
Abstract

In this paper we describe our experiments with paragraph optimization, based
on some ideas from the hz-program. We extend the mechanism of paragraph
composition of the TEX program in several ways, in order to examine the influence
of various techniques on the grayness of the page and the readability of the
composed text.

Introduction to TEX line breaking

Before we go into the details of our experiments, we will first describe briefly the
mechanism that TEX uses to compose paragraphs (line breaking in TEX terms). The
description is necessary because most of the issues in our experiments deal with
paragraph composition.

The technical details of TEX paragraph composition are rather complicated, how-
ever the principal concept is quite straightforward. It is based on the box/glue/penalty
model as described below.

• A box represents some material that should be typeset, usually a character or
a sequence of characters from a font, but it can also be a much more complex
object, e.g. a mathematical formula or a composition of boxes. For the purpose
of paragraph composition we will treat boxes simply as words or segments of
hyphenated words.

• A glue represents a blank space that has varying width in a specified way. For
example the word space in text is usually a glue. A glue has its natural size,
standing for the normal width of the glue. Apart from its natural size, a glue may
have its stretchability, which is the maximum extra amount that the glue can be
increased by. Similarly, glue shrinkability stands for the maximum amount that
the glue can be decreased by. The natural size, stretchability and shrinkability
together are called glue specification. In the context of paragraph composition,
the word space is treated as a glue, with its specification depending on the used
font.

• A penalty is the cost we pay or the reward we gain for breaking a line at a certain
place. Using penalties thus allows the control of line breaking in a flexible way
by specifying appropriate values of penalty at the desired places.

In addition to this model we have a breakpoint is a place where it is possible to
end a line. A breakpoint usually occurs at a glue, a penalty or a discretionary break.
A discretionary break is a place where a word can be hyphenated. During paragraph
composition, TEX examines various breakpoints and tries to fit lines to the paragraph
width.

1



When trying to fit a line to the desired width, the “natural width” of the line is
examined first. This width is the total of box widths plus the natural size of the glues
in the line. If the natural width is the same as the desired width, this line is treated
as a “good” line and has the badness equal to zero. If the natural size of a line is
shorter than the desired width, then the glues in the line will be stretched to adjust
the width to the desired line. Similarly, a line longer than the desired width will be
adjusted by shrinking the glues in the line. The more the glues in a line are stretched
or shrunk, the higher badness the line will have. When a potential line is too short or
too long, the difference between the natural width of the line and the desired width
may be larger than the total stretchability or shrinkability of the glues in the line. In
such cases the line is treated as “infinitely bad” and has infinite badness. Apart from
badness, a line may have a penalty associated with the ending breakpoint of the line.
The cost of breaking a line depends on the badness and the penalty associated with
the line.

The main task of paragraph composition is to break a paragraph in such a way
that the total demerits (which is roughly the sum of the squares of badness and penalty
over all lines) is minimal. Therefore paragraphs composed by TEX have word spaces
distributed approximatively equally over all lines of the paragraph rather than for a
single line. This mechanism to break a paragraph as a whole gives a much better
result than breaking in sequence from line to line at a time, because in the latter case,
setting optimal word spacing in a line may cause very bad word spacing for the next
lines.

It has been shown in practice that TEX line breaking works very well in most cases.
However, we think that improvements are still possible, especially for difficult cases
like in narrow column typesetting.

The hz-program

The hz-program, named after the inventor Hermann Zapf, tries to achieve even gray-
ness of paragraph typesetting by keeping word spaces unchanged or changing them
very slightly. In order to do this, the hz-program applies some techniques that have
been known among typographers for years, namely skillful kerning, scaling and com-
posing. The implementation is divided into several modules.

• Kerning is handled by the kf-program. Kerning is calculated on the fly depending
on character shapes and pointsize, and can be done in the context of more
characters than just adjacent characters (for example, kerning for all characters
in a word or a group of words). Another unique feature of the kf-program is
the ability to deal with side bearing of characters at the beginning or the end of
a line in order to keep the margin of text more optically straight.

2



• Scaling is done within the K%-program, which provides optical scaling of char-
acter letterforms.

• Font expansion and condensing can be done without changing stroke widths of
letterforms by the εk-program.

• Paragraph composition is done by the jp-program using the similar algorithm
as inTEX.

There is not much documentation available about the hz-program. Perhaps the
most complete source is the brochure about the hz-program by URW. This is also the
source of our inspiration in doing the experiments. Our implementation prototype is
pdfTEX, an extension of TEX. The experiments are done in several steps and we will
describe in sequence what we are experimenting with in each step.

The basic sample set

In our testing, we used 3 types of fonts: METAFONT, Multiple Master and Type 1.
From each type we chose two fonts, one roman and one sans serif. The following table
shows the fonts used in our experiment:

METAFONT Multiple Master Type 1

roman Computer Modern Roman Minion Palatino

sans serif Computer Modern Sans Serif Myriad Helvetica

Samples for each font are made at 3 sizes: 8pt, 10pt and 12pt. CMR and CMSS
fonts have design sizes for all of these sizes, so the fonts at the design size were used.
Multiple Master Minion has an optical size axis, and we used instances at the requested
size to get the best optical scaling. For the Multiple Master Myriad and Type 1 fonts,
one single font was scaled for all sizes. The used text in samples are from “The tale
of a youth who set out to learn what fear was” by the brothers Grimm. Samples at
different font sizes have different column setting, as shown in the following table:

8pt 10pt 12pt

number of columns 5 4 3

column separator 3 mm 4 mm 5 mm

column width 33 mm 42 mm 56 mm

The bottom line of each sample reports to the set the sample belongs to, the font
name and font size used in the sample, plus extra settings applied to the current set.

3



The first set contains the basic samples. The parameters affecting paragraph
typesetting in this set are used for the next steps as well. The following settings have
been tuned to get rid of so-called overfull boxes, which are lines that are longer than
the desired line length of the paragraph.

• Paragraph indentation is set to 1em;

• Leading is set to 1.2em;

• Column heights are adjusted for each sample to avoid orphans and widows as
well as to balance columns;

• No extra space is added between paragraphs;

• No extra space is added after punctuations;

• In extremely difficult cases, a line is allowed to be longer than the desired width
by as much as 1pt;

• In extremely difficult cases, the total amount of all word spaces in a line can be
increased by as much as 2pt;

In TEX terms this is expressed by:

\parindent=1em

\global\baselineskip=1.2em

\clubpenalty=10000

\widowpenalty=10000

\frenchspacing

\parskip=0pt

\emergencystretch=2pt

\hfuzz=1pt

\tolerance=5000

The last setting \tolerance=5000 is too complicated to describe in non-TEX
terms. In short, it says that the word space can be changed (stretched or shrunk) by a
relatively high percentage of its stretchability or shrinkability. This setting is necessary
for narrow width typesetting, e.g. in the case of having multi-columns in a page.

Marginal kerning

In the second set we apply marginal kerning. This is indicated at the bottom line of
the samples by MarginKerning=yes.

In the hz-program, an artificial character “left white edge” is placed to the left of
the beginning character in a line, so the program can calculate the left side bearing
for the leftmost character. Similarly a “right white edge” character is used for the
rightmost character. Those two characters don’t exist in reality, but they are only
generated by the program on the fly in order to control marginal kerning.

4



In pdfTEX, marginal kerning is achieved by using a mechanism called character
protruding. Each character has an associated parameter called left protruding factor.
This parameter specifies how much the character should “protrude out” to the left if
the character ends up at the beginning of a line. The amount of protruding is given
in thousandths of the corresponding character width. For example, a left protruding
factor of 500 of a character says that the character should protrude out to the left
by 50% of its width. Similarly, the right protruding factor is used for protruding
characters at the end of a line. These parameters can be negative as well, which
means “protruding in” the opposite direction. In pdfTEX terms, \lpcode is used for
left protruding factor and \rpcode for right protruding factor.

The setting of protruding factors in our experiments are listed below (in TEX terms
the notation ‘\ indicates the numeric code of the following character, i.e. ‘\A is
equivalent to the ASCII code of the character A, which is 65).

\rpcode‘\!=200

\rpcode‘\,=700

\rpcode‘\-=700

\rpcode‘\.=700

\rpcode‘\;=500

\rpcode‘\:=500

\lpcode‘\‘=700

\rpcode‘\’=700

\lpcode92=500 % ‘‘

\rpcode34=500 % ’’

\rpcode123=300 % --

\rpcode124=200 % ---

\rpcode‘\)=50

\rpcode‘\A=50

\rpcode‘\F=50

\rpcode‘\K=50

\rpcode‘\L=50

\rpcode‘\T=50

\rpcode‘\V=50

\rpcode‘\W=50

\rpcode‘\X=50

\rpcode‘\Y=50

\rpcode‘\k=50

\rpcode‘\r=50

\rpcode‘\t=50

\rpcode‘\v=50

\rpcode‘\w=50

\rpcode‘\x=50

\rpcode‘\y=50

\lpcode‘\(=50

\lpcode‘\A=50

\lpcode‘\J=50

\lpcode‘\T=50

\lpcode‘\V=50

\lpcode‘\W=50

\lpcode‘\X=50

\lpcode‘\Y=50

\lpcode‘\v=50

\lpcode‘\w=50

\lpcode‘\x=50

\lpcode‘\y=50

As we can see from this list, the most prominent settings are for punctuations.
However there are also slight protrudings of certain characters which have a lot of
white area on left-hand or right-hand side of their shapes.

The values of protruding factors are used in two phases. In the first phase when
pdfTEX tries to fit individual lines to the desired width, it also checks whether the
beginning or the final object in a line is a character with non-zero protruding factor.
If so, their protruding amount is added to the desired width before pdfTEX calculates
the badness of the line. In the second phase, after the breakpoints for the paragraph
have been found, pdfTEX inserts the corresponding kerns to the required places before
dividing the paragraph to lines at found breakpoints.

Applying marginal kerning causes that the desired width for a line may be adjusted
by the protruding amount of the beginning and/or the ending character of the line.

5



Therefore the badness calculation and the chosen breakpoints may be changed. For
this reason, it is possible that a paragraph will be broken in a different way than
TEX usually does, with different total demerits. The variance of total demerits can be
positive as well as negative, however it is is not very large in percentage. Roughly
speaking, applying character protruding has similar effect to total demerits calculation
as in case the average desired width is changed a little bit.

Font expansion and condensing

In the third set we apply font expansion and condensing1 to TEX paragraph composition.
To enable it, a font must be first specified to be “expandable”. The limits of stretching
and shrinking can be given separately, so a font can be stretched only (by giving a
non-zero limit of stretching and zero limit of shrinking), shrunk only or stretched
and shrunk with different limits. A font is not expanded to an arbitrary amount, but
rather by certain discrete steps up to the limit of expansion. The limit and the step
of expansion are given in thousandths of the font width. For example, a font with
stretchability 50, shrinkability 40 and expansion step 5 means that the font can be
stretched by 0.5%, 1%, 1.5%,. . . , 5%, and can be shrunk by -0.5%, -1%, -1.5%,. . . , -4%
of its width. What “a font stretched by 1% of its width” exactly means is depending
on the type of the font. Roughly speaking, it could be understood as a font with the
average width of characters increased by 1%.

At the phase of looking for breakpoints, pdfTEX “expands” a font by loading the
font with the same name as the name of the expandable font but with a number
appended. This number specifies the expansion amount (in thousandths of the font
width as described above). For example, when a font, named cmr10 (Computer
Modern Roman at design size 10pt), is expanded by 1%, pdfTEX will try to load a font
with name cmr10+10. Similarly cmr10-20 is loaded for -2% expansion. The higher
the limit and the smaller step is used, the more fonts will be loaded. When pdfTEX
cannot find such an expanded font, the font will be created on the fly. The way an
expanded font is created depends on the “real” type of individual fonts and is done
outside pdfTEX. Font expansion can be applied to various types of fonts and will be
discussed below.

When an expandable font is searched, pdfTEX loads into memory the metrics
expanded at the limit of expansion. This is needed to calculate the maximum amount
that can be adjusted for character widths from the expandable font. For example,
when a font named cmr10 with stretchability 50 and shrinkability 40 is searched,
pdfTEX will load fonts cmr10+50 and cmr10-40. Then the width of a character from
font cmr10 can be mostly “stretched” to the width of this character from the font

1From now on, we will use expansion for both expansion and condensing. Condensing can be
treated as expanding by a negative amount. We will use stretching and shrinking when it is necessary
to distinguish the effects of expansion.

6



cmr10+50 and “shrunk” to the character width from font cmr10-40. This is an
analogy to glue stretchability and shrinkability, so we call it character stretchability
and character shrinkability.

Before pdfTEX stretches a line that is shorter than the desired width, it also checks
whether the total character stretchability of the line is non-zero. If so, the total
character stretchability is used to decrease the difference between the natural line
width and the desired width. Similarly, the total character shrinkability is used in the
case of shrinking.

Similar to protruding factors, character stretch and shrink are used in two phases:
when trying to fit individual lines to the desired width and when dividing a paragraph
into lines at found breakpoints. After the breakpoints in a paragraph have been found,
expandable fonts in individual lines are substituted by expanded fonts, which have
character widths different from the original expandable fonts. The difference between
total character widths of expandable fonts and corresponding expanded fonts in a line
is exactly equal to the total character stretchability or shrinkability that has been taken
into account for the line while pdfTEX was trying to fit the line into the desired width.

The most important factor for font expansion is to keep the stroke widths of
letterforms unchanged. Therefore the characteristics of each font type that may have
an effect on font expansion are important to us.

• Computer Modern fonts were developed by Donald Knuth using a special tool
called METAFONT, which is a companion program to TEX. Apart from having
many nice features, Computer Modern fonts are interesting for our experiments
in the sense that they are generated from the same sources with various settings
of parameters independent of each other. In particular, Computer Modern fonts
can be expanded without changing stroke widths of letterforms. This is done
by altering a parameter called width unit in METAFONT terms. A Computer
Modern font is expanded by increasing the width unit by the requested amount,
i.e. cmr10+10 is created by increasing the width unit by 1% of the original unit
width. The characters of Computer Modern fonts are expanded linearly, which
means that they are wider by exactly the required amount. E.g. a font expanded
by 2% will have every character width wider by 2% than the original character
width.

• Multiple Master fonts were developed by Adobe. A Multiple Master font can
have two or more design axes. A design axis represents a dynamic range of one
typographic parameter, which is usually weight, width or optical size. A Multiple
Master font can be used to generate various Type 1 fonts, called instances. To
create an instance, valid values must be given to all design axes. For our
experiments, Multiple Master fonts with width axis are interesting, as they can
be expanded without distortion of the letterforms. We expand a Multiple Master

7



instance by changing the width value used to generate the instance. For example,
the Multiple Master instance of the font Minion used in our samples has the
width value of 535, thus expanding a font by 2% is done by creating a new
instance with the width value 535 + (20/1000)×535 = 545.7. It is important
to know that characters of Multiple Master fonts are not expanded linearly, but
they change differently for different characters. The change depends rather
on individual character shapes. Normally, uppercase letters and non-letter
characters are expanded much more than lowercase letters. In comparison with
Computer Modern fonts, usually a Multiple Master instance that is expanded by
the same amount as a Computer Modern font has smaller changes in character
widths (in percentage of character width), but in some rare cases these changes
can be larger as well (mostly cases of uppercase letters).

• Type 1 fonts, developed by Adobe, were not designed to be expanded. However,
it is quite common that these fonts are expanded by applying horizontal scaling.
This technique causes every part of the letterforms to be scaled, so the stroke
widths are changed as well. Given that fact, theoretically Type 1 fonts are not
suitable for our purpose at all. However, at a very small amount of expansion,
the letterforms distortion cannot be seen at all. Therefore it makes sense to
apply the optimization using Type 1 fonts as well. Type 1 font expansion has
similar characteristics to Computer Modern font concerning changes of character
widths, i.e. they are changed linearly.

We do not apply any internal skillful kerning and letter spacing to the fonts as
the kf-program does. Perhaps this is the main shortcoming of our experiments. We
rely on the fact that kerning and letter spacing are changed correspondingly when a
font is expanded. Therefore, by using the new metrics we expect the desired effect
on kerning and letter spacing as well. This is of course far from the optimal solution.
However, we don’t have any information available to implement the capabilities of the
kf-program into our prototype.

In the samples we use the term FontExpand=〈number〉 (shown at the bottom
line of each sample) to indicate that font stretch and shrink is applied to the current
set. Both font stretch and shrink are set to the value of FontExpand. The third set
of samples was generated with such limits on font expansion so that the distortion of
letterforms is not visible yet. In our experiments, the reasonable limit of font expansion
is about 20 for Computer Modern and Type 1 fonts. For Multiple Master fonts, the
limit is about 40. It seems that Type 1 and Computer Modern fonts can be expanded
by nearly the same limit, though Computer Modern fonts can be expanded without
changing the stroke widths of letterforms. We think that the limit of font expansion
strongly depends on characteristics of individual typefaces. Choosing a reasonable
value for a typeface requires a lot of experimenting with the value of limit of expansion
as well as further parameters that influence word spacing in a paragraph.

8



In the fourth set we increase the limit of font expansion a little bit more. In some
cases the difference between fonts used in individual lines is becoming visible. We
consider the setting in this set as the limit that should not be exceeded anymore.

Expansion of selected characters

In the next step we experiment with another idea of the hz-program that font expan-
sion should be applied to selected characters rather than to all characters. For this
purpose we introduce a new parameter called expansion factor (\efcode in pdfTEX
terms) associated with each character. This parameter says how many thousandths
of stretchability and shrinkability of a character can be used. The valid range of
expansion factor is from 0 to 1000. By default all characters have expansion factor of
1000. E.g. a character with expansion factor 300 will be expanded as much as 30% of
other characters with expansion factor of 1000. Therefore, if in a line all characters
with expansion factor of 1000 are expanded by 1.5% of their width, then the character
with expansion factor of 300 will be expanded by 0.5% of its width. The purpose of
this mechanism is to limit expansion factor of characters that are more sensitive to
expansion.

By experiments we found the following cases to be more sensitive to font expansion
(even without changing the stroke widths of letterforms).

1. Characters with long and strong strokes in horizontal direction (not only those
parallel with the baseline). When the character width is changed, those strokes
often make the character shape darker. Typical examples for such characters
are A, K and R.

2. Characters with white areas in letterform bounded by strokes in vertical direction
(need not to be upright to the baseline). Those areas also have a strong
influence on darkness of letterform and therefore make the character sensitive
to expansion. There are many of such characters, like o, u, e, p and q.

3. Letters are more sensitive to expansion than digits and non-letter characters.

Based on these factors, we adjusted the expansion factor in this step as the
following:

\efcode‘\2=700

\efcode‘\3=700

\efcode‘\6=700

\efcode‘\8=700

\efcode‘\9=700

\efcode‘\A=500

\efcode‘\B=700

\efcode‘\C=700

\efcode‘\D=500

\efcode‘\E=700

\efcode‘\F=700

\efcode‘\G=500

\efcode‘\H=700

\efcode‘\K=700

\efcode‘\M=700

\efcode‘\N=700

\efcode‘\O=500

\efcode‘\P=700

9



\efcode‘\Q=500

\efcode‘\R=700

\efcode‘\S=700

\efcode‘\U=700

\efcode‘\Z=700

\efcode‘\a=700

\efcode‘\b=700

\efcode‘\c=700

\efcode‘\d=700

\efcode‘\e=700

\efcode‘\g=700

\efcode‘\h=700

\efcode‘\k=700

\efcode‘\m=700

\efcode‘\n=700

\efcode‘\o=700

\efcode‘\p=700

\efcode‘\q=700

\efcode‘\s=700

\efcode‘\u=700

\efcode‘\z=700

Using adjusted expansion factors is indicated by SelectGlyphs=yes at the bottom
line of the samples in the fifth set. The values for the limit of expansion are taken
from the fourth set (with settings of font expansion that is becoming visible in some
cases).

Letter spacing

After applying the previous techniques, we found out that even when differences
between letterforms are not recognizable at all, one can still recognize that some lines
are much darker or lighter than others. This has to do with the fact that given a line
with the desired width, our goal is to change word spaces as little as possible. This
happens when all interword spaces are set equal or very close to their natural size. In
order to achieve this, the extra amount of space (the difference between natural line
width and the desired width) must be divided into some other kind of space consuming
entity, like expansion of certain characters or changing letter spacing. Therefore, in
any case the darkness of the line seems to be unchanged, because the proportion of
the total amount of “black strokes” and “white areas” seems to be constant.

Taking the above into consideration in the next steps, we tried not to expand
characters at all, but change the space between adjacent characters instead. This
technique, known as adjustment of character spacing or tracking, is widely used
even though it is not encouraged by many typographers. However, for our purpose,
we think that distributing the extra amount of space between individual characters
(i.e. changing character spacing) is acceptable when applied in very small quantities
and as part of a sophisticated line break algorithm as present in TEX.

To examine this hypothesis we repeated all experiments with font expansion in set
3–5, using the same limits and expansion factors. This time, however, when the cal-
culation for putting the characters on the page has been done, we use non-expanded
characters instead of expanded characters to draw the output. Therefore, each charac-
ter from expanded fonts will be replaced by the corresponding non-expanded character,
followed by a little space (can be either positive or negative) at the right bearing side.
The more a character from a font is expanded during line breaking, the larger the
amount of the space at the right bearing of the character will be. This technique is
indicated by ExpandGlyphs=no at the bottom line in sets 6–8,

10



It is possible even to replace expanded characters by corresponding characters from
another font with smaller expansion, i.e. it is possible to “scale down” the expansion
amount of individual characters after all calculation for line breaking has been done.
Each expandable font has an associated parameter called scale factor, which says how
much expansion of characters from that font should be scaled down. Scale factor
is given in thousandths. In sets 3–5 all fonts have been used with scale factor 1000,
which stands for “full” expansion. On the contrary, the fonts in set 6–8 have been used
with scale factor 0, causing that all expanded glyphs are scaled down to non-expanded
ones (zero expansion). A value of 500 means that if a character has been treated as
expanded by i.e. 2% while breaking lines, in the final output it will be expanded by
only 1%.

During line breaking, the scale factor is not used at all, because pdfTEX does all
calculation with the expanded metrics regardless of the scale factor. Therefore the
scale factor of a font does not influence line breaking, it has effect only on how
individual characters will be drawn after the breakpoints have been found. Sets 6–8
have exactly the same result of line breaking as sets 3–5, including the total demerits
of individual paragraphs.

In sets 6–8 there is no difference between letterforms in individual lines in a page.
However the distortion of text seems to be increased in comparison with sets 3–5. We
consider changing letter space to have more negative influence on readability and
beauty than changing letterforms. For this reason we decided not to make any further
samples with other values of the scale factor.

Demerits comparison

As described above, the goal of TEX line breaking is to divide a paragraph into lines
in such a way that the total demerits is as small as possible. The smaller the total
demerits a paragraph has, the “better” TEX treats the paragraph. In other words, the
criteria how TEX evaluates line breaking is the value of total demerits. In order to
examine whether the applied techniques does help to improve TEX line breaking at all,
we keep track how the total demerits changes for individual paragraphs in each step.

For each sample, we created a table showing how the total demerits of the first
8 paragraphs changed in sequence in sets 1–5. Sets 6–8 have the same total demerits
as set 3–5, so they don’t need to be listed here.

CM Roman at 8pt
1 2 3 4 5 6 7 8

1 32961945 11866820 21463929 15231528 5428036 62106976 22734505 32798450

2 20649021 17293395 24404188 15202590 5810757 85140299 18222047 36845028

3 9926418 7518113 7348730 3635661 3699529 17591719 66673527 19573369

4 1664022 5734599 2860032 2037011 1701044 3934010 11632314 10441436

5 8652650 6812474 5944942 2833829 3159516 13265822 15191508 14847043

11



CM Roman at 10pt
1 2 3 4 5 6 7 8

1 51480729 16351262 61219352 31014102 21555042 14845292 31288136 93734014

2 68072688 7688624 51840565 33994661 22748997 18783697 77452773 111284279

3 9451448 2979202 10719346 1611282 11648977 4968898 20816378 22832668

4 6198947 1811992 2720130 1028823 8421115 24643916 14092901 11301111

5 8161201 2429543 3609299 1391795 10280968 4465918 17904696 17749166

CM Roman at 12pt
1 2 3 4 5 6 7 8

1 27455985 23739375 12809490 3367856 6244656 9202903 13874638 10761008

2 19004489 2669852 10705954 1364531 6655303 8223644 19033739 12776017

3 7662280 174065 933384 503868 1811755 823283 1162904 841764

4 207171 76091 395286 298405 1049397 243728 164617 494488

5 4326643 137892 806170 402116 1441380 616550 670881 665368

CM Sans Serif at 8pt
1 2 3 4 5 6 7 8

1 17060265 5970172 63025143 6589353 50104582 66858091 16728655 59699767

2 18830826 6146405 51056033 6638093 52742491 48355024 18092694 53933110

3 4498520 1677844 10564024 2789277 2397052 14964251 13490005 10511947

4 2759324 227821 1129922 1867162 1557226 6861928 3925343 4935540

5 3740822 555436 5403571 2406392 1997855 12457179 11081478 8802036

CM Sans Serif at 10pt
1 2 3 4 5 6 7 8

1 23373572 11016109 20209877 12965133 24137434 10601297 27529612 40977090

2 31891286 2832377 19190485 529514 24528167 15452207 30896432 50329234

3 4155743 1095327 3824077 182576 752429 753006 14874377 2167549

4 2595845 224278 460530 108259 449649 269542 3447507 565054

5 3535249 391513 1157929 148928 607515 466387 11942516 1406684

CM Sans Serif at 12pt
1 2 3 4 5 6 7 8

1 4915097 1201586 5902683 1773797 10610761 3509219 4112100 5881029

2 5180779 1755625 5981881 1775855 10229894 3984009 5826672 5850458

3 1760025 38092 711236 70273 5567457 219251 960832 917710

4 758632 18937 308280 26899 23116327 57066 473102 182523

5 1502574 34760 494633 61586 4891943 113836 702369 355602

Minion at 8pt
1 2 3 4 5 6 7 8

1 1088621 2431320 2645634 221430 558984 1343846 4649977 2326310

2 1517734 225192 823380 281484 635258 1459725 4651600 2819580

3 485760 95385 203328 151208 126255 372753 2165887 457026

4 391658 76449 157634 131316 107215 237475 1765358 322037

5 512875 97476 207987 152891 127097 394561 2207325 476934

12



Minion at 10pt
1 2 3 4 5 6 7 8

1 3433166 498433 850647 866825 1187328 1214217 1463205 2727425

2 1991498 438201 651771 1142484 1335398 1295794 1726983 2353404

3 116952 80550 170196 590925 433392 213682 599521 269901

4 97964 68415 131832 496409 298456 136589 193567 212727

5 120650 80783 263636 584962 423806 216135 345459 272085

Minion at 12pt
1 2 3 4 5 6 7 8

1 711190 321601 493524 66119 149909 490401 484901 751395

2 775702 336090 415659 68228 197120 558958 805514 880535

3 71658 41299 57896 25296 25892 51674 128026 92174

4 58519 32379 45818 19929 22886 41572 89287 71538

5 73173 40598 58832 26087 26427 53034 130298 102843

Myriad at 8pt
1 2 3 4 5 6 7 8

1 3038531 410191 795345 479000 2096379 1340027 2813763 1988757

2 2290485 382634 839314 561483 1858459 1251748 2216402 1253868

3 81879 77401 254967 250959 826639 206869 496832 222438

4 68420 45169 166787 212180 660122 152409 340572 126957

5 84158 78935 270053 243268 828658 208389 482906 241645

Myriad at 10pt
1 2 3 4 5 6 7 8

1 439940 141412 1383610 1108889 3962678 1083938 3804137 1056041

2 426043 178846 1411259 1323899 3914016 959934 2545765 1097451

3 211626 92388 232689 22615 2039468 134571 438498 295911

4 150559 80116 174603 16365 1694971 71048 294824 210927

5 214961 91531 268783 24388 2055045 139162 437766 301848

Myriad at 12pt
1 2 3 4 5 6 7 8

1 984509 210315 397315 68078 193596 213415 1390396 916878

2 1031217 159440 475628 58856 198906 189304 961489 499023

3 74175 50807 69269 49898 29564 61315 91195 76214

4 45125 40368 55495 21790 10782 42455 65295 54993

5 86806 50961 70384 49211 30392 65154 94903 78116

Palatino at 8pt
1 2 3 4 5 6 7 8

1 10962748 10218286 30554260 9789030 22824637 29270656 14547596 36597253

2 10603045 2380937 22882159 4665403 27116384 33440378 49779147 43125078

3 3356858 1042246 6011245 1409620 1903209 6269031 18768587 8674929

4 417625 676173 1882699 735082 1350905 4392122 4578060 3337301

5 739060 914457 2759121 1151627 1654422 5581451 16089063 5964059

13



Palatino at 10pt
1 2 3 4 5 6 7 8

1 14289306 5039876 27036222 11371553 6919342 28211864 66801793 52985513

2 18409958 5447105 26975473 11685206 7958355 25623877 76668341 44762495

3 1912662 967891 6235247 4944495 693621 13333630 13102104 7919949

4 1220919 599671 1205939 2059779 414773 8172922 6973894 4765055

5 1686932 786073 1548567 4141428 600512 9951608 10422254 6790359

Palatino at 12pt
1 2 3 4 5 6 7 8

1 29631797 3984097 8623401 215090 669750 4338275 16502949 16678749

2 17665073 6074973 7317302 273119 711200 5277127 17207975 17993702

3 8670689 146715 802045 100184 270185 409386 2563446 1497360

4 661673 91314 149294 71760 107617 212487 1388392 483533

5 7396945 124885 678447 86893 209682 350820 1793228 1326187

Helvetica at 8pt
1 2 3 4 5 6 7 8

1 23349628 3835003 26633465 15724044 7446470 19673533 12324121 42290333

2 17932830 3993801 35692490 7607037 8242835 13570147 14387186 51022501

3 2630397 1257535 3849759 108370 376470 6128726 15401971 5832377

4 709864 748351 1706956 58509 248508 4408026 6237467 2089158

5 2286100 1060654 2497222 90260 319547 5489705 8046918 3498542

Helvetica at 10pt
1 2 3 4 5 6 7 8

1 14499298 6664853 21491275 303298 2493481 23613219 49109211 31012167

2 14246523 7246356 26108371 746848 2311044 23850290 63531794 29174492

3 1057444 3356738 2469114 287715 678468 13207014 7012584 7076586

4 673359 973108 1164525 172720 413148 1329194 4062876 2318725

5 916798 2908297 2075792 242087 577702 11939761 6198727 5819144

Helvetica at 12pt
1 2 3 4 5 6 7 8

1 18176601 4943074 5825636 897222 2330404 3140966 14186963 9505728

2 18574661 1110776 2890829 1016422 2350857 2014190 15417016 6919577

3 8644904 168558 507415 372125 737252 470536 2369455 400669

4 5870989 124498 155594 171744 420760 208942 407985 158978

5 7619280 151361 393085 218404 594224 372252 2019615 268057

As it can be seen from the tables, the total demerits for each paragraph changed
in all steps in a very similar way.

1. As one could expect, applying marginal kerning doesn’t change the total de-
merits very much, even though the breakpoints can be found in a different
way.

14



2. Set 3 has much smaller total demerits, as the word spaces need not to be
stretched or shrunk as much as in set 1 and 2.

3. Set 4 has smaller total demerits in comparison with set 3, since the more a font
can be expanded, the less the word spaces have to be stretched or shrunk.

4. Set 5 has larger total demerits than set 4 even though the value of font expansion
is the same, because in set 5 some characters can be expanded by smaller
amounts than in set 4. The total character stretchability and shrinkability is
smaller, which leads to larger badness of lines and therefore larger total demerits.

Remarks

To draw conclusions is not easy, since people tend to value the quality of a typeset
document differently. While top quality typographers seem to agree on aspects like
optimal grayness and what kind of manipulations are permitted and what not, the
average desk top publisher is very tolerant in applying generous spacing and seemingly
arbitrary stretching of glyphs and kerns to achieve his personal objectives. Since the
focus of this work is on the computer science side of the problem, we leave the more
subjective conclusions to the ergonomist. On the other hand, we think it is important
to summarize our remarks during the experiments and ask the experts to judge of our
opinions. We consider it to be necessary to get feedback on our experimentation as
well as suggestions for further development.

1. Marginal kerning does not influence interword spacing and does not damage the
legibility of composed text at all. It seems to be the most visible improvement
and moreover, it can be used without any extra setup. Therefore it is safe (and
good) to apply this technique to paragraph composition.

2. Font expansion does help to make word spaces more even. On the other hand it
also impairs text readability. Limits of font expansion depend on many factors
and must be chosen very carefully for individual fonts. Very roughly speaking,
the limit of font expansion shouldn’t be more than 50 for Multiple Master fonts
and 30 for METAFONT as well as Type 1 fonts. Expansion of selected glyphs
may help to decrease the visual effect of font expansion (the difference between
glyphs from a font expanded at various values).

3. Even word spaces is not the only factor to uniform grayness of composed text,
since the darkness of a line depends on the letterforms of characters in the line
as well as letter space. Moreover, letter space seems to be more sensitive to
darkness and legibility than letterforms. Therefore we think that in order to
get better results, a program which can do skillful kerning on the fly like the
kf-program is a must.

15



4. Even word spaces do not guarantee that there will be no rivers in composed
paragraphs. Rivers can also appear in cases when word spaces are set to be
very even, because rivers are formed rather by position than size or uniformity
of word spaces. Therefore it would be very useful to integrate a “river detector”
into the mechanism of line breaking.

5. Darkness of a line is depending not only on word spaces, but also on darkness of
individual letterforms in the line. Moreover, equal word spaces on a line need not
to look optically uniform because of the white area in side bearing of characters
adjacent to the word spaces. For this reason, some fonts might contain kerning
pairs between the character space and other characters. Although these kerns
could be used with TEX, in practice they are often ignored.2

6. In order to achieve more uniform grayness of text, we think that it might be
worth to introduce another model of badness calculation for line breaking.
Instead of using the measure of stretching or shrinking word spaces in a line,
the darkness of the line could be used as the main factor for line breaking. The
darkness of a line can be calculated according to

(a) the number of word spaces in the line,

(b) the measure of stretching or shrinking word spaces in the line,

(c) the darkness of individual characters in the line,

(d) the context of characters and word spaces in the line.

Darkness of a character could be calculated on the fly, or better an external
program can be called to generate darkness for all characters from a font ahead.
This of course could be influenced by font expansion if the font is “expandable”.
The darkness of a line can be also altered by skillful kerning of a group of
words, which should take the above thoughts into consideration as well. Like
the kf-program, adjustment should be done not only for word spaces but also
for letter spaces.

Then given a particular line, the cost of the line for paragraph breaking is
depending on the difference between the darkness of the line and the “average
darkness”. The goal of paragraph composition would be to minimize the total
differences of darkness over all individual lines of a paragraph. In other words,
the line breaking algorithm would try to make all lines of a paragraph have
more uniform darkness instead of interword spacing.

2It has to do with the concept of TEX that it does not use the character space at all. Spaces from
input are replaced by glue with specifications read from the current font. However it is possible to kern
a character adjacent to a space using the so-called boundary character.

16



We think that the mechanism described above would be realizable in pdfTEX if
a module equivalent to the kf-program is available. At the moment, however,
implementing such a module is out of scope of our work.

Conclusions

We are not experts in typography and therefore we do not dare to claim that the
techniques we applied in our experiments improve things at all. The result of smaller
total demerits of line breaking is not enough to prove that the output looks better.
Our main goal in this paper, however, is to describe what we are experimenting with
and what is possible to do with our prototype. We would like to get comments on
our experimentation, as well as to invite people who are interested in this topic to
get involved. We consider help from typographic experts to be the key for further
development of our work.

17


