . 75

list-buffers . 140

list-calendar-holidays 326

list-colors-display 164

list-command-history 45

list-directory . 134

list-faces-display 163

list-matching-lines 98

list-options . 371

list-tags . 238

list-text-properties-at 202

list-yahrzeit-dates 332

load . 266

load-file . 266

load-library . 266

local-set-key . 383

local-unset-key. 383

lpr-buffer . 355

lpr-region . 355

M
mail . 283

mail-bcc . 288

mail-cc . 288

mail-complete . 288

mail-fcc . 288

mail-fill-yanked-message 289

mail-interactive-insert-alias . . . 287

mail-other-frame 283

mail-other-window 283

mail-send . 288

mail-send-and-exit 288

mail-signature . 289

mail-subject . 288

mail-text . 289

mail-to . 288

mail-yank-original 289

make-face-bold . 164

make-face-bold-italic 164

make-face-italic 164

make-face-unbold 164

make-face-unitalic 164

make-frame . 157

make-frame-on-display 158

make-indirect-buffer 144

make-local-variable 373

make-symbolic-link 136

make-variable-buffer-local 373

Man-fontify-manpage 230

manual-entry . 230

mark-calendar-holidays 326

mark-defun . 212

mark-diary-entries 334

mark-fortran-subprogram 250

mark-page . 183

mark-paragraph . 182

mark-sexp . 212

mark-whole-buffer 60

mark-word . 180

minibuffer-complete 41

minibuffer-complete-word 42

mode25 . 436

mode4350 . 436

modify-face . 164

mouse-choose-completion 42

mouse-save-then-click 153

mouse-secondary-save-then-kill . . 156

mouse-set-point. 153

mouse-set-region 153

mouse-set-secondary 155

mouse-start-secondary 155

mouse-yank-at-click 153

mouse-yank-secondary 156

492 GNU Emacs Manual

move-over-close-and-reindent 229

move-to-window-line 30

mpuz . 366

N
name-last-kbd-macro 378

narrow-to-page . 360

narrow-to-region 360

negative-argument 37

newline . 30

newline-and-indent 214

next-completion . 43

next-error . 260

next-history-element 44

next-line . 30

next-matching-history-element 45

normal-mode . 173

not-modified . 110

nroff-mode . 200

O
occur . 98

open-dribble-file 405

open-line . 34

open-rectangle . 70

open-termscript. 405

other-frame . 168

other-window . 149

outline-backward-same-level 192

outline-forward-same-level 192

outline-minor-mode 190

outline-mode . 190

outline-next-visible-heading 192

outline-previous-visible-heading

. 192

outline-up-heading 192

overwrite-mode . 368

P
perldb . 262

phases-of-moon . 328

picture-backward-clear-column . . . 280

picture-backward-column 279

picture-clear-column 280

picture-clear-line 280

picture-clear-rectangle 282

picture-clear-rectangle-to-register

. 282

picture-forward-column 279

picture-motion . 281

picture-motion-reverse 281

picture-move-down 279

picture-move-up. 279

picture-movement-down 280

picture-movement-left 280

picture-movement-ne 280

picture-movement-nw 280

picture-movement-right 280

picture-movement-se 280

picture-movement-sw 280

picture-movement-up 280

picture-newline. 280

picture-open-line 280

picture-set-tab-stops 281

picture-tab . 281

picture-tab-search 281

picture-yank-rectangle 282

picture-yank-rectangle-from-register

. 282

plain-tex-mode . 195

point-to-register 73

prepend-to-buffer 68

previous-completion 43

previous-history-element 44

previous-line . 30

previous-matching-history-element

. 45

print-buffer . 355

print-buffer, under MS-DOS 438

print-region . 355

print-region, under MS-DOS 438

ps-print-buffer. 356

ps-print-buffer, under MS-DOS 439

ps-print-buffer-with-faces 356

ps-print-buffer-with-faces, under

MS-DOS . 439

ps-print-region. 356

ps-print-region, under MS-DOS 439

Command and Function Index 493

ps-print-region-with-faces 356

ps-print-region-with-faces, under

MS-DOS . 439

ps-spool-buffer. 357

ps-spool-buffer, under MS-DOS 439

ps-spool-buffer-with-faces 357

ps-spool-buffer-with-faces, under

MS-DOS . 439

ps-spool-region. 357

ps-spool-region, under MS-DOS 439

ps-spool-region-with-faces 357

ps-spool-region-with-faces, under

MS-DOS . 439

Q
query-replace . 96

query-replace-regexp 96

quietly-read-abbrev-file 275

quoted-insert . 29

R
re-search-backward 89

re-search-forward 89

read-abbrev-file 275

recenter . 77

recover-file . 117

recover-session. 117

redraw-calendar. 324

rename-buffer . 141

rename-file . 136

repeat-complex-command 45

replace-regexp . 95

replace-string . 95

report-emacs-bug 404

reposition-window 78

resize-minibuffer-mode 40

revert-buffer . 114

revert-buffer (Dired) 319

rlogin . 353

rlogin-directory-tracking-mode . . 354

rmail . 291

rmail-add-label. 299

rmail-beginning-of-message 292

rmail-bury . 291

rmail-continue . 302

rmail-delete-backward 294

rmail-delete-forward 294

rmail-edit-current-message 306

rmail-expunge . 294

rmail-first-message 293

rmail-forward . 301

rmail-get-new-mail 297

rmail-input . 296

rmail-kill-label 299

rmail-last-message 293

rmail-mail . 302

rmail-next-labeled-message 299

rmail-next-message 293

rmail-next-undeleted-message 293

rmail-output . 297

rmail-output-to-rmail-file 297

rmail-previous-labeled-message . . 299

rmail-previous-message 293

rmail-previous-undeleted-message

. 293

rmail-quit . 291

rmail-reply . 300

rmail-resend . 302

rmail-retry-failure 301

rmail-save . 291

rmail-search . 293

rmail-show-message 293

rmail-summary . 303

rmail-summary-by-labels 303

rmail-summary-by-recipients 303

rmail-summary-by-topic 303

rmail-summary-quit 304

rmail-summary-wipe 304

rmail-toggle-header 305

rmail-undelete-previous-message

. 294

rot13-other-window 307

run-lisp . 269

S
save-buffer . 109

save-buffers-kill-emacs 26

save-some-buffers 109

494 GNU Emacs Manual

scroll-bar-mode. 161

scroll-calendar-left 323

scroll-calendar-left-three-months

. 323

scroll-calendar-right 323

scroll-calendar-right-three-months

. 323

scroll-down . 77

scroll-left . 78

scroll-other-window 149

scroll-right . 78

scroll-up . 77

sdb . 262

search-backward . 88

search-forward . 88

self-insert . 30

send-invisible . 349

server-edit . 354

set-background-color 160

set-border-color 160

set-comment-column 227

set-cursor-color 160

set-default-font 160

set-face-background 164

set-face-font . 164

set-face-foreground 164

set-face-underline-p 164

set-fill-column. 186

set-fill-prefix. 187

set-foreground-color 160

set-goal-column . 31

set-justification-center 206

set-justification-full 206

set-justification-left 206

set-justification-none 206

set-justification-right 206

set-mark-command 57

set-mouse-color. 160

set-rmail-inbox-list 297

set-selective-display 79

set-variable . 370

set-visited-file-name 110

setq-default . 373

shell . 346

shell-backward-command 349

shell-command . 346

shell-command-on-region 346

shell-forward-command 349

shell-pushd-dextract 353

shell-pushd-dunique 353

shell-pushd-tohome 353

show-all . 194

show-all-diary-entries 335

show-branches . 193

show-children . 193

show-entry . 193

show-subtree . 193

slitex-mode . 195

sort-columns . 359

sort-fields . 357

sort-lines . 357

sort-numeric-fields 357

sort-pages . 357

sort-paragraphs. 357

split-line . 176

split-window-horizontally 148

split-window-vertically 148

spook . 290

standard-display-european 79

start-kbd-macro. 377

string-rectangle 71

substitute-key-definition 384

sunrise-sunset . 327

suspend-emacs . 26

switch-to-buffer 139

switch-to-buffer-other-frame 139

switch-to-buffer-other-window . . . 139

switch-to-completions 42

T
tab-to-tab-stop. 177

tabify . 177

tags-apropos . 238

tags-loop-continue 237

tags-query-replace 237

tags-search . 237

telnet . 353

tex-bibtex-file. 199

Command and Function Index 495

tex-buffer . 197

tex-close-latex-block 197

tex-file . 198

tex-insert-braces 196

tex-insert-quote 195

tex-kill-job . 198

tex-latex-block. 196

tex-mode . 195

tex-print . 197

tex-recenter-output-buffer 198

tex-region . 198

tex-show-print-queue 197

tex-terminate-paragraph 196

tex-view . 197

text-mode . 189

tmm-menubar . 162

toggle-scroll-bar 161

top-level . 398

transient-mark-mode 58

transpose-chars. 100

transpose-lines. 100

transpose-sexps 100, 212

transpose-words 100, 180

turn-on-font-lock 165

U
undigestify-rmail-message 306

undo . 32

unforward-rmail-message 301

universal-argument 37

untabify . 177

up-list . 196

upcase-region . 189

upcase-word . 188

V
validate-tex-region 196

vc-cancel-version 122

vc-create-snapshot 130

vc-diff . 126

vc-directory . 129

vc-insert-headers 131

vc-print-log . 129

vc-register . 121

vc-rename-file . 129

vc-retrieve-snapshot 130

vc-revert-buffer 122

vc-toggle-read-only 141

vc-update-change-log 125

vc-version-other-window 126

vi-mode . 364

view-buffer . 141

view-diary-entries 334

view-emacs-news . 55

view-file . 135

view-lossage . 54

view-register . 73

vip-mode . 364

viper-mode . 364

visit-tags-table 235

W
what-cursor-position 36

what-cursor-position (MS-DOS) . . 438

what-line . 36

what-page . 36

where-is . 51

widen . 360

window-configuration-to-register

. 74

word-search-backward 89

word-search-forward 89

write-abbrev-file 275

write-file . 110

write-region . 136

X
xdb . 262

Y
yank . 66

yank-pop . 67

yank-rectangle . 70

yow . 366

Z
zap-to-char . 65

496 GNU Emacs Manual

Variable Index 497

Variable Index

A
abbrev-all-caps. 273

abbrev-file-name 275

abbrev-mode . 271

adaptive-fill-function 186

adaptive-fill-mode 185

adaptive-fill-regexp 186

appt-display-diary 340

appt-issue-message 340

auto-mode-alist. 172

auto-save-default 116

auto-save-interval 116

auto-save-list-file-prefix 117

auto-save-timeout 116

auto-save-visited-file-name 116

B
backup-by-copying 113

backup-by-copying-when-linked . . . 113

backup-by-copying-when-mismatch

. 113

baud-rate . 83

blink-matching-delay 225

blink-matching-paren 225

blink-matching-paren-distance . . . 225

bookmark-save-flag 75

bookmark-search-size 76

buffer-read-only 141

C
c-basic-offset . 224

c-block-comments-indent-p 249

c-comment-only-line-offset 249

c-comment-start-regexp 249

c-hanging-comment-ender-p 249

c-hungry-delete-key 248

c-mode-hook . 210

c-mode-map . 382

c-offsets-alist. 223

c-offsets-alist-default 223

c-recognize-knr-p 224

c-special-indent-hook 224

c-strict-syntax-p 219

c-style-alist . 224

c-syntactic-context 218

calendar-daylight-savings-ends . . 341

calendar-daylight-savings-ends-time

. 341

calendar-daylight-savings-starts

. 341

calendar-daylight-time-offset . . . 341

calendar-daylight-time-zone-name

. 327

calendar-latitude 327

calendar-location-name 327

calendar-longitude 327

calendar-standard-time-zone-name

. 327

calendar-time-zone 327

calendar-week-start-day 322

case-fold-search 94

case-replace . 96

colon-double-space 187

comint-completion-addsuffix 352

comint-completion-autolist 352

comint-completion-fignore 348

comint-completion-recexact 352

comint-input-autoexpand 352

comint-input-ignoredups 352

comint-prompt-regexp 352

comint-scroll-show-maximum-output

. 352

comint-scroll-to-bottom-on-input

. 352

comint-scroll-to-bottom-on-output

. 352

command-history . 46

command-line-args 414

comment-column . 227

comment-end . 228

498 GNU Emacs Manual

comment-indent-function 228

comment-line-start 254

comment-line-start-skip 254

comment-multi-line 228

comment-start . 228

comment-start-skip 228

compare-ignore-case 135

compile-command. 259

completion-auto-help 44

completion-ignored-extensions 43

ctl-arrow . 83

ctl-x-4-map . 381

ctl-x-map . 381

D
dabbrev-abbrev-char-regexp 277

dabbrev-abbrev-skip-leading-regexp

. 277

dabbrev-case-fold-search 276

dabbrev-case-replace 276

dabbrev-check-all-buffers 276

dabbrev-limit . 275

dbx-mode-hook . 265

default-directory 105

default-justification 206

default-major-mode 173

delete-auto-save-files 116

delete-old-versions 112

desktop-files-not-to-save 362

diary-file . 335

diary-hook . 340

diff-switches . 134

dired-chown-program 314

dired-copy-preserve-time 313

dired-kept-versions 311

dired-listing-switches 309

dired-listing-switches (MS-DOS)

. 440

dos-display-scancodes 435

dos-hyper-key . 435

dos-keypad-mode. 435

dos-printer . 438

dos-ps-printer . 439

dos-super-key . 435

double-click-time 388

E
echo-keystrokes . 82

emacs-lisp-mode-hook 210

emerge-combine-versions-template

. 244

emerge-startup-hook 244

enable-recursive-minibuffers 41

enriched-default-right-margin . . . 205

enriched-fill-after-visiting 201

enriched-translations 201

esc-map . 381

european-calendar-style 337

explicit-shell-file-name 347

F
fast-lock-cache-directories 166

fast-lock-minimum-size 166

fast-lock-save-others 166

file-name-buffer-file-type-alist

. 438

file-name-handler-alist 106

fill-column . 186

fill-prefix . 188

find-file-existing-other-name . . . 118

find-file-hooks. 108

find-file-not-found-hooks 108

find-file-run-dired 108

find-file-visit-truename 118

find-ls-option . 320

font-lock-display-type 165

font-lock-mark-block-function . . . 165

font-lock-maximum-decoration 166

font-lock-maximum-size 166

font-lock-support-mode 168

fortran-analyze-depth 251

fortran-break-before-delimiters

. 255

fortran-check-all-num. 252

fortran-column-ruler 256

fortran-comment-indent-char 254

fortran-comment-indent-style 254

Variable Index 499

fortran-comment-line-extra-indent

. 254

fortran-comment-region 254

fortran-continuation-indent 252

fortran-continuation-string 251

fortran-do-indent 252

fortran-electric-line-number 252

fortran-if-indent 252

fortran-line-number-indent 252

fortran-minimum-statement-indent. . .

. 252

fortran-structure-indent 252

fortran-tab-mode-default 251

G
gdb-mode-hook . 265

gud-xdb-directories 262

H
help-map . 381

I
indent-tabs-mode 177

indent-tabs-mode (Fortran mode) . . 251

inferior-lisp-program 269

initial-major-mode 25

insert-default-directory 105

interpreter-mode-alist 172

inverse-video . 82

isearch-mode-map 87

ispell-dictionary 103

K
kept-new-versions 112

kept-old-versions 112

kill-buffer-hook 142

kill-ring . 68

kill-ring-max . 68

kill-whole-line . 64

L
latex-block-names 196

latex-mode-hook. 199

latex-run-command 198

lazy-lock-defer-driven 167

lazy-lock-defer-time 167

lazy-lock-minimum-size 167

lazy-lock-stealth-lines 167

lazy-lock-stealth-time 167

lazy-lock-stealth-verbose 167

line-number-display-limit 81

lisp-body-indent 215

lisp-indent-offset 215

lisp-interaction-mode-hook 210

lisp-mode-hook . 210

lisp-mode-map . 382

list-directory-brief-switches . . . 134

list-directory-verbose-switches

. 134

load-path . 267

lpr-add-switches 356

lpr-command, under MS-DOS 439

lpr-commands . 356

lpr-headers-switches 356

lpr-headers-switches, under MS-DOS

. 438

lpr-switches . 355

lpr-switches, under MS-DOS 439

M
mail-abbrevs . 287

mail-aliases . 286

mail-archive-file-name 285

mail-default-reply-to 285

mail-directory-process 288

mail-directory-stream 288

mail-from-style. 285

mail-header-separator 284

mail-mode-hook . 290

mail-personal-alias-file 286

mail-self-blind. 284

mail-setup-hook. 290

mail-signature . 289

mail-yank-prefix 289

make-backup-files 111

Man-fontify-manpage-flag 230

mark-even-if-inactive 59

mark-ring . 61

500 GNU Emacs Manual

mark-ring-max . 61

message-log-max . 17

minibuffer-local-completion-map

. 383

minibuffer-local-map 383

minibuffer-local-must-match-map

. 383

minibuffer-local-ns-map 383

mode-line-inverse-video 82

mode-specific-map 381

mouse-scroll-min-lines 153

mouse-yank-at-point 155

muddle-mode-hook 210

N
next-line-add-newlines 31

next-screen-context-lines 78

no-redraw-on-reenter 82

nroff-mode-hook. 200

O
outline-level . 191

outline-minor-mode-prefix 190

outline-mode-hook 190

outline-regexp . 191

P
page-delimiter . 183

paragraph-separate 182

paragraph-start. 182

parens-dont-require-spaces 229

perldb-mode-hook 265

picture-mode-hook 279

picture-tab-chars 281

plain-tex-mode-hook 199

print-region-function under MS-DOS

. 439

ps-lpr-command . 357

ps-lpr-command, under MS-DOS 439

ps-lpr-switches. 357

ps-lpr-switches, under MS-DOS 439

ps-print-color-p 357

ps-print-header. 357

R
require-final-newline 110

rlogin-explicit-args 353

rmail-delete-after-output 298

rmail-delete-message-hook 294

rmail-dont-reply-to-names 301

rmail-edit-mode-hook 306

rmail-file-name. 291

rmail-highlighted-headers 305

rmail-ignored-headers 305

rmail-mail-new-frame 302

rmail-output-file-alist 298

rmail-pop-password 295

rmail-pop-password-required 295

rmail-primary-inbox-list 295

rmail-redisplay-summary 304

rmail-retry-ignored-headers 301

rmail-secondary-file-directory . . 296

rmail-secondary-file-regexp 296

rmail-summary-window-size 303

S
same-window-buffer-names 150

same-window-regexps 150

save-abbrevs . 275

scheme-mode-hook 210

scroll-step . 78

sdb-mode-hook . 265

search-slow-speed 87

search-slow-window-lines 88

selective-display-ellipses 79

sentence-end . 181

sentence-end-double-space 186

server-temp-file-regexp 355

server-window . 354

shell-cd-regexp. 347

shell-command-execonly 353

shell-command-regexp 349

shell-completion-fignore 348

shell-file-name. 346

shell-input-ring-file-name 351

shell-popd-regexp 347

shell-prompt-pattern 348, 352

shell-pushd-regexp 347

Variable Index 501

shell-set-directory-error-hook . . 347

slitex-mode-hook 199

slitex-run-command 198

sort-fold-case . 359

special-display-buffer-names 159

special-display-frame-alist 159

special-display-regexps 159

split-window-keep-point 148

standard-indent. 205

suggest-key-bindings 47

T
tab-stop-list . 177

tab-width . 83

tags-file-name . 235

tags-table-list. 236

term-file-prefix 394

term-setup-hook. 395

tex-bibtex-command 199

tex-default-mode 195

tex-directory . 197

tex-dvi-print-command 198

tex-dvi-view-command 198

tex-mode-hook . 199

tex-run-command. 198

tex-shell-hook . 199

tex-show-queue-command 198

text-mode-hook . 189

track-eol . 31

truncate-lines . 35

truncate-partial-width-windows . . 148

U
undo-limit . 33

undo-strong-limit 33

user-mail-address 393

V
vc-command-messages 133

vc-comment-alist 131

vc-consult-headers 131, 133

vc-default-back-end 121

vc-follow-symlinks 132

vc-handle-cvs . 124

vc-header-alist. 131

vc-initial-comment 121

vc-keep-workfiles 132

vc-log-mode-hook 124

vc-make-backup-files 132

vc-mistrust-permissions 133

vc-path . 133

vc-static-header-alist 132

vc-suppress-confirm 133

version-control. 111

visible-bell . 82

W
win32-pass-alt-to-system 441

window-min-height 151

window-min-width 151

X
x-cut-buffer-max 155

xdb-mode-hook . 265

502 GNU Emacs Manual

Concept Index 503

Concept Index

*
‘*Messages*’ buffer 17

.
‘.mailrc’ file . 286

/
// in file name . 40

A
A and B buffers (Emerge) 239

Abbrev mode . 271

abbrevs . 271

aborting recursive edit 398

accented characters 79

accessible portion 359

accumulating scattered text 68

action options (command line) 413

againformation . 365

alarm clock . 340

appending kills in the ring 66

appointment notification 340

apropos . 51

arguments (command line) 413

arguments, numeric 37

arguments, prefix . 37

arrow keys . 30

ASCII . 21

Asm mode . 256

astronomical day numbers 329

attribute (Rmail) . 298

Auto Compression mode 109

Auto Fill mode . 184

Auto Save mode . 115

Auto-Lower mode 160

Auto-Raise mode . 160

autoload . 267

Awk mode . 209

B
back end (version control) 118

backtrace for bug reports 407

backup file . 111

backup file names on MS-DOS 437

base buffer . 144

batch mode . 415

binding . 23

blank lines . 34

blank lines in programs 227

body lines (Outline mode) 190

bold font . 164

bookmarks . 75

borders (X Windows) 424

boredom . 366

branch (version control) 127

buffer menu . 142

buffers . 139

buggestion . 365

bugs . 402

building programs 259

button down events 387

byte code . 267

C
C editing . 209

c indentation styles 224

C- . 21

C++ mode . 209

calendar . 321

calendar and TEX 325

calendar, first day of week 322

capitalizing words 188

case conversion . 188

centering . 186

change buffers . 139

change log . 230

Change Log mode 231

changes, undoing . 32

character set (keyboard) 21

504 GNU Emacs Manual

characters (in text) 24

checking in files . 119

checking out files . 119

checking spelling . 101

Chinese calendar . 330

choosing a major mode 171

click events . 387

collision . 113

color of window (X Windows) 422

colors . 160

colors and faces . 164

Column Number mode 81

columns (and rectangles) 69

columns (indentation) 175

columns, splitting 360

Comint mode . 350

command . 23

command history . 45

command line arguments 413

comments . 226

committing a change (CVS) 123

comparing files . 134

compilation errors 259

Compilation mode 260

compilation under MS-DOS 439

complete . 44

complete key . 22

completion . 41

completion (symbol names) 229

completion in Lisp 229

completion using tags 229

compression . 136

conflict (CVS) . 123

connecting to remote host 353

continuation line . 35

Control . 21

control characters . 21

Control-Meta . 210

converting text to upper or lower case

. 188

Coptic calendar . 329

copying files . 136

copying text . 65

correcting spelling 101

crashes . 115

creating files . 108

creating frames . 157

current buffer . 139

cursor . 15

cursor location . 36

cursor location, under MS-DOS 438

cursor motion . 30

customization . 367

customizing Lisp indentation 215

cut buffer . 155

cutting and X . 155

cutting text . 63

CVS . 118

CVS (with VC) . 123

CVSREAD environment variable 123

D
day of year . 324

daylight savings time 340

DBX . 261

debuggers . 261

default argument . 39

default-frame-alist 158

defining keyboard macros 376

defuns . 212

deleting blank lines 34

deleting characters and lines 31

deleting files (in Dired) 309

deletion . 63

deletion (of files) . 136

deletion (Rmail) . 293

desktop . 362

developediment . 365

diary . 333

diary file . 335

digest message . 306

directory header lines 318

directory listing . 134

directory listing on MS-DOS. 440

Dired . 309

Dired sorting . 319

disabled command 389

DISPLAY environment variable 420

Concept Index 505

display name (X Windows) 420

display table . 24

doctor . 402

double clicks . 387

double slash in file name 40

down events . 387

drag events . 387

drastic changes . 114

dribble file . 405

E
echo area . 16

editing binary files 361

editing in Picture mode 279

editing level, recursive 363

EDITOR environment variable 354

EDT . 364

Eliza . 402

Emacs as a server 354

Emacs initialization file 391

Emacs-Lisp mode 267

emacsclient . 354

Emerge . 239

emulating other editors 364

Enriched mode . 200

entering Emacs . 25

environment . 346

erasing characters and lines 31

error log . 259

error message in the echo area 16

〈ESC〉 replacing 〈META〉 key 21

ESHELL environment variable 347

etags program . 233

Ethiopic calendar 329

European character set 79

exiting . 26

exiting recursive edit 363

expanding subdirectories in Dired . . . 317

expansion (of abbrevs) 271

expansion of C macros 248

explicit check-out 120

expression . 210

expunging (Dired) 310

expunging (Rmail) 293

F
faces . 162

faces under MS-DOS 436

Fast Lock mode . 166

file dates . 113

file directory . 134

file names . 105

file names under MS-DOS 437

file names under Windows 95/NT . . . 437

file truenames . 118

files . 105

files, visiting and saving 107

fill prefix . 187

filling text . 184

find and Dired . 319

finding strings within text 85

flagging files (in Dired) 309

flow control . 400

Follow mode . 81

Font Lock mode 163, 165

font name (X Windows) 420

fonts and faces . 164

fonts, emulating under MS-DOS 436

formatted text . 200

formfeed . 183

Fortran continuation lines 251

Fortran mode . 249

forwarding a message 301

frame size under MS-DOS 436

frames . 153

frames on MS-DOS 436

French Revolutionary calendar 329

FTP . 106

function . 23

function definition . 23

function key . 380

G
GDB . 261

geometry (X Windows) 423

getting help with keys 34

global keymap . 380

global mark ring . 61

global substitution 95

506 GNU Emacs Manual

Gnus . 343

Go Moku . 366

graphic characters . 29

Gregorian calendar 329

growing minibuffer 40

GUD library . 261

gzip . 136

H
hard newline . 201

hardcopy . 355

head version . 127

header (TEX mode) 198

header line (Dired) 318

headers (of mail message) 284

heading lines (Outline mode) 190

Hebrew calendar . 329

height of minibuffer 40

help . 49

Hexl mode . 361

hiding in Dired (Dired) 318

highlighting region 58

history of commands 45

history of minibuffer input 44

history reference . 352

holidays . 326

HOME directory under MS-DOS 437

hook . 371

horizontal scrolling 78

Hyper (under MS-DOS) 435

I
Icomplete mode . 44

Icon mode . 209

icons (X Windows) 425

ignoriginal . 365

implicit check-out (CVS) 123

in-situ subdirectory (Dired) 317

inbox file . 294

incremental search . 85

indentation . 175

Indentation Calculation 218

indentation for comments 226

indentation for programs 213

Indented Text mode 189

indirect buffer . 144

indirect buffers and outlines 194

inferior process . 259

inferior processes under MS-DOS 439

Info . 54

init file . 391

init file, default name under MS-DOS

. 437

initial options (command line) 413

initial-frame-alist . 158

input event . 22

input with the keyboard 21

inserted subdirectory (Dired) 317

inserting blank lines 34

insertion . 29

inverse video and faces 164

invisible lines . 190

Islamic calendar . 329

ISO Accents mode . 80

ISO commercial calendar 329

ISO Latin-1 character set 79

iso-ascii library . 80

iso-syntax library 79

iso-transl library 80

ispell program . 102

italic font . 164

J
Java mode . 209

Julian calendar . 329

Julian day numbers 329

justification . 185

K
key . 22

key bindings . 379

key rebinding, permanent 391

key rebinding, this session 383

key sequence . 22

keyboard input . 21

keyboard macro . 376

keyboard translations 390

keymap . 380

Concept Index 507

kill ring . 65

killing buffers . 142

killing characters and lines 31

killing Emacs . 26

killing rectangular areas of text 69

killing text . 63

L
label (Rmail) . 298

LaTEX mode . 195

Lazy Lock mode . 167

leaving Emacs . 26

libraries . 266

line number commands 36

Line Number mode 81

line wrapping . 35

Lisp editing . 209

Lisp mode . 209

Lisp string syntax 392

Lisp symbol completion 229

list . 210

listing current buffers 140

loading Lisp code . 266

local keymap . 382

local variables . 372

local variables in files 374

location of point . 36

locking and version control 119

locking files . 113

log entry . 124

long file names on MS-DOS under

Windows 95/NT 437

lpr usage under MS-DOS 439

Lucid Widget X Resources 428

M
M- . 21

macro expansion in C 248

mail . 283

mail (on mode line) 82

mail aliases . 286

MAIL environment variable 295

Mail mode . 287

MAILHOST environment variable 295

mailrc file . 286

major modes . 171

make . 259

Makefile mode . 209

making pictures out of text characters

. 279

manipulating paragraphs 182

manipulating sentences 181

manipulating text 179

manuals, on-line . 54

mark . 57

mark ring . 61

marking in Dired . 312

marking sections of text 60

Markov chain . 365

master file . 119

matching parentheses 225

Mayan calendar . 329

Mayan calendar round 333

Mayan haab calendar 333

Mayan long count 332

Mayan tzolkin calendar 333

memory full . 400

Menu Bar mode . 162

Menu X Resources (Lucid widgets) . . 428

Menu X Resources (Motif widgets) . . 429

merge buffer (Emerge). 239

merging changes (CVS) 123

merging files . 239

message . 283

message number . 291

messages saved from echo area 17

Meta . 21

Meta (under MS-DOS) 435

Meta commands and words 179

minibuffer . 39

minibuffer history . 44

minibuffer keymaps 383

minor mode keymap 382

minor modes . 367

mistakes, correcting 99

mode hook . 210

mode line . 17

mode, Abbrev . 271

508 GNU Emacs Manual

mode, Auto Fill . 184

mode, Auto Save . 115

mode, Column Number 81

mode, Comint . 350

mode, Compilation 260

mode, Emacs-Lisp 267

mode, Enriched . 200

mode, Fortran . 249

mode, Indented Text 189

mode, LaTEX . 195

mode, Line Number 81

mode, major . 171

mode, Menu Bar . 162

mode, minor . 367

mode, Outline . 190

mode, Overwrite . 368

mode, Scroll Bar . 161

mode, Shell . 348

mode, SliTEX . 195

mode, TEX . 195

mode, Text . 189

mode, Transient Mark 58

modified (buffer) . 107

moon, phases of . 328

Motif Widget X Resources 429

mouse . 380

mouse button events 387

mouse buttons (what they do) 153

mouse support under MS-DOS 435

movemail program 294

movement . 30

moving inside the calendar 321

moving point . 30

moving text . 65

moving the cursor . 30

MS-DOG . 435

MS-DOS peculiarities 435

multiple displays . 158

multiple views of outline 194

multiple windows in Emacs 147

mustatement . 365

N
named configurations (RCS) 130

narrowing . 359

newline . 29

newlines, hard and soft 201

NFS and quitting 397

non-strict locking . 120

non-window terminals 169

nonincremental search 88

noutline . 194

nroff . 200

NSA . 290

numeric arguments 37

O
Objective-C mode 209

on-line manuals . 54

operating on files in Dired 313

operations on a marked region 59

option, user . 369

options (command line) 413

other editors . 364

out of memory . 400

Outline mode . 190

outline with multiple views 194

outragedy . 365

Overwrite mode . 368

P
pages . 183

paragraphs . 182

paren library . 225

parentheses . 225

parts of the screen . 15

pasting . 65

pasting and X . 155

patches, sending . 409

per-buffer variables 373

Perl mode . 209

Perldb . 261

Persian calendar. 330

phases of the moon 328

Picture mode and rectangles 281

pictures . 279

point . 15

point location . 36

Concept Index 509

point location, under MS-DOS. 438

POP inboxes . 295

prefix arguments . 37

prefix key . 22

preprocessor highlighting 248

presidentagon . 365

primary Rmail file 291

primary selection . 155

printing under MS-DOS 440

program building . 259

program editing . 209

prompt . 39

properbose . 365

puzzles . 366

Q
query replace . 96

quitting . 397

quitting (in search) 86

quitting Emacs . 26

quoting . 29

R
RCS . 118

read-only buffer . 141

reading mail . 291

reading netnews . 343

rebinding keys, permanently 391

rebinding keys, this session 383

rebinding major mode keys 382

rebinding mouse buttons 387

rectangle . 69

rectangles and Picture mode 281

recursive editing level 363

regexp . 89

regexp syntax . 90

region . 57

region face . 163

region highlighting 58, 163

registered file . 119

registers . 73

regular expression . 89

remote file access . 106

remote host . 353

replacement . 95

reply to a message 300

REPLYTO environment variable 285

reporting bugs . 404

Resize-Minibuffer mode 40

resources . 425

restriction . 359

retrying a failed message 301

Rlogin . 353

Rmail . 291

rot13 code . 307

running Lisp functions 259

S
saved echo area messages 17

saving . 107

saving keyboard macros 378

saving sessions . 362

SCCS . 118

Scheme mode . 209

screen . 15

Scroll Bar mode . 161

scrolling . 77

scrolling in the calendar 323

SDB . 261

search-and-replace commands 95

searching . 85

secondary selection 155

selected buffer . 139

selected window . 147

selecting buffers in other windows . . . 149

selection, primary 155

selective display . 190

self-documentation 49

sending mail . 283

sending patches for GNU Emacs 409

sentences . 181

server . 354

server (using Emacs as) 354

setting a mark . 57

setting variables . 370

sexp . 210

shell commands . 345

shell commands, Dired 315

510 GNU Emacs Manual

SHELL environment variable 347

Shell mode . 348

simultaneous editing 113

single-frame terminals 169

size of minibuffer . 40

slashes repeated in file name 40

SliTEX mode . 195

snapshots and version control 129

soft newline . 201

sorting . 357

sorting Dired buffer 319

spelling, checking and correcting 101

splitting columns . 360

starting Emacs . 25

startup (command line arguments) . . 413

startup (init file) . 391

stealth fontification 167

string substitution . 95

string syntax . 392

subdirectories in Dired 317

subscribe groups . 344

subshell . 345

subtree (Outline mode) 193

summary (Rmail) 302

sunrise and sunset 327

Super (under MS-DOS) 435

suspending . 26

switch buffers . 139

switches (command line) 413

Syntactic Analysis 217

syntactic component 218

syntactic symbol . 218

syntax table . 390

T
tab stops . 177

tables, indentation for 177

tags completion . 229

tags table . 231

Tcl mode . 209

techniquitous . 365

television . 66

Telnet . 353

TERM environment variable 405

termscript file . 405

TEX mode . 195

TEXEDIT environment variable 354

TEXINPUTS environment variable 197

text . 179

text and binary files on MS-DOS 438

Text mode . 189

time (on mode line) 82

top level . 17

tower of Hanoi . 366

Transient Mark mode 58

transposition . 212

triple clicks . 387

truenames of files . 118

truncation . 35

trunk (version control) 127

two-column editing 360

typos, fixing . 99

U
uncompression . 136

undeletion (Rmail) 294

underlining and faces 164

undigestify . 306

undo . 32

undo limit . 33

unsubscribe groups 344

user option . 369

userenced . 365

using tab stops in making tables 177

V
variable . 369

version control . 118

VERSION CONTROL environment variable

. 112

vi . 364

View mode . 135

viewing . 135

views of an outline 194

visiting . 107

visiting files . 106

Concept Index 511

W
weeks, which day they start on 322

widening . 359

windows in Emacs 147

word processing . 200

word search . 88

words . 179

words, case conversion 188

work file . 119

wrapping . 35

WYSIWYG . 200

X
X cutting and pasting 155

X pasting and cutting 155

XDB . 261

xon-xoff . 400

Y
yahrzeits . 332

yanking . 65

yanking previous kills 67

Z
Zippy . 366

512 GNU Emacs Manual

i

Short Contents

Preface . 1

Distribution . 3

GNU GENERAL PUBLIC LICENSE . 5

Introduction . 13

1 The Organization of the Screen . 15

2 Characters, Keys and Commands 21

3 Entering and Exiting Emacs . 25

4 Basic Editing Commands . 29

5 The Minibuffer . 39

6 Running Commands by Name . 47

7 Help . 49

8 The Mark and the Region . 57

9 Killing and Moving Text . 63

10 Registers . 73

11 Controlling the Display . 77

12 Searching and Replacement . 85

13 Commands for Fixing Typos . 101

14 File Handling. 107

15 Using Multiple Buffers . 141

16 Multiple Windows . 149

17 Frames and X Windows . 155

18 Major Modes . 173

19 Indentation . 177

20 Commands for Human Languages 181

21 Editing Programs . 211

22 Compiling and Testing Programs 261

23 Abbrevs . 273

24 Editing Pictures . 281

25 Sending Mail . 285

26 Reading Mail with Rmail. 293

ii GNU Emacs Manual

27 Dired, the Directory Editor . 311

28 The Calendar and the Diary . 323

29 Miscellaneous Commands . 345

30 Customization . 371

31 Dealing with Common Problems. 401

Appendix A Command Line Arguments 417

Appendix B Emacs 19.28 and 19.29 Antinews 437

Appendix C MS-DOS Issues . 439

The GNU Manifesto . 447

Glossary . 457

Key (Character) Index. 477

Command and Function Index . 485

Variable Index . 497

Concept Index . 503

iii

Table of Contents

Preface . 1

Distribution. 3

GNU GENERAL PUBLIC LICENSE 5
Preamble . 5
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 6
How to Apply These Terms to Your New Programs 11

Introduction . 13

1 The Organization of the Screen 15
1.1 Point . 15
1.2 The Echo Area . 16
1.3 The Mode Line . 17

2 Characters, Keys and Commands 21
2.1 Kinds of User Input . 21
2.2 Keys . 22
2.3 Keys and Commands . 23
2.4 Character Set for Text . 24

3 Entering and Exiting Emacs 25
3.1 Exiting Emacs . 25

4 Basic Editing Commands 29
4.1 Inserting Text . 29
4.2 Changing the Location of Point . 30
4.3 Erasing Text . 31
4.4 Undoing Changes . 32
4.5 Files . 33
4.6 Help . 34
4.7 Blank Lines . 34
4.8 Continuation Lines . 35
4.9 Cursor Position Information . 35
4.10 Numeric Arguments . 37

iv GNU Emacs Manual

5 The Minibuffer . 39
5.1 Minibuffers for File Names . 39
5.2 Editing in the Minibuffer . 40
5.3 Completion . 41

5.3.1 Completion Example . 41
5.3.2 Completion Commands . 42
5.3.3 Strict Completion . 43
5.3.4 Completion Options . 44

5.4 Minibuffer History . 44
5.5 Repeating Minibuffer Commands . 45

6 Running Commands by Name 47

7 Help . 49
7.1 Documentation for a Key . 50
7.2 Help by Command or Variable Name. 51
7.3 Apropos . 51
7.4 Keyword Search for Lisp Libraries . 52
7.5 Other Help Commands. 54

8 The Mark and the Region 57
8.1 Setting the Mark . 57
8.2 Transient Mark Mode . 58
8.3 Operating on the Region . 59
8.4 Commands to Mark Textual Objects . 60
8.5 The Mark Ring . 61
8.6 The Global Mark Ring . 61

9 Killing and Moving Text 63
9.1 Deletion and Killing . 63

9.1.1 Deletion . 63
9.1.2 Killing by Lines . 64
9.1.3 Other Kill Commands . 65

9.2 Yanking . 65
9.2.1 The Kill Ring. 66
9.2.2 Appending Kills . 66
9.2.3 Yanking Earlier Kills . 67

9.3 Accumulating Text . 68
9.4 Rectangles . 69

v

10 Registers . 73
10.1 Saving Positions in Registers . 73
10.2 Saving Text in Registers . 73
10.3 Saving Rectangles in Registers . 74
10.4 Saving Window Configurations in Registers 74
10.5 Keeping File Names in Registers . 74
10.6 Bookmarks. 75

11 Controlling the Display. 77
11.1 Scrolling . 77
11.2 Horizontal Scrolling . 78
11.3 Selective Display . 79
11.4 European Character Set Display . 79
11.5 Follow Mode . 81
11.6 Optional Mode Line Features . 81
11.7 Variables Controlling Display . 82

12 Searching and Replacement. 85
12.1 Incremental Search . 85

12.1.1 Slow Terminal Incremental Search 87
12.2 Nonincremental Search . 88
12.3 Word Search . 88
12.4 Regular Expression Search . 89
12.5 Syntax of Regular Expressions . 90
12.6 Searching and Case . 94
12.7 Replacement Commands . 95

12.7.1 Unconditional Replacement 95
12.7.2 Regexp Replacement . 96
12.7.3 Replace Commands and Case 96
12.7.4 Query Replace . 96

12.8 Other Search-and-Loop Commands . 98

13 Commands for Fixing Typos. 101
13.1 Killing Your Mistakes . 101
13.2 Transposing Text . 101
13.3 Case Conversion . 102
13.4 Checking and Correcting Spelling . 103

vi GNU Emacs Manual

14 File Handling . 107
14.1 File Names . 107
14.2 Visiting Files . 108
14.3 Saving Files . 111

14.3.1 Backup Files . 113
14.3.1.1 Single or Numbered Backups 113
14.3.1.2 Automatic Deletion of Backups 114
14.3.1.3 Copying vs.Renaming 114

14.3.2 Protection against Simultaneous Editing 115
14.4 Reverting a Buffer . 116
14.5 Auto-Saving: Protection Against Disasters 117

14.5.1 Auto-Save Files . 117
14.5.2 Controlling Auto-Saving . 118
14.5.3 Recovering Data from Auto-Saves 119

14.6 File Name Aliases . 119
14.7 Version Control . 120

14.7.1 Supported Version Control Systems 120
14.7.2 Concepts of Version Control 121
14.7.3 Editing with Version Control 122

14.7.3.1 Check-Out . 122
14.7.3.2 Check-In . 122
14.7.3.3 Registering a File for Version Control

. 123
14.7.3.4 Undoing Version Control Actions 124
14.7.3.5 The VC Mode Line 125
14.7.3.6 Using VC with CVS 125

14.7.4 Log Entries. 126
14.7.5 Change Logs and VC . 127
14.7.6 Examining And Comparing Old Versions 128
14.7.7 Multiple Branches of a File 129

14.7.7.1 Switching between Branches 130
14.7.7.2 Creating New Branches 130
14.7.7.3 Multi-User Branching. 130

14.7.8 VC Status Commands . 131
14.7.9 Renaming VC Work Files and Master Files . . . 132
14.7.10 Snapshots . 132

14.7.10.1 Making and Using Snapshots 132
14.7.10.2 Snapshot Caveats 133

14.7.11 Inserting Version Control Headers 133
14.7.12 Customizing VC . 134

14.7.12.1 VC Workfile Handling 135
14.7.12.2 VC Status Retrieval 135
14.7.12.3 VC Command Execution 136

14.8 File Directories . 136
14.9 Comparing Files . 137

vii

14.10 Miscellaneous File Operations . 138
14.11 Accessing Compressed Files . 139

15 Using Multiple Buffers 141
15.1 Creating and Selecting Buffers . 141
15.2 Listing Existing Buffers . 142
15.3 Miscellaneous Buffer Operations . 143
15.4 Killing Buffers . 144
15.5 Operating on Several Buffers . 144
15.6 Indirect Buffers . 146

16 Multiple Windows . 149
16.1 Concepts of Emacs Windows . 149
16.2 Splitting Windows . 150
16.3 Using Other Windows . 150
16.4 Displaying in Another Window . 151
16.5 Forcing Display in the Same Window 152
16.6 Deleting and Rearranging Windows 153

17 Frames and X Windows 155
17.1 Mouse Commands for Editing . 155
17.2 Secondary Selection . 157
17.3 Following References with the Mouse. 158
17.4 Mouse Clicks for Menus . 158
17.5 Mode Line Mouse Commands . 159
17.6 Creating Frames. 159
17.7 Multiple Displays . 160
17.8 Special Buffer Frames . 161
17.9 Setting Frame Parameters . 162
17.10 Scroll Bars . 163
17.11 Menu Bars . 164
17.12 Using Multiple Typefaces . 164
17.13 Modifying Faces . 166
17.14 Font Lock mode . 167
17.15 Font Lock Support Modes . 168

17.15.1 Fast Lock Mode . 168
17.15.2 Lazy Lock Mode . 169
17.15.3 Fast Lock or Lazy Lock? 169

17.16 Miscellaneous X Window Features 170
17.17 Non-Window Terminals . 171

18 Major Modes . 173
18.1 How Major Modes are Chosen . 173

viii GNU Emacs Manual

19 Indentation . 177
19.1 Indentation Commands and Techniques 177
19.2 Tab Stops . 179
19.3 Tabs vs. Spaces . 179

20 Commands for Human Languages 181
20.1 Words . 181
20.2 Sentences . 182
20.3 Paragraphs . 184
20.4 Pages . 185
20.5 Filling Text . 186

20.5.1 Auto Fill Mode . 186
20.5.2 Explicit Fill Commands . 187
20.5.3 The Fill Prefix . 189

20.6 Case Conversion Commands . 190
20.7 Text Mode . 191
20.8 Outline Mode . 192

20.8.1 Format of Outlines . 192
20.8.2 Outline Motion Commands 194
20.8.3 Outline Visibility Commands 194
20.8.4 Viewing One Outline in Multiple Views. 196

20.9 TEX Mode . 196
20.9.1 TEX Editing Commands . 197
20.9.2 LaTEX Editing Commands 198
20.9.3 TEX Printing Commands . 199
20.9.4 Unix TEX Distribution . 201

20.10 Nroff Mode . 202
20.11 Editing Formatted Text . 202

20.11.1 Requesting to Edit Formatted Text 203
20.11.2 Hard and Soft Newlines . 203
20.11.3 Editing Format Information 204
20.11.4 Faces in Formatted Text 205
20.11.5 Colors in Formatted Text. 206
20.11.6 Indentation in Formatted Text 206
20.11.7 Justification in Formatted Text 207
20.11.8 Setting Other Text Properties 209
20.11.9 Forcing Enriched Mode . 209

ix

21 Editing Programs . 211
21.1 Major Modes for Programming Languages 211
21.2 Lists and Sexps . 212
21.3 List And Sexp Commands . 213
21.4 Defuns . 214
21.5 Indentation for Programs . 215

21.5.1 Basic Program Indentation Commands 215
21.5.2 Indenting Several Lines . 216
21.5.3 Customizing Lisp Indentation 217
21.5.4 Commands for C Indentation 218
21.5.5 Customizing C Indentation 219

21.5.5.1 Step 1—Syntactic Analysis 219
21.5.5.2 Step 2—Indentation Calculation 220
21.5.5.3 Changing Indentation Style 222
21.5.5.4 Syntactic Symbols 222
21.5.5.5 Variables for C Indentation 225
21.5.5.6 C Indentation Styles 226

21.6 Automatic Display Of Matching Parentheses 227
21.7 Manipulating Comments . 228

21.7.1 Comment Commands . 228
21.7.2 Multiple Lines of Comments 229
21.7.3 Options Controlling Comments 229

21.8 Editing Without Unbalanced Parentheses 231
21.9 Completion for Symbol Names . 231
21.10 Documentation Commands . 232
21.11 Change Logs . 232
21.12 Tags Tables . 233

21.12.1 Source File Tag Syntax . 234
21.12.2 Creating Tags Tables . 235
21.12.3 Selecting a Tags Table . 237
21.12.4 Finding a Tag . 238
21.12.5 Searching and Replacing with Tags Tables . . . 239
21.12.6 Tags Table Inquiries . 240

21.13 Merging Files with Emerge . 241
21.13.1 Overview of Emerge . 241
21.13.2 Submodes of Emerge . 242
21.13.3 State of a Difference . 243
21.13.4 Merge Commands . 244
21.13.5 Exiting Emerge . 245
21.13.6 Combining the Two Versions 246
21.13.7 Fine Points of Emerge. 246

21.14 C Mode . 247
21.14.1 C Mode Motion Commands 247
21.14.2 Electric C Characters . 248
21.14.3 Hungry Delete Feature in C 250

x GNU Emacs Manual

21.14.4 Other Commands for C Mode 250
21.14.5 Comments in C Modes . 251

21.15 Fortran Mode . 252
21.15.1 Motion Commands. 252
21.15.2 Fortran Indentation . 252

21.15.2.1 Fortran Indentation Commands 253
21.15.2.2 Continuation Lines 253
21.15.2.3 Line Numbers . 254
21.15.2.4 Syntactic Conventions 254
21.15.2.5 Variables for Fortran Indentation . . . 255

21.15.3 Fortran Comments . 256
21.15.4 Fortran Auto Fill Mode . 257
21.15.5 Checking Columns in Fortran 258
21.15.6 Fortran Keyword Abbrevs 258

21.16 Asm Mode . 259

22 Compiling and Testing Programs 261
22.1 Running Compilations under Emacs 261
22.2 Running Debuggers Under Emacs . 263

22.2.1 Starting GUD . 264
22.2.2 Debugger Operation . 264
22.2.3 Commands of GUD . 265
22.2.4 GUD Customization . 267

22.3 Executing Lisp Expressions . 267
22.4 Libraries of Lisp Code for Emacs . 268
22.5 Evaluating Emacs-Lisp Expressions 269
22.6 Lisp Interaction Buffers . 271
22.7 Running an External Lisp . 271

23 Abbrevs . 273
23.1 Abbrev Concepts . 273
23.2 Defining Abbrevs . 273
23.3 Controlling Abbrev Expansion . 274
23.4 Examining and Editing Abbrevs . 276
23.5 Saving Abbrevs . 276
23.6 Dynamic Abbrev Expansion . 277
23.7 Customizing Dynamic Abbreviation 278

24 Editing Pictures . 281
24.1 Basic Editing in Picture Mode . 281
24.2 Controlling Motion after Insert . 282
24.3 Picture Mode Tabs . 283
24.4 Picture Mode Rectangle Commands 283

xi

25 Sending Mail . 285
25.1 The Format of the Mail Buffer . 285
25.2 Mail Header Fields . 286
25.3 Mail Aliases. 288
25.4 Mail Mode . 289
25.5 Distracting the NSA . 292

26 Reading Mail with Rmail 293
26.1 Basic Concepts of Rmail . 293
26.2 Scrolling Within a Message . 294
26.3 Moving Among Messages . 294
26.4 Deleting Messages . 295
26.5 Rmail Files and Inboxes . 296
26.6 Multiple Rmail Files . 298
26.7 Copying Messages Out to Files . 299
26.8 Labels . 300
26.9 Sending Replies . 302
26.10 Summaries . 304

26.10.1 Making Summaries . 304
26.10.2 Editing in Summaries . 305

26.11 Sorting the Rmail File . 306
26.12 Display of Messages . 307
26.13 Editing Within a Message . 308
26.14 Digest Messages . 308
26.15 Converting an Rmail File to Inbox Format 309
26.16 Reading Rot13 Messages . 309

27 Dired, the Directory Editor 311
27.1 Entering Dired . 311
27.2 Commands in the Dired Buffer . 311
27.3 Deleting Files with Dired . 311
27.4 Flagging Many Files . 312
27.5 Visiting Files in Dired . 313
27.6 Dired Marks vs. Flags . 314
27.7 Operating on Files. 315
27.8 Shell Commands in Dired . 317
27.9 Transforming File Names in Dired . 318
27.10 File Comparison with Dired . 319
27.11 Subdirectories in Dired . 319
27.12 Moving Over Subdirectories . 320
27.13 Hiding Subdirectories . 320
27.14 Updating the Dired Buffer . 321
27.15 Dired and find . 322

xii GNU Emacs Manual

28 The Calendar and the Diary 323
28.1 Movement in the Calendar . 323

28.1.1 Motion by Standard Lengths of Time 323
28.1.2 Beginning or End of Week, Month or Year 324
28.1.3 Specified Dates . 325

28.2 Scrolling in the Calendar . 325
28.3 Counting Days . 326
28.4 Miscellaneous Calendar Commands 326
28.5 TeX Calendar . 327
28.6 Holidays . 328
28.7 Times of Sunrise and Sunset . 329
28.8 Phases of the Moon. 330
28.9 Conversion To and From Other Calendars 330

28.9.1 Supported Calendar Systems 331
28.9.2 Converting To Other Calendars 332
28.9.3 Converting From Other Calendars. 333
28.9.4 Converting from the Mayan Calendar 334

28.10 The Diary . 335
28.10.1 Commands Displaying Diary Entries 336
28.10.2 The Diary File . 337
28.10.3 Date Formats . 338
28.10.4 Commands to Add to the Diary 339
28.10.5 Special Diary Entries . 340

28.11 Appointments . 342
28.12 Daylight Savings Time . 342

29 Miscellaneous Commands 345
29.1 Gnus . 345

29.1.1 Gnus Buffers . 345
29.1.2 When Gnus Starts Up . 345
29.1.3 Summary of Gnus Commands 346

29.2 Running Shell Commands from Emacs 347
29.2.1 Single Shell Commands. 348
29.2.2 Interactive Inferior Shell . 349
29.2.3 Shell Mode . 350
29.2.4 Shell Command History . 352

29.2.4.1 Shell History Ring 353
29.2.4.2 Shell History Copying 353
29.2.4.3 Shell History References 354

29.2.5 Shell Mode Options . 354
29.2.6 Remote Host Shell . 355

29.3 Using Emacs as a Server . 356
29.4 Hardcopy Output . 357
29.5 Postscript Hardcopy . 358

xiii

29.6 Sorting Text . 359
29.7 Narrowing . 362
29.8 Two-Column Editing . 363
29.9 Editing Binary Files . 364
29.10 Saving Emacs Sessions . 364
29.11 Recursive Editing Levels . 365
29.12 Emulation . 366
29.13 Dissociated Press . 367
29.14 Other Amusements . 368

30 Customization . 371
30.1 Minor Modes. 371
30.2 Variables . 373

30.2.1 Examining and Setting Variables 373
30.2.2 Editing Variable Values . 374
30.2.3 Hooks. 375
30.2.4 Local Variables . 376
30.2.5 Local Variables in Files . 378

30.3 Keyboard Macros . 380
30.3.1 Basic Use . 381
30.3.2 Naming and Saving Keyboard Macros 382
30.3.3 Executing Macros with Variations 383

30.4 Customizing Key Bindings . 383
30.4.1 Keymaps . 384
30.4.2 Prefix Keymaps. 385
30.4.3 Local Keymaps . 386
30.4.4 Minibuffer Keymaps . 387
30.4.5 Changing Key Bindings Interactively 387
30.4.6 Rebinding Keys in Your Init File 388
30.4.7 Rebinding Function Keys . 389
30.4.8 Named ASCII Control Characters 391
30.4.9 Rebinding Mouse Buttons 391
30.4.10 Disabling Commands . 393

30.5 Keyboard Translations . 394
30.6 The Syntax Table . 394
30.7 The Init File, ‘~/.emacs’ . 395

30.7.1 Init File Syntax . 395
30.7.2 Init File Examples . 396
30.7.3 Terminal-specific Initialization 398
30.7.4 How Emacs Finds Your Init File 399

xiv GNU Emacs Manual

31 Dealing with Common Problems 401
31.1 Quitting and Aborting . 401
31.2 Dealing with Emacs Trouble . 402

31.2.1 If 〈DEL〉 Fails to Delete . 402
31.2.2 Recursive Editing Levels . 403
31.2.3 Garbage on the Screen . 403
31.2.4 Garbage in the Text . 403
31.2.5 Spontaneous Entry to Incremental Search 404
31.2.6 Running out of Memory . 404
31.2.7 Recovery After a Crash . 405
31.2.8 Emergency Escape . 405
31.2.9 Help for Total Frustration 406

31.3 Reporting Bugs . 406
31.3.1 When Is There a Bug . 406
31.3.2 Understanding Bug Reporting 407
31.3.3 Checklist for Bug Reports 408
31.3.4 Sending Patches for GNU Emacs 414

31.4 Contributing to Emacs Development 415
31.5 How To Get Help with GNU Emacs 416

Appendix A Command Line Arguments 417
A.1 Action Arguments . 417
A.2 Initial Options . 418
A.3 Command Argument Example . 419
A.4 Resuming Emacs with Arguments . 420
A.5 Environment Variables . 420

A.5.1 General Variables . 421
A.5.2 Misc Variables . 423

A.6 Specifying the Display Name . 424
A.7 Font Specification Options . 424
A.8 Window Color Options . 426
A.9 Options for Window Geometry . 427
A.10 Internal and External Borders . 428
A.11 Frame Titles. 429
A.12 Icons. 429
A.13 X Resources . 429
A.14 Lucid Menu X Resources . 433
A.15 Motif Menu X Resources . 434

Appendix B Emacs 19.28 and 19.29 Antinews
. 437

xv

Appendix C MS-DOS Issues. 439
C.1 Keyboard and Mouse on MS-DOS . 439
C.2 Display on MS-DOS . 440
C.3 File Names on MS-DOS . 441
C.4 Text Files and Binary Files . 442
C.5 Printing and MS-DOS . 442
C.6 Subprocesses on MS-DOS . 443
C.7 Subprocesses on Windows 95 and Windows NT 444
C.8 Using the System Menu on Windows 445

The GNU Manifesto . 447
What’s GNU? Gnu’s Not Unix!. 447
Why I Must Write GNU . 448
Why GNU Will Be Compatible with Unix 448
How GNU Will Be Available . 449
Why Many Other Programmers Want to Help 449
How You Can Contribute . 449
Why All Computer Users Will Benefit . 450
Some Easily Rebutted Objections to GNU’s Goals 451

Glossary . 457

Key (Character) Index . 477

Command and Function Index 485

Variable Index . 497

Concept Index . 503

xvi GNU Emacs Manual

		Preface

		Distribution

		GNU GENERAL PUBLIC LICENSE

		Preamble

		TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

		How to Apply These Terms to Your New Programs

		Introduction

		The Organization of the Screen

		Point

		The Echo Area

		The Mode Line

		Characters, Keys and Commands

		Kinds of User Input

		Keys

		Keys and Commands

		Character Set for Text

		Entering and Exiting Emacs

		Exiting Emacs

		Basic Editing Commands

		Inserting Text

		Changing the Location of Point

		Erasing Text

		Undoing Changes

		Files

		Help

		Blank Lines

		Continuation Lines

		Cursor Position Information

		Numeric Arguments

		The Minibuffer

		Minibuffers for File Names

		Editing in the Minibuffer

		Completion

		Completion Example

		Completion Commands

		Strict Completion

		Completion Options

		Minibuffer History

		Repeating Minibuffer Commands

		Running Commands by Name

		Help

		Documentation for a Key

		Help by Command or Variable Name

		Apropos

		Keyword Search for Lisp Libraries

		Other Help Commands

		The Mark and the Region

		Setting the Mark

		Transient Mark Mode

		Operating on the Region

		Commands to Mark Textual Objects

		The Mark Ring

		The Global Mark Ring

		Killing and Moving Text

		Deletion and Killing

		Deletion

		Killing by Lines

		Other Kill Commands

		Yanking

		The Kill Ring

		Appending Kills

		Yanking Earlier Kills

		Accumulating Text

		Rectangles

		Registers

		Saving Positions in Registers

		Saving Text in Registers

		Saving Rectangles in Registers

		Saving Window Configurations in Registers

		Keeping File Names in Registers

		Bookmarks

		Controlling the Display

		Scrolling

		Horizontal Scrolling

		Selective Display

		European Character Set Display

		Follow Mode

		Optional Mode Line Features

		Variables Controlling Display

		Searching and Replacement

		Incremental Search

		Slow Terminal Incremental Search

		Nonincremental Search

		Word Search

		Regular Expression Search

		Syntax of Regular Expressions

		Searching and Case

		Replacement Commands

		Unconditional Replacement

		Regexp Replacement

		Replace Commands and Case

		Query Replace

		Other Search-and-Loop Commands

		Commands for Fixing Typos

		Killing Your Mistakes

		Transposing Text

		Case Conversion

		Checking and Correcting Spelling

		File Handling

		File Names

		Visiting Files

		Saving Files

		Backup Files

		Single or Numbered Backups

		Automatic Deletion of Backups

		Copying vs.spacefactor =1000 Renaming

		Protection against Simultaneous Editing

		Reverting a Buffer

		Auto-Saving: Protection Against Disasters

		Auto-Save Files

		Controlling Auto-Saving

		Recovering Data from Auto-Saves

		File Name Aliases

		Version Control

		Supported Version Control Systems

		Concepts of Version Control

		Editing with Version Control

		Check-Out

		Check-In

		Registering a File for Version Control

		Undoing Version Control Actions

		The VC Mode Line

		Using VC with CVS

		Log Entries

		Change Logs and VC

		Examining And Comparing Old Versions

		Multiple Branches of a File

		Switching between Branches

		Creating New Branches

		Multi-User Branching

		VC Status Commands

		Renaming VC Work Files and Master Files

		Snapshots

		Making and Using Snapshots

		Snapshot Caveats

		Inserting Version Control Headers

		Customizing VC

		VC Workfile Handling

		VC Status Retrieval

		VC Command Execution

		File Directories

		Comparing Files

		Miscellaneous File Operations

		Accessing Compressed Files

		Using Multiple Buffers

		Creating and Selecting Buffers

		Listing Existing Buffers

		Miscellaneous Buffer Operations

		Killing Buffers

		Operating on Several Buffers

		Indirect Buffers

		Multiple Windows

		Concepts of Emacs Windows

		Splitting Windows

		Using Other Windows

		Displaying in Another Window

		Forcing Display in the Same Window

		Deleting and Rearranging Windows

		Frames and X Windows

		Mouse Commands for Editing

		Secondary Selection

		Following References with the Mouse

		Mouse Clicks for Menus

		Mode Line Mouse Commands

		Creating Frames

		Multiple Displays

		Special Buffer Frames

		Setting Frame Parameters

		Scroll Bars

		Menu Bars

		Using Multiple Typefaces

		Modifying Faces

		Font Lock mode

		Font Lock Support Modes

		Fast Lock Mode

		Lazy Lock Mode

		Fast Lock or Lazy Lock?

		Miscellaneous X Window Features

		Non-Window Terminals

		Major Modes

		How Major Modes are Chosen

		Indentation

		Indentation Commands and Techniques

		Tab Stops

		Tabs vs. Spaces

		Commands for Human Languages

		Words

		Sentences

		Paragraphs

		Pages

		Filling Text

		Auto Fill Mode

		Explicit Fill Commands

		The Fill Prefix

		Case Conversion Commands

		Text Mode

		Outline Mode

		Format of Outlines

		Outline Motion Commands

		Outline Visibility Commands

		Viewing One Outline in Multiple Views

		TeX Mode

		TeX Editing Commands

		LaTeX Editing Commands

		TeX Printing Commands

		Unix TeX Distribution

		Nroff Mode

		Editing Formatted Text

		Requesting to Edit Formatted Text

		Hard and Soft Newlines

		Editing Format Information

		Faces in Formatted Text

		Colors in Formatted Text

		Indentation in Formatted Text

		Justification in Formatted Text

		Setting Other Text Properties

		Forcing Enriched Mode

		Editing Programs

		Major Modes for Programming Languages

		Lists and Sexps

		List And Sexp Commands

		Defuns

		Indentation for Programs

		Basic Program Indentation Commands

		Indenting Several Lines

		Customizing Lisp Indentation

		Commands for C Indentation

		Customizing C Indentation

		Step 1---Syntactic Analysis

		Step 2---Indentation Calculation

		Changing Indentation Style

		Syntactic Symbols

		Variables for C Indentation

		C Indentation Styles

		Automatic Display Of Matching Parentheses

		Manipulating Comments

		Comment Commands

		Multiple Lines of Comments

		Options Controlling Comments

		Editing Without Unbalanced Parentheses

		Completion for Symbol Names

		Documentation Commands

		Change Logs

		Tags Tables

		Source File Tag Syntax

		Creating Tags Tables

		Selecting a Tags Table

		Finding a Tag

		Searching and Replacing with Tags Tables

		Tags Table Inquiries

		Merging Files with Emerge

		Overview of Emerge

		Submodes of Emerge

		State of a Difference

		Merge Commands

		Exiting Emerge

		Combining the Two Versions

		Fine Points of Emerge

		C Mode

		C Mode Motion Commands

		Electric C Characters

		Hungry Delete Feature in C

		Other Commands for C Mode

		Comments in C Modes

		Fortran Mode

		Motion Commands

		Fortran Indentation

		Fortran Indentation Commands

		Continuation Lines

		Line Numbers

		Syntactic Conventions

		Variables for Fortran Indentation

		Fortran Comments

		Fortran Auto Fill Mode

		Checking Columns in Fortran

		Fortran Keyword Abbrevs

		Asm Mode

		Compiling and Testing Programs

		Running Compilations under Emacs

		Running Debuggers Under Emacs

		Starting GUD

		Debugger Operation

		Commands of GUD

		GUD Customization

		Executing Lisp Expressions

		Libraries of Lisp Code for Emacs

		Evaluating Emacs-Lisp Expressions

		Lisp Interaction Buffers

		Running an External Lisp

		Abbrevs

		Abbrev Concepts

		Defining Abbrevs

		Controlling Abbrev Expansion

		Examining and Editing Abbrevs

		Saving Abbrevs

		Dynamic Abbrev Expansion

		Customizing Dynamic Abbreviation

		Editing Pictures

		Basic Editing in Picture Mode

		Controlling Motion after Insert

		Picture Mode Tabs

		Picture Mode Rectangle Commands

		Sending Mail

		The Format of the Mail Buffer

		Mail Header Fields

		Mail Aliases

		Mail Mode

		Distracting the NSA

		Reading Mail with Rmail

		Basic Concepts of Rmail

		Scrolling Within a Message

		Moving Among Messages

		Deleting Messages

		Rmail Files and Inboxes

		Multiple Rmail Files

		Copying Messages Out to Files

		Labels

		Sending Replies

		Summaries

		Making Summaries

		Editing in Summaries

		Sorting the Rmail File

		Display of Messages

		Editing Within a Message

		Digest Messages

		Converting an Rmail File to Inbox Format

		Reading Rot13 Messages

		Dired, the Directory Editor

		Entering Dired

		Commands in the Dired Buffer

		Deleting Files with Dired

		Flagging Many Files

		Visiting Files in Dired

		Dired Marks vs. Flags

		Operating on Files

		Shell Commands in Dired

		Transforming File Names in Dired

		File Comparison with Dired

		Subdirectories in Dired

		Moving Over Subdirectories

		Hiding Subdirectories

		Updating the Dired Buffer

		Dired and find

		The Calendar and the Diary

		Movement in the Calendar

		Motion by Standard Lengths of Time

		Beginning or End of Week, Month or Year

		Specified Dates

		Scrolling in the Calendar

		Counting Days

		Miscellaneous Calendar Commands

		TeX Calendar

		Holidays

		Times of Sunrise and Sunset

		Phases of the Moon

		Conversion To and From Other Calendars

		Supported Calendar Systems

		Converting To Other Calendars

		Converting From Other Calendars

		Converting from the Mayan Calendar

		The Diary

		Commands Displaying Diary Entries

		The Diary File

		Date Formats

		Commands to Add to the Diary

		Special Diary Entries

		Appointments

		Daylight Savings Time

		Miscellaneous Commands

		Gnus

		Gnus Buffers

		When Gnus Starts Up

		Summary of Gnus Commands

		Running Shell Commands from Emacs

		Single Shell Commands

		Interactive Inferior Shell

		Shell Mode

		Shell Command History

		Shell History Ring

		Shell History Copying

		Shell History References

		Shell Mode Options

		Remote Host Shell

		Using Emacs as a Server

		Hardcopy Output

		Postscript Hardcopy

		Sorting Text

		Narrowing

		Two-Column Editing

		Editing Binary Files

		Saving Emacs Sessions

		Recursive Editing Levels

		Emulation

		Dissociated Press

		Other Amusements

		Customization

		Minor Modes

		Variables

		Examining and Setting Variables

		Editing Variable Values

		Hooks

		Local Variables

		Local Variables in Files

		Keyboard Macros

		Basic Use

		Naming and Saving Keyboard Macros

		Executing Macros with Variations

		Customizing Key Bindings

		Keymaps

		Prefix Keymaps

		Local Keymaps

		Minibuffer Keymaps

		Changing Key Bindings Interactively

		Rebinding Keys in Your Init File

		Rebinding Function Keys

		Named ASCII Control Characters

		Rebinding Mouse Buttons

		Disabling Commands

		Keyboard Translations

		The Syntax Table

		The Init File, {char'176}/.emacs

		Init File Syntax

		Init File Examples

		Terminal-specific Initialization

		How Emacs Finds Your Init File

		Dealing with Common Problems

		Quitting and Aborting

		Dealing with Emacs Trouble

		If DEL Fails to Delete

		Recursive Editing Levels

		Garbage on the Screen

		Garbage in the Text

		Spontaneous Entry to Incremental Search

		Running out of Memory

		Recovery After a Crash

		Emergency Escape

		Help for Total Frustration

		Reporting Bugs

		When Is There a Bug

		Understanding Bug Reporting

		Checklist for Bug Reports

		Sending Patches for GNU Emacs

		Contributing to Emacs Development

		How To Get Help with GNU Emacs

		Command Line Arguments

		Action Arguments

		Initial Options

		Command Argument Example

		Resuming Emacs with Arguments

		Environment Variables

		General Variables

		Misc Variables

		Specifying the Display Name

		Font Specification Options

		Window Color Options

		Options for Window Geometry

		Internal and External Borders

		Frame Titles

		Icons

		X Resources

		Lucid Menu X Resources

		Motif Menu X Resources

		Emacs 19.28 and 19.29 Antinews

		MS-DOS Issues

		Keyboard and Mouse on MS-DOS

		Display on MS-DOS

		File Names on MS-DOS

		Text Files and Binary Files

		Printing and MS-DOS

		Subprocesses on MS-DOS

		Subprocesses on Windows 95 and Windows NT

		Using the System Menu on Windows

		The GNU Manifesto

		What's GNU? Gnu's Not Unix!

		Why I Must Write GNU

		Why GNU Will Be Compatible with Unix

		How GNU Will Be Available

		Why Many Other Programmers Want to Help

		How You Can Contribute

		Why All Computer Users Will Benefit

		Some Easily Rebutted Objections to GNU's Goals

		Glossary

		Key (Character) Index

		Command and Function Index

		Variable Index

		Concept Index

