

Common Lisp Extensions

For GNU Emacs Lisp

Version 2.02

Dave Gillespie
daveg@synaptics.com

Copyright c© 1993 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the author
instead of in the original English.

Chapter 1: Common Lisp Extensions 1

1 Common Lisp Extensions

This document describes a set of Emacs Lisp facilities borrowed from Common Lisp. All the
facilities are described here in detail; for more discussion and examples, Guy L. Steele’s Com-
mon Lisp, the Language, second edition, is the definitive book on Common Lisp. Chapter
numbers and most section numbers of this document parallel those of Steele’s book. While
this document does not assume any prior knowledge of Common Lisp, it does assume a
basic familiarity with Emacs Lisp.

1.1 Overview

Common Lisp is a huge language, and Common Lisp systems tend to be massive and
extremely complex. Emacs Lisp, by contrast, is rather minimalist in the choice of Lisp
features it offers the programmer. As Emacs Lisp programmers have grown in number, and
the applications they write have grown more ambitious, it has become clear that Emacs
Lisp could benefit from many of the conveniences of Common Lisp.

The CL package adds a number of Common Lisp functions and control structures to
Emacs Lisp. While not a 100% complete implementation of Common Lisp, CL adds enough
functionality to make Emacs Lisp programming significantly more convenient.

Some Common Lisp features have been omitted from this package for various reasons:

• Some features are too complex or bulky relative to their benefit to Emacs Lisp pro-
grammers. CLOS and Common Lisp streams are fine examples of this group.

• Other features cannot be implemented without modification to the Emacs Lisp inter-
preter itself, such as multiple return values, lexical scoping, case-insensitive symbols,
and complex numbers. The CL package generally makes no attempt to emulate these
features.

• Some features conflict with existing things in Emacs Lisp. For example, Emacs’ assoc
function is incompatible with the Common Lisp assoc. In such cases, this package
usually adds the suffix ‘*’ to the function name of the Common Lisp version of the
function (e.g., assoc*).

The package described here was written by Dave Gillespie, ‘daveg@synaptics.com’. It
is a total rewrite of the original 1986 ‘cl.el’ package by Cesar Quiroz. Most features of the
the Quiroz package have been retained; any incompatibilities are noted in the descriptions
below. Care has been taken in this version to ensure that each function is defined efficiently,
concisely, and with minimal impact on the rest of the Emacs environment.

1.2 Usage

Lisp code that uses features from the CL package should include at the beginning:

(require ’cl)

If you want to ensure that the new (Gillespie) version of CL is the one that is present, add
an additional (require ’cl-19) call:

Chapter 1: Common Lisp Extensions 2

(require ’cl)
(require ’cl-19)

The second call will fail (with “‘cl-19.el’ not found”) if the old ‘cl.el’ package was in
use.

It is safe to arrange to load CL at all times, e.g., in your ‘.emacs’ file. But it’s a good
idea, for portability, to (require ’cl) in your code even if you do this.

1.3 Organization

The Common Lisp package is organized into four files:

‘cl.el’ This is the “main” file, which contains basic functions and information about
the package. This file is relatively compact—about 700 lines.

‘cl-extra.el’
This file contains the larger, more complex or unusual functions. It is kept
separate so that packages which only want to use Common Lisp fundamentals
like the cadr function won’t need to pay the overhead of loading the more
advanced functions.

‘cl-seq.el’
This file contains most of the advanced functions for operating on sequences or
lists, such as delete-if and assoc*.

‘cl-macs.el’
This file contains the features of the packages which are macros instead of
functions. Macros expand when the caller is compiled, not when it is run, so
the macros generally only need to be present when the byte-compiler is running
(or when the macros are used in uncompiled code such as a ‘.emacs’ file). Most
of the macros of this package are isolated in ‘cl-macs.el’ so that they won’t
take up memory unless you are compiling.

The file ‘cl.el’ includes all necessary autoload commands for the functions and macros
in the other three files. All you have to do is (require ’cl), and ‘cl.el’ will take care of
pulling in the other files when they are needed.

There is another file, ‘cl-compat.el’, which defines some routines from the older ‘cl.el’
package that are no longer present in the new package. This includes internal routines like
setelt and zip-lists, deprecated features like defkeyword, and an emulation of the old-
style multiple-values feature. See Appendix C [Old CL Compatibility], page 82.

1.4 Installation

Installation of the CL package is simple: Just put the byte-compiled files ‘cl.elc’,
‘cl-extra.elc’, ‘cl-seq.elc’, ‘cl-macs.elc’, and ‘cl-compat.elc’ into a directory on
your load-path.

Chapter 1: Common Lisp Extensions 3

There are no special requirements to compile this package: The files do not have to be
loaded before they are compiled, nor do they need to be compiled in any particular order.

You may choose to put the files into your main ‘lisp/’ directory, replacing the original
‘cl.el’ file there. Or, you could put them into a directory that comes before ‘lisp/’ on
your load-path so that the old ‘cl.el’ is effectively hidden.

Also, format the ‘cl.texinfo’ file and put the resulting Info files in the ‘info/’ directory
or another suitable place.

You may instead wish to leave this package’s components all in their own directory, and
then add this directory to your load-path and (Emacs 19 only) Info-directory-list.
Add the directory to the front of the list so the old CL package and its documentation are
hidden.

1.5 Naming Conventions

Except where noted, all functions defined by this package have the same names and calling
conventions as their Common Lisp counterparts.

Following is a complete list of functions whose names were changed from Common Lisp,
usually to avoid conflicts with Emacs. In each case, a ‘*’ has been appended to the Common
Lisp name to obtain the Emacs name:

defun* defsubst* defmacro* function*
member* assoc* rassoc* get*
remove* delete* mapcar* sort*
floor* ceiling* truncate* round*
mod* rem* random*

Internal function and variable names in the package are prefixed by cl-. Here is a
complete list of functions not prefixed by cl- which were not taken from Common Lisp:

member delete remove remq
rassoc floatp-safe lexical-let lexical-let*
callf callf2 letf letf*
defsubst* defalias add-hook eval-when-compile

(Most of these are Emacs 19 features provided to Emacs 18 users, or introduced, like remq,
for reasons of symmetry with similar features.)

The following simple functions and macros are defined in ‘cl.el’; they do not cause
other components like ‘cl-extra’ to be loaded.

eql floatp-safe abs endp
evenp oddp plusp minusp
last butlast nbutlast caar .. cddddr
list* ldiff rest first .. tenth
member [1] copy-list subst mapcar* [2]
adjoin [3] acons pairlis when
unless pop [4] push [4] pushnew [3,4]
incf [4] decf [4] proclaim declaim
add-hook

[1] This is the Emacs 19-compatible function, not member*.

Chapter 1: Common Lisp Extensions 4

[2] Only for one sequence argument or two list arguments.

[3] Only if :test is eq, equal, or unspecified, and :key is not used.

[4] Only when place is a plain variable name.

Chapter 5: Program Structure 5

5 Program Structure

This section describes features of the CL package which have to do with programs as a
whole: advanced argument lists for functions, and the eval-when construct.

5.2 Argument Lists

Emacs Lisp’s notation for argument lists of functions is a subset of the Common Lisp
notation. As well as the familiar &optional and &rest markers, Common Lisp allows you
to specify default values for optional arguments, and it provides the additional markers
&key and &aux.

Since argument parsing is built-in to Emacs, there is no way for this package to implement
Common Lisp argument lists seamlessly. Instead, this package defines alternates for several
Lisp forms which you must use if you need Common Lisp argument lists.

Special Formdefun* name arglist body...
This form is identical to the regular defun form, except that arglist is allowed
to be a full Common Lisp argument list. Also, the function body is enclosed in
an implicit block called name; see Section 7.7 [Blocks and Exits], page 28.

Special Formdefsubst* name arglist body...
This is just like defun*, except that the function that is defined is automatically
proclaimed inline, i.e., calls to it may be expanded into in-line code by the
byte compiler. This is analogous to the defsubst form in Emacs 19; defsubst*
uses a different method (compiler macros) which works in all version of Emacs,
and also generates somewhat more efficient inline expansions. In particular,
defsubst* arranges for the processing of keyword arguments, default values,
etc., to be done at compile-time whenever possible.

Special Formdefmacro* name arglist body...
This is identical to the regular defmacro form, except that arglist is allowed
to be a full Common Lisp argument list. The &environment keyword is sup-
ported as described in Steele. The &whole keyword is supported only within
destructured lists (see below); top-level &whole cannot be implemented with
the current Emacs Lisp interpreter. The macro expander body is enclosed in
an implicit block called name.

Special Formfunction* symbol-or-lambda
This is identical to the regular function form, except that if the argument is
a lambda form then that form may use a full Common Lisp argument list.

Also, all forms (such as defsetf and flet) defined in this package that include arglists
in their syntax allow full Common Lisp argument lists.

Note that it is not necessary to use defun* in order to have access to most CL features
in your function. These features are always present; defun*’s only difference from defun is
its more flexible argument lists and its implicit block.

Chapter 5: Program Structure 6

The full form of a Common Lisp argument list is

(var...
&optional (var initform svar)...
&rest var
&key ((keyword var) initform svar)...
&aux (var initform)...)

Each of the five argument list sections is optional. The svar, initform, and keyword parts
are optional; if they are omitted, then ‘(var)’ may be written simply ‘var’.

The first section consists of zero or more required arguments. These arguments must
always be specified in a call to the function; there is no difference between Emacs Lisp and
Common Lisp as far as required arguments are concerned.

The second section consists of optional arguments. These arguments may be specified in
the function call; if they are not, initform specifies the default value used for the argument.
(No initform means to use nil as the default.) The initform is evaluated with the bindings
for the preceding arguments already established; (a &optional (b (1+ a))) matches one
or two arguments, with the second argument defaulting to one plus the first argument. If
the svar is specified, it is an auxiliary variable which is bound to t if the optional argument
was specified, or to nil if the argument was omitted. If you don’t use an svar, then there
will be no way for your function to tell whether it was called with no argument, or with the
default value passed explicitly as an argument.

The third section consists of a single rest argument. If more arguments were passed to
the function than are accounted for by the required and optional arguments, those extra
arguments are collected into a list and bound to the “rest” argument variable. Common
Lisp’s &rest is equivalent to that of Emacs Lisp. Common Lisp accepts &body as a synonym
for &rest in macro contexts; this package accepts it all the time.

The fourth section consists of keyword arguments. These are optional arguments which
are specified by name rather than positionally in the argument list. For example,

(defun* foo (a &optional b &key c d (e 17)))

defines a function which may be called with one, two, or more arguments. The first two
arguments are bound to a and b in the usual way. The remaining arguments must be pairs
of the form :c, :d, or :e followed by the value to be bound to the corresponding argument
variable. (Symbols whose names begin with a colon are called keywords, and they are
self-quoting in the same way as nil and t.)

For example, the call (foo 1 2 :d 3 :c 4) sets the five arguments to 1, 2, 4, 3, and 17,
respectively. If the same keyword appears more than once in the function call, the first
occurrence takes precedence over the later ones. Note that it is not possible to specify
keyword arguments without specifying the optional argument b as well, since (foo 1 :c 2)

would bind b to the keyword :c, then signal an error because 2 is not a valid keyword.

If a keyword symbol is explicitly specified in the argument list as shown in the above
diagram, then that keyword will be used instead of just the variable name prefixed with a
colon. You can specify a keyword symbol which does not begin with a colon at all, but such
symbols will not be self-quoting; you will have to quote them explicitly with an apostrophe
in the function call.

Chapter 5: Program Structure 7

Ordinarily it is an error to pass an unrecognized keyword to a function, e.g., (foo 1 2

:c 3 :goober 4). You can ask Lisp to ignore unrecognized keywords, either by adding the
marker &allow-other-keys after the keyword section of the argument list, or by specifying
an :allow-other-keys argument in the call whose value is non-nil. If the function uses
both &rest and &key at the same time, the “rest” argument is bound to the keyword list
as it appears in the call. For example:

(defun* find-thing (thing &rest rest &key need &allow-other-keys)
(or (apply ’member* thing thing-list :allow-other-keys t rest)

(if need (error "Thing not found"))))

This function takes a :need keyword argument, but also accepts other keyword arguments
which are passed on to the member* function. allow-other-keys is used to keep both
find-thing and member* from complaining about each others’ keywords in the arguments.

In Common Lisp, keywords are recognized by the Lisp parser itself and treated as special
entities. In Emacs, keywords are just symbols whose names begin with colons, which defun*

has arranged to set equal to themselves so that they will essentially be self-quoting.

As a (significant) performance optimization, this package implements the scan for key-
word arguments by calling memq to search for keywords in a “rest” argument. Technically
speaking, this is incorrect, since memq looks at the odd-numbered values as well as the even-
numbered keywords. The net effect is that if you happen to pass a keyword symbol as the
value of another keyword argument, where that keyword symbol happens to equal the name
of a valid keyword argument of the same function, then the keyword parser will become
confused. This minor bug can only affect you if you use keyword symbols as general-purpose
data in your program; this practice is strongly discouraged in Emacs Lisp.

The fifth section of the argument list consists of auxiliary variables. These are not really
arguments at all, but simply variables which are bound to nil or to the specified initforms
during execution of the function. There is no difference between the following two functions,
except for a matter of stylistic taste:

(defun* foo (a b &aux (c (+ a b)) d)
body)

(defun* foo (a b)
(let ((c (+ a b)) d)

body))

Argument lists support destructuring. In Common Lisp, destructuring is only allowed
with defmacro; this package allows it with defun* and other argument lists as well. In
destructuring, any argument variable (var in the above diagram) can be replaced by a list
of variables, or more generally, a recursive argument list. The corresponding argument value
must be a list whose elements match this recursive argument list. For example:

(defmacro* dolist ((var listform &optional resultform)
&rest body)

...)

This says that the first argument of dolist must be a list of two or three items; if there
are other arguments as well as this list, they are stored in body. All features allowed in
regular argument lists are allowed in these recursive argument lists. In addition, the clause
‘&whole var’ is allowed at the front of a recursive argument list. It binds var to the whole

Chapter 5: Program Structure 8

list being matched; thus (&whole all a b) matches a list of two things, with a bound to
the first thing, b bound to the second thing, and all bound to the list itself. (Common
Lisp allows &whole in top-level defmacro argument lists as well, but Emacs Lisp does not
support this usage.)

One last feature of destructuring is that the argument list may be dotted, so that the
argument list (a b . c) is functionally equivalent to (a b &rest c).

If the optimization quality safety is set to 0 (see Chapter 9 [Declarations], page 45),
error checking for wrong number of arguments and invalid keyword arguments is disabled.
By default, argument lists are rigorously checked.

5.3 Time of Evaluation

Normally, the byte-compiler does not actually execute the forms in a file it compiles. For
example, if a file contains (setq foo t), the act of compiling it will not actually set foo

to t. This is true even if the setq was a top-level form (i.e., not enclosed in a defun or
other form). Sometimes, though, you would like to have certain top-level forms evaluated at
compile-time. For example, the compiler effectively evaluates defmacro forms at compile-
time so that later parts of the file can refer to the macros that are defined.

Special Formeval-when (situations...) forms...
This form controls when the body forms are evaluated. The situations list may
contain any set of the symbols compile, load, and eval (or their long-winded
ANSI equivalents, :compile-toplevel, :load-toplevel, and :execute).

The eval-when form is handled differently depending on whether or not it is
being compiled as a top-level form. Specifically, it gets special treatment if it
is being compiled by a command such as byte-compile-file which compiles
files or buffers of code, and it appears either literally at the top level of the file
or inside a top-level progn.

For compiled top-level eval-whens, the body forms are executed at compile-
time if compile is in the situations list, and the forms are written out to the
file (to be executed at load-time) if load is in the situations list.

For non-compiled-top-level forms, only the eval situation is relevant. (This
includes forms executed by the interpreter, forms compiled with byte-compile

rather than byte-compile-file, and non-top-level forms.) The eval-when

acts like a progn if eval is specified, and like nil (ignoring the body forms) if
not.

The rules become more subtle when eval-whens are nested; consult Steele
(second edition) for the gruesome details (and some gruesome examples).

Some simple examples:

;; Top-level forms in foo.el:
(eval-when (compile) (setq foo1 ’bar))
(eval-when (load) (setq foo2 ’bar))
(eval-when (compile load) (setq foo3 ’bar))
(eval-when (eval) (setq foo4 ’bar))

Chapter 5: Program Structure 9

(eval-when (eval compile) (setq foo5 ’bar))
(eval-when (eval load) (setq foo6 ’bar))
(eval-when (eval compile load) (setq foo7 ’bar))

When ‘foo.el’ is compiled, these variables will be set during the compilation
itself:

foo1 foo3 foo5 foo7 ; ‘compile’

When ‘foo.elc’ is loaded, these variables will be set:

foo2 foo3 foo6 foo7 ; ‘load’

And if ‘foo.el’ is loaded uncompiled, these variables will be set:

foo4 foo5 foo6 foo7 ; ‘eval’

If these seven eval-whens had been, say, inside a defun, then the first three
would have been equivalent to nil and the last four would have been equivalent
to the corresponding setqs.

Note that (eval-when (load eval) . . .) is equivalent to (progn . . .) in all con-
texts. The compiler treats certain top-level forms, like defmacro (sort-of) and
require, as if they were wrapped in (eval-when (compile load eval) . . .).

Emacs 19 includes two special forms related to eval-when. One of these, eval-when-
compile, is not quite equivalent to any eval-when construct and is described below. This
package defines a version of eval-when-compile for the benefit of Emacs 18 users.

The other form, (eval-and-compile . . .), is exactly equivalent to ‘(eval-when (compile

load eval) . . .)’ and so is not itself defined by this package.

Special Formeval-when-compile forms...
The forms are evaluated at compile-time; at execution time, this form acts like a
quoted constant of the resulting value. Used at top-level, eval-when-compile is
just like ‘eval-when (compile eval)’. In other contexts, eval-when-compile
allows code to be evaluated once at compile-time for efficiency or other reasons.

This form is similar to the ‘#.’ syntax of true Common Lisp.

Special Formload-time-value form
The form is evaluated at load-time; at execution time, this form acts like a
quoted constant of the resulting value.

Early Common Lisp had a ‘#,’ syntax that was similar to this, but ANSI
Common Lisp replaced it with load-time-value and gave it more well-defined
semantics.

In a compiled file, load-time-value arranges for form to be evaluated when
the ‘.elc’ file is loaded and then used as if it were a quoted constant. In
code compiled by byte-compile rather than byte-compile-file, the effect
is identical to eval-when-compile. In uncompiled code, both eval-when-

compile and load-time-value act exactly like progn.

(defun report ()
(insert "This function was executed on: "

(current-time-string)
", compiled on: "

Chapter 5: Program Structure 10

(eval-when-compile (current-time-string))
;; or ’#.(current-time-string) in real Common Lisp
", and loaded on: "
(load-time-value (current-time-string))))

Byte-compiled, the above defun will result in the following code (or its compiled
equivalent, of course) in the ‘.elc’ file:

(setq --temp-- (current-time-string))
(defun report ()
(insert "This function was executed on: "

(current-time-string)
", compiled on: "
’"Wed Jun 23 18:33:43 1993"
", and loaded on: "
--temp--))

5.4 Function Aliases

This section describes a feature from GNU Emacs 19 which this package makes available in
other versions of Emacs.

Functiondefalias symbol function
This function sets symbol’s function cell to function. It is equivalent to fset,
except that in GNU Emacs 19 it also records the setting in load-history so
that it can be undone by a later unload-feature.

In other versions of Emacs, defalias is a synonym for fset.

Chapter 6: Predicates 11

6 Predicates

This section describes functions for testing whether various facts are true or false.

6.1 Type Predicates

The CL package defines a version of the Common Lisp typep predicate.

Functiontypep object type
Check if object is of type type, where type is a (quoted) type name of the sort
used by Common Lisp. For example, (typep foo ’integer) is equivalent to
(integerp foo).

The type argument to the above function is either a symbol or a list beginning with a
symbol.

• If the type name is a symbol, Emacs appends ‘-p’ to the symbol name to form the
name of a predicate function for testing the type. (Built-in predicates whose names
end in ‘p’ rather than ‘-p’ are used when appropriate.)

• The type symbol t stands for the union of all types. (typep object t) is always true.
Likewise, the type symbol nil stands for nothing at all, and (typep object nil) is
always false.

• The type symbol null represents the symbol nil. Thus (typep object ’null) is equiv-
alent to (null object).

• The type symbol real is a synonym for number, and fixnum is a synonym for integer.

• The type symbols character and string-char match integers in the range from 0 to
255.

• The type symbol float uses the floatp-safe predicate defined by this package rather
than floatp, so it will work correctly even in Emacs versions without floating-point
support.

• The type list (integer low high) represents all integers between low and high, inclu-
sive. Either bound may be a list of a single integer to specify an exclusive limit, or a
* to specify no limit. The type (integer * *) is thus equivalent to integer.

• Likewise, lists beginning with float, real, or number represent numbers of that type
falling in a particular range.

• Lists beginning with and, or, and not form combinations of types. For example, (or
integer (float 0 *)) represents all objects that are integers or non-negative floats.

• Lists beginning with member or member* represent objects eql to any of the following
values. For example, (member 1 2 3 4) is equivalent to (integer 1 4), and (member

nil) is equivalent to null.

• Lists of the form (satisfies predicate) represent all objects for which predicate re-
turns true when called with that object as an argument.

The following function and macro (not technically predicates) are related to typep.

Chapter 6: Predicates 12

Functioncoerce object type
This function attempts to convert object to the specified type. If object is
already of that type as determined by typep, it is simply returned. Otherwise,
certain types of conversions will be made: If type is any sequence type (string,
list, etc.) then object will be converted to that type if possible. If type is
character, then strings of length one and symbols with one-character names
can be coerced. If type is float, then integers can be coerced in versions of
Emacs that support floats. In all other circumstances, coerce signals an error.

Special Formdeftype name arglist forms...
This macro defines a new type called name. It is similar to defmacro in many
ways; when name is encountered as a type name, the body forms are evaluated
and should return a type specifier that is equivalent to the type. The arglist
is a Common Lisp argument list of the sort accepted by defmacro*. The type
specifier ‘(name args...)’ is expanded by calling the expander with those ar-
guments; the type symbol ‘name’ is expanded by calling the expander with no
arguments. The arglist is processed the same as for defmacro* except that op-
tional arguments without explicit defaults use * instead of nil as the “default”
default. Some examples:

(deftype null () ’(satisfies null)) ; predefined
(deftype list () ’(or null cons)) ; predefined
(deftype unsigned-byte (&optional bits)
(list ’integer 0 (if (eq bits ’*) bits (1- (lsh 1 bits)))))

(unsigned-byte 8) ≡ (integer 0 255)
(unsigned-byte) ≡ (integer 0 *)
unsigned-byte ≡ (integer 0 *)

The last example shows how the Common Lisp unsigned-byte type specifier
could be implemented if desired; this package does not implement unsigned-

byte by default.

The typecase and check-type macros also use type names. See Section 7.6 [Con-
ditionals], page 27. See Chapter 24 [Assertions], page 77. The map, concatenate, and
merge functions take type-name arguments to specify the type of sequence to return. See
Chapter 14 [Sequences], page 55.

6.2 Equality Predicates

This package defines two Common Lisp predicates, eql and equalp.

Functioneql a b
This function is almost the same as eq, except that if a and b are numbers of
the same type, it compares them for numeric equality (as if by equal instead of
eq). This makes a difference only for versions of Emacs that are compiled with
floating-point support, such as Emacs 19. Emacs floats are allocated objects
just like cons cells, which means that (eq 3.0 3.0) will not necessarily be

Chapter 6: Predicates 13

true—if the two 3.0s were allocated separately, the pointers will be different
even though the numbers are the same. But (eql 3.0 3.0) will always be true.

The types of the arguments must match, so (eql 3 3.0) is still false.

Note that Emacs integers are “direct” rather than allocated, which basically
means (eq 3 3) will always be true. Thus eq and eql behave differently only
if floating-point numbers are involved, and are indistinguishable on Emacs ver-
sions that don’t support floats.

There is a slight inconsistency with Common Lisp in the treatment of positive
and negative zeros. Some machines, notably those with IEEE standard arith-
metic, represent +0 and -0 as distinct values. Normally this doesn’t matter
because the standard specifies that (= 0.0 -0.0) should always be true, and
this is indeed what Emacs Lisp and Common Lisp do. But the Common Lisp
standard states that (eql 0.0 -0.0) and (equal 0.0 -0.0) should be false on
IEEE-like machines; Emacs Lisp does not do this, and in fact the only known
way to distinguish between the two zeros in Emacs Lisp is to format them and
check for a minus sign.

Functionequalp a b
This function is a more flexible version of equal. In particular, it compares
strings case-insensitively, and it compares numbers without regard to type (so
that (equalp 3 3.0) is true). Vectors and conses are compared recursively. All
other objects are compared as if by equal.

This function differs from Common Lisp equalp in several respects. First, Com-
mon Lisp’s equalp also compares characters case-insensitively, which would be
impractical in this package since Emacs does not distinguish between integers
and characters. In keeping with the idea that strings are less vector-like in
Emacs Lisp, this package’s equalp also will not compare strings against vec-
tors of integers. Finally, Common Lisp’s equalp compares hash tables without
regard to ordering, whereas this package simply compares hash tables in terms
of their underlying structure (which means vectors for Lucid Emacs 19 hash
tables, or lists for other hash tables).

Also note that the Common Lisp functions member and assoc use eql to compare el-
ements, whereas Emacs Lisp follows the MacLisp tradition and uses equal for these two
functions. In Emacs, use member* and assoc* to get functions which use eql for compar-
isons.

Chapter 7: Control Structure 14

7 Control Structure

The features described in the following sections implement various advanced control struc-
tures, including the powerful setf facility and a number of looping and conditional con-
structs.

7.1 Assignment

The psetq form is just like setq, except that multiple assignments are done in parallel
rather than sequentially.

Special Formpsetq [symbol form]. . .
This special form (actually a macro) is used to assign to several variables si-
multaneously. Given only one symbol and form, it has the same effect as setq.
Given several symbol and form pairs, it evaluates all the forms in advance and
then stores the corresponding variables afterwards.

(setq x 2 y 3)
(setq x (+ x y) y (* x y))
x

⇒ 5
y ; y was computed after x was set.

⇒ 15
(setq x 2 y 3)
(psetq x (+ x y) y (* x y))
x

⇒ 5
y ; y was computed before x was set.

⇒ 6

The simplest use of psetq is (psetq x y y x), which exchanges the values of
two variables. (The rotatef form provides an even more convenient way to
swap two variables; see Section 7.2.2 [Modify Macros], page 17.)

psetq always returns nil.

7.2 Generalized Variables

A “generalized variable” or “place form” is one of the many places in Lisp memory where
values can be stored. The simplest place form is a regular Lisp variable. But the cars and
cdrs of lists, elements of arrays, properties of symbols, and many other locations are also
places where Lisp values are stored.

The setf form is like setq, except that it accepts arbitrary place forms on the left side
rather than just symbols. For example, (setf (car a) b) sets the car of a to b, doing the
same operation as (setcar a b) but without having to remember two separate functions
for setting and accessing every type of place.

Chapter 7: Control Structure 15

Generalized variables are analogous to “lvalues” in the C language, where ‘x = a[i]’ gets
an element from an array and ‘a[i] = x’ stores an element using the same notation. Just as
certain forms like a[i] can be lvalues in C, there is a set of forms that can be generalized
variables in Lisp.

7.2.1 Basic Setf

The setf macro is the most basic way to operate on generalized variables.

Special Formsetf [place form]. . .
This macro evaluates form and stores it in place, which must be a valid gener-
alized variable form. If there are several place and form pairs, the assignments
are done sequentially just as with setq. setf returns the value of the last form.

The following Lisp forms will work as generalized variables, and so may legally
appear in the place argument of setf:

• A symbol naming a variable. In other words, (setf x y) is exactly equiva-
lent to (setq x y), and setq itself is strictly speaking redundant now that
setf exists. Many programmers continue to prefer setq for setting sim-
ple variables, though, purely for stylistic or historical reasons. The macro
(setf x y) actually expands to (setq x y), so there is no performance
penalty for using it in compiled code.

• A call to any of the following Lisp functions:

car cdr caar .. cddddr
nth rest first .. tenth
aref elt nthcdr
symbol-function symbol-value symbol-plist
get get* getf
gethash subseq

Note that for nthcdr and getf, the list argument of the function must
itself be a valid place form. For example, (setf (nthcdr 0 foo) 7) will
set foo itself to 7. Note that push and pop on an nthcdr place can be used
to insert or delete at any position in a list. The use of nthcdr as a place
form is an extension to standard Common Lisp.

• The following Emacs-specific functions are also setf-able. (Some of these
are defined only in Emacs 19 or only in Lucid Emacs.)

buffer-file-name marker-position
buffer-modified-p match-data
buffer-name mouse-position
buffer-string overlay-end
buffer-substring overlay-get
current-buffer overlay-start
current-case-table point
current-column point-marker
current-global-map point-max
current-input-mode point-min

Chapter 7: Control Structure 16

current-local-map process-buffer
current-window-configuration process-filter
default-file-modes process-sentinel
default-value read-mouse-position
documentation-property screen-height
extent-data screen-menubar
extent-end-position screen-width
extent-start-position selected-window
face-background selected-screen
face-background-pixmap selected-frame
face-font standard-case-table
face-foreground syntax-table
face-underline-p window-buffer
file-modes window-dedicated-p
frame-height window-display-table
frame-parameters window-height
frame-visible-p window-hscroll
frame-width window-point
get-register window-start
getenv window-width
global-key-binding x-get-cut-buffer
keymap-parent x-get-cutbuffer
local-key-binding x-get-secondary-selection
mark x-get-selection
mark-marker

Most of these have directly corresponding “set” functions, like use-local-
map for current-local-map, or goto-char for point. A few, like point-

min, expand to longer sequences of code when they are setf’d ((narrow-
to-region x (point-max)) in this case).

• A call of the form (substring subplace n [m]), where subplace is itself
a legal generalized variable whose current value is a string, and where the
value stored is also a string. The new string is spliced into the specified
part of the destination string. For example:

(setq a (list "hello" "world"))
⇒ ("hello" "world")

(cadr a)
⇒ "world"

(substring (cadr a) 2 4)
⇒ "rl"

(setf (substring (cadr a) 2 4) "o")
⇒ "o"

(cadr a)
⇒ "wood"

a
⇒ ("hello" "wood")

The generalized variable buffer-substring, listed above, also works in
this way by replacing a portion of the current buffer.

Chapter 7: Control Structure 17

• A call of the form (apply ’func . . .) or (apply (function func) . . .),
where func is a setf-able function whose store function is “suitable” in
the sense described in Steele’s book; since none of the standard Emacs
place functions are suitable in this sense, this feature is only interesting
when used with places you define yourself with define-setf-method or
the long form of defsetf.

• A macro call, in which case the macro is expanded and setf is applied to
the resulting form.

• Any form for which a defsetf or define-setf-method has been made.

Using any forms other than these in the place argument to setf will signal an
error.

The setf macro takes care to evaluate all subforms in the proper left-to-right
order; for example,

(setf (aref vec (incf i)) i)

looks like it will evaluate (incf i) exactly once, before the following access to
i; the setf expander will insert temporary variables as necessary to ensure that
it does in fact work this way no matter what setf-method is defined for aref.
(In this case, aset would be used and no such steps would be necessary since
aset takes its arguments in a convenient order.)

However, if the place form is a macro which explicitly evaluates its arguments
in an unusual order, this unusual order will be preserved. Adapting an example
from Steele, given

(defmacro wrong-order (x y) (list ’aref y x))

the form (setf (wrong-order a b) 17) will evaluate b first, then a, just as in
an actual call to wrong-order.

7.2.2 Modify Macros

This package defines a number of other macros besides setf that operate on generalized
variables. Many are interesting and useful even when the place is just a variable name.

Special Formpsetf [place form]. . .
This macro is to setf what psetq is to setq: When several places and forms
are involved, the assignments take place in parallel rather than sequentially.
Specifically, all subforms are evaluated from left to right, then all the assign-
ments are done (in an undefined order).

Special Formincf place &optional x
This macro increments the number stored in place by one, or by x if specified.
The incremented value is returned. For example, (incf i) is equivalent to
(setq i (1+ i)), and (incf (car x) 2) is equivalent to (setcar x (+ (car

x) 2)).

Once again, care is taken to preserve the “apparent” order of evaluation. For
example,

Chapter 7: Control Structure 18

(incf (aref vec (incf i)))

appears to increment i once, then increment the element of vec addressed by i;
this is indeed exactly what it does, which means the above form is not equivalent
to the “obvious” expansion,

(setf (aref vec (incf i)) (1+ (aref vec (incf i)))) ; Wrong!

but rather to something more like

(let ((temp (incf i)))
(setf (aref vec temp) (1+ (aref vec temp))))

Again, all of this is taken care of automatically by incf and the other
generalized-variable macros.

As a more Emacs-specific example of incf, the expression (incf (point) n)
is essentially equivalent to (forward-char n).

Special Formdecf place &optional x
This macro decrements the number stored in place by one, or by x if specified.

Special Formpop place
This macro removes and returns the first element of the list stored in place. It
is analogous to (prog1 (car place) (setf place (cdr place))), except that it
takes care to evaluate all subforms only once.

Special Formpush x place
This macro inserts x at the front of the list stored in place. It is analogous to
(setf place (cons x place)), except for evaluation of the subforms.

Special Formpushnew x place &key :test :test-not :key

This macro inserts x at the front of the list stored in place, but only if x was
not eql to any existing element of the list. The optional keyword arguments
are interpreted in the same way as for adjoin. See Section 15.5 [Lists as Sets],
page 65.

Special Formshiftf place. . . newvalue
This macro shifts the places left by one, shifting in the value of newvalue (which
may be any Lisp expression, not just a generalized variable), and returning the
value shifted out of the first place. Thus, (shiftf a b c d) is equivalent to

(prog1
a

(psetf a b
b c
c d))

except that the subforms of a, b, and c are actually evaluated only once each
and in the apparent order.

Special Formrotatef place. . .
This macro rotates the places left by one in circular fashion. Thus, (rotatef
a b c d) is equivalent to

Chapter 7: Control Structure 19

(psetf a b
b c
c d
d a)

except for the evaluation of subforms. rotatef always returns nil. Note that
(rotatef a b) conveniently exchanges a and b.

The following macros were invented for this package; they have no analogues in Common
Lisp.

Special Formletf (bindings. . .) forms. . .
This macro is analogous to let, but for generalized variables rather than just
symbols. Each binding should be of the form (place value); the original con-
tents of the places are saved, the values are stored in them, and then the body
forms are executed. Afterwards, the places are set back to their original saved
contents. This cleanup happens even if the forms exit irregularly due to a throw

or an error.

For example,

(letf (((point) (point-min))
(a 17))

...)

moves “point” in the current buffer to the beginning of the buffer, and also
binds a to 17 (as if by a normal let, since a is just a regular variable). After
the body exits, a is set back to its original value and point is moved back to its
original position.

Note that letf on (point) is not quite like a save-excursion, as the latter
effectively saves a marker which tracks insertions and deletions in the buffer.
Actually, a letf of (point-marker) is much closer to this behavior. (point
and point-marker are equivalent as setf places; each will accept either an
integer or a marker as the stored value.)

Since generalized variables look like lists, let’s shorthand of using ‘foo’ for
‘(foo nil)’ as a binding would be ambiguous in letf and is not allowed.

However, a binding specifier may be a one-element list ‘(place)’, which is similar
to ‘(place place)’. In other words, the place is not disturbed on entry to the
body, and the only effect of the letf is to restore the original value of place
afterwards. (The redundant access-and-store suggested by the (place place)
example does not actually occur.)

In most cases, the place must have a well-defined value on entry to the letf

form. The only exceptions are plain variables and calls to symbol-value and
symbol-function. If the symbol is not bound on entry, it is simply made
unbound by makunbound or fmakunbound on exit.

Special Formletf* (bindings. . .) forms. . .
This macro is to letf what let* is to let: It does the bindings in sequential
rather than parallel order.

Chapter 7: Control Structure 20

Special Formcallf function place args. . .
This is the “generic” modify macro. It calls function, which should be an
unquoted function name, macro name, or lambda. It passes place and args as
arguments, and assigns the result back to place. For example, (incf place n)
is the same as (callf + place n). Some more examples:

(callf abs my-number)
(callf concat (buffer-name) "<" (int-to-string n) ">")
(callf union happy-people (list joe bob) :test ’same-person)

See Section 7.2.3 [Customizing Setf], page 20, for define-modify-macro, a way
to create even more concise notations for modify macros. Note again that callf
is an extension to standard Common Lisp.

Special Formcallf2 function arg1 place args. . .
This macro is like callf, except that place is the second argument of function
rather than the first. For example, (push x place) is equivalent to (callf2

cons x place).

The callf and callf2 macros serve as building blocks for other macros like incf,
pushnew, and define-modify-macro. The letf and letf* macros are used in the process-
ing of symbol macros; see Section 7.5.4 [Macro Bindings], page 26.

7.2.3 Customizing Setf

Common Lisp defines three macros, define-modify-macro, defsetf, and define-setf-

method, that allow the user to extend generalized variables in various ways.

Special Formdefine-modify-macro name arglist function [doc-string]
This macro defines a “read-modify-write” macro similar to incf and decf.
The macro name is defined to take a place argument followed by additional
arguments described by arglist. The call

(name place args...)

will be expanded to

(callf func place args...)

which in turn is roughly equivalent to

(setf place (func place args...))

For example:

(define-modify-macro incf (&optional (n 1)) +)
(define-modify-macro concatf (&rest args) concat)

Note that &key is not allowed in arglist, but &rest is sufficient to pass keywords
on to the function.

Most of the modify macros defined by Common Lisp do not exactly follow the
pattern of define-modify-macro. For example, push takes its arguments in
the wrong order, and pop is completely irregular. You can define these macros
“by hand” using get-setf-method, or consult the source file ‘cl-macs.el’ to
see how to use the internal setf building blocks.

Chapter 7: Control Structure 21

Special Formdefsetf access-fn update-fn
This is the simpler of two defsetf forms. Where access-fn is the name of a
function which accesses a place, this declares update-fn to be the corresponding
store function. From now on,

(setf (access-fn arg1 arg2 arg3) value)

will be expanded to

(update-fn arg1 arg2 arg3 value)

The update-fn is required to be either a true function, or a macro which eval-
uates its arguments in a function-like way. Also, the update-fn is expected to
return value as its result. Otherwise, the above expansion would not obey the
rules for the way setf is supposed to behave.

As a special (non-Common-Lisp) extension, a third argument of t to defsetf

says that the update-fn’s return value is not suitable, so that the above setf

should be expanded to something more like

(let ((temp value))
(update-fn arg1 arg2 arg3 temp)
temp)

Some examples of the use of defsetf, drawn from the standard suite of setf
methods, are:

(defsetf car setcar)
(defsetf symbol-value set)
(defsetf buffer-name rename-buffer t)

Special Formdefsetf access-fn arglist (store-var) forms. . .
This is the second, more complex, form of defsetf. It is rather like defmacro

except for the additional store-var argument. The forms should return a Lisp
form which stores the value of store-var into the generalized variable formed by
a call to access-fn with arguments described by arglist. The forms may begin
with a string which documents the setf method (analogous to the doc string
that appears at the front of a function).

For example, the simple form of defsetf is shorthand for

(defsetf access-fn (&rest args) (store)
(append ’(update-fn) args (list store)))

The Lisp form that is returned can access the arguments from arglist and store-
var in an unrestricted fashion; macros like setf and incf which invoke this setf-
method will insert temporary variables as needed to make sure the apparent
order of evaluation is preserved.

Another example drawn from the standard package:

(defsetf nth (n x) (store)
(list ’setcar (list ’nthcdr n x) store))

Special Formdefine-setf-method access-fn arglist forms. . .
This is the most general way to create new place forms. When a setf to access-
fn with arguments described by arglist is expanded, the forms are evaluated and
must return a list of five items:

Chapter 7: Control Structure 22

1. A list of temporary variables.

2. A list of value forms corresponding to the temporary variables above. The
temporary variables will be bound to these value forms as the first step of
any operation on the generalized variable.

3. A list of exactly one store variable (generally obtained from a call to
gensym).

4. A Lisp form which stores the contents of the store variable into the gen-
eralized variable, assuming the temporaries have been bound as described
above.

5. A Lisp form which accesses the contents of the generalized variable, assum-
ing the temporaries have been bound.

This is exactly like the Common Lisp macro of the same name, except that the
method returns a list of five values rather than the five values themselves, since
Emacs Lisp does not support Common Lisp’s notion of multiple return values.

Once again, the forms may begin with a documentation string.

A setf-method should be maximally conservative with regard to temporary
variables. In the setf-methods generated by defsetf, the second return value
is simply the list of arguments in the place form, and the first return value is
a list of a corresponding number of temporary variables generated by gensym.
Macros like setf and incf which use this setf-method will optimize away most
temporaries that turn out to be unnecessary, so there is little reason for the
setf-method itself to optimize.

Functionget-setf-method place &optional env
This function returns the setf-method for place, by invoking the definition pre-
viously recorded by defsetf or define-setf-method. The result is a list of
five values as described above. You can use this function to build your own
incf-like modify macros. (Actually, it is better to use the internal functions
cl-setf-do-modify and cl-setf-do-store, which are a bit easier to use and
which also do a number of optimizations; consult the source code for the incf

function for a simple example.)

The argument env specifies the “environment” to be passed on to macroexpand

if get-setf-method should need to expand a macro in place. It should come
from an &environment argument to the macro or setf-method that called get-

setf-method.

See also the source code for the setf-methods for apply and substring, each
of which works by calling get-setf-method on a simpler case, then massaging
the result in various ways.

Modern Common Lisp defines a second, independent way to specify the setf behavior
of a function, namely “setf functions” whose names are lists (setf name) rather than
symbols. For example, (defun (setf foo) . . .) defines the function that is used when setf

is applied to foo. This package does not currently support setf functions. In particular,
it is a compile-time error to use setf on a form which has not already been defsetf’d or

Chapter 7: Control Structure 23

otherwise declared; in newer Common Lisps, this would not be an error since the function
(setf func) might be defined later.

7.5 Variable Bindings

These Lisp forms make bindings to variables and function names, analogous to Lisp’s built-
in let form.

See Section 7.2.2 [Modify Macros], page 17, for the letf and letf* forms which are also
related to variable bindings.

7.5.1 Dynamic Bindings

The standard let form binds variables whose names are known at compile-time. The progv
form provides an easy way to bind variables whose names are computed at run-time.

Special Formprogv symbols values forms. . .
This form establishes let-style variable bindings on a set of variables computed
at run-time. The expressions symbols and values are evaluated, and must
return lists of symbols and values, respectively. The symbols are bound to the
corresponding values for the duration of the body forms. If values is shorter
than symbols, the last few symbols are made unbound (as if by makunbound)
inside the body. If symbols is shorter than values, the excess values are ignored.

7.5.2 Lexical Bindings

The CL package defines the following macro which more closely follows the Common Lisp
let form:

Special Formlexical-let (bindings. . .) forms. . .
This form is exactly like let except that the bindings it establishes are purely
lexical. Lexical bindings are similar to local variables in a language like C:
Only the code physically within the body of the lexical-let (after macro
expansion) may refer to the bound variables.

(setq a 5)
(defun foo (b) (+ a b))
(let ((a 2)) (foo a))

⇒ 4
(lexical-let ((a 2)) (foo a))

⇒ 7

In this example, a regular let binding of a actually makes a temporary change
to the global variable a, so foo is able to see the binding of a to 2. But lexical-
let actually creates a distinct local variable a for use within its body, without
any effect on the global variable of the same name.

The most important use of lexical bindings is to create closures. A closure is a
function object that refers to an outside lexical variable. For example:

Chapter 7: Control Structure 24

(defun make-adder (n)
(lexical-let ((n n))
(function (lambda (m) (+ n m)))))

(setq add17 (make-adder 17))
(funcall add17 4)

⇒ 21

The call (make-adder 17) returns a function object which adds 17 to its argu-
ment. If let had been used instead of lexical-let, the function object would
have referred to the global n, which would have been bound to 17 only during
the call to make-adder itself.

(defun make-counter ()
(lexical-let ((n 0))
(function* (lambda (&optional (m 1)) (incf n m)))))

(setq count-1 (make-counter))
(funcall count-1 3)

⇒ 3
(funcall count-1 14)

⇒ 17
(setq count-2 (make-counter))
(funcall count-2 5)

⇒ 5
(funcall count-1 2)

⇒ 19
(funcall count-2)

⇒ 6

Here we see that each call to make-counter creates a distinct local variable n,
which serves as a private counter for the function object that is returned.

Closed-over lexical variables persist until the last reference to them goes away,
just like all other Lisp objects. For example, count-2 refers to a function object
which refers to an instance of the variable n; this is the only reference to that
variable, so after (setq count-2 nil) the garbage collector would be able to
delete this instance of n. Of course, if a lexical-let does not actually create
any closures, then the lexical variables are free as soon as the lexical-let

returns.

Many closures are used only during the extent of the bindings they refer to;
these are known as “downward funargs” in Lisp parlance. When a closure is
used in this way, regular Emacs Lisp dynamic bindings suffice and will be more
efficient than lexical-let closures:

(defun add-to-list (x list)
(mapcar (function (lambda (y) (+ x y))) list))

(add-to-list 7 ’(1 2 5))
⇒ (8 9 12)

Since this lambda is only used while x is still bound, it is not necessary to make
a true closure out of it.

Chapter 7: Control Structure 25

You can use defun or flet inside a lexical-let to create a named closure. If
several closures are created in the body of a single lexical-let, they all close
over the same instance of the lexical variable.

The lexical-let form is an extension to Common Lisp. In true Common Lisp,
all bindings are lexical unless declared otherwise.

Special Formlexical-let* (bindings. . .) forms. . .
This form is just like lexical-let, except that the bindings are made sequen-
tially in the manner of let*.

7.5.3 Function Bindings

These forms make let-like bindings to functions instead of variables.

Special Formflet (bindings. . .) forms. . .
This form establishes let-style bindings on the function cells of symbols rather
than on the value cells. Each binding must be a list of the form ‘(name arglist
forms. . .)’, which defines a function exactly as if it were a defun* form. The
function name is defined accordingly for the duration of the body of the flet;
then the old function definition, or lack thereof, is restored.

While flet in Common Lisp establishes a lexical binding of name, Emacs Lisp
flet makes a dynamic binding. The result is that flet affects indirect calls to
a function as well as calls directly inside the flet form itself.

You can use flet to disable or modify the behavior of a function in a temporary
fashion. This will even work on Emacs primitives, although note that some calls
to primitive functions internal to Emacs are made without going through the
symbol’s function cell, and so will not be affected by flet. For example,

(flet ((message (&rest args) (push args saved-msgs)))
(do-something))

This code attempts to replace the built-in function message with a function that
simply saves the messages in a list rather than displaying them. The original
definition of message will be restored after do-something exits. This code will
work fine on messages generated by other Lisp code, but messages generated
directly inside Emacs will not be caught since they make direct C-language calls
to the message routines rather than going through the Lisp message function.

Functions defined by flet may use the full Common Lisp argument notation
supported by defun*; also, the function body is enclosed in an implicit block
as if by defun*. See Chapter 5 [Program Structure], page 5.

Special Formlabels (bindings. . .) forms. . .
The labels form is like flet, except that it makes lexical bindings of the
function names rather than dynamic bindings. (In true Common Lisp, both
flet and labels make lexical bindings of slightly different sorts; since Emacs
Lisp is dynamically bound by default, it seemed more appropriate for flet also
to use dynamic binding. The labels form, with its lexical binding, is fully
compatible with Common Lisp.)

Chapter 7: Control Structure 26

Lexical scoping means that all references to the named functions must appear
physically within the body of the labels form. References may appear both in
the body forms of labels itself, and in the bodies of the functions themselves.
Thus, labels can define local recursive functions, or mutually-recursive sets of
functions.

A “reference” to a function name is either a call to that function, or a use of
its name quoted by quote or function to be passed on to, say, mapcar.

7.5.4 Macro Bindings

These forms create local macros and “symbol macros.”

Special Formmacrolet (bindings. . .) forms. . .
This form is analogous to flet, but for macros instead of functions. Each bind-
ing is a list of the same form as the arguments to defmacro* (i.e., a macro name,
argument list, and macro-expander forms). The macro is defined accordingly
for use within the body of the macrolet.

Because of the nature of macros, macrolet is lexically scoped even in Emacs
Lisp: The macrolet binding will affect only calls that appear physically within
the body forms, possibly after expansion of other macros in the body.

Special Formsymbol-macrolet (bindings. . .) forms. . .
This form creates symbol macros, which are macros that look like variable
references rather than function calls. Each binding is a list ‘(var expansion)’;
any reference to var within the body forms is replaced by expansion.

(setq bar ’(5 . 9))
(symbol-macrolet ((foo (car bar)))
(incf foo))

bar
⇒ (6 . 9)

A setq of a symbol macro is treated the same as a setf. I.e., (setq foo 4)

in the above would be equivalent to (setf foo 4), which in turn expands to
(setf (car bar) 4).

Likewise, a let or let* binding a symbol macro is treated like a letf or letf*.
This differs from true Common Lisp, where the rules of lexical scoping cause
a let binding to shadow a symbol-macrolet binding. In this package, only
lexical-let and lexical-let* will shadow a symbol macro.

There is no analogue of defmacro for symbol macros; all symbol macros are
local. A typical use of symbol-macrolet is in the expansion of another macro:

(defmacro* my-dolist ((x list) &rest body)
(let ((var (gensym)))
(list ’loop ’for var ’on list ’do

(list* ’symbol-macrolet (list (list x (list ’car var)))
body))))

Chapter 7: Control Structure 27

(setq mylist ’(1 2 3 4))
(my-dolist (x mylist) (incf x))
mylist

⇒ (2 3 4 5)

In this example, the my-dolist macro is similar to dolist (see Section 7.8
[Iteration], page 29) except that the variable x becomes a true reference onto
the elements of the list. The my-dolist call shown here expands to

(loop for G1234 on mylist do
(symbol-macrolet ((x (car G1234)))
(incf x)))

which in turn expands to

(loop for G1234 on mylist do (incf (car G1234)))

See Section 7.9 [Loop Facility], page 31, for a description of the loop macro.
This package defines a nonstandard in-ref loop clause that works much like
my-dolist.

7.6 Conditionals

These conditional forms augment Emacs Lisp’s simple if, and, or, and cond forms.

Special Formwhen test forms. . .
This is a variant of if where there are no “else” forms, and possibly several
“then” forms. In particular,

(when test a b c)

is entirely equivalent to

(if test (progn a b c) nil)

Special Formunless test forms. . .
This is a variant of if where there are no “then” forms, and possibly several
“else” forms:

(unless test a b c)

is entirely equivalent to

(when (not test) a b c)

Special Formcase keyform clause. . .
This macro evaluates keyform, then compares it with the key values listed in
the various clauses. Whichever clause matches the key is executed; comparison
is done by eql. If no clause matches, the case form returns nil. The clauses
are of the form

(keylist body-forms. . .)

where keylist is a list of key values. If there is exactly one value, and it is not a
cons cell or the symbol nil or t, then it can be used by itself as a keylist without
being enclosed in a list. All key values in the case form must be distinct. The
final clauses may use t in place of a keylist to indicate a default clause that

Chapter 7: Control Structure 28

should be taken if none of the other clauses match. (The symbol otherwise is
also recognized in place of t. To make a clause that matches the actual symbol
t, nil, or otherwise, enclose the symbol in a list.)

For example, this expression reads a keystroke, then does one of four things
depending on whether it is an ‘a’, a ‘b’, a 〈RET〉 or 〈LFD〉, or anything else.

(case (read-char)
(?a (do-a-thing))
(?b (do-b-thing))
((?\r ?\n) (do-ret-thing))
(t (do-other-thing)))

Special Formecase keyform clause. . .
This macro is just like case, except that if the key does not match any of the
clauses, an error is signaled rather than simply returning nil.

Special Formtypecase keyform clause. . .
This macro is a version of case that checks for types rather than values. Each
clause is of the form ‘(type body...)’. See Section 6.1 [Type Predicates],
page 11, for a description of type specifiers. For example,

(typecase x
(integer (munch-integer x))
(float (munch-float x))
(string (munch-integer (string-to-int x)))
(t (munch-anything x)))

The type specifier t matches any type of object; the word otherwise is also
allowed. To make one clause match any of several types, use an (or ...) type
specifier.

Special Formetypecase keyform clause. . .
This macro is just like typecase, except that if the key does not match any of
the clauses, an error is signaled rather than simply returning nil.

7.7 Blocks and Exits

Common Lisp blocks provide a non-local exit mechanism very similar to catch and throw,
but lexically rather than dynamically scoped. This package actually implements block in
terms of catch; however, the lexical scoping allows the optimizing byte-compiler to omit
the costly catch step if the body of the block does not actually return-from the block.

Special Formblock name forms. . .
The forms are evaluated as if by a progn. However, if any of the forms execute
(return-from name), they will jump out and return directly from the block

form. The block returns the result of the last form unless a return-from

occurs.

The block/return-from mechanism is quite similar to the catch/throw mech-
anism. The main differences are that block names are unevaluated symbols,

Chapter 7: Control Structure 29

rather than forms (such as quoted symbols) which evaluate to a tag at run-time;
and also that blocks are lexically scoped whereas catch/throw are dynamically
scoped. This means that functions called from the body of a catch can also
throw to the catch, but the return-from referring to a block name must ap-
pear physically within the forms that make up the body of the block. They
may not appear within other called functions, although they may appear within
macro expansions or lambdas in the body. Block names and catch names form
independent name-spaces.

In true Common Lisp, defun and defmacro surround the function or expander
bodies with implicit blocks with the same name as the function or macro. This
does not occur in Emacs Lisp, but this package provides defun* and defmacro*

forms which do create the implicit block.

The Common Lisp looping constructs defined by this package, such as loop

and dolist, also create implicit blocks just as in Common Lisp.

Because they are implemented in terms of Emacs Lisp catch and throw, blocks
have the same overhead as actual catch constructs (roughly two function calls).
However, Zawinski and Furuseth’s optimizing byte compiler (standard in Emacs
19) will optimize away the catch if the block does not in fact contain any return

or return-from calls that jump to it. This means that do loops and defun*

functions which don’t use return don’t pay the overhead to support it.

Special Formreturn-from name [result]
This macro returns from the block named name, which must be an (unevalu-
ated) symbol. If a result form is specified, it is evaluated to produce the result
returned from the block. Otherwise, nil is returned.

Special Formreturn [result]
This macro is exactly like (return-from nil result). Common Lisp loops like
do and dolist implicitly enclose themselves in nil blocks.

7.8 Iteration

The macros described here provide more sophisticated, high-level looping constructs to
complement Emacs Lisp’s basic while loop.

Special Formloop forms. . .
The CL package supports both the simple, old-style meaning of loop and the
extremely powerful and flexible feature known as the Loop Facility or Loop
Macro. This more advanced facility is discussed in the following section; see
Section 7.9 [Loop Facility], page 31. The simple form of loop is described here.

If loop is followed by zero or more Lisp expressions, then (loop exprs. . .)
simply creates an infinite loop executing the expressions over and over. The
loop is enclosed in an implicit nil block. Thus,

(loop (foo) (if (no-more) (return 72)) (bar))

is exactly equivalent to

Chapter 7: Control Structure 30

(block nil (while t (foo) (if (no-more) (return 72)) (bar)))

If any of the expressions are plain symbols, the loop is instead interpreted as
a Loop Macro specification as described later. (This is not a restriction in
practice, since a plain symbol in the above notation would simply access and
throw away the value of a variable.)

Special Formdo (spec. . .) (end-test [result. . .]) forms. . .
This macro creates a general iterative loop. Each spec is of the form

(var [init [step]])

The loop works as follows: First, each var is bound to the associated init value
as if by a let form. Then, in each iteration of the loop, the end-test is evaluated;
if true, the loop is finished. Otherwise, the body forms are evaluated, then each
var is set to the associated step expression (as if by a psetq form) and the next
iteration begins. Once the end-test becomes true, the result forms are evaluated
(with the vars still bound to their values) to produce the result returned by do.

The entire do loop is enclosed in an implicit nil block, so that you can use
(return) to break out of the loop at any time.

If there are no result forms, the loop returns nil. If a given var has no step
form, it is bound to its init value but not otherwise modified during the do loop
(unless the code explicitly modifies it); this case is just a shorthand for putting
a (let ((var init)) . . .) around the loop. If init is also omitted it defaults to
nil, and in this case a plain ‘var’ can be used in place of ‘(var)’, again following
the analogy with let.

This example (from Steele) illustrates a loop which applies the function f to
successive pairs of values from the lists foo and bar; it is equivalent to the
call (mapcar* ’f foo bar). Note that this loop has no body forms at all,
performing all its work as side effects of the rest of the loop.

(do ((x foo (cdr x))
(y bar (cdr y))
(z nil (cons (f (car x) (car y)) z)))

((or (null x) (null y))
(nreverse z)))

Special Formdo* (spec. . .) (end-test [result. . .]) forms. . .
This is to do what let* is to let. In particular, the initial values are bound
as if by let* rather than let, and the steps are assigned as if by setq rather
than psetq.

Here is another way to write the above loop:

(do* ((xp foo (cdr xp))
(yp bar (cdr yp))
(x (car xp) (car xp))
(y (car yp) (car yp))
z)

((or (null xp) (null yp))
(nreverse z))

(push (f x y) z))

Chapter 7: Control Structure 31

Special Formdolist (var list [result]) forms. . .
This is a more specialized loop which iterates across the elements of a list. list
should evaluate to a list; the body forms are executed with var bound to each
element of the list in turn. Finally, the result form (or nil) is evaluated with
var bound to nil to produce the result returned by the loop. The loop is
surrounded by an implicit nil block.

Special Formdotimes (var count [result]) forms. . .
This is a more specialized loop which iterates a specified number of times. The
body is executed with var bound to the integers from zero (inclusive) to count
(exclusive), in turn. Then the result form is evaluated with var bound to the
total number of iterations that were done (i.e., (max 0 count)) to get the return
value for the loop form. The loop is surrounded by an implicit nil block.

Special Formdo-symbols (var [obarray [result]]) forms. . .
This loop iterates over all interned symbols. If obarray is specified and is not
nil, it loops over all symbols in that obarray. For each symbol, the body forms
are evaluated with var bound to that symbol. The symbols are visited in an
unspecified order. Afterward the result form, if any, is evaluated (with var
bound to nil) to get the return value. The loop is surrounded by an implicit
nil block.

Special Formdo-all-symbols (var [result]) forms. . .
This is identical to do-symbols except that the obarray argument is omitted;
it always iterates over the default obarray.

See Section 14.2 [Mapping over Sequences], page 56, for some more functions for iterating
over vectors or lists.

7.9 Loop Facility

A common complaint with Lisp’s traditional looping constructs is that they are either
too simple and limited, such as Common Lisp’s dotimes or Emacs Lisp’s while, or too
unreadable and obscure, like Common Lisp’s do loop.

To remedy this, recent versions of Common Lisp have added a new construct called the
“Loop Facility” or “loop macro,” with an easy-to-use but very powerful and expressive
syntax.

7.9.1 Loop Basics

The loop macro essentially creates a mini-language within Lisp that is specially tailored for
describing loops. While this language is a little strange-looking by the standards of regular
Lisp, it turns out to be very easy to learn and well-suited to its purpose.

Since loop is a macro, all parsing of the loop language takes place at byte-compile time;
compiled loops are just as efficient as the equivalent while loops written longhand.

Chapter 7: Control Structure 32

Special Formloop clauses. . .
A loop construct consists of a series of clauses, each introduced by a symbol like
for or do. Clauses are simply strung together in the argument list of loop, with
minimal extra parentheses. The various types of clauses specify initializations,
such as the binding of temporary variables, actions to be taken in the loop,
stepping actions, and final cleanup.

Common Lisp specifies a certain general order of clauses in a loop:

(loop name-clause
var-clauses. . .
action-clauses. . .)

The name-clause optionally gives a name to the implicit block that surrounds
the loop. By default, the implicit block is named nil. The var-clauses spec-
ify what variables should be bound during the loop, and how they should be
modified or iterated throughout the course of the loop. The action-clauses are
things to be done during the loop, such as computing, collecting, and returning
values.

The Emacs version of the loop macro is less restrictive about the order of
clauses, but things will behave most predictably if you put the variable-binding
clauses with, for, and repeat before the action clauses. As in Common Lisp,
initially and finally clauses can go anywhere.

Loops generally return nil by default, but you can cause them to return a value
by using an accumulation clause like collect, an end-test clause like always,
or an explicit return clause to jump out of the implicit block. (Because the
loop body is enclosed in an implicit block, you can also use regular Lisp return

or return-from to break out of the loop.)

The following sections give some examples of the Loop Macro in action, and describe
the particular loop clauses in great detail. Consult the second edition of Steele’s Common
Lisp, the Language, for additional discussion and examples of the loop macro.

7.9.2 Loop Examples

Before listing the full set of clauses that are allowed, let’s look at a few example loops just
to get a feel for the loop language.

(loop for buf in (buffer-list)
collect (buffer-file-name buf))

This loop iterates over all Emacs buffers, using the list returned by buffer-list. For each
buffer buf, it calls buffer-file-name and collects the results into a list, which is then
returned from the loop construct. The result is a list of the file names of all the buffers in
Emacs’ memory. The words for, in, and collect are reserved words in the loop language.

(loop repeat 20 do (insert "Yowsa\n"))

This loop inserts the phrase “Yowsa” twenty times in the current buffer.

(loop until (eobp) do (munch-line) (forward-line 1))

Chapter 7: Control Structure 33

This loop calls munch-line on every line until the end of the buffer. If point is already at
the end of the buffer, the loop exits immediately.

(loop do (munch-line) until (eobp) do (forward-line 1))

This loop is similar to the above one, except that munch-line is always called at least once.

(loop for x from 1 to 100
for y = (* x x)
until (>= y 729)
finally return (list x (= y 729)))

This more complicated loop searches for a number x whose square is 729. For safety’s sake
it only examines x values up to 100; dropping the phrase ‘to 100’ would cause the loop to
count upwards with no limit. The second for clause defines y to be the square of x within
the loop; the expression after the = sign is reevaluated each time through the loop. The
until clause gives a condition for terminating the loop, and the finally clause says what
to do when the loop finishes. (This particular example was written less concisely than it
could have been, just for the sake of illustration.)

Note that even though this loop contains three clauses (two fors and an until) that
would have been enough to define loops all by themselves, it still creates a single loop rather
than some sort of triple-nested loop. You must explicitly nest your loop constructs if you
want nested loops.

7.9.3 For Clauses

Most loops are governed by one or more for clauses. A for clause simultaneously describes
variables to be bound, how those variables are to be stepped during the loop, and usually
an end condition based on those variables.

The word as is a synonym for the word for. This word is followed by a variable name,
then a word like from or across that describes the kind of iteration desired. In Common
Lisp, the phrase being the sometimes precedes the type of iteration; in this package both
being and the are optional. The word each is a synonym for the, and the word that
follows it may be singular or plural: ‘for x being the elements of y’ or ‘for x being

each element of y’. Which form you use is purely a matter of style.

The variable is bound around the loop as if by let:

(setq i ’happy)
(loop for i from 1 to 10 do (do-something-with i))
i

⇒ happy

for var from expr1 to expr2 by expr3
This type of for clause creates a counting loop. Each of the three sub-terms is
optional, though there must be at least one term so that the clause is marked
as a counting clause.

The three expressions are the starting value, the ending value, and the step
value, respectively, of the variable. The loop counts upwards by default (expr3
must be positive), from expr1 to expr2 inclusively. If you omit the from term,

Chapter 7: Control Structure 34

the loop counts from zero; if you omit the to term, the loop counts forever
without stopping (unless stopped by some other loop clause, of course); if you
omit the by term, the loop counts in steps of one.

You can replace the word from with upfrom or downfrom to indicate the di-
rection of the loop. Likewise, you can replace to with upto or downto. For
example, ‘for x from 5 downto 1’ executes five times with x taking on the in-
tegers from 5 down to 1 in turn. Also, you can replace to with below or above,
which are like upto and downto respectively except that they are exclusive
rather than inclusive limits:

(loop for x to 10 collect x)
⇒ (0 1 2 3 4 5 6 7 8 9 10)

(loop for x below 10 collect x)
⇒ (0 1 2 3 4 5 6 7 8 9)

The by value is always positive, even for downward-counting loops. Some sort
of from value is required for downward loops; ‘for x downto 5’ is not a legal
loop clause all by itself.

for var in list by function
This clause iterates var over all the elements of list, in turn. If you specify the
by term, then function is used to traverse the list instead of cdr; it must be a
function taking one argument. For example:

(loop for x in ’(1 2 3 4 5 6) collect (* x x))
⇒ (1 4 9 16 25 36)

(loop for x in ’(1 2 3 4 5 6) by ’cddr collect (* x x))
⇒ (1 9 25)

for var on list by function
This clause iterates var over all the cons cells of list.

(loop for x on ’(1 2 3 4) collect x)
⇒ ((1 2 3 4) (2 3 4) (3 4) (4))

With by, there is no real reason that the on expression must be a list. For
example:

(loop for x on first-animal by ’next-animal collect x)

where (next-animal x) takes an “animal” x and returns the next in the (as-
sumed) sequence of animals, or nil if x was the last animal in the sequence.

for var in-ref list by function
This is like a regular in clause, but var becomes a setf-able “reference” onto
the elements of the list rather than just a temporary variable. For example,

(loop for x in-ref my-list do (incf x))

increments every element of my-list in place. This clause is an extension to
standard Common Lisp.

for var across array
This clause iterates var over all the elements of array, which may be a vector
or a string.

Chapter 7: Control Structure 35

(loop for x across "aeiou"
do (use-vowel (char-to-string x)))

for var across-ref array
This clause iterates over an array, with var a setf-able reference onto the
elements; see in-ref above.

for var being the elements of sequence
This clause iterates over the elements of sequence, which may be a list, vector,
or string. Since the type must be determined at run-time, this is somewhat
less efficient than in or across. The clause may be followed by the additional
term ‘using (index var2)’ to cause var2 to be bound to the successive indices
(starting at 0) of the elements.

This clause type is taken from older versions of the loop macro, and is not
present in modern Common Lisp. The ‘using (sequence ...)’ term of the
older macros is not supported.

for var being the elements of-ref sequence
This clause iterates over a sequence, with var a setf-able reference onto the
elements; see in-ref above.

for var being the symbols [of obarray]
This clause iterates over symbols, either over all interned symbols or over all
symbols in obarray. The loop is executed with var bound to each symbol in
turn. The symbols are visited in an unspecified order.

As an example,

(loop for sym being the symbols
when (fboundp sym)
when (string-match "^map" (symbol-name sym))
collect sym)

returns a list of all the functions whose names begin with ‘map’.

The Common Lisp words external-symbols and present-symbols are also
recognized but are equivalent to symbols in Emacs Lisp.

Due to a minor implementation restriction, it will not work to have more than
one for clause iterating over symbols, hash tables, keymaps, overlays, or inter-
vals in a given loop. Fortunately, it would rarely if ever be useful to do so. It
is legal to mix one of these types of clauses with other clauses like for ... to

or while.

for var being the hash-keys of hash-table
This clause iterates over the entries in hash-table. For each hash table entry,
var is bound to the entry’s key. If you write ‘the hash-values’ instead, var is
bound to the values of the entries. The clause may be followed by the additional
term ‘using (hash-values var2)’ (where hash-values is the opposite word of
the word following the) to cause var and var2 to be bound to the two parts of
each hash table entry.

Chapter 7: Control Structure 36

for var being the key-codes of keymap
This clause iterates over the entries in keymap. In GNU Emacs 18 and 19,
keymaps are either alists or vectors, and key-codes are integers or symbols.
In Lucid Emacs 19, keymaps are a special new data type, and key-codes are
symbols or lists of symbols. The iteration does not enter nested keymaps or
inherited (parent) keymaps. You can use ‘the key-bindings’ to access the
commands bound to the keys rather than the key codes, and you can add a
using clause to access both the codes and the bindings together.

for var being the key-seqs of keymap
This clause iterates over all key sequences defined by keymap and its nested
keymaps, where var takes on values which are strings in Emacs 18 or vec-
tors in Emacs 19. The strings or vectors are reused for each iteration, so you
must copy them if you wish to keep them permanently. You can add a ‘using
(key-bindings ...)’ clause to get the command bindings as well.

for var being the overlays [of buffer] . . .
This clause iterates over the Emacs 19 “overlays” or Lucid Emacs “extents” of
a buffer (the clause extents is synonymous with overlays). Under Emacs 18,
this clause iterates zero times. If the of term is omitted, the current buffer is
used. This clause also accepts optional ‘from pos’ and ‘to pos’ terms, limiting
the clause to overlays which overlap the specified region.

for var being the intervals [of buffer] . . .
This clause iterates over all intervals of a buffer with constant text properties.
The variable var will be bound to conses of start and end positions, where one
start position is always equal to the previous end position. The clause allows
of, from, to, and property terms, where the latter term restricts the search to
just the specified property. The of term may specify either a buffer or a string.
This clause is useful only in GNU Emacs 19; in other versions, all buffers and
strings consist of a single interval.

for var being the frames

This clause iterates over all frames, i.e., X window system windows open on
Emacs files. This clause works only under Emacs 19. The clause screens is a
synonym for frames. The frames are visited in next-frame order starting from
selected-frame.

for var being the windows [of frame]
This clause iterates over the windows (in the Emacs sense) of the current frame,
or of the specified frame. (In Emacs 18 there is only ever one frame, and the
of term is not allowed there.)

for var being the buffers

This clause iterates over all buffers in Emacs. It is equivalent to ‘for var in

(buffer-list)’.

for var = expr1 then expr2
This clause does a general iteration. The first time through the loop, var will
be bound to expr1. On the second and successive iterations it will be set by

Chapter 7: Control Structure 37

evaluating expr2 (which may refer to the old value of var). For example, these
two loops are effectively the same:

(loop for x on my-list by ’cddr do ...)
(loop for x = my-list then (cddr x) while x do ...)

Note that this type of for clause does not imply any sort of terminating con-
dition; the above example combines it with a while clause to tell when to end
the loop.

If you omit the then term, expr1 is used both for the initial setting and for
successive settings:

(loop for x = (random) when (> x 0) return x)

This loop keeps taking random numbers from the (random) function until it
gets a positive one, which it then returns.

If you include several for clauses in a row, they are treated sequentially (as if by let*

and setq). You can instead use the word and to link the clauses, in which case they are
processed in parallel (as if by let and psetq).

(loop for x below 5 for y = nil then x collect (list x y))
⇒ ((0 nil) (1 1) (2 2) (3 3) (4 4))

(loop for x below 5 and y = nil then x collect (list x y))
⇒ ((0 nil) (1 0) (2 1) (3 2) (4 3))

In the first loop, y is set based on the value of x that was just set by the previous clause;
in the second loop, x and y are set simultaneously so y is set based on the value of x left
over from the previous time through the loop.

Another feature of the loop macro is destructuring, similar in concept to the destructur-
ing provided by defmacro. The var part of any for clause can be given as a list of variables
instead of a single variable. The values produced during loop execution must be lists; the
values in the lists are stored in the corresponding variables.

(loop for (x y) in ’((2 3) (4 5) (6 7)) collect (+ x y))
⇒ (5 9 13)

In loop destructuring, if there are more values than variables the trailing values are
ignored, and if there are more variables than values the trailing variables get the value nil.
If nil is used as a variable name, the corresponding values are ignored. Destructuring may
be nested, and dotted lists of variables like (x . y) are allowed.

7.9.4 Iteration Clauses

Aside from for clauses, there are several other loop clauses that control the way the loop
operates. They might be used by themselves, or in conjunction with one or more for

clauses.

repeat integer
This clause simply counts up to the specified number using an internal tempo-
rary variable. The loops

(loop repeat n do ...)
(loop for temp to n do ...)

Chapter 7: Control Structure 38

are identical except that the second one forces you to choose a name for a
variable you aren’t actually going to use.

while condition
This clause stops the loop when the specified condition (any Lisp expression)
becomes nil. For example, the following two loops are equivalent, except for
the implicit nil block that surrounds the second one:

(while cond forms. . .)
(loop while cond do forms. . .)

until condition
This clause stops the loop when the specified condition is true, i.e., non-nil.

always condition
This clause stops the loop when the specified condition is nil. Unlike while, it
stops the loop using return nil so that the finally clauses are not executed.
If all the conditions were non-nil, the loop returns t:

(if (loop for size in size-list always (> size 10))
(some-big-sizes)

(no-big-sizes))

never condition
This clause is like always, except that the loop returns t if any conditions were
false, or nil otherwise.

thereis condition
This clause stops the loop when the specified form is non-nil; in this case, it
returns that non-nil value. If all the values were nil, the loop returns nil.

7.9.5 Accumulation Clauses

These clauses cause the loop to accumulate information about the specified Lisp form. The
accumulated result is returned from the loop unless overridden, say, by a return clause.

collect form
This clause collects the values of form into a list. Several examples of collect
appear elsewhere in this manual.

The word collecting is a synonym for collect, and likewise for the other
accumulation clauses.

append form
This clause collects lists of values into a result list using append.

nconc form
This clause collects lists of values into a result list by destructively modifying
the lists rather than copying them.

concat form
This clause concatenates the values of the specified form into a string. (It and
the following clause are extensions to standard Common Lisp.)

Chapter 7: Control Structure 39

vconcat form
This clause concatenates the values of the specified form into a vector.

count form
This clause counts the number of times the specified form evaluates to a non-nil
value.

sum form This clause accumulates the sum of the values of the specified form, which must
evaluate to a number.

maximize form
This clause accumulates the maximum value of the specified form, which must
evaluate to a number. The return value is undefined if maximize is executed
zero times.

minimize form
This clause accumulates the minimum value of the specified form.

Accumulation clauses can be followed by ‘into var’ to cause the data to be collected
into variable var (which is automatically let-bound during the loop) rather than an un-
named temporary variable. Also, into accumulations do not automatically imply a return
value. The loop must use some explicit mechanism, such as finally return, to return the
accumulated result.

It is legal for several accumulation clauses of the same type to accumulate into the same
place. From Steele:

(loop for name in ’(fred sue alice joe june)
for kids in ’((bob ken) () () (kris sunshine) ())
collect name
append kids)
⇒ (fred bob ken sue alice joe kris sunshine june)

7.9.6 Other Clauses

This section describes the remaining loop clauses.

with var = value
This clause binds a variable to a value around the loop, but otherwise leaves
the variable alone during the loop. The following loops are basically equivalent:

(loop with x = 17 do ...)
(let ((x 17)) (loop do ...))
(loop for x = 17 then x do ...)

Naturally, the variable var might be used for some purpose in the rest of the
loop. For example:

(loop for x in my-list with res = nil do (push x res)
finally return res)

This loop inserts the elements of my-list at the front of a new list being
accumulated in res, then returns the list res at the end of the loop. The effect

Chapter 7: Control Structure 40

is similar to that of a collect clause, but the list gets reversed by virtue of the
fact that elements are being pushed onto the front of res rather than the end.

If you omit the = term, the variable is initialized to nil. (Thus the ‘= nil’ in
the above example is unnecessary.)

Bindings made by with are sequential by default, as if by let*. Just like for

clauses, with clauses can be linked with and to cause the bindings to be made
by let instead.

if condition clause
This clause executes the following loop clause only if the specified condition
is true. The following clause should be an accumulation, do, return, if, or
unless clause. Several clauses may be linked by separating them with and.
These clauses may be followed by else and a clause or clauses to execute if
the condition was false. The whole construct may optionally be followed by the
word end (which may be used to disambiguate an else or and in a nested if).

The actual non-nil value of the condition form is available by the name it in
the “then” part. For example:

(setq funny-numbers ’(6 13 -1))
⇒ (6 13 -1)

(loop for x below 10
if (oddp x)
collect x into odds
and if (memq x funny-numbers) return (cdr it) end

else
collect x into evens

finally return (vector odds evens))
⇒ [(1 3 5 7 9) (0 2 4 6 8)]

(setq funny-numbers ’(6 7 13 -1))
⇒ (6 7 13 -1)

(loop <same thing again>)
⇒ (13 -1)

Note the use of and to put two clauses into the “then” part, one of which is
itself an if clause. Note also that end, while normally optional, was necessary
here to make it clear that the else refers to the outermost if clause. In the
first case, the loop returns a vector of lists of the odd and even values of x. In
the second case, the odd number 7 is one of the funny-numbers so the loop
returns early; the actual returned value is based on the result of the memq call.

when condition clause
This clause is just a synonym for if.

unless condition clause
The unless clause is just like if except that the sense of the condition is
reversed.

named name
This clause gives a name other than nil to the implicit block surrounding the
loop. The name is the symbol to be used as the block name.

Chapter 7: Control Structure 41

initially [do] forms...
This keyword introduces one or more Lisp forms which will be executed before
the loop itself begins (but after any variables requested by for or with have
been bound to their initial values). initially clauses can appear anywhere; if
there are several, they are executed in the order they appear in the loop. The
keyword do is optional.

finally [do] forms...
This introduces Lisp forms which will be executed after the loop finishes (say,
on request of a for or while). initially and finally clauses may appear
anywhere in the loop construct, but they are executed (in the specified order)
at the beginning or end, respectively, of the loop.

finally return form
This says that form should be executed after the loop is done to obtain a return
value. (Without this, or some other clause like collect or return, the loop will
simply return nil.) Variables bound by for, with, or into will still contain
their final values when form is executed.

do forms...
The word do may be followed by any number of Lisp expressions which are
executed as an implicit progn in the body of the loop. Many of the examples
in this section illustrate the use of do.

return form
This clause causes the loop to return immediately. The following Lisp form
is evaluated to give the return value of the loop form. The finally clauses,
if any, are not executed. Of course, return is generally used inside an if or
unless, as its use in a top-level loop clause would mean the loop would never
get to “loop” more than once.

The clause ‘return form’ is equivalent to ‘do (return form)’ (or return-from
if the loop was named). The return clause is implemented a bit more efficiently,
though.

While there is no high-level way to add user extensions to loop (comparable to defsetf

for setf, say), this package does offer two properties called cl-loop-handler and cl-loop-

for-handler which are functions to be called when a given symbol is encountered as a top-
level loop clause or for clause, respectively. Consult the source code in file ‘cl-macs.el’
for details.

This package’s loop macro is compatible with that of Common Lisp, except that a few
features are not implemented: loop-finish and data-type specifiers. Naturally, the for

clauses which iterate over keymaps, overlays, intervals, frames, windows, and buffers are
Emacs-specific extensions.

7.10 Multiple Values

Common Lisp functions can return zero or more results. Emacs Lisp functions, by contrast,
always return exactly one result. This package makes no attempt to emulate Common Lisp

Chapter 7: Control Structure 42

multiple return values; Emacs versions of Common Lisp functions that return more than
one value either return just the first value (as in compiler-macroexpand) or return a list
of values (as in get-setf-method). This package does define placeholders for the Common
Lisp functions that work with multiple values, but in Emacs Lisp these functions simply
operate on lists instead. The values form, for example, is a synonym for list in Emacs.

Special Formmultiple-value-bind (var. . .) values-form forms. . .
This form evaluates values-form, which must return a list of values. It then
binds the vars to these respective values, as if by let, and then executes the
body forms. If there are more vars than values, the extra vars are bound to
nil. If there are fewer vars than values, the excess values are ignored.

Special Formmultiple-value-setq (var. . .) form
This form evaluates form, which must return a list of values. It then sets the
vars to these respective values, as if by setq. Extra vars or values are treated
the same as in multiple-value-bind.

The older Quiroz package attempted a more faithful (but still imperfect) emulation of
Common Lisp multiple values. The old method “usually” simulated true multiple values
quite well, but under certain circumstances would leave spurious return values in memory
where a later, unrelated multiple-value-bind form would see them.

Since a perfect emulation is not feasible in Emacs Lisp, this package opts to keep it as
simple and predictable as possible.

Chapter 8: Macros 43

8 Macros

This package implements the various Common Lisp features of defmacro, such as destruc-
turing, &environment, and &body. Top-level &whole is not implemented for defmacro due
to technical difficulties. See Section 5.2 [Argument Lists], page 5.

Destructuring is made available to the user by way of the following macro:

Special Formdestructuring-bind arglist expr forms. . .
This macro expands to code which executes forms, with the variables in arglist
bound to the list of values returned by expr. The arglist can include all the
features allowed for defmacro argument lists, including destructuring. (The
&environment keyword is not allowed.) The macro expansion will signal an
error if expr returns a list of the wrong number of arguments or with incorrect
keyword arguments.

This package also includes the Common Lisp define-compiler-macro facility, which
allows you to define compile-time expansions and optimizations for your functions.

Special Formdefine-compiler-macro name arglist forms. . .
This form is similar to defmacro, except that it only expands calls to name at
compile-time; calls processed by the Lisp interpreter are not expanded, nor are
they expanded by the macroexpand function.

The argument list may begin with a &whole keyword and a variable. This
variable is bound to the macro-call form itself, i.e., to a list of the form ‘(name
args. . .)’. If the macro expander returns this form unchanged, then the compiler
treats it as a normal function call. This allows compiler macros to work as
optimizers for special cases of a function, leaving complicated cases alone.

For example, here is a simplified version of a definition that appears as a stan-
dard part of this package:

(define-compiler-macro member* (&whole form a list &rest keys)
(if (and (null keys)

(eq (car-safe a) ’quote)
(not (floatp-safe (cadr a))))

(list ’memq a list)
form))

This definition causes (member* a list) to change to a call to the faster memq in
the common case where a is a non-floating-point constant; if a is anything else,
or if there are any keyword arguments in the call, then the original member*
call is left intact. (The actual compiler macro for member* optimizes a number
of other cases, including common :test predicates.)

Functioncompiler-macroexpand form
This function is analogous to macroexpand, except that it expands compiler
macros rather than regular macros. It returns form unchanged if it is not a call
to a function for which a compiler macro has been defined, or if that compiler
macro decided to punt by returning its &whole argument. Like macroexpand,

Chapter 8: Macros 44

it expands repeatedly until it reaches a form for which no further expansion is
possible.

See Section 7.5.4 [Macro Bindings], page 26, for descriptions of the macrolet and
symbol-macrolet forms for making “local” macro definitions.

Chapter 9: Declarations 45

9 Declarations

Common Lisp includes a complex and powerful “declaration” mechanism that allows you
to give the compiler special hints about the types of data that will be stored in particular
variables, and about the ways those variables and functions will be used. This package
defines versions of all the Common Lisp declaration forms: declare, locally, proclaim,
declaim, and the.

Most of the Common Lisp declarations are not currently useful in Emacs Lisp, as the
byte-code system provides little opportunity to benefit from type information, and special

declarations are redundant in a fully dynamically-scoped Lisp. A few declarations are
meaningful when the optimizing Emacs 19 byte compiler is being used, however. Under the
earlier non-optimizing compiler, these declarations will effectively be ignored.

Functionproclaim decl-spec
This function records a “global” declaration specified by decl-spec. Since
proclaim is a function, decl-spec is evaluated and thus should normally be
quoted.

Special Formdeclaim decl-specs. . .
This macro is like proclaim, except that it takes any number of decl-spec argu-
ments, and the arguments are unevaluated and unquoted. The declaim macro
also puts an (eval-when (compile load eval) ...) around the declarations
so that they will be registered at compile-time as well as at run-time. (This
is vital, since normally the declarations are meant to influence the way the
compiler treats the rest of the file that contains the declaim form.)

Special Formdeclare decl-specs. . .
This macro is used to make declarations within functions and other code. Com-
mon Lisp allows declarations in various locations, generally at the beginning of
any of the many “implicit progns” throughout Lisp syntax, such as function
bodies, let bodies, etc. Currently the only declaration understood by declare

is special.

Special Formlocally declarations. . . forms. . .
In this package, locally is no different from progn.

Special Formthe type form
Type information provided by the is ignored in this package; in other words,
(the type form) is equivalent to form. Future versions of the optimizing byte-
compiler may make use of this information.

For example, mapcar can map over both lists and arrays. It is hard for the
compiler to expand mapcar into an in-line loop unless it knows whether the
sequence will be a list or an array ahead of time. With (mapcar ’car (the

vector foo)), a future compiler would have enough information to expand the
loop in-line. For now, Emacs Lisp will treat the above code as exactly equivalent
to (mapcar ’car foo).

Chapter 9: Declarations 46

Each decl-spec in a proclaim, declaim, or declare should be a list beginning with
a symbol that says what kind of declaration it is. This package currently understands
special, inline, notinline, optimize, and warn declarations. (The warn declaration is
an extension of standard Common Lisp.) Other Common Lisp declarations, such as type

and ftype, are silently ignored.

special Since all variables in Emacs Lisp are “special” (in the Common Lisp sense),
special declarations are only advisory. They simply tell the optimizing byte
compiler that the specified variables are intentionally being referred to without
being bound in the body of the function. The compiler normally emits warnings
for such references, since they could be typographical errors for references to
local variables.

The declaration (declare (special var1 var2)) is equivalent to (defvar

var1) (defvar var2) in the optimizing compiler, or to nothing at all in older
compilers (which do not warn for non-local references).

In top-level contexts, it is generally better to write (defvar var) than (declaim

(special var)), since defvar makes your intentions clearer. But the older byte
compilers can not handle defvars appearing inside of functions, while (declare
(special var)) takes care to work correctly with all compilers.

inline The inline decl-spec lists one or more functions whose bodies should be ex-
panded “in-line” into calling functions whenever the compiler is able to arrange
for it. For example, the Common Lisp function cadr is declared inline by this
package so that the form (cadr x) will expand directly into (car (cdr x))
when it is called in user functions, for a savings of one (relatively expensive)
function call.

The following declarations are all equivalent. Note that the defsubst form is
a convenient way to define a function and declare it inline all at once, but it is
available only in Emacs 19.

(declaim (inline foo bar))
(eval-when (compile load eval) (proclaim ’(inline foo bar)))
(proclaim-inline foo bar) ; Lucid Emacs only
(defsubst foo (...) ...) ; instead of defun; Emacs 19 only

Note: This declaration remains in effect after the containing source file is done.
It is correct to use it to request that a function you have defined should be
inlined, but it is impolite to use it to request inlining of an external function.

In Common Lisp, it is possible to use (declare (inline . . .)) before a par-
ticular call to a function to cause just that call to be inlined; the current byte
compilers provide no way to implement this, so (declare (inline . . .)) is cur-
rently ignored by this package.

notinline

The notinline declaration lists functions which should not be inlined after all;
it cancels a previous inline declaration.

optimize This declaration controls how much optimization is performed by the compiler.
Naturally, it is ignored by the earlier non-optimizing compilers.

Chapter 9: Declarations 47

The word optimize is followed by any number of lists like (speed 3) or (safety
2). Common Lisp defines several optimization “qualities”; this package ignores
all but speed and safety. The value of a quality should be an integer from
0 to 3, with 0 meaning “unimportant” and 3 meaning “very important.” The
default level for both qualities is 1.

In this package, with the Emacs 19 optimizing compiler, the speed quality is
tied to the byte-compile-optimize flag, which is set to nil for (speed 0) and
to t for higher settings; and the safety quality is tied to the byte-compile-

delete-errors flag, which is set to t for (safety 3) and to nil for all lower
settings. (The latter flag controls whether the compiler is allowed to optimize
out code whose only side-effect could be to signal an error, e.g., rewriting (progn
foo bar) to bar when it is not known whether foo will be bound at run-time.)

Note that even compiling with (safety 0), the Emacs byte-code system pro-
vides sufficient checking to prevent real harm from being done. For example,
barring serious bugs in Emacs itself, Emacs will not crash with a segmentation
fault just because of an error in a fully-optimized Lisp program.

The optimize declaration is normally used in a top-level proclaim or declaim
in a file; Common Lisp allows it to be used with declare to set the level of
optimization locally for a given form, but this will not work correctly with the
current version of the optimizing compiler. (The declare will set the new opti-
mization level, but that level will not automatically be unset after the enclosing
form is done.)

warn This declaration controls what sorts of warnings are generated by the byte com-
piler. Again, only the optimizing compiler generates warnings. The word warn

is followed by any number of “warning qualities,” similar in form to optimiza-
tion qualities. The currently supported warning types are redefine, callargs,
unresolved, and free-vars; in the current system, a value of 0 will disable
these warnings and any higher value will enable them. See the documentation
for the optimizing byte compiler for details.

Chapter 10: Symbols 48

10 Symbols

This package defines several symbol-related features that were missing from Emacs Lisp.

10.1 Property Lists

These functions augment the standard Emacs Lisp functions get and put for operating on
properties attached to symbols. There are also functions for working with property lists as
first-class data structures not attached to particular symbols.

Functionget* symbol property &optional default
This function is like get, except that if the property is not found, the default
argument provides the return value. (The Emacs Lisp get function always uses
nil as the default; this package’s get* is equivalent to Common Lisp’s get.)

The get* function is setf-able; when used in this fashion, the default argument
is allowed but ignored.

Functionremprop symbol property
This function removes the entry for property from the property list of symbol.
It returns a true value if the property was indeed found and removed, or nil if
there was no such property. (This function was probably omitted from Emacs
originally because, since get did not allow a default, it was very difficult to
distinguish between a missing property and a property whose value was nil;
thus, setting a property to nil was close enough to remprop for most purposes.)

Functiongetf place property &optional default
This function scans the list place as if it were a property list, i.e., a list of
alternating property names and values. If an even-numbered element of place is
found which is eq to property, the following odd-numbered element is returned.
Otherwise, default is returned (or nil if no default is given).

In particular,

(get sym prop) ≡ (getf (symbol-plist sym) prop)

It is legal to use getf as a setf place, in which case its place argument must
itself be a legal setf place. The default argument, if any, is ignored in this
context. The effect is to change (via setcar) the value cell in the list that
corresponds to property, or to cons a new property-value pair onto the list if
the property is not yet present.

(put sym prop val) ≡ (setf (getf (symbol-plist sym) prop) val)

The get and get* functions are also setf-able. The fact that default is
ignored can sometimes be useful:

(incf (get* ’foo ’usage-count 0))

Here, symbol foo’s usage-count property is incremented if it exists, or set to
1 (an incremented 0) otherwise.

When not used as a setf form, getf is just a regular function and its place
argument can actually be any Lisp expression.

Chapter 10: Symbols 49

Special Formremf place property
This macro removes the property-value pair for property from the property list
stored at place, which is any setf-able place expression. It returns true if the
property was found. Note that if property happens to be first on the list, this
will effectively do a (setf place (cddr place)), whereas if it occurs later, this
simply uses setcdr to splice out the property and value cells.

10.3 Creating Symbols

These functions create unique symbols, typically for use as temporary variables.

Functiongensym &optional x
This function creates a new, uninterned symbol (using make-symbol) with a
unique name. (The name of an uninterned symbol is relevant only if the symbol
is printed.) By default, the name is generated from an increasing sequence of
numbers, ‘G1000’, ‘G1001’, ‘G1002’, etc. If the optional argument x is a string,
that string is used as a prefix instead of ‘G’. Uninterned symbols are used in
macro expansions for temporary variables, to ensure that their names will not
conflict with “real” variables in the user’s code.

Variable*gensym-counter*
This variable holds the counter used to generate gensym names. It is incre-
mented after each use by gensym. In Common Lisp this is initialized with 0,
but this package initializes it with a random (time-dependent) value to avoid
trouble when two files that each used gensym in their compilation are loaded
together. (Uninterned symbols become interned when the compiler writes them
out to a file and the Emacs loader loads them, so their names have to be treated
a bit more carefully than in Common Lisp where uninterned symbols remain
uninterned after loading.)

Functiongentemp &optional x
This function is like gensym, except that it produces a new interned symbol.
If the symbol that is generated already exists, the function keeps incrementing
the counter and trying again until a new symbol is generated.

The Quiroz ‘cl.el’ package also defined a defkeyword form for creating self-quoting
keyword symbols. This package automatically creates all keywords that are called for by
&key argument specifiers, and discourages the use of keywords as data unrelated to keyword
arguments, so the defkeyword form has been discontinued.

Chapter 12: Numbers 50

12 Numbers

This section defines a few simple Common Lisp operations on numbers which were left out
of Emacs Lisp.

12.2 Predicates on Numbers

These functions return t if the specified condition is true of the numerical argument, or nil
otherwise.

Functionplusp number
This predicate tests whether number is positive. It is an error if the argument
is not a number.

Functionminusp number
This predicate tests whether number is negative. It is an error if the argument
is not a number.

Functionoddp integer
This predicate tests whether integer is odd. It is an error if the argument is
not an integer.

Functionevenp integer
This predicate tests whether integer is even. It is an error if the argument is
not an integer.

Functionfloatp-safe object
This predicate tests whether object is a floating-point number. On systems
that support floating-point, this is equivalent to floatp. On other systems,
this always returns nil.

12.4 Numerical Functions

These functions perform various arithmetic operations on numbers.

Functionabs number
This function returns the absolute value of number. (Newer versions of Emacs
provide this as a built-in function; this package defines abs only for Emacs 18
versions which don’t provide it as a primitive.)

Functionexpt base power
This function returns base raised to the power of number. (Newer versions of
Emacs provide this as a built-in function; this package defines expt only for
Emacs 18 versions which don’t provide it as a primitive.)

Chapter 12: Numbers 51

Functiongcd &rest integers
This function returns the Greatest Common Divisor of the arguments. For one
argument, it returns the absolute value of that argument. For zero arguments,
it returns zero.

Functionlcm &rest integers
This function returns the Least Common Multiple of the arguments. For one
argument, it returns the absolute value of that argument. For zero arguments,
it returns one.

Functionisqrt integer
This function computes the “integer square root” of its integer argument, i.e.,
the greatest integer less than or equal to the true square root of the argument.

Functionfloor* number &optional divisor
This function implements the Common Lisp floor function. It is called floor*

to avoid name conflicts with the simpler floor function built-in to Emacs 19.

With one argument, floor* returns a list of two numbers: The argument
rounded down (toward minus infinity) to an integer, and the “remainder” which
would have to be added back to the first return value to yield the argument
again. If the argument is an integer x, the result is always the list (x 0). If
the argument is an Emacs 19 floating-point number, the first result is a Lisp
integer and the second is a Lisp float between 0 (inclusive) and 1 (exclusive).

With two arguments, floor* divides number by divisor, and returns the floor
of the quotient and the corresponding remainder as a list of two numbers. If
(floor* x y) returns (q r), then q*y + r = x, with r between 0 (inclusive)
and r (exclusive). Also, note that (floor* x) is exactly equivalent to (floor*

x 1).

This function is entirely compatible with Common Lisp’s floor function, except
that it returns the two results in a list since Emacs Lisp does not support
multiple-valued functions.

Functionceiling* number &optional divisor
This function implements the Common Lisp ceiling function, which is analo-
gous to floor except that it rounds the argument or quotient of the arguments
up toward plus infinity. The remainder will be between 0 and minus r.

Functiontruncate* number &optional divisor
This function implements the Common Lisp truncate function, which is analo-
gous to floor except that it rounds the argument or quotient of the arguments
toward zero. Thus it is equivalent to floor* if the argument or quotient is pos-
itive, or to ceiling* otherwise. The remainder has the same sign as number.

Functionround* number &optional divisor
This function implements the Common Lisp round function, which is analogous
to floor except that it rounds the argument or quotient of the arguments to
the nearest integer. In the case of a tie (the argument or quotient is exactly
halfway between two integers), it rounds to the even integer.

Chapter 12: Numbers 52

Functionmod* number divisor
This function returns the same value as the second return value of floor.

Functionrem* number divisor
This function returns the same value as the second return value of truncate.

These definitions are compatible with those in the Quiroz ‘cl.el’ package, except that
this package appends ‘*’ to certain function names to avoid conflicts with existing Emacs
19 functions, and that the mechanism for returning multiple values is different.

12.9 Random Numbers

This package also provides an implementation of the Common Lisp random number gen-
erator. It uses its own additive-congruential algorithm, which is much more likely to give
statistically clean random numbers than the simple generators supplied by many operating
systems.

Functionrandom* number &optional state
This function returns a random nonnegative number less than number, and of
the same type (either integer or floating-point). The state argument should be
a random-state object which holds the state of the random number generator.
The function modifies this state object as a side effect. If state is omitted,
it defaults to the variable *random-state*, which contains a pre-initialized
random-state object.

Variable*random-state*
This variable contains the system “default” random-state object, used for calls
to random* that do not specify an alternative state object. Since any number of
programs in the Emacs process may be accessing *random-state* in interleaved
fashion, the sequence generated from this variable will be irreproducible for all
intents and purposes.

Functionmake-random-state &optional state
This function creates or copies a random-state object. If state is omitted or
nil, it returns a new copy of *random-state*. This is a copy in the sense that
future sequences of calls to (random* n) and (random* n s) (where s is the
new random-state object) will return identical sequences of random numbers.

If state is a random-state object, this function returns a copy of that object.
If state is t, this function returns a new random-state object seeded from the
date and time. As an extension to Common Lisp, state may also be an integer
in which case the new object is seeded from that integer; each different integer
seed will result in a completely different sequence of random numbers.

It is legal to print a random-state object to a buffer or file and later read it back
with read. If a program wishes to use a sequence of pseudo-random numbers
which can be reproduced later for debugging, it can call (make-random-state
t) to get a new sequence, then print this sequence to a file. When the program
is later rerun, it can read the original run’s random-state from the file.

Chapter 12: Numbers 53

Functionrandom-state-p object
This predicate returns t if object is a random-state object, or nil otherwise.

12.10 Implementation Parameters

This package defines several useful constants having to with numbers.

Variablemost-positive-fixnum
This constant equals the largest value a Lisp integer can hold. It is typically
2^23-1 or 2^25-1.

Variablemost-negative-fixnum
This constant equals the smallest (most negative) value a Lisp integer can hold.

The following parameters have to do with floating-point numbers. This package deter-
mines their values by exercising the computer’s floating-point arithmetic in various ways.
Because this operation might be slow, the code for initializing them is kept in a separate
function that must be called before the parameters can be used.

Functioncl-float-limits
This function makes sure that the Common Lisp floating-point parameters like
most-positive-float have been initialized. Until it is called, these parameters
will be nil. If this version of Emacs does not support floats (e.g., most versions
of Emacs 18), the parameters will remain nil. If the parameters have already
been initialized, the function returns immediately.

The algorithm makes assumptions that will be valid for most modern machines,
but will fail if the machine’s arithmetic is extremely unusual, e.g., decimal.

Since true Common Lisp supports up to four different floating-point precisions, it has
families of constants like most-positive-single-float, most-positive-double-float,
most-positive-long-float, and so on. Emacs has only one floating-point precision, so
this package omits the precision word from the constants’ names.

Variablemost-positive-float
This constant equals the largest value a Lisp float can hold. For those systems
whose arithmetic supports infinities, this is the largest finite value. For IEEE
machines, the value is approximately 1.79e+308.

Variablemost-negative-float
This constant equals the most-negative value a Lisp float can hold. (It is as-
sumed to be equal to (- most-positive-float).)

Variableleast-positive-float
This constant equals the smallest Lisp float value greater than zero. For IEEE
machines, it is about 4.94e-324 if denormals are supported or 2.22e-308 if
not.

Chapter 12: Numbers 54

Variableleast-positive-normalized-float
This constant equals the smallest normalized Lisp float greater than zero, i.e.,
the smallest value for which IEEE denormalization will not result in a loss of
precision. For IEEE machines, this value is about 2.22e-308. For machines
that do not support the concept of denormalization and gradual underflow, this
constant will always equal least-positive-float.

Variableleast-negative-float
This constant is the negative counterpart of least-positive-float.

Variableleast-negative-normalized-float
This constant is the negative counterpart of least-positive-normalized-

float.

Variablefloat-epsilon
This constant is the smallest positive Lisp float that can be added to 1.0 to
produce a distinct value. Adding a smaller number to 1.0 will yield 1.0 again
due to roundoff. For IEEE machines, epsilon is about 2.22e-16.

Variablefloat-negative-epsilon
This is the smallest positive value that can be subtracted from 1.0 to produce
a distinct value. For IEEE machines, it is about 1.11e-16.

Chapter 14: Sequences 55

14 Sequences

Common Lisp defines a number of functions that operate on sequences, which are either
lists, strings, or vectors. Emacs Lisp includes a few of these, notably elt and length; this
package defines most of the rest.

14.1 Sequence Basics

Many of the sequence functions take keyword arguments; see Section 5.2 [Argument Lists],
page 5. All keyword arguments are optional and, if specified, may appear in any order.

The :key argument should be passed either nil, or a function of one argument. This
key function is used as a filter through which the elements of the sequence are seen; for
example, (find x y :key ’car) is similar to (assoc* x y): It searches for an element of
the list whose car equals x, rather than for an element which equals x itself. If :key is
omitted or nil, the filter is effectively the identity function.

The :test and :test-not arguments should be either nil, or functions of two argu-
ments. The test function is used to compare two sequence elements, or to compare a search
value with sequence elements. (The two values are passed to the test function in the same
order as the original sequence function arguments from which they are derived, or, if they
both come from the same sequence, in the same order as they appear in that sequence.)
The :test argument specifies a function which must return true (non-nil) to indicate a
match; instead, you may use :test-not to give a function which returns false to indicate
a match. The default test function is :test ’eql.

Many functions which take item and :test or :test-not arguments also come in -if

and -if-not varieties, where a predicate function is passed instead of item, and sequence
elements match if the predicate returns true on them (or false in the case of -if-not). For
example:

(remove* 0 seq :test ’=) ≡ (remove-if ’zerop seq)

to remove all zeros from sequence seq.

Some operations can work on a subsequence of the argument sequence; these function
take :start and :end arguments which default to zero and the length of the sequence,
respectively. Only elements between start (inclusive) and end (exclusive) are affected by
the operation. The end argument may be passed nil to signify the length of the sequence;
otherwise, both start and end must be integers, with 0 <= start <= end <= (length seq).
If the function takes two sequence arguments, the limits are defined by keywords :start1

and :end1 for the first, and :start2 and :end2 for the second.

A few functions accept a :from-end argument, which, if non-nil, causes the operation
to go from right-to-left through the sequence instead of left-to-right, and a :count argu-
ment, which specifies an integer maximum number of elements to be removed or otherwise
processed.

The sequence functions make no guarantees about the order in which the :test, :test-
not, and :key functions are called on various elements. Therefore, it is a bad idea to depend

Chapter 14: Sequences 56

on side effects of these functions. For example, :from-end may cause the sequence to be
scanned actually in reverse, or it may be scanned forwards but computing a result “as if” it
were scanned backwards. (Some functions, like mapcar* and every, do specify exactly the
order in which the function is called so side effects are perfectly acceptable in those cases.)

Strings in GNU Emacs 19 may contain “text properties” as well as character data.
Except as noted, it is undefined whether or not text properties are preserved by sequence
functions. For example, (remove* ?A str) may or may not preserve the properties of the
characters copied from str into the result.

14.2 Mapping over Sequences

These functions “map” the function you specify over the elements of lists or arrays. They
are all variations on the theme of the built-in function mapcar.

Functionmapcar* function seq &rest more-seqs
This function calls function on successive parallel sets of elements from its
argument sequences. Given a single seq argument it is equivalent to mapcar;
given n sequences, it calls the function with the first elements of each of the
sequences as the n arguments to yield the first element of the result list, then
with the second elements, and so on. The mapping stops as soon as the shortest
sequence runs out. The argument sequences may be any mixture of lists, strings,
and vectors; the return sequence is always a list.

Common Lisp’s mapcar accepts multiple arguments but works only on lists;
Emacs Lisp’s mapcar accepts a single sequence argument. This package’s
mapcar* works as a compatible superset of both.

Functionmap result-type function seq &rest more-seqs
This function maps function over the argument sequences, just like mapcar*,
but it returns a sequence of type result-type rather than a list. result-type must
be one of the following symbols: vector, string, list (in which case the effect
is the same as for mapcar*), or nil (in which case the results are thrown away
and map returns nil).

Functionmaplist function list &rest more-lists
This function calls function on each of its argument lists, then on the cdrs of
those lists, and so on, until the shortest list runs out. The results are returned
in the form of a list. Thus, maplist is like mapcar* except that it passes in the
list pointers themselves rather than the cars of the advancing pointers.

Functionmapc function seq &rest more-seqs
This function is like mapcar*, except that the values returned by function are
ignored and thrown away rather than being collected into a list. The return
value of mapc is seq, the first sequence.

Functionmapl function list &rest more-lists
This function is like maplist, except that it throws away the values returned
by function.

Chapter 14: Sequences 57

Functionmapcan function seq &rest more-seqs
This function is like mapcar*, except that it concatenates the return values
(which must be lists) using nconc, rather than simply collecting them into a
list.

Functionmapcon function list &rest more-lists
This function is like maplist, except that it concatenates the return values
using nconc.

Functionsome predicate seq &rest more-seqs
This function calls predicate on each element of seq in turn; if predicate returns
a non-nil value, some returns that value, otherwise it returns nil. Given several
sequence arguments, it steps through the sequences in parallel until the shortest
one runs out, just as in mapcar*. You can rely on the left-to-right order in which
the elements are visited, and on the fact that mapping stops immediately as
soon as predicate returns non-nil.

Functionevery predicate seq &rest more-seqs
This function calls predicate on each element of the sequence(s) in turn; it re-
turns nil as soon as predicate returns nil for any element, or t if the predicate
was true for all elements.

Functionnotany predicate seq &rest more-seqs
This function calls predicate on each element of the sequence(s) in turn; it
returns nil as soon as predicate returns a non-nil value for any element, or t
if the predicate was nil for all elements.

Functionnotevery predicate seq &rest more-seqs
This function calls predicate on each element of the sequence(s) in turn; it
returns a non-nil value as soon as predicate returns nil for any element, or t
if the predicate was true for all elements.

Functionreduce function seq &key :from-end :start :end

:initial-value :key

This function combines the elements of seq using an associative binary opera-
tion. Suppose function is * and seq is the list (2 3 4 5). The first two elements
of the list are combined with (* 2 3) = 6; this is combined with the next ele-
ment, (* 6 4) = 24, and that is combined with the final element: (* 24 5) =

120. Note that the * function happens to be self-reducing, so that (* 2 3 4 5)

has the same effect as an explicit call to reduce.

If :from-end is true, the reduction is right-associative instead of left-associative:

(reduce ’- ’(1 2 3 4))

≡ (- (- (- 1 2) 3) 4) ⇒ -8
(reduce ’- ’(1 2 3 4) :from-end t)

≡ (- 1 (- 2 (- 3 4))) ⇒ -2

If :key is specified, it is a function of one argument which is called on each of
the sequence elements in turn.

Chapter 14: Sequences 58

If :initial-value is specified, it is effectively added to the front (or rear in
the case of :from-end) of the sequence. The :key function is not applied to
the initial value.

If the sequence, including the initial value, has exactly one element then that
element is returned without ever calling function. If the sequence is empty (and
there is no initial value), then function is called with no arguments to obtain
the return value.

All of these mapping operations can be expressed conveniently in terms of the loop

macro. In compiled code, loop will be faster since it generates the loop as in-line code with
no function calls.

14.3 Sequence Functions

This section describes a number of Common Lisp functions for operating on sequences.

Functionsubseq sequence start &optional end
This function returns a given subsequence of the argument sequence, which may
be a list, string, or vector. The indices start and end must be in range, and
start must be no greater than end. If end is omitted, it defaults to the length
of the sequence. The return value is always a copy; it does not share structure
with sequence.

As an extension to Common Lisp, start and/or end may be negative, in which
case they represent a distance back from the end of the sequence. This is for
compatibility with Emacs’ substring function. Note that subseq is the only
sequence function that allows negative start and end.

You can use setf on a subseq form to replace a specified range of elements
with elements from another sequence. The replacement is done as if by replace,
described below.

Functionconcatenate result-type &rest seqs
This function concatenates the argument sequences together to form a result
sequence of type result-type, one of the symbols vector, string, or list. The
arguments are always copied, even in cases such as (concatenate ’list ’(1 2

3)) where the result is identical to an argument.

Functionfill seq item &key :start :end

This function fills the elements of the sequence (or the specified part of the
sequence) with the value item.

Functionreplace seq1 seq2 &key :start1 :end1 :start2 :end2

This function copies part of seq2 into part of seq1. The sequence seq1 is not
stretched or resized; the amount of data copied is simply the shorter of the
source and destination (sub)sequences. The function returns seq1.

If seq1 and seq2 are eq, then the replacement will work correctly even if the
regions indicated by the start and end arguments overlap. However, if seq1

Chapter 14: Sequences 59

and seq2 are lists which share storage but are not eq, and the start and end
arguments specify overlapping regions, the effect is undefined.

Functionremove* item seq &key :test :test-not :key :count :start

:end :from-end

This returns a copy of seq with all elements matching item removed. The
result may share storage with or be eq to seq in some circumstances, but the
original seq will not be modified. The :test, :test-not, and :key arguments
define the matching test that is used; by default, elements eql to item are
removed. The :count argument specifies the maximum number of matching
elements that can be removed (only the leftmost count matches are removed).
The :start and :end arguments specify a region in seq in which elements will
be removed; elements outside that region are not matched or removed. The
:from-end argument, if true, says that elements should be deleted from the
end of the sequence rather than the beginning (this matters only if count was
also specified).

Functiondelete* item seq &key :test :test-not :key :count :start

:end :from-end

This deletes all elements of seq which match item. It is a destructive operation.
Since Emacs Lisp does not support stretchable strings or vectors, this is the
same as remove* for those sequence types. On lists, remove* will copy the
list if necessary to preserve the original list, whereas delete* will splice out
parts of the argument list. Compare append and nconc, which are analogous
non-destructive and destructive list operations in Emacs Lisp.

The predicate-oriented functions remove-if, remove-if-not, delete-if, and delete-

if-not are defined similarly.

Functiondelete item list
This MacLisp-compatible function deletes from list all elements which are equal
to item. The delete function is built-in to Emacs 19; this package defines it
equivalently in Emacs 18.

Functionremove item list
This function removes from list all elements which are equal to item. This
package defines it for symmetry with delete, even though remove is not built-
in to Emacs 19.

Functionremq item list
This function removes from list all elements which are eq to item. This package
defines it for symmetry with delq, even though remq is not built-in to Emacs
19.

Functionremove-duplicates seq &key :test :test-not :key :start

:end :from-end

This function returns a copy of seq with duplicate elements removed. Specifi-
cally, if two elements from the sequence match according to the :test, :test-
not, and :key arguments, only the rightmost one is retained. If :from-end is

Chapter 14: Sequences 60

true, the leftmost one is retained instead. If :start or :end is specified, only
elements within that subsequence are examined or removed.

Functiondelete-duplicates seq &key :test :test-not :key :start

:end :from-end

This function deletes duplicate elements from seq. It is a destructive version of
remove-duplicates.

Functionsubstitute new old seq &key :test :test-not :key :count

:start :end :from-end

This function returns a copy of seq, with all elements matching old replaced
with new. The :count, :start, :end, and :from-end arguments may be used
to limit the number of substitutions made.

Functionnsubstitute new old seq &key :test :test-not :key :count

:start :end :from-end

This is a destructive version of substitute; it performs the substitution using
setcar or aset rather than by returning a changed copy of the sequence.

The substitute-if, substitute-if-not, nsubstitute-if, and nsubstitute-if-not

functions are defined similarly. For these, a predicate is given in place of the old argument.

14.4 Searching Sequences

These functions search for elements or subsequences in a sequence. (See also member* and
assoc*; see Chapter 15 [Lists], page 63.)

Functionfind item seq &key :test :test-not :key :start :end

:from-end

This function searches seq for an element matching item. If it finds a match, it
returns the matching element. Otherwise, it returns nil. It returns the leftmost
match, unless :from-end is true, in which case it returns the rightmost match.
The :start and :end arguments may be used to limit the range of elements
that are searched.

Functionposition item seq &key :test :test-not :key :start :end

:from-end

This function is like find, except that it returns the integer position in the
sequence of the matching item rather than the item itself. The position is
relative to the start of the sequence as a whole, even if :start is non-zero. The
function returns nil if no matching element was found.

Functioncount item seq &key :test :test-not :key :start :end

This function returns the number of elements of seq which match item. The
result is always a nonnegative integer.

The find-if, find-if-not, position-if, position-if-not, count-if, and count-

if-not functions are defined similarly.

Chapter 14: Sequences 61

Functionmismatch seq1 seq2 &key :test :test-not :key :start1

:end1 :start2 :end2 :from-end

This function compares the specified parts of seq1 and seq2. If they are the
same length and the corresponding elements match (according to :test, :test-
not, and :key), the function returns nil. If there is a mismatch, the function
returns the index (relative to seq1) of the first mismatching element. This will
be the leftmost pair of elements which do not match, or the position at which
the shorter of the two otherwise-matching sequences runs out.

If :from-end is true, then the elements are compared from right to left starting
at (1- end1) and (1- end2). If the sequences differ, then one plus the index
of the rightmost difference (relative to seq1) is returned.

An interesting example is (mismatch str1 str2 :key ’upcase), which com-
pares two strings case-insensitively.

Functionsearch seq1 seq2 &key :test :test-not :key :from-end

:start1 :end1 :start2 :end2

This function searches seq2 for a subsequence that matches seq1 (or part of it
specified by :start1 and :end1.) Only matches which fall entirely within the
region defined by :start2 and :end2 will be considered. The return value is
the index of the leftmost element of the leftmost match, relative to the start of
seq2, or nil if no matches were found. If :from-end is true, the function finds
the rightmost matching subsequence.

14.5 Sorting Sequences

Functionsort* seq predicate &key :key

This function sorts seq into increasing order as determined by using predicate
to compare pairs of elements. predicate should return true (non-nil) if and
only if its first argument is less than (not equal to) its second argument. For
example, < and string-lessp are suitable predicate functions for sorting num-
bers and strings, respectively; > would sort numbers into decreasing rather than
increasing order.

This function differs from Emacs’ built-in sort in that it can operate on any
type of sequence, not just lists. Also, it accepts a :key argument which is used
to preprocess data fed to the predicate function. For example,

(setq data (sort data ’string-lessp :key ’downcase))

sorts data, a sequence of strings, into increasing alphabetical order without
regard to case. A :key function of car would be useful for sorting association
lists.

The sort* function is destructive; it sorts lists by actually rearranging the cdr

pointers in suitable fashion.

Chapter 14: Sequences 62

Functionstable-sort seq predicate &key :key

This function sorts seq stably, meaning two elements which are equal in terms
of predicate are guaranteed not to be rearranged out of their original order by
the sort.

In practice, sort* and stable-sort are equivalent in Emacs Lisp because the
underlying sort function is stable by default. However, this package reserves
the right to use non-stable methods for sort* in the future.

Functionmerge type seq1 seq2 predicate &key :key

This function merges two sequences seq1 and seq2 by interleaving their ele-
ments. The result sequence, of type type (in the sense of concatenate), has
length equal to the sum of the lengths of the two input sequences. The se-
quences may be modified destructively. Order of elements within seq1 and seq2
is preserved in the interleaving; elements of the two sequences are compared by
predicate (in the sense of sort) and the lesser element goes first in the result.
When elements are equal, those from seq1 precede those from seq2 in the result.
Thus, if seq1 and seq2 are both sorted according to predicate, then the result
will be a merged sequence which is (stably) sorted according to predicate.

Chapter 15: Lists 63

15 Lists

The functions described here operate on lists.

15.1 List Functions

This section describes a number of simple operations on lists, i.e., chains of cons cells.

Functioncaddr x
This function is equivalent to (car (cdr (cdr x))). Likewise, this package
defines all 28 cxxxr functions where xxx is up to four ‘a’s and/or ‘d’s. All
of these functions are setf-able, and calls to them are expanded inline by the
byte-compiler for maximum efficiency.

Functionfirst x
This function is a synonym for (car x). Likewise, the functions second, third,
. . ., through tenth return the given element of the list x.

Functionrest x
This function is a synonym for (cdr x).

Functionendp x
Common Lisp defines this function to act like null, but signaling an error if x
is neither a nil nor a cons cell. This package simply defines endp as a synonym
for null.

Functionlist-length x
This function returns the length of list x, exactly like (length x), except that
if x is a circular list (where the cdr-chain forms a loop rather than terminating
with nil), this function returns nil. (The regular length function would get
stuck if given a circular list.)

Functionlast x &optional n
This function returns the last cons, or the nth-to-last cons, of the list x. If n
is omitted it defaults to 1. The “last cons” means the first cons cell of the list
whose cdr is not another cons cell. (For normal lists, the cdr of the last cons
will be nil.) This function returns nil if x is nil or shorter than n. Note that
the last element of the list is (car (last x)).

Functionbutlast x &optional n
This function returns the list x with the last element, or the last n elements,
removed. If n is greater than zero it makes a copy of the list so as not to damage
the original list. In general, (append (butlast x n) (last x n)) will return a
list equal to x.

Functionnbutlast x &optional n
This is a version of butlast that works by destructively modifying the cdr of
the appropriate element, rather than making a copy of the list.

Chapter 15: Lists 64

Functionlist* arg &rest others
This function constructs a list of its arguments. The final argument becomes
the cdr of the last cell constructed. Thus, (list* a b c) is equivalent to (cons

a (cons b c)), and (list* a b nil) is equivalent to (list a b).

(Note that this function really is called list* in Common Lisp; it is not a name
invented for this package like member* or defun*.)

Functionldiff list sublist
If sublist is a sublist of list, i.e., is eq to one of the cons cells of list, then this
function returns a copy of the part of list up to but not including sublist. For
example, (ldiff x (cddr x)) returns the first two elements of the list x. The
result is a copy; the original list is not modified. If sublist is not a sublist of
list, a copy of the entire list is returned.

Functioncopy-list list
This function returns a copy of the list list. It copies dotted lists like (1 2 . 3)

correctly.

Functioncopy-tree x &optional vecp
This function returns a copy of the tree of cons cells x. Unlike copy-sequence

(and its alias copy-list), which copies only along the cdr direction, this func-
tion copies (recursively) along both the car and the cdr directions. If x is
not a cons cell, the function simply returns x unchanged. If the optional vecp
argument is true, this function copies vectors (recursively) as well as cons cells.

Functiontree-equal x y &key :test :test-not :key

This function compares two trees of cons cells. If x and y are both cons cells,
their cars and cdrs are compared recursively. If neither x nor y is a cons
cell, they are compared by eql, or according to the specified test. The :key

function, if specified, is applied to the elements of both trees. See Chapter 14
[Sequences], page 55.

15.4 Substitution of Expressions

These functions substitute elements throughout a tree of cons cells. (See Section 14.3
[Sequence Functions], page 58, for the substitute function, which works on just the top-
level elements of a list.)

Functionsubst new old tree &key :test :test-not :key

This function substitutes occurrences of old with new in tree, a tree of cons
cells. It returns a substituted tree, which will be a copy except that it may
share storage with the argument tree in parts where no substitutions occurred.
The original tree is not modified. This function recurses on, and compares
against old, both cars and cdrs of the component cons cells. If old is itself
a cons cell, then matching cells in the tree are substituted as usual without
recursively substituting in that cell. Comparisons with old are done according
to the specified test (eql by default). The :key function is applied to the
elements of the tree but not to old.

Chapter 15: Lists 65

Functionnsubst new old tree &key :test :test-not :key

This function is like subst, except that it works by destructive modification
(by setcar or setcdr) rather than copying.

The subst-if, subst-if-not, nsubst-if, and nsubst-if-not functions are defined
similarly.

Functionsublis alist tree &key :test :test-not :key

This function is like subst, except that it takes an association list alist of
old-new pairs. Each element of the tree (after applying the :key function, if
any), is compared with the cars of alist; if it matches, it is replaced by the
corresponding cdr.

Functionnsublis alist tree &key :test :test-not :key

This is a destructive version of sublis.

15.5 Lists as Sets

These functions perform operations on lists which represent sets of elements.

Functionmember item list
This MacLisp-compatible function searches list for an element which is equal

to item. The member function is built-in to Emacs 19; this package defines
it equivalently in Emacs 18. See the following function for a Common-Lisp
compatible version.

Functionmember* item list &key :test :test-not :key

This function searches list for an element matching item. If a match is found, it
returns the cons cell whose car was the matching element. Otherwise, it returns
nil. Elements are compared by eql by default; you can use the :test, :test-
not, and :key arguments to modify this behavior. See Chapter 14 [Sequences],
page 55.

Note that this function’s name is suffixed by ‘*’ to avoid the incompatible
member function defined in Emacs 19. (That function uses equal for compar-
isons; it is equivalent to (member* item list :test ’equal).)

The member-if and member-if-not functions analogously search for elements which
satisfy a given predicate.

Functiontailp sublist list
This function returns t if sublist is a sublist of list, i.e., if sublist is eql to list
or to any of its cdrs.

Functionadjoin item list &key :test :test-not :key

This function conses item onto the front of list, like (cons item list), but only
if item is not already present on the list (as determined by member*). If a :key

argument is specified, it is applied to item as well as to the elements of list
during the search, on the reasoning that item is “about” to become part of the
list.

Chapter 15: Lists 66

Functionunion list1 list2 &key :test :test-not :key

This function combines two lists which represent sets of items, returning a list
that represents the union of those two sets. The result list will contain all items
which appear in list1 or list2, and no others. If an item appears in both list1
and list2 it will be copied only once. If an item is duplicated in list1 or list2, it
is undefined whether or not that duplication will survive in the result list. The
order of elements in the result list is also undefined.

Functionnunion list1 list2 &key :test :test-not :key

This is a destructive version of union; rather than copying, it tries to reuse the
storage of the argument lists if possible.

Functionintersection list1 list2 &key :test :test-not :key

This function computes the intersection of the sets represented by list1 and
list2. It returns the list of items which appear in both list1 and list2.

Functionnintersection list1 list2 &key :test :test-not :key

This is a destructive version of intersection. It tries to reuse storage of list1
rather than copying. It does not reuse the storage of list2.

Functionset-difference list1 list2 &key :test :test-not :key

This function computes the “set difference” of list1 and list2, i.e., the set of
elements that appear in list1 but not in list2.

Functionnset-difference list1 list2 &key :test :test-not :key

This is a destructive set-difference, which will try to reuse list1 if possible.

Functionset-exclusive-or list1 list2 &key :test :test-not :key

This function computes the “set exclusive or” of list1 and list2, i.e., the set of
elements that appear in exactly one of list1 and list2.

Functionnset-exclusive-or list1 list2 &key :test :test-not :key

This is a destructive set-exclusive-or, which will try to reuse list1 and list2
if possible.

Functionsubsetp list1 list2 &key :test :test-not :key

This function checks whether list1 represents a subset of list2, i.e., whether
every element of list1 also appears in list2.

15.6 Association Lists

An association list is a list representing a mapping from one set of values to another; any
list whose elements are cons cells is an association list.

Functionassoc* item a-list &key :test :test-not :key

This function searches the association list a-list for an element whose car

matches (in the sense of :test, :test-not, and :key, or by comparison with
eql) a given item. It returns the matching element, if any, otherwise nil. It

Chapter 15: Lists 67

ignores elements of a-list which are not cons cells. (This corresponds to the
behavior of assq and assoc in Emacs Lisp; Common Lisp’s assoc ignores nils
but considers any other non-cons elements of a-list to be an error.)

Functionrassoc* item a-list &key :test :test-not :key

This function searches for an element whose cdr matches item. If a-list repre-
sents a mapping, this applies the inverse of the mapping to item.

Functionrassoc item a-list
This function searches like rassoc* with a :test argument of equal. It is
analogous to Emacs Lisp’s standard assoc function, which derives from the
MacLisp rather than the Common Lisp tradition.

The assoc-if, assoc-if-not, rassoc-if, and rassoc-if-not functions are defined
similarly.

Two simple functions for constructing association lists are:

Functionacons key value alist
This is equivalent to (cons (cons key value) alist).

Functionpairlis keys values &optional alist
This is equivalent to (nconc (mapcar* ’cons keys values) alist).

Chapter 16: Hash Tables 68

16 Hash Tables

A hash table is a data structure that maps “keys” onto “values.” Keys and values can
be arbitrary Lisp data objects. Hash tables have the property that the time to search
for a given key is roughly constant; simpler data structures like association lists take time
proportional to the number of entries in the list.

Functionmake-hash-table &key :test :size

This function creates and returns a hash-table object whose function for com-
paring elements is :test (eql by default), and which is allocated to fit about
:size elements. The :size argument is purely advisory; the table will stretch
automatically if you store more elements in it. If :size is omitted, a reasonable
default is used.

Common Lisp allows only eq, eql, equal, and equalp as legal values for the
:test argument. In this package, any reasonable predicate function will work,
though if you use something else you should check the details of the hashing
function described below to make sure it is suitable for your predicate.

Some versions of Emacs (like Lucid Emacs 19) include a built-in hash table
type; in these versions, make-hash-table with a test of eq will use these built-
in hash tables. In all other cases, it will return a hash-table object which takes
the form of a list with an identifying “tag” symbol at the front. All of the
hash table functions in this package can operate on both types of hash table;
normally you will never know which type is being used.

This function accepts the additional Common Lisp keywords :rehash-size

and :rehash-threshold, but it ignores their values.

Functiongethash key table &optional default
This function looks up key in table. If key exists in the table, in the sense that
it matches any of the existing keys according to the table’s test function, then
the associated value is returned. Otherwise, default (or nil) is returned.

To store new data in the hash table, use setf on a call to gethash. If key
already exists in the table, the corresponding value is changed to the stored
value. If key does not already exist, a new entry is added to the table and
the table is reallocated to a larger size if necessary. The default argument is
allowed but ignored in this case. The situation is exactly analogous to that of
get*; see Section 10.1 [Property Lists], page 48.

Functionremhash key table
This function removes the entry for key from table. If an entry was removed,
it returns t. If key does not appear in the table, it does nothing and returns
nil.

Functionclrhash table
This function removes all the entries from table, leaving an empty hash table.

Chapter 16: Hash Tables 69

Functionmaphash function table
This function calls function for each entry in table. It passes two arguments to
function, the key and the value of the given entry. The return value of function
is ignored; maphash itself returns nil. See Section 7.9 [Loop Facility], page 31,
for an alternate way of iterating over hash tables.

Functionhash-table-count table
This function returns the number of entries in table. Warning: The current
implementation of Lucid Emacs 19 hash-tables does not decrement the stored
count when remhash removes an entry. Therefore, the return value of this
function is not dependable if you have used remhash on the table and the
table’s test is eq. A slower, but reliable, way to count the entries is (loop for

x being the hash-keys of table count t).

Functionhash-table-p object
This function returns t if object is a hash table, nil otherwise. It recognizes
both types of hash tables (both Lucid Emacs built-in tables and tables imple-
mented with special lists.)

Sometimes when dealing with hash tables it is useful to know the exact “hash function”
that is used. This package implements hash tables using Emacs Lisp “obarrays,” which
are the same data structure that Emacs Lisp uses to keep track of symbols. Each hash
table includes an embedded obarray. Key values given to gethash are converted by various
means into strings, which are then looked up in the obarray using intern and intern-soft.
The symbol, or “bucket,” corresponding to a given key string includes as its symbol-value
an association list of all key-value pairs which hash to that string. Depending on the test
function, it is possible for many entries to hash to the same bucket. For example, if the
test is eql, then the symbol foo and two separately built strings "foo" will create three
entries in the same bucket. Search time is linear within buckets, so hash tables will be most
effective if you arrange not to store too many things that hash the same.

The following algorithm is used to convert Lisp objects to hash strings:

• Strings are used directly as hash strings. (However, if the test function is equalp,
strings are downcased first.)

• Symbols are hashed according to their symbol-name.

• Integers are hashed into one of 16 buckets depending on their value modulo 16.
Floating-point numbers are truncated to integers and hashed modulo 16.

• Cons cells are hashed according to their cars; nonempty vectors are hashed according
to their first element.

• All other types of objects hash into a single bucket named "*".

Thus, for example, searching among many buffer objects in a hash table will devolve to a
(still fairly fast) linear-time search through a single bucket, whereas searching for different
symbols will be very fast since each symbol will, in general, hash into its own bucket.

The size of the obarray in a hash table is automatically adjusted as the number of
elements increases.

As a special case, make-hash-table with a :size argument of 0 or 1 will create a hash-
table object that uses a single association list rather than an obarray of many lists. For very

Chapter 16: Hash Tables 70

small tables this structure will be more efficient since lookup does not require converting
the key to a string or looking it up in an obarray. However, such tables are guaranteed to
take time proportional to their size to do a search.

Chapter 19: Structures 71

19 Structures

The Common Lisp structure mechanism provides a general way to define data types similar
to C’s struct types. A structure is a Lisp object containing some number of slots, each of
which can hold any Lisp data object. Functions are provided for accessing and setting the
slots, creating or copying structure objects, and recognizing objects of a particular structure
type.

In true Common Lisp, each structure type is a new type distinct from all existing Lisp
types. Since the underlying Emacs Lisp system provides no way to create new distinct
types, this package implements structures as vectors (or lists upon request) with a special
“tag” symbol to identify them.

Special Formdefstruct name slots. . .
The defstruct form defines a new structure type called name, with the spec-
ified slots. (The slots may begin with a string which documents the structure
type.) In the simplest case, name and each of the slots are symbols. For
example,

(defstruct person name age sex)

defines a struct type called person which contains three slots. Given a person

object p, you can access those slots by calling (person-name p), (person-age
p), and (person-sex p). You can also change these slots by using setf on
any of these place forms:

(incf (person-age birthday-boy))

You can create a new person by calling make-person, which takes keyword
arguments :name, :age, and :sex to specify the initial values of these slots in
the new object. (Omitting any of these arguments leaves the corresponding
slot “undefined,” according to the Common Lisp standard; in Emacs Lisp, such
uninitialized slots are filled with nil.)

Given a person, (copy-person p) makes a new object of the same type whose
slots are eq to those of p.

Given any Lisp object x, (person-p x) returns true if x looks like a person,
false otherwise. (Again, in Common Lisp this predicate would be exact; in
Emacs Lisp the best it can do is verify that x is a vector of the correct length
which starts with the correct tag symbol.)

Accessors like person-name normally check their arguments (effectively using
person-p) and signal an error if the argument is the wrong type. This check is
affected by (optimize (safety . . .)) declarations. Safety level 1, the default,
uses a somewhat optimized check that will detect all incorrect arguments, but
may use an uninformative error message (e.g., “expected a vector” instead of
“expected a person”). Safety level 0 omits all checks except as provided by
the underlying aref call; safety levels 2 and 3 do rigorous checking that will
always print a descriptive error message for incorrect inputs. See Chapter 9
[Declarations], page 45.

Chapter 19: Structures 72

(setq dave (make-person :name "Dave" :sex ’male))
⇒ [cl-struct-person "Dave" nil male]

(setq other (copy-person dave))
⇒ [cl-struct-person "Dave" nil male]

(eq dave other)
⇒ nil

(eq (person-name dave) (person-name other))
⇒ t

(person-p dave)
⇒ t

(person-p [1 2 3 4])
⇒ nil

(person-p "Bogus")
⇒ nil

(person-p ’[cl-struct-person counterfeit person object])
⇒ t

In general, name is either a name symbol or a list of a name symbol followed
by any number of struct options; each slot is either a slot symbol or a list of the
form ‘(slot-name default-value slot-options. . .)’. The default-value is a Lisp
form which is evaluated any time an instance of the structure type is created
without specifying that slot’s value.

Common Lisp defines several slot options, but the only one implemented in this
package is :read-only. A non-nil value for this option means the slot should
not be setf-able; the slot’s value is determined when the object is created and
does not change afterward.

(defstruct person
(name nil :read-only t)
age
(sex ’unknown))

Any slot options other than :read-only are ignored.

For obscure historical reasons, structure options take a different form than slot
options. A structure option is either a keyword symbol, or a list beginning with
a keyword symbol possibly followed by arguments. (By contrast, slot options
are key-value pairs not enclosed in lists.)

(defstruct (person (:constructor create-person)
(:type list)
:named)

name age sex)

The following structure options are recognized.

:conc-name

The argument is a symbol whose print name is used as the prefix for the
names of slot accessor functions. The default is the name of the struct
type followed by a hyphen. The option (:conc-name p-) would change
this prefix to p-. Specifying nil as an argument means no prefix, so that
the slot names themselves are used to name the accessor functions.

Chapter 19: Structures 73

:constructor

In the simple case, this option takes one argument which is an alternate
name to use for the constructor function. The default is make-name,
e.g., make-person. The above example changes this to create-person.
Specifying nil as an argument means that no standard constructor should
be generated at all.

In the full form of this option, the constructor name is followed by an
arbitrary argument list. See Chapter 5 [Program Structure], page 5, for
a description of the format of Common Lisp argument lists. All options,
such as &rest and &key, are supported. The argument names should
match the slot names; each slot is initialized from the corresponding ar-
gument. Slots whose names do not appear in the argument list are initial-
ized based on the default-value in their slot descriptor. Also, &optional
and &key arguments which don’t specify defaults take their defaults from
the slot descriptor. It is legal to include arguments which don’t corre-
spond to slot names; these are useful if they are referred to in the defaults
for optional, keyword, or &aux arguments which do correspond to slots.

You can specify any number of full-format :constructor options on a
structure. The default constructor is still generated as well unless you
disable it with a simple-format :constructor option.

(defstruct
(person
(:constructor nil) ; no default constructor
(:constructor new-person (name sex &optional (age 0)))
(:constructor new-hound (&key (name "Rover")

(dog-years 0)
&aux (age (* 7 dog-years))

(sex ’canine))))
name age sex)

The first constructor here takes its arguments positionally rather than by
keyword. (In official Common Lisp terminology, constructors that work
By Order of Arguments instead of by keyword are called “BOA construc-
tors.” No, I’m not making this up.) For example, (new-person "Jane"

’female) generates a person whose slots are "Jane", 0, and female,
respectively.

The second constructor takes two keyword arguments, :name, which ini-
tializes the name slot and defaults to "Rover", and :dog-years, which
does not itself correspond to a slot but which is used to initialize the age

slot. The sex slot is forced to the symbol canine with no syntax for
overriding it.

:copier

The argument is an alternate name for the copier function for this type.
The default is copy-name. nil means not to generate a copier function.
(In this implementation, all copier functions are simply synonyms for
copy-sequence.)

Chapter 19: Structures 74

:predicate

The argument is an alternate name for the predicate which recognizes
objects of this type. The default is name-p. nil means not to generate
a predicate function. (If the :type option is used without the :named

option, no predicate is ever generated.)

In true Common Lisp, typep is always able to recognize a structure object
even if :predicate was used. In this package, typep simply looks for a
function called typename-p, so it will work for structure types only if
they used the default predicate name.

:include

This option implements a very limited form of C++-style inheritance. The
argument is the name of another structure type previously created with
defstruct. The effect is to cause the new structure type to inherit all
of the included structure’s slots (plus, of course, any new slots described
by this struct’s slot descriptors). The new structure is considered a “spe-
cialization” of the included one. In fact, the predicate and slot accessors
for the included type will also accept objects of the new type.

If there are extra arguments to the :include option after the included-
structure name, these options are treated as replacement slot descriptors
for slots in the included structure, possibly with modified default values.
Borrowing an example from Steele:

(defstruct person name (age 0) sex)
⇒ person

(defstruct (astronaut (:include person (age 45)))
helmet-size
(favorite-beverage ’tang))
⇒ astronaut

(setq joe (make-person :name "Joe"))
⇒ [cl-struct-person "Joe" 0 nil]

(setq buzz (make-astronaut :name "Buzz"))
⇒ [cl-struct-astronaut "Buzz" 45 nil nil tang]

(list (person-p joe) (person-p buzz))
⇒ (t t)

(list (astronaut-p joe) (astronaut-p buzz))
⇒ (nil t)

(person-name buzz)
⇒ "Buzz"

(astronaut-name joe)
⇒ error: "astronaut-name accessing a non-astronaut"

Thus, if astronaut is a specialization of person, then every astronaut is
also a person (but not the other way around). Every astronaut includes
all the slots of a person, plus extra slots that are specific to astronauts.

Chapter 19: Structures 75

Operations that work on people (like person-name) work on astronauts
just like other people.

:print-function

In full Common Lisp, this option allows you to specify a function which is
called to print an instance of the structure type. The Emacs Lisp system
offers no hooks into the Lisp printer which would allow for such a feature,
so this package simply ignores :print-function.

:type

The argument should be one of the symbols vector or list. This tells
which underlying Lisp data type should be used to implement the new
structure type. Vectors are used by default, but (:type list) will cause
structure objects to be stored as lists instead.

The vector representation for structure objects has the advantage that
all structure slots can be accessed quickly, although creating vectors is a
bit slower in Emacs Lisp. Lists are easier to create, but take a relatively
long time accessing the later slots.

:named

This option, which takes no arguments, causes a characteristic “tag” sym-
bol to be stored at the front of the structure object. Using :type without
also using :named will result in a structure type stored as plain vectors
or lists with no identifying features.

The default, if you don’t specify :type explicitly, is to use named vectors.
Therefore, :named is only useful in conjunction with :type.

(defstruct (person1) name age sex)
(defstruct (person2 (:type list) :named) name age sex)
(defstruct (person3 (:type list)) name age sex)

(setq p1 (make-person1))
⇒ [cl-struct-person1 nil nil nil]

(setq p2 (make-person2))
⇒ (person2 nil nil nil)

(setq p3 (make-person3))
⇒ (nil nil nil)

(person1-p p1)
⇒ t

(person2-p p2)
⇒ t

(person3-p p3)
⇒ error: function person3-p undefined

Since unnamed structures don’t have tags, defstruct is not able to make
a useful predicate for recognizing them. Also, accessors like person3-

name will be generated but they will not be able to do any type checking.
The person3-name function, for example, will simply be a synonym for

Chapter 19: Structures 76

car in this case. By contrast, person2-name is able to verify that its
argument is indeed a person2 object before proceeding.

:initial-offset

The argument must be a nonnegative integer. It specifies a number of
slots to be left “empty” at the front of the structure. If the structure
is named, the tag appears at the specified position in the list or vector;
otherwise, the first slot appears at that position. Earlier positions are
filled with nil by the constructors and ignored otherwise. If the type
:includes another type, then :initial-offset specifies a number of
slots to be skipped between the last slot of the included type and the first
new slot.

Except as noted, the defstruct facility of this package is entirely compatible with that
of Common Lisp.

Chapter 24: Assertions and Errors 77

24 Assertions and Errors

This section describes two macros that test assertions, i.e., conditions which must be true if
the program is operating correctly. Assertions never add to the behavior of a Lisp program;
they simply make “sanity checks” to make sure everything is as it should be.

If the optimization property speed has been set to 3, and safety is less than 3, then
the byte-compiler will optimize away the following assertions. Because assertions might be
optimized away, it is a bad idea for them to include side-effects.

Special Formassert test-form [show-args string args. . .]
This form verifies that test-form is true (i.e., evaluates to a non-nil value). If
so, it returns nil. If the test is not satisfied, assert signals an error.

A default error message will be supplied which includes test-form. You can
specify a different error message by including a string argument plus optional
extra arguments. Those arguments are simply passed to error to signal the
error.

If the optional second argument show-args is t instead of nil, then the error
message (with or without string) will also include all non-constant arguments
of the top-level form. For example:

(assert (> x 10) t "x is too small: %d")

This usage of show-args is an extension to Common Lisp. In true Common
Lisp, the second argument gives a list of places which can be setf’d by the
user before continuing from the error. Since Emacs Lisp does not support
continuable errors, it makes no sense to specify places.

Special Formcheck-type form type [string]
This form verifies that form evaluates to a value of type type. If so, it returns
nil. If not, check-type signals a wrong-type-argument error. The default
error message lists the erroneous value along with type and form themselves.
If string is specified, it is included in the error message in place of type. For
example:

(check-type x (integer 1 *) "a positive integer")

See Section 6.1 [Type Predicates], page 11, for a description of the type specifiers
that may be used for type.

Note that in Common Lisp, the first argument to check-type must be a place
suitable for use by setf, because check-type signals a continuable error that
allows the user to modify place.

The following error-related macro is also defined:

Special Formignore-errors forms. . .
This executes forms exactly like a progn, except that errors are ignored during
the forms. More precisely, if an error is signaled then ignore-errors imme-
diately aborts execution of the forms and returns nil. If the forms complete
successfully, ignore-errors returns the result of the last form.

Appendix A: Efficiency Concerns 78

Appendix A Efficiency Concerns

A.1 Macros

Many of the advanced features of this package, such as defun*, loop, and setf, are imple-
mented as Lisp macros. In byte-compiled code, these complex notations will be expanded
into equivalent Lisp code which is simple and efficient. For example, the forms

(incf i n)
(push x (car p))

are expanded at compile-time to the Lisp forms

(setq i (+ i n))
(setcar p (cons x (car p)))

which are the most efficient ways of doing these respective operations in Lisp. Thus, there is
no performance penalty for using the more readable incf and push forms in your compiled
code.

Interpreted code, on the other hand, must expand these macros every time they are
executed. For this reason it is strongly recommended that code making heavy use of macros
be compiled. (The features labeled “Special Form” instead of “Function” in this manual are
macros.) A loop using incf a hundred times will execute considerably faster if compiled,
and will also garbage-collect less because the macro expansion will not have to be generated,
used, and thrown away a hundred times.

You can find out how a macro expands by using the cl-prettyexpand function.

Functioncl-prettyexpand form &optional full
This function takes a single Lisp form as an argument and inserts a nicely
formatted copy of it in the current buffer (which must be in Lisp mode so that
indentation works properly). It also expands all Lisp macros which appear in
the form. The easiest way to use this function is to go to the *scratch* buffer
and type, say,

(cl-prettyexpand ’(loop for x below 10 collect x))

and type C-x C-e immediately after the closing parenthesis; the expansion

(block nil
(let* ((x 0)

(G1004 nil))
(while (< x 10)
(setq G1004 (cons x G1004))
(setq x (+ x 1)))

(nreverse G1004)))

will be inserted into the buffer. (The block macro is expanded differently in
the interpreter and compiler, so cl-prettyexpand just leaves it alone. The
temporary variable G1004 was created by gensym.)

If the optional argument full is true, then all macros are expanded, including
block, eval-when, and compiler macros. Expansion is done as if form were a
top-level form in a file being compiled. For example,

Appendix A: Efficiency Concerns 79

(cl-prettyexpand ’(pushnew ’x list))

a (setq list (adjoin ’x list))
(cl-prettyexpand ’(pushnew ’x list) t)

a (setq list (if (memq ’x list) list (cons ’x list)))
(cl-prettyexpand ’(caddr (member* ’a list)) t)

a (car (cdr (cdr (memq ’a list))))

Note that adjoin, caddr, and member* all have built-in compiler macros to
optimize them in common cases.

A.2 Error Checking

Common Lisp compliance has in general not been sacrificed for the sake of efficiency. A few
exceptions have been made for cases where substantial gains were possible at the expense of
marginal incompatibility. One example is the use of memq (which is treated very efficiently
by the byte-compiler) to scan for keyword arguments; this can become confused in rare
cases when keyword symbols are used as both keywords and data values at once. This is
extremely unlikely to occur in practical code, and the use of memq allows functions with
keyword arguments to be nearly as fast as functions that use &optional arguments.

The Common Lisp standard (as embodied in Steele’s book) uses the phrase “it is an error
if” to indicate a situation which is not supposed to arise in complying programs; implemen-
tations are strongly encouraged but not required to signal an error in these situations. This
package sometimes omits such error checking in the interest of compactness and efficiency.
For example, do variable specifiers are supposed to be lists of one, two, or three forms; extra
forms are ignored by this package rather than signaling a syntax error. The endp function
is simply a synonym for null in this package. Functions taking keyword arguments will
accept an odd number of arguments, treating the trailing keyword as if it were followed by
the value nil.

Argument lists (as processed by defun* and friends) are checked rigorously except for
the minor point just mentioned; in particular, keyword arguments are checked for validity,
and &allow-other-keys and :allow-other-keys are fully implemented. Keyword validity
checking is slightly time consuming (though not too bad in byte-compiled code); you can
use &allow-other-keys to omit this check. Functions defined in this package such as find
and member* do check their keyword arguments for validity.

A.3 Optimizing Compiler

The byte-compiler that comes with Emacs 18 normally fails to expand macros that appear
in top-level positions in the file (i.e., outside of defuns or other enclosing forms). This would
have disastrous consequences to programs that used such top-level macros as defun*, eval-
when, and defstruct. To work around this problem, the CL package patches the Emacs 18
compiler to expand top-level macros. This patch will apply to your own macros, too, if they
are used in a top-level context. The patch will not harm versions of the Emacs 18 compiler
which have already had a similar patch applied, nor will it affect the optimizing Emacs 19
byte-compiler written by Jamie Zawinski and Hallvard Furuseth. The patch is applied to
the byte compiler’s code in Emacs’ memory, not to the ‘bytecomp.elc’ file stored on disk.

Appendix A: Efficiency Concerns 80

The Emacs 19 compiler (for Emacs 18) is available from various Emacs Lisp archive
sites such as archive.cis.ohio-state.edu. Its use is highly recommended; many of the
Common Lisp macros emit code which can be improved by optimization. In particular,
blocks (whether explicit or implicit in constructs like defun* and loop) carry a fair run-
time penalty; the optimizing compiler removes blocks which are not actually referenced by
return or return-from inside the block.

Appendix B: Common Lisp Compatibility 81

Appendix B Common Lisp Compatibility

Following is a list of all known incompatibilities between this package and Common Lisp as
documented in Steele (2nd edition).

Certain function names, such as member, assoc, and floor, were already taken by
(incompatible) Emacs Lisp functions; this package appends ‘*’ to the names of its Common
Lisp versions of these functions.

The word defun* is required instead of defun in order to use extended Common Lisp
argument lists in a function. Likewise, defmacro* and function* are versions of those
forms which understand full-featured argument lists. The &whole keyword does not work
in defmacro argument lists (except inside recursive argument lists).

In order to allow an efficient implementation, keyword arguments use a slightly cheesy
parser which may be confused if a keyword symbol is passed as the value of another keyword
argument. (Specifically, (memq :keyword rest-of-arguments) is used to scan for :keyword
among the supplied keyword arguments.)

The eql and equal predicates do not distinguish between IEEE floating-point plus and
minus zero. The equalp predicate has several differences with Common Lisp; see Chapter 6
[Predicates], page 11.

The setf mechanism is entirely compatible, except that setf-methods return a list of
five values rather than five values directly. Also, the new “setf function” concept (typified
by (defun (setf foo) . . .)) is not implemented.

The do-all-symbols form is the same as do-symbols with no obarray argument. In
Common Lisp, this form would iterate over all symbols in all packages. Since Emacs obar-
rays are not a first-class package mechanism, there is no way for do-all-symbols to locate
any but the default obarray.

The loop macro is complete except that loop-finish and type specifiers are unimple-
mented.

The multiple-value return facility treats lists as multiple values, since Emacs Lisp cannot
support multiple return values directly. The macros will be compatible with Common Lisp
if values or values-list is always used to return to a multiple-value-bind or other
multiple-value receiver; if values is used without multiple-value-. . . or vice-versa the
effect will be different from Common Lisp.

Many Common Lisp declarations are ignored, and others match the Common Lisp stan-
dard in concept but not in detail. For example, local special declarations, which are purely
advisory in Emacs Lisp, do not rigorously obey the scoping rules set down in Steele’s book.

The variable *gensym-counter* starts out with a pseudo-random value rather than with
zero. This is to cope with the fact that generated symbols become interned when they are
written to and loaded back from a file.

The defstruct facility is compatible, except that structures are of type :type vector

:named by default rather than some special, distinct type. Also, the :type slot option is
ignored.

The second argument of check-type is treated differently.

Appendix C: Old CL Compatibility 82

Appendix C Old CL Compatibility

Following is a list of all known incompatibilities between this package and the older Quiroz
‘cl.el’ package.

This package’s emulation of multiple return values in functions is incompatible with
that of the older package. That package attempted to come as close as possible to true
Common Lisp multiple return values; unfortunately, it could not be 100% reliable and
so was prone to occasional surprises if used freely. This package uses a simpler method,
namely replacing multiple values with lists of values, which is more predictable though more
noticeably different from Common Lisp.

The defkeyword form and keywordp function are not implemented in this package.

The member, floor, ceiling, truncate, round, mod, and rem functions are suffixed
by ‘*’ in this package to avoid collision with existing functions in Emacs 18 or Emacs
19. The older package simply redefined these functions, overwriting the built-in meanings
and causing serious portability problems with Emacs 19. (Some more recent versions of
the Quiroz package changed the names to cl-member, etc.; this package defines the latter
names as aliases for member*, etc.)

Certain functions in the old package which were buggy or inconsistent with the Common
Lisp standard are incompatible with the conforming versions in this package. For example,
eql and member were synonyms for eq and memq in that package, setf failed to preserve
correct order of evaluation of its arguments, etc.

Finally, unlike the older package, this package is careful to prefix all of its internal names
with cl-. Except for a few functions which are explicitly defined as additional features (such
as floatp-safe and letf), this package does not export any non-‘cl-’ symbols which are
not also part of Common Lisp.

C.1 The cl-compat package

The CL package includes emulations of some features of the old ‘cl.el’, in the form of a
compatibility package cl-compat. To use it, put (require ’cl-compat) in your program.

The old package defined a number of internal routines without cl- prefixes or other
annotations. Call to these routines may have crept into existing Lisp code. cl-compat

provides emulations of the following internal routines: pair-with-newsyms, zip-lists,
unzip-lists, reassemble-arglists, duplicate-symbols-p, safe-idiv.

Some setf forms translated into calls to internal functions that user code might call
directly. The functions setnth, setnthcdr, and setelt fall in this category; they are
defined by cl-compat, but the best fix is to change to use setf properly.

The cl-compat file defines the keyword functions keywordp, keyword-of, and defkeyword,
which are not defined by the new CL package because the use of keywords as data is dis-
couraged.

The build-klist mechanism for parsing keyword arguments is emulated by cl-compat;
the with-keyword-args macro is not, however, and in any case it’s best to change to use
the more natural keyword argument processing offered by defun*.

Appendix C: Old CL Compatibility 83

Multiple return values are treated differently by the two Common Lisp packages. The old
package’s method was more compatible with true Common Lisp, though it used heuristics
that caused it to report spurious multiple return values in certain cases. The cl-compat

package defines a set of multiple-value macros that are compatible with the old CL package;
again, they are heuristic in nature, but they are guaranteed to work in any case where the
old package’s macros worked. To avoid name collision with the “official” multiple-value
facilities, the ones in cl-compat have capitalized names: Values, Values-list, Multiple-
value-bind, etc.

The functions cl-floor, cl-ceiling, cl-truncate, and cl-round are defined by cl-

compat to use the old-style multiple-value mechanism, just as they did in the old package.
The newer floor* and friends return their two results in a list rather than as multiple values.
Note that older versions of the old package used the unadorned names floor, ceiling, etc.;
cl-compat cannot use these names because they conflict with Emacs 19 built-ins.

Appendix D: Porting Common Lisp 84

Appendix D Porting Common Lisp

This package is meant to be used as an extension to Emacs Lisp, not as an Emacs imple-
mentation of true Common Lisp. Some of the remaining differences between Emacs Lisp
and Common Lisp make it difficult to port large Common Lisp applications to Emacs. For
one, some of the features in this package are not fully compliant with ANSI or Steele; see
Appendix B [Common Lisp Compatibility], page 81. But there are also quite a few features
that this package does not provide at all. Here are some major omissions that you will want
watch out for when bringing Common Lisp code into Emacs.

• Case-insensitivity. Symbols in Common Lisp are case-insensitive by default. Some
programs refer to a function or variable as foo in one place and Foo or FOO in another.
Emacs Lisp will treat these as three distinct symbols.

Some Common Lisp code is written in all upper-case. While Emacs is happy to let the
program’s own functions and variables use this convention, calls to Lisp builtins like
if and defun will have to be changed to lower-case.

• Lexical scoping. In Common Lisp, function arguments and let bindings apply only to
references physically within their bodies (or within macro expansions in their bodies).
Emacs Lisp, by contrast, uses dynamic scoping wherein a binding to a variable is visible
even inside functions called from the body.

Variables in Common Lisp can be made dynamically scoped by declaring them special

or using defvar. In Emacs Lisp it is as if all variables were declared special.

Often you can use code that was written for lexical scoping even in a dynamically
scoped Lisp, but not always. Here is an example of a Common Lisp code fragment that
would fail in Emacs Lisp:

(defun map-odd-elements (func list)
(loop for x in list

for flag = t then (not flag)
collect (if flag x (funcall func x))))

(defun add-odd-elements (list x)
(map-odd-elements (function (lambda (a) (+ a x))) list))

In Common Lisp, the two functions’ usages of x are completely independent. In Emacs
Lisp, the binding to x made by add-odd-elements will have been hidden by the binding
in map-odd-elements by the time the (+ a x) function is called.

(This package avoids such problems in its own mapping functions by using names like
cl-x instead of x internally; as long as you don’t use the cl- prefix for your own
variables no collision can occur.)

See Section 7.5.2 [Lexical Bindings], page 23, for a description of the lexical-let form
which establishes a Common Lisp-style lexical binding, and some examples of how it
differs from Emacs’ regular let.

• Common Lisp allows the shorthand #’x to stand for (function x), just as ’x stands
for (quote x). In Common Lisp, one traditionally uses #’ notation when referring to
the name of a function. In Emacs Lisp, it works just as well to use a regular quote:

Appendix D: Porting Common Lisp 85

(loop for x in y by #’cddr collect (mapcar #’plusp x)) ; Common Lisp
(loop for x in y by ’cddr collect (mapcar ’plusp x)) ; Emacs Lisp

When #’ introduces a lambda form, it is best to write out (function ...) longhand
in Emacs Lisp. You can use a regular quote, but then the byte-compiler won’t know
that the lambda expression is code that can be compiled.

(mapcar #’(lambda (x) (* x 2)) list) ; Common Lisp
(mapcar (function (lambda (x) (* x 2))) list) ; Emacs Lisp

Lucid Emacs supports #’ notation starting with version 19.8.

• The “backquote” feature uses a different syntax in Emacs Lisp.

(defmacro foo (v &rest body) ‘(let ((,v 0)) @,body)) ; Common Lisp
(defmacro foo (v &rest body) (‘ (let (((, v) 0)) (@, body))) ; Emacs

• Reader macros. Common Lisp includes a second type of macro that works at the level
of individual characters. For example, Common Lisp implements the quote notation
by a reader macro called ’, whereas Emacs Lisp’s parser just treats quote as a special
case. Some Lisp packages use reader macros to create special syntaxes for themselves,
which the Emacs parser is incapable of reading.

The lack of reader macros, incidentally, is the reason behind Emacs Lisp’s unusual
backquote syntax. Since backquotes are implemented as a Lisp package and not built-
in to the Emacs parser, they are forced to use a regular macro named ‘ which is used
with the standard function/macro call notation.

• Other syntactic features. Common Lisp provides a number of notations beginning
with # that the Emacs Lisp parser won’t understand. For example, ‘#| ... |#’ is an
alternate comment notation, and ‘#+lucid (foo)’ tells the parser to ignore the (foo)

except in Lucid Common Lisp.

• Packages. In Common Lisp, symbols are divided into packages. Symbols that are Lisp
built-ins are typically stored in one package; symbols that are vendor extensions are put
in another, and each application program would have a package for its own symbols.
Certain symbols are “exported” by a package and others are internal; certain packages
“use” or import the exported symbols of other packages. To access symbols that would
not normally be visible due to this importing and exporting, Common Lisp provides a
syntax like package:symbol or package::symbol.

Emacs Lisp has a single namespace for all interned symbols, and then uses a naming
convention of putting a prefix like cl- in front of the name. Some Emacs packages
adopt the Common Lisp-like convention of using cl: or cl:: as the prefix. However,
the Emacs parser does not understand colons and just treats them as part of the symbol
name. Thus, while mapcar and lisp:mapcar may refer to the same symbol in Common
Lisp, they are totally distinct in Emacs Lisp. Common Lisp programs which refer to
a symbol by the full name sometimes and the short name other times will not port
cleanly to Emacs.

Emacs Lisp does have a concept of “obarrays,” which are package-like collections of
symbols, but this feature is not strong enough to be used as a true package mechanism.

• Keywords. The notation :test-not in Common Lisp really is a shorthand for
keyword:test-not; keywords are just symbols in a built-in keyword package with

Appendix D: Porting Common Lisp 86

the special property that all its symbols are automatically self-evaluating. Common
Lisp programs often use keywords liberally to avoid having to use quotes.

In Emacs Lisp a keyword is just a symbol whose name begins with a colon; since
the Emacs parser does not treat them specially, they have to be explicitly made self-
evaluating by a statement like (setq :test-not ’:test-not). This package arranges
to execute such a statement whenever defun* or some other form sees a keyword being
used as an argument. Common Lisp code that assumes that a symbol :mumble will be
self-evaluating even though it was never introduced by a defun* will have to be fixed.

• The format function is quite different between Common Lisp and Emacs Lisp. It takes
an additional “destination” argument before the format string. A destination of nil
means to format to a string as in Emacs Lisp; a destination of t means to write to
the terminal (similar to message in Emacs). Also, format control strings are utterly
different; ~ is used instead of % to introduce format codes, and the set of available
codes is much richer. There are no notations like \n for string literals; instead, format
is used with the “newline” format code, ~%. More advanced formatting codes provide
such features as paragraph filling, case conversion, and even loops and conditionals.

While it would have been possible to implement most of Common Lisp format in this
package (under the name format*, of course), it was not deemed worthwhile. It would
have required a huge amount of code to implement even a decent subset of format*,
yet the functionality it would provide over Emacs Lisp’s format would rarely be useful.

• Vector constants use square brackets in Emacs Lisp, but #(a b c) notation in Common
Lisp. To further complicate matters, Emacs 19 introduces its own #(notation for
something entirely different—strings with properties.

• Characters are distinct from integers in Common Lisp. The notation for character
constants is also different: #\A instead of ?A. Also, string= and string-equal are
synonyms in Emacs Lisp whereas the latter is case-insensitive in Common Lisp.

• Data types. Some Common Lisp data types do not exist in Emacs Lisp. Rational
numbers and complex numbers are not present, nor are large integers (all integers are
“fixnums”). All arrays are one-dimensional. There are no readtables or pathnames;
streams are a set of existing data types rather than a new data type of their own. Hash
tables, random-states, structures, and packages (obarrays) are built from Lisp vectors
or lists rather than being distinct types.

• The Common Lisp Object System (CLOS) is not implemented, nor is the Common
Lisp Condition System.

• Common Lisp features that are completely redundant with Emacs Lisp features of
a different name generally have not been implemented. For example, Common Lisp
writes defconstant where Emacs Lisp uses defconst. Similarly, make-list takes its
arguments in different ways in the two Lisps but does exactly the same thing, so this
package has not bothered to implement a Common Lisp-style make-list.

• A few more notable Common Lisp features not included in this package: compiler-let,
tagbody, prog, ldb/dpb, parse-integer, cerror.

• Recursion. While recursion works in Emacs Lisp just like it does in Common Lisp,
various details of the Emacs Lisp system and compiler make recursion much less efficient

Appendix D: Porting Common Lisp 87

than it is in most Lisps. Some schools of thought prefer to use recursion in Lisp over
other techniques; they would sum a list of numbers using something like

(defun sum-list (list)
(if list

(+ (car list) (sum-list (cdr list)))
0))

where a more iteratively-minded programmer might write one of these forms:

(let ((total 0)) (dolist (x my-list) (incf total x)) total)
(loop for x in my-list sum x)

While this would be mainly a stylistic choice in most Common Lisps, in Emacs Lisp
you should be aware that the iterative forms are much faster than recursion. Also, Lisp
programmers will want to note that the current Emacs Lisp compiler does not optimize
tail recursion.

Function Index 88

Function Index

A
abs . 63

acons . 83

adjoin . 81

assert . 93

assoc* . 83

assoc-if . 83

assoc-if-not. 83

B
block . 36

butlast . 79

C
caddr . 78

callf . 24

callf2 . 24

case . 34

ceiling* . 64

check-type . 93

cl-float-limits . 66

cl-prettyexpand . 95

clrhash . 85

coerce . 14

compiler-macroexpand . 54

concatenate . 72

copy-list . 79

copy-tree . 79

count . 75

count-if . 75

count-if-not. 75

D
decf . 22

declaim . 55

declare . 55

defalias . 12

define-compiler-macro . 53

define-modify-macro . 25

define-setf-method . 27

defmacro* . 5

defsetf . 26

defstruct . 87

defsubst* . 5

deftype . 14

defun* . 5

delete . 73

delete* . 73

delete-duplicates . 74

delete-if . 73

delete-if-not . 73

destructuring-bind . 53

do . 38

do* . 38

do-all-symbols . 39

do-symbols . 39

dolist . 39

dotimes . 39

E
ecase . 35

endp . 78

eql . 15

equalp . 15

etypecase . 36

eval-when . 9

eval-when-compile . 11

evenp . 62

every . 70

expt . 63

F
fill . 72

find . 75

find-if . 75

find-if-not . 75

first . 78

flet . 31

floatp-safe . 62

floor* . 63

function* . 5

G
gcd . 63

gensym . 60

gentemp . 61

get* . 59

get-setf-method . 28

getf . 59

gethash . 84

Function Index 89

H
hash-table-count . 85

hash-table-p. 85

I
ignore-errors . 94

incf . 21

intersection. 82

isqrt . 63

L
labels . 32

last . 78

lcm . 63

ldiff . 79

letf . 23

letf* . 24

lexical-let . 29

lexical-let*. 31

list* . 79

list-length . 78

load-time-value . 11

locally . 55

loop . 37, 40

M
macrolet . 32

make-hash-table . 84

make-random-state . 65

map . 70

mapc . 70

mapcan . 70

mapcar* . 69

mapcon . 70

maphash . 85

mapl . 70

maplist . 70

member . 81

member* . 81

member-if . 81

member-if-not . 81

merge . 77

minusp . 62

mismatch . 75

mod* . 64

multiple-value-bind . 52

multiple-value-setq . 52

N
nbutlast . 79

nintersection . 82

notany . 71

notevery . 71

nset-difference . 82

nset-exclusive-or . 82

nsublis . 80

nsubst . 80

nsubst-if . 80

nsubst-if-not . 80

nsubstitute . 74

nsubstitute-if . 74

nsubstitute-if-not . 74

nunion . 82

O
oddp . 62

P
pairlis . 83

plusp . 62

pop . 22

position . 75

position-if . 75

position-if-not . 75

proclaim . 55

progv . 29

psetf . 21

psetq . 17

push . 22

pushnew . 22

R
random* . 65

random-state-p . 65

rassoc . 83

rassoc* . 83

rassoc-if . 83

rassoc-if-not . 83

reduce . 71

rem* . 64

remf . 60

remhash . 85

remove . 74

remove* . 73

remove-duplicates . 74

remove-if . 73

remove-if-not . 73

remprop . 59

remq . 74

replace . 73

Function Index 90

rest . 78

return . 37

return-from . 37

rotatef . 23

round* . 64

S
search . 76

set-difference . 82

set-exclusive-or . 82

setf . 18

shiftf . 22

some . 70

sort* . 76

stable-sort . 76

sublis . 80

subseq . 72

subsetp . 82

subst . 80

subst-if . 80

subst-if-not. 80

substitute . 74

substitute-if . 74

substitute-if-not . 74

symbol-macrolet . 33

T
tailp . 81

the . 55

tree-equal . 80

truncate* . 64

typecase . 35

typep . 13

U
union . 81

unless . 34

W
when . 34

Variable Index 91

Variable Index

*
gensym-counter . 61

random-state . 65

F
float-epsilon . 67

float-negative-epsilon . 67

L
least-negative-float . 67

least-negative-normalized-float 67

least-positive-float . 66

least-positive-normalized-float 67

M
most-negative-fixnum . 66

most-negative-float . 66

most-positive-fixnum . 66

most-positive-float . 66

i

Table of Contents

1 Common Lisp Extensions 1
1.1 Overview . 1
1.2 Usage. 1
1.3 Organization . 2
1.4 Installation . 2
1.5 Naming Conventions . 3

5 Program Structure . 5
5.2 Argument Lists . 5
5.3 Time of Evaluation . 8
5.4 Function Aliases . 10

6 Predicates . 11
6.1 Type Predicates . 11
6.2 Equality Predicates . 12

7 Control Structure . 14
7.1 Assignment . 14
7.2 Generalized Variables . 14

7.2.1 Basic Setf . 15
7.2.2 Modify Macros . 17
7.2.3 Customizing Setf . 20

7.5 Variable Bindings. 23
7.5.1 Dynamic Bindings . 23
7.5.2 Lexical Bindings . 23
7.5.3 Function Bindings . 25
7.5.4 Macro Bindings . 26

7.6 Conditionals . 27
7.7 Blocks and Exits . 28
7.8 Iteration . 29
7.9 Loop Facility . 31

7.9.1 Loop Basics . 31
7.9.2 Loop Examples . 32
7.9.3 For Clauses . 33
7.9.4 Iteration Clauses . 37
7.9.5 Accumulation Clauses . 38
7.9.6 Other Clauses . 39

7.10 Multiple Values . 41

8 Macros . 43

ii

9 Declarations . 45

10 Symbols . 48
10.1 Property Lists . 48
10.3 Creating Symbols . 49

12 Numbers . 50
12.2 Predicates on Numbers . 50
12.4 Numerical Functions . 50
12.9 Random Numbers . 52
12.10 Implementation Parameters . 53

14 Sequences . 55
14.1 Sequence Basics . 55
14.2 Mapping over Sequences . 56
14.3 Sequence Functions . 58
14.4 Searching Sequences . 60
14.5 Sorting Sequences . 61

15 Lists . 63
15.1 List Functions . 63
15.4 Substitution of Expressions . 64
15.5 Lists as Sets . 65
15.6 Association Lists . 66

16 Hash Tables . 68

19 Structures . 71

24 Assertions and Errors 77

Appendix A Efficiency Concerns 78
A.1 Macros . 78
A.2 Error Checking . 79
A.3 Optimizing Compiler . 79

Appendix B Common Lisp Compatibility . . . 81

Appendix C Old CL Compatibility 82
C.1 The cl-compat package . 82

Appendix D Porting Common Lisp 84

iii

Function Index . 88

Variable Index . 91

		Common Lisp Extensions

		Overview

		Usage

		Organization

		Installation

		Naming Conventions

		Program Structure

		Argument Lists

		Time of Evaluation

		Function Aliases

		Predicates

		Type Predicates

		Equality Predicates

		Control Structure

		Assignment

		Generalized Variables

		Basic Setf

		Modify Macros

		Customizing Setf

		Variable Bindings

		Dynamic Bindings

		Lexical Bindings

		Function Bindings

		Macro Bindings

		Conditionals

		Blocks and Exits

		Iteration

		Loop Facility

		Loop Basics

		Loop Examples

		For Clauses

		Iteration Clauses

		Accumulation Clauses

		Other Clauses

		Multiple Values

		Macros

		Declarations

		Symbols

		Property Lists

		Creating Symbols

		Numbers

		Predicates on Numbers

		Numerical Functions

		Random Numbers

		Implementation Parameters

		Sequences

		Sequence Basics

		Mapping over Sequences

		Sequence Functions

		Searching Sequences

		Sorting Sequences

		Lists

		List Functions

		Substitution of Expressions

		Lists as Sets

		Association Lists

		Hash Tables

		Structures

		Assertions and Errors

		Efficiency Concerns

		Macros

		Error Checking

		Optimizing Compiler

		Common Lisp Compatibility

		Old CL Compatibility

		The cl-compat package

		Porting Common Lisp

		Function Index

		Variable Index

