
CC-MODE Version 4

A GNU Emacs mode for editing C, C++, and Objective-C code.
(manual revision: 2.35)

Barry A. Warsaw

Copyright c© 1995 Free Software Foundation, Inc.

Chapter 1: Introduction 1

1 Introduction

Welcome to cc-mode, version 4. This is a GNU Emacs mode for editing files containing
C, C++, Objective-C, and Java code. This incarnation of the mode is descendant from
‘c-mode.el’ (also called "Boring Old C Mode" or BOCM :-), and ‘c++-mode.el’ version
2, which I have been maintaining since 1992. cc-mode represents a significant milestone in
the mode’s life. It has been fully merged back with Emacs 19’s ‘c-mode.el’. Also a new,
more intuitive and flexible mechanism for controlling indentation has been developed.

cc-mode version 4 supports the editing of K&R and ANSI C, ARM1 C++, Objective-C,
and Java files. In this way, you can easily set up consistent coding styles for use in editing
all C, C++, Objective-C, and Java programs.

This manual will describe the following:

• How to get started using cc-mode.

• How the new indentation engine works.

• How to customize the new indentation engine.

Note that the name of this file is ‘cc-mode.el’, and I’ll often refer to the package as
cc-mode, but there really is no top level cc-mode entry point. I call it cc-mode simply
to differentiate it from ‘c-mode.el’. All of the variables, commands, and functions in
cc-mode are prefixed with c-<thing>, and c-mode, c++-mode, objc-mode, and java-mode

entry points are provided. This file is intended to be a replacement for ‘c-mode.el’ and
‘c++-mode.el’.

The major version number was incremented to 4 with the addition of objc-mode. To
find the minor revision number of this release, use M-x c-version RET. Work has already
begun on cc-mode version 5, in which Emacs 18 will not be supported.

As of this writing (19-Jan-1996), both Emacs 19.30 and XEmacs 19.13 are distributed
with cc-mode. Emacs 19.31 and XEmacs 19.14 will both contain the latest version of cc-
mode when it is released. If you are running older versions of these Emacsen, you may want
to upgrade your copy of cc-mode. See Chapter 10 [Getting the latest cc-mode release],
page 35.

This distribution also contains a file called ‘cc-compat.el’ which should ease your tran-
sition from BOCM to cc-mode. It currently comes unguaranteed and unsupported, but this
may change for future versions.

A special word of thanks goes to Krishna Padmasola for his work in converting the
original ‘README’ file to texinfo format. cc-mode users have been clamoring for a manual
for a long time, and thanks to Krishna, it is now available <clap> <clap> <clap>! :-)

1 i.e. “The Annotated C++ Reference Manual”, by Ellis and Stroustrup.

Chapter 2: Getting Connected 2

2 Getting Connected

‘cc-mode.el’ works well with the 2 main branches of Emacs 19: XEmacs and the Emacs
19 maintained by the FSF. Emacs 19 users will want to use Emacs version 19.21 or better,
XEmacs users will want 19.6 or better. Earlier versions of these Emacsen have deficiencies
and/or bugs which will adversely affect the performance and usability of cc-mode.

Similarly if you use the ‘cc-mode-18.el’ compatibility file, ‘cc-mode.el’ will work with
Emacs 18, but only moderately well. A word of warning though, Emacs 18 lacks some
fundamental functionality and that ultimately means using Emacs 18 is a losing battle.
Hence cc-mode under Emacs 18 is no longer supported and it is highly recommended that
you upgrade to Emacs 19. If you use cc-mode under Emacs 18, you’re on your own. With
cc-mode version 5, Emacs 18 support will be dropped altogether.

Note that as of XEmacs 19.13 and Emacs 19.30, your Emacs already comes with cc-

mode version 4 preconfigured for your use. You should be able to safely skip the rest of the
setup information in this chapter.

The first thing you will want to do is put ‘cc-mode.el’ somewhere on your load-path

so Emacs can find it. Do a C-h v load-path RET to see all the directories Emacs looks at
when loading a file. If none of these directories are appropriate, create a new directory and
add it to your load-path:

[in the shell]

% cd
% mkdir mylisp
% mv cc-mode.el mylisp
% cd mylisp

[in your .emacs file add]

(setq load-path (cons "~/mylisp" load-path))

Next you want to byte compile ‘cc-mode.el’. The mode uses a lot of macros so if you
don’t byte compile it, things will be unbearably slow. You can ignore all byte-compiler
warnings! They are the result of the supporting different versions of Emacs, and none of
the warnings have any effect on operation. Let me say this again: You really can ignore all
byte-compiler warnings!

Here’s what to do to byte-compile the file [in emacs]:

M-x byte-compile-file RET ~/mylisp/cc-mode.el RET

If you are running a version of Emacs or XEmacs that comes with cc-mode by default,
you can simply add the following to your ‘.emacs’ file in order to upgrade to the latest
version of cc-mode:

Chapter 2: Getting Connected 3

(load "cc-mode")

Users of even older versions of Emacs 19, Emacs 18, or of the older Lucid Emacs will
probably be running an Emacs that has BOCM ‘c-mode.el’ and possible ‘c++-mode.el’
pre-dumped. If your Emacs is dumped with either of these files you first need to make
Emacs “forget” about those older modes.

If you can do a C-h v c-mode-map RET without getting an error, you need to add these
lines at the top of your ‘.emacs’ file:

(fmakunbound ’c-mode)
(makunbound ’c-mode-map)
(fmakunbound ’c++-mode)
(makunbound ’c++-mode-map)
(makunbound ’c-style-alist)

After those lines you will want to add the following autoloads to your ‘.emacs’ file so
that cc-mode gets loaded at the right time:

(autoload ’c++-mode "cc-mode" "C++ Editing Mode" t)
(autoload ’c-mode "cc-mode" "C Editing Mode" t)
(autoload ’objc-mode "cc-mode" "Objective-C Editing Mode" t)
(autoload ’java-mode "cc-mode" "Java Editing Mode" t)

Alternatively, if you want to make sure cc-mode is loaded when Emacs starts up, you
could use this line instead of the three autoloads above:

(require ’cc-mode)

Next, you will want to set up Emacs so that it edits C files in c-mode, C++ files in
c++-mode, and Objective-C files in objc-mode. All users should add the following to their
‘.emacs’ file. Note that this assumes you’ll be editing .h and .c files as C, .hh, .cc, .H,
and .C files as C++, .m files as Objective-C, and .java files as Java code. YMMV:

(setq auto-mode-alist
(append
’(("\\.C$" . c++-mode)
("\\.H$" . c++-mode)
("\\.cc$" . c++-mode)
("\\.hh$" . c++-mode)
("\\.c$" . c-mode)
("\\.h$" . c-mode)
("\\.m$" . objc-mode)
("\\.java$" . java-mode)

) auto-mode-alist))

Chapter 2: Getting Connected 4

You may already have some or all of these settings on your auto-mode-alist, but it
won’t hurt to put them on there again.

That’s all you need – I know, I know, it sounds like a lot :-), but after you’ve done all
this, you should only need to quit and restart Emacs. The next time you visit a C, C++,
Objective-C, or Java file you should be using cc-mode. You can check this easily by hitting
M-x c-version RET in the c-mode, c++-mode, or objc-mode buffer. You should see this
message in the echo area:

Using cc-mode version 4.xxx

Where xxx is the latest release minor number.

Chapter 3: New Indentation Engine 5

3 New Indentation Engine

cc-mode has a new indentation engine, providing a simplified, yet flexible and general
mechanism for customizing indentation. It breaks indentation calculation into two steps.
First for the line of code being indented, cc-mode analyzes what kind of language construct
it’s looking at, then it applies user defined offsets to the current line based on this analysis.

This section will briefly cover how indentation is calculated in cc-mode. It is important
to understand the indentation model being used so that you will know how to customize
cc-mode for your personal coding style.

3.1 Syntactic Analysis

The first thing cc-mode does when indenting a line of code, is to analyze the line, deter-
mining the syntactic component list of the construct on that line. A syntactic component
consists of a pair of information (in lisp parlance, a cons cell), where the first part is a syn-
tactic symbol, and the second part is a relative buffer position. Syntactic symbols describe
elements of C code1, e.g. statement, substatement, class-open, class-close, etc. See
Chapter 7 [Syntactic Symbols], page 26, for a complete list of currently recognized syntac-
tic symbols and their semantics. The variable c-offsets-alist also contains the list of
currently supported syntactic symbols.

Conceptually, a line of C code is always indented relative to the indentation of some line
higher up in the buffer. This is represented by the relative buffer position in the syntactic
component.

It might help to see an example. Suppose we had the following code as the only thing
in a c++-mode buffer2:

1: void swap(int& a, int& b)
2: {
3: int tmp = a;
4: a = b;
5: b = tmp;
6: }

We can use the command C-c C-s (c-show-syntactic-information) to simply report
what the syntactic analysis is for the current line. Running this command on line 4 this
example, we’d see in the echo area:

((statement . 35))

1 or C++, Objective-C, or Java code. In general, for the rest of this manual I’ll use the
term “C code” to refer to all the C-like dialects, unless otherwise noted.

2 The line numbers in this and future examples don’t actually appear in the buffer, of
course!

Chapter 3: New Indentation Engine 6

This tells us that the line is a statement and it is indented relative to buffer position 35,
which happens to be the ‘i’ in int on line 3. If you were to move point to line 3 and hit
C-c C-s, you would see:

((defun-block-intro . 29))

This indicates that the ‘int’ line is the first statement in a top level function block, and
is indented relative to buffer position 29, which is the brace just after the function header.

Here’s another example:

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

Hitting C-c C-s on line 4 gives us:

((substatement-open . 46))

which tells us that this is a brace that opens a substatement block.3

Syntactic component lists can contain more than one component, and individual syntac-
tic components need not have relative buffer positions. The most common example of this
is a line that contains a comment only line.

1: void draw_list(List<Drawables>& drawables)
2: {
3: // call the virtual draw() method on each element in list
4: for(int i=0; i < drawables.count(), ++i)
5: {
6: drawables[i].draw();
7: }
8: }

Hitting C-c C-s on line 3 of example 3 gives us:

((comment-intro) (defun-block-intro . 46))

3 A substatement indicates the line after an if, else, while, do, switch, or for statement,
and a substatement block is a brace block following one of those constructs.

Chapter 3: New Indentation Engine 7

so you can see that the syntactic component list contains two syntactic components. Also
notice that the first component, ‘(comment-intro)’ has no relative buffer position.

3.2 Indentation Calculation

Indentation for the current line is calculated using the syntactic component list derived
in step 1 above (see Section 3.1 [Syntactic Analysis], page 5). Each component contributes
to the final total indentation of the line in two ways.

First, the syntactic symbols are looked up in the c-offsets-alist variable, which is
an association list of syntactic symbols and the offsets to apply for those symbols. These
offsets are added to the running total.

Second, if the component has a relative buffer position, cc-mode adds the column number
of that position to the running total. By adding up the offsets and columns for every
syntactic component on the list, the final total indentation for the current line is computed.

Let’s use our two code examples above to see how this works. Here is our first example
again:

1: void swap(int& a, int& b)
2: {
3: int tmp = a;
4: a = b;
5: b = tmp;
6: }

Let’s say point is on line 3 and we hit the 〈TAB〉 key to re-indent the line. Remember
that the syntactic component list for that line is:

((defun-block-intro . 29))

cc-mode looks up defun-block-intro in the c-offsets-alist variable. Let’s say it finds
the value ‘4’; it adds this to the running total (initialized to zero), yielding a running total
indentation of 4 spaces.

Next cc-mode goes to buffer position 29 and asks for the current column. Since the
brace at buffer position 29 is in column zero, it adds ‘0’ to the running total. Since there is
only one syntactic component on the list for this line, indentation calculation is complete,
and the total indentation for the line is 4 spaces.

Here’s another example:

Chapter 3: New Indentation Engine 8

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

If we were to hit TAB on line 4 in the above example, the same basic process is performed,
despite the differences in the syntactic component list. Remember that the list for this line
is:

((substatement-open . 46))

Here, cc-mode first looks up the substatement-open symbol in c-offsets-alist. Let’s
say it finds the value ‘4’. This yields a running total of 4. cc-mode then goes to buffer
position 46, which is the ‘i’ in if on line 3. This character is in the fourth column on that
line so adding this to the running total yields an indentation for the line of 8 spaces.

Simple, huh?

Actually, the mode usually just does The Right Thing without you having to think about
it in this much detail. But when customizing indentation, it’s helpful to understand the
general indentation model being used.

To help you configure cc-mode, you can set the variable c-echo-syntactic-information-
p to non-nil so that the syntactic component list and calculated offset will always be echoed
in the minibuffer when you hit TAB.

Chapter 4: Minor Modes 9

4 Minor Modes

cc-mode contains two minor-mode-like features that you should find useful while you
enter new C code. The first is called auto-newline mode, and the second is called hungry-
delete mode. These minor modes can be toggled on and off independently, and cc-mode

can be configured so that it comes up with any combination of these minor modes. By
default, both of these minor modes are turned off.

The state of the minor modes is always reflected in the minor mode list on the modeline
of the cc-mode buffer. When auto-newline mode is enabled, you will see ‘C/a’ on the mode
line1. When hungry delete mode is enabled you would see ‘C/h’ and when both modes are
enabled, you’d see ‘C/ah’.

cc-mode provides keybindings which allow you to toggle the minor modes while editing
code on the fly. To toggle just the auto-newline state, hit C-c C-a (c-toggle-auto-state).
When you do this, you should see the ‘a’ indicator either appear or disappear on the
modeline. Similarly, to toggle just the hungry-delete state, use C-c C-d (c-toggle-hungry-
state), and to toggle both states together, use C-c C-t (c-toggle-auto-hungry-state).

To set up the auto-newline and hungry-delete states to your preferred values, you would
need to add some lisp to your ‘.emacs’ file that called one of the c-toggle-*-state func-
tions directly. When called programmatically, each function takes a numeric value, where
a positive number enables the minor mode, a negative number disables the mode, and zero
toggles the current state of the mode.

So for example, if you wanted to enable both auto-newline and hungry-delete for all your
C file editing, you could add the following to your ‘.emacs’ file:

(add-hook ’c-mode-common-hook ’(lambda () (c-toggle-auto-hungry-state 1)))

4.1 Auto-newline insertion

Auto-newline minor mode works by enabling certain electric commands. Electric com-
mands are typically bound to special characters such as the left and right braces, colons,
semi-colons, etc., which when typed, perform some magic formatting in addition to insert-
ing the typed character. As a general rule, electric commands are only electric when the
following conditions apply:

• Auto-newline minor mode is enabled, as evidenced by a ‘C/a’ or ‘C/ah’ indicator on
the modeline.

• The character was not typed inside of a literal2.

1 Remember that the ‘C’ would be replaced with ‘C++’ or ‘ObjC’ if you were editing C++
or Objective-C code.

2 A literal is defined in cc-mode as any comment, string, or cpp macro definition. These
constructs are also known as syntactic whitespace since they are usually ignored when
scanning C code.

Chapter 4: Minor Modes 10

• No numeric argument was supplied to the command (i.e. it was typed as normal, with
no C-u prefix).

Certain other conditions may apply on a language specific basis. For example, the second
slash (/) of a C++ style line comment is electric in c++-mode, objc-mode, and java-mode,
but not in c-mode.

4.1.1 Hanging Braces

When you type either an open or close brace (i.e. { or }), the electric command c-

electric-brace gets run. This command has two electric formatting behaviors. First, it
will perform some re-indentation of the line the brace was typed on, and second, it will add
various newlines before and/or after the typed brace. Re-indentation occurs automatically
whenever the electric behavior is enabled. If the brace ends up on a line other than the one
it was typed on, then that line is on is also indented according to c-offsets-alist.

The insertion of newlines is controlled by the c-hanging-braces-alist variable. This
variable contains a mapping between syntactic symbols related to braces, and a list of
places to insert a newline. The syntactic symbols that are useful for this list are: class-

open, class-close, defun-open, defun-close, inline-open, inline-close, brace-

list-open, brace-list-close, brace-list-intro, brace-list-entry, block-open,
block-close, substatement-open, and statement-case-open. See Chapter 7 [Syntactic
Symbols], page 26 for a more detailed description of these syntactic symbols.

The value associated with each syntactic symbol in this association list is called an
ACTION which can be either a function or a list. See Section 6.4.2 [Custom Brace and
Colon Hanging], page 23 for a more detailed discussion of using a function as a brace hanging
ACTION.

When ACTION is a list, it can contain any combination of the symbols before or after,
directing cc-mode where to put newlines in relationship to the brace being inserted. Thus,
if the list contains only the symbol after, then the brace is said to hang on the right side
of the line, as in:

// here, open braces always ‘hang’
void spam(int i) {

if(i == 7) {
dosomething(i);

}
}

When the list contains both after and before, the braces will appear on a line by
themselves, as shown by the close braces in the above example. The list can also be empty,
in which case no newlines are added either before or after the brace.

For example, the default value of c-hanging-braces-alist is:

Chapter 4: Minor Modes 11

(defvar c-hanging-braces-alist ’((brace-list-open)
(substatement-open after)
(block-close . c-snug-do-while)))

which says that brace-list-open braces should both hang on the right side, and allow
subsequent text to follow on the same line as the brace. Also, substatement-open braces
should hang on the right side, but subsequent text should follow on the next line. Here, in
the block-close entry, you also see an example of using a function as an ACTION.

4.1.2 Hanging Colons

Using a mechanism similar to brace hanging (see Section 4.1.1 [Hanging Braces],
page 10), colons can also be made to hang using the variable c-hanging-colons-alist.
The syntactic symbols appropriate for this association list are: case-label, label, access-
label, member-init-intro, and inher-intro. See Section 4.1.1 [Hanging Braces], page 10
and Section 6.4.2 [Custom Brace and Colon Hanging], page 23 for details. Note however,
that c-hanging-colons-alist does not implement functions as ACTIONs.

In C++, double-colons are used as a scope operator but because these colons always
appear right next to each other, newlines before and after them are controlled by a different
mechanism, called clean-ups in cc-mode. See Section 4.1.5 [Clean-ups], page 12 for details.

4.1.3 Hanging Semi-colons and commas

Semicolons and commas are also electric in cc-mode, but since these characters do not
correspond directly to syntactic symbols, a different mechanism is used to determine whether
newlines should be automatically inserted after these characters. See Section 6.4.3 [Cus-
tomizing Semi-colons and Commas], page 25 for details.

4.1.4 Other electric commands

A few other keys also provide electric behavior. For example the # key (c-electric-
pound) is electric when it is typed as the first non-whitespace character on a line. In this
case, the variable c-electric-pound-behavior is consulted for the electric behavior. This
variable takes a list value, although the only element currently defined is alignleft, which
tells this command to force the ‘#’ character into column zero. This is useful for entering
cpp macro definitions.

Stars and slashes (i.e. * and /) are also electric under certain circumstances. If a star is
inserted as the second character of a C style block comment on a comment-only line, then
the comment delimiter is indented as defined by c-offsets-alist. A comment-only line
is defined as a line which contains only a comment, as in:

Chapter 4: Minor Modes 12

void spam(int i)
{

// this is a comment-only line...
if(i == 7) // but this is not
{

dosomething(i);
}

}

Likewise, if a slash is inserted as the second slash in a C++ style line comment (also only
on a comment-only line), then the line is indented as defined by c-offsets-alist.

4.1.5 Clean-ups

Clean-ups are a mechanism complementary to colon and brace hanging. On the surface,
it would seem that clean-ups overlap the functionality provided by the c-hanging-*-alist
variables, and similarly, clean-ups are only enabled when auto-newline minor mode is en-
abled. Clean-ups are used however to adjust code “after-the-fact”, i.e. to eliminate some
whitespace that isn’t inserted by electric commands, or whitespace that contains intervening
constructs.

You can configure cc-mode’s clean-ups by setting the variable c-cleanup-list, which
is a list of clean-up symbols. By default, cc-mode cleans up only the scope-operator con-
struct, which is necessary for proper C++ support. Note that clean-ups are only performed
when the construct does not occur within a literal (see Section 4.1 [Auto-newline inser-
tion], page 9), and when there is nothing but whitespace appearing between the individual
components of the construct.

There are currently only five specific constructs that cc-mode can clean up, as indicated
by these symbols:

• brace-else-brace – cleans up ‘} else {’ constructs by placing the entire construct
on a single line. Clean-up occurs when the open brace after the ‘else’ is typed. So for
example, this:

void spam(int i)
{

if(i==7)
{

dosomething();
}
else
{

appears like this after the open brace is typed:

Chapter 4: Minor Modes 13

void spam(int i)
{

if(i==7) {
dosomething();

} else {

• empty-defun-braces – cleans up braces following a top-level function or class definition
that contains no body. Clean up occurs when the closing brace is typed. Thus the
following:

class Spam
{
}

is transformed into this when the close brace is typed:

class Spam
{}

• defun-close-semi – cleans up the terminating semi-colon on top-level function or
class definitions when they follow a close brace. Clean up occurs when the semi-colon
is typed. So for example, the following:

class Spam
{
}
;

is transformed into this when the semi-colon is typed:

class Spam
{
};

• list-close-comma – cleans up commas following braces in array and aggregate ini-
tializers. Clean up occurs when the comma is typed.

• scope-operator – cleans up double colons which may designate a C++ scope operator
split across multiple lines3. Clean up occurs when the second colon is typed. You will
always want scope-operator in the c-cleanup-list when you are editing C++ code.

3 Certain C++ constructs introduce ambiguous situations, so scope-operator clean-ups
may not always be correct. This usually only occurs when scoped identifiers appear in
switch label tags.

Chapter 4: Minor Modes 14

4.2 Hungry-deletion of whitespace

Hungry deletion of whitespace, or as it more commonly called, hungry-delete mode, is
a simple feature that some people find extremely useful. In fact, you might find yourself
wanting hungry-delete in all your editing modes!

In a nutshell, when hungry-delete mode is enabled, hitting the DEL character will consume
all preceding whitespace, including newlines and tabs. This can really cut down on the
number of DEL’s you have to type if, for example you made a mistake on the preceding line.

By default, cc-mode actually runs the command c-electric-delete when you hit DEL.
When this command is used to delete a single character (i.e. when it is called interactively
with no numeric argument), it really runs the function contained in the variable c-delete-
function. This function is called with a single argument, which is the number of characters
to delete. c-delete-function is also called when the DEL key is typed inside a literal (see
Section 4.1 [Auto-newline insertion], page 9. Inside a literal, c-electric-delete is not
electric, which is typical of all the so-called electric commands.

Chapter 5: Indentation Commands 15

5 Indentation Commands

Various commands are provided which allow you to conveniently re-indent C constructs,
and these are outlined below. There are several things to note about these indentation
commands. First, when you change your programming style, either though c-set-style

or some other means, your file does not automatically get re-indented. When you change
style parameters, you will typically need to reformat the line, expression, or buffer to see
the effects of your changes.

Second, changing some variables have no effect on existing code, even when you do re-
indent. For example, the c-hanging-* variables and c-cleanup-list only affect newly
entered code. So for example, changing c-hanging-braces-alist and re-indenting the
buffer will not adjust placement of braces already in the file.

Third, re-indenting large portions of code is currently rather inefficient. Improvements
have been made since previous releases of cc-mode, and much more radical improvements
will be made for the next release, but for now you need to be aware of this1. Some provi-
sion has been made to at least inform you as to the progress of your large re-indentation
command. The variable c-progress-interval controls how often a progress message is
displayed. Set this variable to nil to inhibit progress messages. Note that this feature only
works with Emacs 19.

Also, except as noted below, re-indentation is always driven by the same mechanisms
that control on-the-fly indentation of code. See Chapter 3 [New Indentation Engine], page 5
for details.

To indent a single line of code, use TAB (c-indent-command). The behavior of this
command is controlled by the variable c-tab-always-indent. When this variable is t,
TAB always just indents the current line. When nil, the line is indented only if point is at
the left margin, or on or before the first non-whitespace character on the line, otherwise
a real tab character is inserted. If this variable’s value is something other that t or nil

(e.g. ’other), then a real tab character is inserted only when point is inside a literal (see
Section 4.1 [Auto-newline insertion], page 9), otherwise the line is indented.

To indent an entire balanced brace or parenthesis expression, use M-C-q (c-indent-exp).
Note that point should be on the opening brace or parenthesis of the expression you want
to indent.

Another very convenient keystroke is C-c C-q (c-indent-defun) when re-indents the
entire top-level function or class definition that encompasses point. It leaves point at the
same position within the buffer.

To indent any arbitrary region of code, use M-C-\ (indent-region). This is a standard
Emacs command, specially tailored for C code in a cc-mode buffer. Note that of course,
point and mark must delineate the region you want to indent.

While not strictly an indentation function, M-C-h (c-mark-function) is useful for mark-
ing the current top-level function or class definition as the current region.

1 In particular, I have had people complain about the speed that cc-mode re-indents
lex(1) output. Lex, yacc, and other code generators usually output some pretty perverse
code. Don’t try to indent this stuff with cc-mode!

Chapter 6: Customizing Indentation 16

6 Customizing Indentation

The c-offsets-alist variable is where you customize all your indentations. You simply
need to decide what additional offset you want to add for every syntactic symbol. You can
use the command C-c C-o (c-set-offset) as the way to set offsets, both interactively and
from your mode hook. Also, you can set up styles of indentation just like in BOCM. Most
likely, you’ll find one of the pre-defined styles will suit your needs, but if not, this section
will describe how to set up basic editing configurations. See Section 6.3 [Styles], page 19
for an explanation of how to set up named styles.

As mentioned previously, the variable c-offsets-alist is an association list between
syntactic symbols and the offsets to be applied for those symbols. In fact, these offset
values can be an integer, a function or variable name, or one of the following symbols: +,
-, ++, --, *, or /. These symbols describe offset in multiples of the value of the variable
c-basic-offset. By defining a style’s indentation in terms of this fundamental variable,
you can change the amount of whitespace given to an indentation level while leaving the
same relationship between levels. Here are multiples of c-basic-offset that the special
symbols correspond to:

• + = c-basic-offset times 1

• - = c-basic-offset times -1

• ++ = c-basic-offset times 2

• -- = c-basic-offset times -2

• * = c-basic-offset times 0.5

• / = c-basic-offset times -0.5

So, for example, because most of the default offsets are defined in terms of +, -, and 0, if
you like the general indentation style, but you use 4 spaces instead of 2 spaces per level, you
can probably achieve your style just by changing c-basic-offset like so (in your ‘.emacs’
file)1:

(setq-default c-basic-offset 4)

This would change

1 The reason you need to use setq-default instead of setq is that c-basic-offset is a
buffer local variable, as are most of the cc-mode configuration variables. If you were to
put this code in, e.g. your c-mode-common-hook function, you could use setq.

Chapter 6: Customizing Indentation 17

int add(int val, int incr, int doit)
{

if(doit)
{

return(val + incr);
}

return(val);
}

to

int add(int val, int incr, int doit)
{
if(doit)
{
return(val + incr);

}
return(val);

}

To change indentation styles more radically, you will want to change the value associated
with the syntactic symbols in the c-offsets-alist variable. First, I’ll show you how to
do that interactively, then I’ll describe how to make changes to your ‘.emacs’ file so that
your changes are more permanent.

6.1 Interactive Customization

As an example of how to customize indentation, let’s change the style of example 2 above
from:

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

to:

Chapter 6: Customizing Indentation 18

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

In other words, we want to change the indentation of braces that open a block following
a condition so that the braces line up under the conditional, instead of being indented.
Notice that the construct we want to change starts on line 4. To change the indentation of
a line, we need to see which syntactic component affect the offset calculations for that line.
Hitting C-c C-s on line 4 yields:

((substatement-open . 46))

so we know that to change the offset of the open brace, we need to change the indentation
for the substatement-open syntactic symbol. To do this interactively, just hit C-c C-o (c-
set-offset). This prompts you for the syntactic symbol to change, providing a reasonable
default. In this case, the default is substatement-open, which is just the syntactic symbol
we want to change!

After you hit return, cc-mode will then prompt you for the new offset value, with the old
value as the default. The default in this case is ‘+’, so hit backspace to delete the ‘+’, then hit
‘0’ and RET. This will associate the offset 0 with the syntactic symbol substatement-open
in the c-offsets-alist variable.

To check your changes quickly, just hit C-c C-q (c-indent-defun) to reindent the entire
function. The example should now look like:

1: int add(int val, int incr, int doit)
2: {
3: if(doit)
4: {
5: return(val + incr);
6: }
7: return(val);
8: }

Notice how just changing the open brace offset on line 4 is all we needed to do. Since
the other affected lines are indented relative to line 4, they are automatically indented the
way you’d expect. For more complicated examples, this may not always work. The general
approach to take is to always start adjusting offsets for lines higher up in the file, then
re-indent and see if any following lines need further adjustments.

Chapter 6: Customizing Indentation 19

6.2 Permanent Indentation

To make this change permanent, you need to add some lisp code to your ‘.emacs’ file.
cc-mode provides four hooks that you can use to customize your language editing styles.
Four language specific hooks are provided, according to Emacs major mode conventions: c-
mode-hook, c++-mode-hook, objc-mode-hook, and java-mode-hook. These get run as the
last thing when you enter c-mode, c++-mode, objc-mode, or java-mode-hook respectively.
cc-mode also provides a hook called c-mode-common-hook which is run by all three modes
before the language specific hook. Thus, to make changes consistently across all supported
cc-mode modes, use c-mode-common-hook. Most of the examples in this section will assume
you are using the common hook.

Here’s a simplified example of what you can add to your ‘.emacs’ file to make the changes
described in the previous section (Section 6.1 [Interactive Customization], page 17) more
permanent. See the Emacs manuals for more information on customizing Emacs via hooks.
See Chapter 11 [Sample .emacs File], page 36 for a more complete sample ‘.emacs’ file.2

(defun my-c-mode-common-hook ()
;; my customizations for all of c-mode, c++-mode, objc-mode, java-mode
(c-set-offset ’substatement-open 0)
;; other customizations can go here
)

(add-hook ’c-mode-common-hook ’my-c-mode-common-hook)

For complex customizations, you will probably want to set up a style that groups all
your customizations under a single name.

The offset value can also be a function, and this is how power users gain enormous
flexibility in customizing indentation. See Section 6.4 [Advanced Customizations], page 21
for details.

6.3 Styles

Most people only need to edit code formatted in just a few well-defined and consistent
styles. For example, their organization might impose a “blessed” style that all its program-
mers must conform to. Similarly, people who work on GNU software will have to use the
GNU coding style on C code. Some shops are more lenient, allowing some variety of coding
styles, and as programmers come and go, there could be a number of styles in use. For this
reason, cc-mode makes it convenient for you to set up logical groupings of customizations
called styles, associate a single name for any particular style, and pretty easily start editing
new or existing code using these styles. This chapter describes how to set up styles and
how to edit your C code using styles.

2 The use of add-hook in this example only works for Emacs 19. Workarounds are available
if you are using Emacs 18.

Chapter 6: Customizing Indentation 20

6.3.1 Built-in Styles

If you’re lucky, one of cc-mode’s built-in styles might be just what you’re looking for.
Some of the most common C and C++ styles are already built-in. These include:

• gnu – coding style blessed by the Free Software Foundation for C code in GNU pro-
grams.

• k&r – The classic Kernighan and Ritchie style for C code.

• bsd – <TBD> Anybody know anything about the history of this style?

• stroustrup – The classic Stroustrup style for C++ code.

• whitesmith – <TBD> Anybody know anything about the history of this style?

• ellemtel – Popular C++ coding standards as defined by “Programming in C++, Rules
and Recommendations”, Erik Nyquist and Mats Henricson, Ellemtel3.

• java – The style for editing Java code. Note that this style is automatically installed
when you enter java-mode.

• CC-MODE – Style that encapsulates the default values of the cc-mode variables. See
below for details.

If you’d like to experiment with these built-in styles you can simply type the following
in a cc-mode buffer:

M-x c-set-style RET STYLE-NAME RET

Note that all style names are case insensitive, even the ones you define.

Setting a style in this way does not automatically re-indent your file. For commands
that you can use to view the effect of your changes, see Chapter 5 [Indentation Commands],
page 15.

Once you find a built-in style you like, you can make the change permanent by adding
a call to your ‘.emacs’ file. Let’s say for example that you want to use the ellemtel style
in all your files. You would add this:

(defun my-c-mode-common-hook ()
;; use Ellemtel style for all C, C++, and Objective-C code
(c-set-style "ellemtel")
;; other customizations can go here
)

(add-hook ’c-mode-common-hook ’my-c-mode-common-hook)

There is one other special style you can use, called CC-MODE. This is a style that is
calculated by cc-mode when it starts up. The CC-MODE style is also special because all other
styles implicitly inherit from it; in other words, whenever you set a style, cc-mode first
re-instates the CC-MODE style, then applies your new style configurations.

3 This document is ftp’able from euagate.eua.ericsson.se

Chapter 6: Customizing Indentation 21

The CC-MODE style exists because once cc-mode initializes, it institutes the gnu style for
compatibility with BOCM’s defaults. Any customizations you make in mode hooks will be
based on the gnu style, unless you first do a c-set-style to CC-MODE or some other built-in
style.

6.3.2 Adding Styles

If none of the built-in styles is appropriate, you’ll probably want to add a new style
definition. Styles are kept in the c-style-alist variable, but you probably won’t want
to modify this variable directly. cc-mode provides a function, called c-add-style, that
you can use to easily add new styles or update existing styles. This function takes two
arguments, a stylename string, and an association list description of style customizations.
If stylename is not already in c-style-alist, the new style is added, otherwise the style
already associated with stylename is changed to the new description. This function also
takes an optional third argument, which if non-nil, automatically institutes the new style
in the current buffer.

The sample ‘.emacs’ file provides a concrete example of how a new style can be added
and automatically set. See Chapter 11 [Sample .emacs File], page 36.

6.3.3 File Styles

The Emacs manual describes how you can customize certain variables on a per-file basis
by including a Local Variable block at the end of the file. So far, you’ve only seen a
functional interface to cc-mode, which is highly inconvenient for use in a Local Variable
block. cc-mode provides two variables that make it easier for you to customize your style
on a per-file basis.

The variable c-file-style can be set to a style name string as described in Section 6.3.1
[Built-in Styles], page 20. When the file is visited, cc-mode will automatically set the file’s
style to this style using c-set-style.

Another variable, c-file-offsets, takes an association list similar to what is allowed
in c-offsets-alist. When the file is visited, cc-mode will automatically institute these
offsets using c-set-offset.

Note that file style settings (i.e. c-file-style) are applied before file offset settings
(i.e. c-file-offsets).

6.4 Advanced Customizations

For most users, cc-mode will support their coding styles with very little need for cus-
tomizations. Usually, one of the standard styles defined in c-style-alist will do the trick.
At most, perhaps one of the syntactic symbol offsets will need to be tweaked slightly, or
maybe c-basic-offset will need to be changed. However, some styles require a more
advanced ability for customization, and one of the real strengths of cc-mode is that the
syntactic analysis model provides a very flexible framework for customizing indentation.

Chapter 6: Customizing Indentation 22

This allows you to perform special indentation calculations for situations not handled by
the mode directly.

6.4.1 Custom Indentation Functions

One of the most common ways to customize cc-mode is by writing custom indentation
functions and associating them with specific syntactic symbols (see Chapter 7 [Syntactic
Symbols], page 26). cc-mode itself uses custom indentation functions to provide more
sophisticated indentation, for example when lining up C++ stream operator blocks:

1: void main(int argc, char**)
2: {
3: cout << "There were "
4: << argc
5: << "arguments passed to the program"
6: << endl;
7: }

In this example, lines 4 through 6 are assigned the stream-op syntactic symbol. If
stream-op had an offset of +, and c-basic-offset was 2, lines 4 through 6 would simply
be indented two spaces to the right of line 3. But perhaps we’d like cc-mode to be a little
more intelligent so that it offsets the stream operators under the operator in line 3. To do
this, we have to write a custom indentation function which finds the column of first stream
operator on the first line of the statement. Here is the lisp code (from the ‘cc-mode.el’
source file) that implements this:

(defun c-lineup-streamop (langelem)
;; lineup stream operators
(save-excursion
(let* ((relpos (cdr langelem))

(curcol (progn (goto-char relpos)
(current-column))))

(re-search-forward "<<\\|>>" (c-point ’eol) ’move)
(goto-char (match-beginning 0))
(- (current-column) curcol))))

Custom indent functions take a single argument, which is a syntactic component cons cell
(see Section 3.1 [Syntactic Analysis], page 5). The function returns an integer offset value
that will be added to the running total indentation for the line. Note that what actually
gets returned is the difference between the column that the first stream operator is on, and
the column of the buffer relative position passed in the function’s argument. Remember
that cc-mode automatically adds in the column of the component’s relative buffer position
and we don’t want that value added into the final total twice.

Chapter 6: Customizing Indentation 23

Now, to associate the function c-lineup-streamop with the stream-op syntactic sym-
bol, we can add something like the following to our c++-mode-hook4:

(c-set-offset ’stream-op ’c-lineup-streamop)

Now the function looks like this after re-indenting (using C-c C-q):

1: void main(int argc, char**)
2: {
3: cout << "There were "
4: << argc
5: << "arguments passed to the program"
6: << endl;
7: }

Custom indentation functions can be as simple or as complex as you like, and any
syntactic symbol that appears in c-offsets-alist can have a custom indentation function
associated with it.

6.4.2 Custom Brace and Colon Hanging

Syntactic symbols aren’t the only place where you can customize cc-mode with the
lisp equivalent of callback functions. Brace hanginess can also be determined by custom
functions associated with syntactic symbols on the c-hanging-braces-alist variable. Re-
member that ACTION ’s are typically a list containing some combination of the symbols
before and after (see Section 4.1.1 [Hanging Braces], page 10). However, an ACTION can
also be a function symbol which gets called when a brace matching that syntactic symbol
is typed.

These ACTION functions are called with two arguments: the syntactic symbol for the
brace, and the buffer position at which the brace was inserted. The ACTION function is
expected to return a list containing some combination of before and after. The function
can also return nil. This return value has the normal brace hanging semantics described
in Section 4.1.1 [Hanging Braces], page 10.

As an example, cc-mode itself uses this feature to dynamically determine the hanginess
of braces which close ‘do-while’ constructs:

4 It probably makes more sense to add this to c++-mode-hook than c-mode-common-hook

since stream operators are only relevant for C++.

Chapter 6: Customizing Indentation 24

void do_list(int count, char** atleast_one_string)
{

int i=0;
do {

handle_string(atleast_one_string(i));
i++;

} while(i < count);
}

cc-mode assigns the block-close syntactic symbol to the brace that closes the do con-
struct, and normally we’d like the line that follows a block-close brace to begin on a
separate line. However, with ‘do-while’ constructs, we want the while clause to follow the
closing brace. To do this, we associate the block-close symbol with the ACTION function
c-snug-do-while:

(defun c-snug-do-while (syntax pos)
"Dynamically calculate brace hanginess for do-while statements.

Using this function, ‘while’ clauses that end a ‘do-while’ block will
remain on the same line as the brace that closes that block.

See ‘c-hanging-braces-alist’ for how to utilize this function as an
ACTION associated with ‘block-close’ syntax."
(save-excursion
(let (langelem)
(if (and (eq syntax ’block-close)

(setq langelem (assq ’block-close c-syntactic-context))
(progn (goto-char (cdr langelem))

(if (= (following-char) ?{)
(forward-sexp -1))

(looking-at "\\<do\\>[^_]")))
’(before)

’(before after)))))

This function simply looks to see if the brace closes a ‘do-while’ clause and if so, returns
the list ‘(before)’ indicating that a newline should be inserted before the brace, but not
after it. In all other cases, it returns the list ‘(before after)’ so that the brace appears
on a line by itself.

During the call to the brace hanging ACTION function, the variable c-syntactic-

context is bound to the full syntactic analysis list.

Note that for symmetry, colon hanginess should be customizable by allowing function
symbols as ACTIONs on the c-hanging-colon-alist variable. Since no use has actually
been found for this feature, it isn’t currently implemented.

6.4.3 Customizing Semi-colons and Commas

Chapter 6: Customizing Indentation 25

You can also customize the insertion of newlines after semi-colons and commas, when
the auto-newline minor mode is enabled (see Chapter 4 [Minor Modes], page 9). This is
controlled by the variable c-hanging-semi&comma-criteria, which contains a list of func-
tions that are called in the order they appear. Each function is called with zero arguments,
and is expected to return one of the following values:

• non-nil – A newline is inserted, and no more functions from the list are called.

• stop – No more functions from the list are called, but no newline is inserted.

• nil – No determination is made, and the next function in the list is called.

If every function in the list is called without a determination being made, then no
newline is added. The default value for this variable is a list containing a single function
which inserts newlines only after semi-colons which do not appear inside parenthesis lists
(i.e. those that separate for-clause statements).

6.4.4 Other Special Indentations

One other customization variable is available in cc-mode: c-special-indent-hook.
This is a standard hook variable that is called after every line is indented by cc-mode.
You can use it to do any special indentation or line adjustments your style dictates, such as
adding extra indentation to constructors or destructor declarations in a class definition, etc.
Note however, that you should not change point or mark inside your c-special-indent-

hook functions (i.e. you’ll probably want to wrap your function in a save-excursion).

Chapter 7: Syntactic Symbols 26

7 Syntactic Symbols

The complete list of recognized syntactic symbols is described in the c-offsets-alist

variable. This chapter will provide some examples to help clarify these symbols.

Most syntactic symbol names follow a general naming convention. When a line begins
with an open or close brace, the syntactic symbol will contain the suffix -open or -close

respectively.

Usually, a distinction is made between the first line that introduces a construct and lines
that continue a construct, and the syntactic symbols that represent these lines will contain
the suffix -intro or -cont respectively. As a sub-classification of this scheme, a line which
is the first of a particular brace block construct will contain the suffix -block-intro.

Let’s look at some examples to understand how this works. Remember that you can
check the syntax of any line by using C-c C-s.

1: void
2: swap(int& a, int& b)
3: {
4: int tmp = a;
5: a = b;
6: b = tmp;
7: int ignored =
8: a + b;
9: }

Line 1 shows a topmost-intro since it is the first line that introduces a top-level con-
struct. Line 2 is a continuation of the top-level construct introduction so it has the syntax
topmost-intro-cont. Line 3 shows a defun-open since it is the brace that opens a top-
level function definition. Line 9 is a defun-close since it contains the brace that closes
the top-level function definition. Line 4 is a defun-block-intro, i.e. it is the first line of
a brace-block, which happens to be enclosed in a top-level function definition.

Lines 5, 6, and 7 are all given statement syntax since there isn’t much special about
them. Note however that line 8 is given statement-cont syntax since it continues the
statement begun on the previous line.

Here’s another example, which illustrates some C++ class syntactic symbols:

Chapter 7: Syntactic Symbols 27

1: class Bass
2: : public Guitar,
3: public Amplifiable
4: {
5: public:
6: Bass()
7: : eString(new BassString(0.105)),
8: aString(new BassString(0.085)),
9: dString(new BassString(0.065)),

10: gString(new BassString(0.045))
11: {
12: eString.tune(’E’);
13: aString.tune(’A’);
14: dString.tune(’D’);
15: gString.tune(’G’);
16: }
17: }

As in the previous example, line 1 has the topmost-intro syntax. Here however, the
brace that opens a C++ class definition on line 4 is assigned the class-open syntax. Note
that in C++, structs and unions are essentially equivalent syntactically (and are very similar
semantically), so replacing the class keyword in the example above with struct or union
would still result in a syntax of class-open for line 41. Similarly, line 17 is assigned class-

close syntax.

Line 2 introduces the inheritance list for the class so it is assigned the inher-intro

syntax, and line 3, which continues the inheritance list is given inher-cont syntax.

Things get interesting at line 5. The primary syntactic symbol for this line is access-

label since this a label keyword that specifies access protection in C++. However, this line
actually shows two syntactic symbols when you hit C-c C-s. This is because it is also a
top-level construct inside a class definition. Thus the other syntactic symbol assigned to
this line is inclass. Similarly, line 6 is given both inclass and topmost-intro syntax.

Line 7 introduces a C++ member initialization list and as such is given member-init-

intro syntax. Note that in this case it is not assigned inclass since this is not considered
a top-level construct. Lines 8 through 10 are all assigned member-init-cont since they
continue the member initialization list started on line 7.

Line 11 is assigned inline-open because it opens an in-class C++ inline method defini-
tion. This is distinct from, but related to, the C++ notion of an inline function in that its
definition occurs inside an enclosing class definition, which in C++ implies that the function
should be inlined. For example, if the definition of the Bass constructor appeared outside
the class definition, line 11 would be given the defun-open syntax, even if the keyword
inline appeared before the method name, as in:

1 This is the case even for C and Objective-C. For consistency, structs in all three lan-
guages are syntactically equivalent to classes. Note however that the keyword class is
meaningless in C and Objective-C.

Chapter 7: Syntactic Symbols 28

class Bass
: public Guitar,
public Amplifiable

{
public:

Bass();
}

inline
Bass::Bass()

: eString(new BassString(0.105)),
aString(new BassString(0.085)),
dString(new BassString(0.065)),
gString(new BassString(0.045))

{
eString.tune(’E’);
aString.tune(’A’);
dString.tune(’D’);
gString.tune(’G’);

}

Similarly, line 16 is given inline-close syntax.

As in the first example above, line 12 is given defun-block-open syntax and lines 13
through 15 are all given statement syntax.

Here is another (totally contrived) example which illustrates how syntax is assigned to
various conditional constructs:

1: void spam(int index)
2: {
3: for(int i=0; i<index; i++)
4: {
5: if(i == 10)
6: {
7: do_something_special();
8: }
9: else

10: do_something(i);
11: }
12: do {
13: another_thing(i--);
14: }
15: while(i > 0);
16: }

Only the lines that illustrate new syntactic symbols will be discussed.

Chapter 7: Syntactic Symbols 29

Line 4 has a brace which opens a conditional’s substatement block. It is thus assigned
substatement-open syntax, and since line 5 is the first line in the substatement block, it
is assigned substatement-block-intro syntax. Lines 6 and 7 are assigned similar syntax.
Line 8 contains the brace that closes the inner substatement block. It is given the generic
syntax block-close, as are lines 11 and 14.

Line 9 is a little different – since it contains the keyword else matching the if statement
introduced on line 5; it is given the else-clause syntax. Note also that line 10 is slightly
different too. Because else is considered a conditional introducing keyword2, and because
the following substatement is not a brace block, line 10 is assigned the substatement syntax.

One other difference is seen on line 15. The while construct that closes a do conditional
is given the special syntax do-while-closure if it appears on a line by itself. Note that
if the while appeared on the same line as the preceding close brace, that line would have
been assigned block-close syntax instead.

Switch statements have their own set of syntactic symbols. Here’s an example:

1: void spam(enum Ingredient i)
2: {
3: switch(i) {
4: case Ham:
5: be_a_pig();
6: break;
7: case Salt:
8: drink_some_water();
9: break;

10: default:
11: {
12: what_is_it();
13: break;
14: }
15: }
14: }

Here, lines 4, 7, and 10 are all assigned case-label syntax, while lines 5 and 8 are
assigned statement-case-intro. Line 11 is treated slightly differently since it contains a
brace that opens a block – it is given statement-case-open syntax.

There are a set of syntactic symbols that are used to recognize constructs inside of brace
lists. A brace list is defined as an enum or aggregate initializer list, such as might statically
initialize an array of structs. For example:

2 The list of conditional keywords are (in C, Objective-C and C++): for, if, do, else,
while, and switch. C++ has two additional conditional keywords: try and catch.

Chapter 7: Syntactic Symbols 30

1: static char* ingredients[] =
2: {
3: "Ham",
4: "Salt",
5: NULL
6: }

Following convention, line 2 in this example is assigned brace-list-open syntax, and
line 3 is assigned brace-list-intro syntax. Likewise, line 6 is assigned brace-list-

close syntax. Lines 4 and 5 however, are assigned brace-list-entry syntax, as would all
subsequent lines in this initializer list.

A number of syntactic symbols are associated with parenthesis lists, a.k.a argument lists,
as found in function declarations and function calls. This example illustrates these:

1: void a_function(int line1,
2: int line2);
3:
4: void a_longer_function(
5: int line1,
6: int line2
7:);
8:
9: void call_them(int line1, int line2)

10: {
11: a_function(
12: line1,
13: line2
14:);
15:
16: a_longer_function(line1,
17: line2);
18: }

Lines 5 and 12 are assigned arglist-intro syntax since they are the first line following
the open parenthesis, and lines 7 and 14 are assigned arglist-close syntax since they
contain the parenthesis that closes the argument list.

The other lines with relevant syntactic symbols include lines 2 and 17 which are assigned
arglist-cont-nonempty syntax. What this means is that they continue an argument list,
but that the line containing the parenthesis that opens the list is non-empty following the
open parenthesis. Contrast this against lines 6 and 13 which are assigned arglist-cont

syntax. This is because the parenthesis that opens their argument lists is the last character
on that line3.

3 The need for this somewhat confusing arrangement is that the typical indentation desired
for these lines is calculated very differently. This should be simplified in version 5 of cc-

Chapter 7: Syntactic Symbols 31

Note that there is no arglist-open syntax. This is because any parenthesis that opens
an argument list, appearing on a separate line, is assigned the statement-cont syntax
instead.

A few miscellaneous syntactic symbols that haven’t been previously covered are illus-
trated by this example:

1: void Bass::play(int volume)
2: const
3: {
4: /* this line starts a multi-line
5: * comment. This line should get ‘c’ syntax */
6:
7: char* a_long_multiline_string = "This line starts a multi-line \
8: string. This line should get ‘string’ syntax.";
9:

10: note:
11: {
12: #ifdef LOCK
13: Lock acquire();
14: #endif // LOCK
15: slap_pop();
16: cout << "I played "
17: << "a note\n";
18: }
19: }

The lines to note in this example include:

• line 2 which is assigned the ansi-funcdecl-cont syntax;

• line 4 which is assigned both defun-block-intro and comment-intro syntax4;

• line 5 which is assigned c syntax;

• line 6 which, even though it contains nothing but whitespace, is assigned defun-block-

intro. Note that the appearance of the comment on lines 4 and 5 do not cause line
6 to be assigned statement syntax because comments are considered to be syntactic
whitespace, which are essentially ignored when analyzing code;

• line 8 which is assigned string syntax;

• line 10 which is assigned label syntax;

• line 11 which is assigned block-open syntax;

• lines 12 and 14 which are assigned cpp-macro syntax;

• line 17 which is assigned stream-op syntax5.

mode, along with the added distinction between argument lists in function declarations,
and argument lists in function calls.

4 The comment-intro syntactic symbol is known generically as a modifier since it always
appears on a syntactic analysis list with other symbols, and never has a relative buffer
position.

5 In C++ only.

Chapter 7: Syntactic Symbols 32

In Objective-C buffers, there are three additional syntactic symbols assigned to various
message calling constructs. Here’s an example illustrating these:

1: - (void)setDelegate:anObject
2: withStuff:stuff
3: {
4: [delegate masterWillRebind:self
5: toDelegate:anObject
6: withExtraStuff:stuff];
7: }

Here, line 1 is assigned objc-method-intro syntax, and line 2 is assigned objc-method-

args-cont syntax. Lines 5 and 6 are both assigned objc-method-call-cont syntax.

Other syntactic symbols may be recognized by cc-mode, but these are more obscure and
so I haven’t included examples of them. These include: knr-argdecl-intro, knr-argdecl,
and the friend modifier.

Chapter 8: Performance Issues 33

8 Performance Issues

C and its derivative languages are highly complex creatures. Often, ambiguous code
situations arise that require cc-mode to scan large portions of the buffer to determine syn-
tactic context. Some pathological code can cause cc-mode to slow down considerably. This
section identifies some of the coding styles to watch out for, and suggests some workarounds
that you can use to improve performance.

Note that this is an area that will get a lot of attention in cc-mode version 5. The mode
should end up being much faster, at the expense of dropping Emacs 18 support, owing to
the implementation of syntactic analysis caching. This is the last release of cc-mode that
will be compatible with Emacs 18.

Because cc-mode has to scan the buffer backwards from the current insertion point, and
because C’s syntax is fairly difficult to parse in the backwards direction, cc-mode often tries
to find the nearest position higher up in the buffer from which to begin a forward scan. The
farther this position is from the current insertion point, the slower the mode gets. Some
coding styles can even force cc-mode to scan from the beginning of the buffer!

One of the simplest things you can do to reduce scan time, is make sure any brace that
opens a top-level block construct always appears in the leftmost column. This is actually an
Emacs constraint, as embodied in the beginning-of-defun function which cc-mode uses
heavily. If you insist on hanging top-level open braces on the right side of the line, then
you should set the variable defun-prompt-regexp to something reasonable1, however that
“something reasonable” is difficult to define, so cc-mode doesn’t do it for you.

You will probably notice pathological behavior from cc-mode when working in files con-
taining large amounts of cpp macros. This is because cc-mode cannot quickly skip back-
wards over these lines, which do not contribute to the syntactic calculations. You’ll probably
also have problems if you are editing “K&R” C code, i.e. C code that does not use function
prototypes. This is because there are ambiguities in the C syntax when K&R style argu-
ment lists are used, and cc-mode has to use a slower scan to determine what it’s looking
at.

For the latter problem, I would suggest converting to ANSI style protocols, and turning
the variable c-recognize-knr-p to nil (this is its default value for all modes).

For the former problem, you might want to investigate some of the speed-ups provided
for you in the file ‘cc-lobotomy.el’, which is part of the canonical cc-mode distribution. As
mentioned previously, cc-mode always trades accuracy for speed; however it is recognized
that sometimes you need speed and can sacrifice some accuracy in indentation. The file
‘cc-lobotomy.el’ contains hacks that will “dumb down” cc-mode in some specific ways,
making that trade-off of speed for accuracy. I won’t go into details of its use here; you should
read the comments at the top of the file, and look at the variable cc-lobotomy-pith-list

for details.

1 Note that this variable is only defined in Emacs 19.

Chapter 9: Frequently Asked Questions 34

9 Frequently Asked Questions

Q. How do I re-indent the whole file?

A. Visit the file and hit C-x h to mark the whole buffer. Then hit 〈ESC〉 C-\.

Q. How do I re-indent the entire function? 〈ESC〉 C-x doesn’t work.

A. 〈ESC〉 C-x is reserved for future Emacs use. To re-indent the entire function
hit C-c C-q.

Q. How do I re-indent the current block?

A. First move to the brace which opens the block with 〈ESC〉 C-u, then re-indent
that expression with 〈ESC〉 C-q.

Q. Why doesn’t the 〈RET〉 key indent the line to where the new text should go
after inserting the newline?

A. Emacs’ convention is that 〈RET〉 just adds a newline, and that 〈LFD〉 adds a
newline and indents it. You can make 〈RET〉 do this too by adding this to your
c-mode-common-hook (see the sample ‘.emacs’ file Chapter 11 [Sample .emacs
File], page 36):

(define-key c-mode-map "\C-m" ’newline-and-indent)

This is a very common question. :-) If you want this to be the default behavior,
don’t lobby me, lobby RMS!

Q. I put (c-set-offset ’substatement-open 0) in my ‘.emacs’ file but I get
an error saying that c-set-offset’s function definition is void.

A. This means that cc-mode wasn’t loaded into your Emacs session by the time
the c-set-offset call was reached, mostly likely because cc-mode is being
autoloaded. Instead of putting the c-set-offset line in your top-level ‘.emacs’
file, put it in your c-mode-common-hook, or simply add the following to the top
of your ‘.emacs’ file:

(require ’cc-mode)

See the sample ‘.emacs’ file Chapter 11 [Sample .emacs File], page 36 for details.

Q. How do I make strings, comments, keywords, and other constructs appear
in different colors, or in bold face, etc.?

A. “Syntax Colorization” is an Emacs 19 feature, controlled by font-lock-
mode. It is not part of cc-mode.

Chapter 10: Getting the latest cc-mode release 35

10 Getting the latest cc-mode release

cc-mode is now distributed with both Emacs 19 and XEmacs 19, so you would typically
just use the version that comes with your Emacs. Users of older versions of Emacs can get
the latest release from this URL:

ftp://ftp.python.org/pub/emacs/cc-mode.tar.gz

Note that this is a “gzipped” tar file.

If you do not have anonymous ftp access, you can get the distribution through an anony-
mous ftp-to-mail gateway, such as the one run by DEC at ftpmail@decwrl.dec.com. To
get cc-mode via email, send the following message in the body of your mail to that address:

reply <a valid net address back to you>
connect ftp.python.org
binary
uuencode
chdir pub/emacs
get cc-mode.tar.gz

or just send the message "help" for more information on ftpmail. Response times will vary
with the number of requests in the queue.

Chapter 11: Sample ‘.emacs’ file 36

11 Sample ‘.emacs’ file

;; Here’s a sample .emacs file that might help you along the way. Just
;; copy this region and paste it into your .emacs file. You may want to
;; change some of the actual values.

(defconst my-c-style
’((c-tab-always-indent . t)
(c-comment-only-line-offset . 4)
(c-hanging-braces-alist . ((substatement-open after)

(brace-list-open)))
(c-hanging-colons-alist . ((member-init-intro before)

(inher-intro)
(case-label after)
(label after)
(access-label after)))

(c-cleanup-list . (scope-operator
empty-defun-braces
defun-close-semi))

(c-offsets-alist . ((arglist-close . c-lineup-arglist)
(substatement-open . 0)
(case-label . 4)
(block-open . 0)
(knr-argdecl-intro . -)))

(c-echo-syntactic-information-p . t)
)

"My C Programming Style")

;; Customizations for all of c-mode, c++-mode, and objc-mode
(defun my-c-mode-common-hook ()
;; add my personal style and set it for the current buffer
(c-add-style "PERSONAL" my-c-style t)
;; offset customizations not in my-c-style
(c-set-offset ’member-init-intro ’++)
;; other customizations
(setq tab-width 8

;; this will make sure spaces are used instead of tabs
indent-tabs-mode nil)

;; we like auto-newline and hungry-delete
(c-toggle-auto-hungry-state 1)
;; keybindings for C, C++, and Objective-C. We can put these in
;; c-mode-map because c++-mode-map and objc-mode-map inherit it
(define-key c-mode-map "\C-m" ’newline-and-indent)
)

;; the following only works in Emacs 19
;; Emacs 18ers can use (setq c-mode-common-hook ’my-c-mode-common-hook)
(add-hook ’c-mode-common-hook ’my-c-mode-common-hook)

Chapter 12: Requirements 37

12 Requirements

‘cc-mode.el’ requires ‘reporter.el’ for submission of bug reports. ‘reporter.el’ is
distributed with the latest Emacs 19s. Here is the Emacs Lisp Archive anonymous ftp’ing
record for those of you who are using older Emacsen.

GNU Emacs Lisp Code Directory Apropos -- "reporter"
"~/" refers to archive.cis.ohio-state.edu:/pub/gnu/emacs/elisp-archive/

reporter (2.12) 06-Jul-1994
Barry A. Warsaw, <bwarsaw@cnri.reston.va.us>
~/misc/reporter.el.Z
Customizable bug reporting of lisp programs.

Chapter 13: Limitations and Known Bugs 38

13 Limitations and Known Bugs

• Multi-line macros are not handled properly.

• Re-indenting large regions or expressions can be slow.

• Use with Emacs 18 can be slow and annoying. You should seriously consider upgrading
to Emacs 19.

• There is still some weird behavior when filling C block comments. My suggestion is to
check out add-on fill packages such as filladapt, available at the elisp archive.

• Lines following inline-close braces which hang “after” do not line up correctly. Hit
TAB to reindent the line.

Chapter 14: Mailing Lists and Submitting Bug Reports 39

14 Mailing Lists and Submitting Bug Reports

To report bugs, use the C-c C-b (c-submit-bug-report) command. This provides vital
information I need to reproduce your problem. Make sure you include a concise, but com-
plete code example. Please try to boil your example down to just the essential code needed
to reproduce the problem, and include an exact recipe of steps needed to expose the bug.
Be especially sure to include any code that appears before your bug example.

Bug reports are now to be sent to bug-gnu-emacs@prep.ai.mit.edu which is mir-
rored on the Usenet newsgroup gnu.emacs.bug. Other questions and suggestions should
be mailed to help-gnu-emacs@prep.ai.mit.edu which is mirrored on gnu.emacs.help.

Note that the cc-mode Majordomo mailing lists have been disbanded! With the inclusion
of cc-mode in both of the latest flavors of Emacs 19, the need for them has ended.

Concept Index 40

Concept Index

-
-block-intro syntactic symbols 32

-close syntactic symbols . 32

-cont syntactic symbols . 32

-intro syntactic symbols . 32

-open syntactic symbols . 32

.
‘.emacs’ file . 3

A
Adding Styles . 26

Advanced Customizations . 27

announcement mailing list . 49

Auto-newline insertion . 12

B
basic-offset (c-) . 20

beta testers mailing list . 49

block-close syntactic symbol. 12

block-open syntactic symbol 12

BOCM . 1

brace lists . 36

brace-list-close syntactic symbol 12

brace-list-entry syntactic symbol 12

brace-list-intro syntactic symbol 12

brace-list-open syntactic symbol 12

BSD style . 24

Built-in Styles . 24

byte compile . 3

C
c-basic-offset . 20

c-hanging- functions . 18

c-set-offset . 20

‘cc-compat.el’ file . 1

‘cc-lobotomy.el’ file . 40

CC-MODE style . 25

‘cc-mode-18.el’ file . 3

class-close syntactic symbol 12

class-open syntactic symbol 12

clean-ups . 14

Clean-ups . 15

comment only line . 7

comment-only line . 14

Custom Brace and Colon Hanging 29

custom indentation function 12

custom indentation functions 27

Custom Indentation Functions 27

customizing brace hanging . 29

customizing colon hanging . 30

Customizing Indentation . 20

customizing semi-colons and commas 30

Customizing Semi-colons and Commas 30, 31

D
defun-close syntactic symbol 12

defun-open syntactic symbol 12

E
electric characters . 11

electric commands . 12

Ellemtel style . 25

F
File Styles . 26

Frequently Asked Questions 42

G
Getting Connected . 3

Getting the latest cc-mode release 44

GNU style . 24

H
Hanging Braces . 12

Hanging Colons . 13

Hanging Semi-colons and commas 14

hooks . 23

Hungry-deletion of whitespace 16

I
in-class inline methods . 33

Indentation Calculation . 8

Indentation Commands . 18

inline-close . 48

inline-close syntactic symbol 12

inline-open syntactic symbol 12

Interactive Customization . 21

Introduction . 1

Concept Index 41

J
Java style . 25

java-mode . 25

K
K&R style . 24

L
Limitations and Known Bugs 48

literal . 12, 15, 17, 18

local variables . 26

M
Mailing Lists and Submitting Bug Reports 49

Minor Modes . 11

modifier syntactic symbol . 38

N
New Indentation Engine . 6

O
Other electric commands . 14

P
Performance Issues . 40

Permanent Indentation. 23

R
relative buffer position . 6

reporter.el . 47

Requirements . 47

S
Sample ‘.emacs’ file . 45

set-offset (c-) . 20

statement-case-open syntactic symbol 12

stream-op syntactic symbol 28

Stroustrup style . 24

Styles . 24

substatement . 7

substatement block . 7

substatement-open syntactic symbol 12

Syntactic Analysis . 6

syntactic component . 6

syntactic component list . 6

syntactic symbol . 6

Syntactic Symbols . 32

syntactic whitespace . 12, 38

T
TAB . 10

W
Whitesmith style . 24

Command Index 42

Command Index

Since all cc-mode commands are prepended with the string ‘c-’, each appears under its
c-<thing> name and its <thing> (c-) name.

A
add-style (c-) . 26

B
beginning-of-defun . 40

C
c-add-style . 26

c-electric-brace . 12

c-electric-delete . 17

c-electric-pound . 14

c-electric-slash . 14

c-electric-star . 14

c-hanging-braces-alist . 18

c-indent-command . 18

c-indent-defun . 18, 22

c-indent-exp. 18

c-lineup-streamop . 28

c-mark-function . 19

c-set-offset . 22, 26

c-set-style . 18, 25

c-show-syntactic-information 6

c-snug-do-while . 29

c-submit-bug-report . 49

c-toggle-auto-hungry-state 11

c-toggle-auto-state . 11

c-toggle-hungry-state . 11

c-version . 1

D
defun-prompt-regexp . 40

E
electric-brace (c-) . 12

electric-delete (c-) . 17

electric-pound (c-) . 14

electric-slash (c-) . 14

electric-star (c-) . 14

H
hanging-braces-alist (c-) 18

I
indent-command (c-) . 18

indent-defun (c-) . 18, 22

indent-exp (c-) . 18

indent-region . 19

L
lineup-streamop (c-) . 28

M
mark-function (c-) . 19

N
newline-and-indent . 42

S
set-offset (c-) . 22, 26

set-style (c-) . 18, 25

show-syntactic-information (c-) 6

snug-do-while (c-) . 29

submit-bug-report (c-) . 49

T
toggle-auto-hungry-state (c-) 11

toggle-auto-state (c-) . 11

toggle-hungry-state (c-) 11

Key Index 43

Key Index

#
. 14

C
C-c C-a . 11

C-c C-b . 49

C-c C-d . 11

C-c C-o . 22

C-c C-q . 18, 22, 28, 42

C-c C-s . 6, 32

C-c C-t . 11

C-u . 12

C-x h . 42

D
DEL . 16

E
ESC C-\ . 42

ESC C-q . 42

ESC C-u . 42

ESC C-x . 42

L
LFD . 42

M
M-C-\ . 19

M-C-h . 19

M-C-q . 18

R
RET . 42

T
TAB . 9, 18, 48

Variable Index 44

Variable Index

Since all cc-mode variables are prepended with the string ‘c-’, each appears under its
c-<thing> name and its <thing> (c-) name.

B
basic-offset (c-) . 27

C
c-basic-offset . 27

c-cleanup-list . 15

c-delete-function . 17

c-echo-syntactic-information-p 10

c-electric-pound-behavior 14

c-file-offsets . 26

c-file-style. 26

c-hanging-braces-alist 12, 29

c-hanging-colon-alist . 30

c-hanging-colons-alist . 13

c-hanging-semi&comma-criteria 30

c-mode-common-hook . 23

c-mode-hook . 23

c-offsets-alist 6, 8, 12, 14, 26, 28, 32

c-progress-interval . 18

c-recognize-knr-p . 40

c-special-indent-hook . 31

c-style-alist . 26, 27

c-syntactic-context . 30

c-tab-always-indent . 18

c++-mode-hook . 23

cc-lobotomy-pith-list . 40

cleanup-list (c-) . 15

D
delete-function (c-) . 17

E
echo-syntactic-information-p (c-) 10

electric-pound-behavior (c-). 14

F
file-offsets (c-) . 26

file-style (c-) . 26

H
hanging-braces-alist (c-) 12, 29

hanging-colon-alist (c-) 30

hanging-colons-alist (c-) 13

hanging-semi&comma-criteria (c-) 30

J
java-mode-hook . 23

O
objc-mode-hook . 23

offsets-alist (c-) . . 6, 8, 12, 14, 26, 28, 32

P
progress-interval (c-) . 18

R
recognize-knr-p (c-) . 40

S
special-indent-hook (c-) 31

style-alist (c-) . 26, 27

syntactic-context (c-) . 30

T
tab-always-indent (c-) . 18

i

Short Contents

1 Introduction . 1

2 Getting Connected. 2

3 New Indentation Engine . 5

4 Minor Modes . 9

5 Indentation Commands. 15

6 Customizing Indentation . 16

7 Syntactic Symbols . 26

8 Performance Issues . 33

9 Frequently Asked Questions. 34

10 Getting the latest cc-mode release 35

11 Sample ‘.emacs’ file . 36

12 Requirements . 37

13 Limitations and Known Bugs. 38

14 Mailing Lists and Submitting Bug Reports 39

Concept Index . 40

Command Index. 42

Key Index . 43

Variable Index . 44

ii

Table of Contents

1 Introduction . 1

2 Getting Connected . 2

3 New Indentation Engine 5
3.1 Syntactic Analysis . 5
3.2 Indentation Calculation . 7

4 Minor Modes . 9
4.1 Auto-newline insertion . 9

4.1.1 Hanging Braces . 10
4.1.2 Hanging Colons . 11
4.1.3 Hanging Semi-colons and commas 11
4.1.4 Other electric commands . 11
4.1.5 Clean-ups . 12

4.2 Hungry-deletion of whitespace . 14

5 Indentation Commands. 15

6 Customizing Indentation 16
6.1 Interactive Customization . 17
6.2 Permanent Indentation. 19
6.3 Styles. 19

6.3.1 Built-in Styles . 20
6.3.2 Adding Styles . 21
6.3.3 File Styles . 21

6.4 Advanced Customizations . 21
6.4.1 Custom Indentation Functions 22
6.4.2 Custom Brace and Colon Hanging 23
6.4.3 Customizing Semi-colons and Commas. 24
6.4.4 Other Special Indentations. 25

7 Syntactic Symbols . 26

8 Performance Issues . 33

9 Frequently Asked Questions 34

10 Getting the latest cc-mode release 35

iii

11 Sample ‘.emacs’ file. 36

12 Requirements . 37

13 Limitations and Known Bugs 38

14 Mailing Lists and Submitting Bug Reports
. 39

Concept Index . 40

Command Index . 42

Key Index . 43

Variable Index . 44

	Introduction
	Getting Connected
	New Indentation Engine
	Syntactic Analysis
	Indentation Calculation

	Minor Modes
	Auto-newline insertion
	Hanging Braces
	Hanging Colons
	Hanging Semi-colons and commas
	Other electric commands
	Clean-ups

	Hungry-deletion of whitespace

	Indentation Commands
	Customizing Indentation
	Interactive Customization
	Permanent Indentation
	Styles
	Built-in Styles
	Adding Styles
	File Styles

	Advanced Customizations
	Custom Indentation Functions
	Custom Brace and Colon Hanging
	Customizing Semi-colons and Commas
	Other Special Indentations

	Syntactic Symbols
	Performance Issues
	Frequently Asked Questions
	Getting the latest cc-mode release
	Sample .emacs file
	Requirements
	Limitations and Known Bugs
	Mailing Lists and Submitting Bug Reports
	Concept Index
	Command Index
	Key Index
	Variable Index

