
The LGrind package∗

Various Artists

2002/01/28

Abstract

The LGrind package is a pretty printer for source code. It evolved from
vgrind, supported TEX (tgrind) and LATEX and now finally LATEX 2ε, in par-
ticular NFSS.

1 Introduction

1.1 What is it?
The LGrind package consists of three files:

• lgrind or lgrind.exe is the executable. It will convert an LATEX-File with
embedded listings or a source code file into a lot of macro-calls.

• lgrind.sty provides the environments and macros to make the produced
mess readable.

• lgrindef contains the information needed to tell keywords from comments,
comments from strings . . .

1.2 Who is to blame?
LGrind is not the work of a single one. The program is based on vgrind by Dave
Presotto & William Joy of UC Berkeley.

Van Jacobson wrote tgrind for TEX. Jerry Leichter of Yale University modified
it for LATEX. George V. Reilly of Brown University changed the name to lgrind
and added the program-text-within-comments and @-within-LATEX features, and
finally Michael Piefel of the Humboldt-University Berlin converted it to work under
LATEX 2ε, i. e. with NFSS, and improved the documentation.

However, there have been many contributors who supported the development;
in particular the range of supported languages is mainly due to them. Unfortu-
nately I do not know all of them, but my thanks go to everybody. A special Thank
You to Torsten Schütze for his OS/2 support and many and various hints.

∗This file has version number v3.67, last revised 2002/01/28.

1

2 LGrind – grind nice program listings
lgrind [-s] [-e] [-i] [-o 〈file 〉] [-n] [-c] [-t 〈width〉] [-h 〈header〉]

[-v 〈varfile〉] [-d[!] 〈description file〉] [-l〈language〉] [〈name〉|-]

LGrind processes its input file(s) and writes the result to standard output. This
output can be saved for later editing, inclusion in a larger document, etc.

The options are:
-e process a LATEX-file for embedded text.
-i process for inclusion in a LATEX-document.
- take input from standard input.
-o redirect output.
-n don’t boldface keywords.
-a don’t treat @, etc. specially in LATEX.
-c don’t treat @, etc. specially in comments.
-t change tab width (default 8).
-h specifies text to go on the left side of every output page (default is none).
-v take variable substitution strings from file.
-d specifies the language definitions file.
-d! same as -d, except the change is permanent (modifies executable)
-l specifies the language to use.
-s shows a list of currently known languages.
The standard for LGrind is to take its input from the file given on the command

line and write on standard output. You can change this behaviour with the options
- and -o, respectively. Please note that as soon as a file is detected on the command
line (either its name or a -) it is processed with the options then in effect, thus
allowing to give multiple files on one line with possibly multiple targets.

If neither -e nor -i are specified, a complete LATEX-file is produced. When no
language is given on the command line, LGrind tries to figure out the language
via the extension of the file. A table of extensions and their languages is in the
definition file. If the extension is unknown, C is chosen as a default.

When LGrind is started without any parameters, it will show a short help screen.
The same happens when the appropriate option is given, but this is implementation
dependent (usually what is common for the operation system, the default for DOS
is -? and for Unix --help).

The position of the lgrindef-file is determined by giving it on the command
line (highest priority), by defining an environment variable LGRINDEF, and by the
position fixed in LGrinds executable. The latter can be changed by using -d! and
then using the newly created file as the new LGrind.

The languages which are currently known are stored in the language defini-
tion file; their number increases more or less rapidly. At the time of writing the
languages in the table below are part of the distribution.

2.1 Operation modes
There are three modes of operation: stand-alone, include and embedded.

Use lgrind -ly bary.y > bary.tex (or lgrind -o bary.tex bary.y) to
produce a stand-alone LATEX-file from, say, a Yacc file. This results in a document
which is formatted using Piet van Oostrum’s fancyhdr.sty to make the headers and

2

Ada LATEXa RATFOR
Asm LDL RLaBb

Asm68 Lex Russell
BASICa Linda SASc

Batchb Lisp (Emacs) Schemed

C MASMa sh
C++ MATLABa SICStusb

csh MLd src
FORTRAN Mercury SQL
Gnuplote model Tcl/Tkf

Icon Modula2 VisualBasica

IDLg Pascal VMSasm
ISP PERL yacc
Java PostScript
Kimwitu++ PROLOG

aJohn Leis, University of Southern Queensland, leis@usq.edu.au.
bJim Green, National Physical Laboratory, jjg1@cise.npl.co.uk
cMichael Friendly, friendly@hotspur.psych.yorku.ca
dNeale Pickett, npickett@watchguard.com
eDenis Petrovic, Denis.Petrovic@public.srce.hr
fAlexander Bednarz, Forsch.-zentrum Jülich, A.Bednarz@kfa-juelich.de
gDiego Berrueta, diego@berrueta.net

footers. BTW: You really should have this package. It’s marvellous. But of course
you can change the layout to your likings by editing the lgrindef-file.

To include a C-file named foo.c into your LATEX-document, first give the
command: lgrind -i -lc foo.c > foo.tex This will generate foo.tex, which
will have the pretty-printed version of foo.c. Then include lgrind.sty as you
include any other package, namely with \usepackage{lgrind} at the beginning
of your LATEX-document. Having done this, within the document you can include
foo.tex using \lagrind and \lgrindfile described in the next section.

Finally, for the embedded (and probably most powerful) mode, when you have a
LATEX-file with embedded program listings, you can preprocess it with a command
like: lgrind -e pretty-sources.lg > even-prettier-sources.tex and get a
new LATEX-file which you then feed into LATEX. Commands you can use within
embedded texts are described below.

3 Preparing documents

3.1 Using the LGrind.sty-file
The LGrind package is included via the \usepackage command. You have to in-
clude it in your document preamble when you want to include listings and when
using embedded mode. It is done automatically for stand-alone listings. Currently
the following options are supported:

procnames prints the names of starting and, if nested procedures are allowed,
continued procedures in the margin. Don’t make the margin too small, or
don’t make the names too long . . .

3

noprocindex do not put found procedure beginnings in the index

noindent cancels the indentation. Useful for long listings or listings within their
own sections.

fussy lets LATEX print all overfull hboxes. The default is to suppress this for about
a tenth of an inch.

norules lets LGrind suppress the surrounding rules for included material (using
\lagrind and \lgrindfile).

nolineno doesn’t print line numbers.1

lineno5 prints line numbers every 5 lines. The default is 10.

leftno print line numbers in the left margin. Default is the right.

3.2 Stand-alone and included listings
After processing a source code file with LGrind without the -e or -i options you get
a LATEX-file which can be directly compiled.

When using -i LGrind will produce a file which can be included with the fol-
lowing macros:

The first is \lgrindfile{〈file〉}, which will simply include the file 〈file〉 at\lgrindfile
that point of text, and will draw horizontal lines before and after the listing.

The macro \lagrind[〈float〉]{〈file〉}{〈caption〉}{〈label〉} will put the listing\lagrind
also within a figure environment, using the 〈float〉 options (h, t, b or p), 〈caption〉
and 〈label〉 you gave. The starred form of \lagrind will also use the starred
figure*.

Note that floats cannot be longer than one page, so you should only use
\lagrind for short fragments, longer pieces should use \lgrindfile (which is
non-floating).

3.3 Embedded programs within a LATEX-file
You don’t have to process every single source file with LGrind, only to include it in
your document. Within the text of your LATEX-file, you can mark groups of lines
as program code, either text- or display-style to be specific. You can use several
commands for controlling the inclusion of source code into your LATEX-file.

Write your text, don’t forget to include LGrind.sty. Use the following com-
mands. You can ‘debug’ your text without including the lengthy listings. As a
last step (but one), you process your file with LGrind and its option -e, which will
provide you with your final LATEX source file.

The commands are similar to the math environments. With %(and %) you%(%)
obtain code in text style, i. e. in the same line. Surrounding the text with @ is a@ @
shorthand.

The expression
%(

1To be exact, prints line numbers every 50,000 lines. But source code should never get so long
in a single file – that’s over 3 MByte! If you really want no numbers, set \LGnuminterval to zero;
then you won’t get procedure names, either.

4

a + 3
%)
produces 10.

produces the same as The expression @a + 3@ produces 10. The output will
have ‘a + 3’ set as a program.

As with math, the square bracket equivalent produces display style listings,%[%]
i. e. indented text on an own line.

As long listings tend not to fit on one page, there will be page breaks inserted.%*
Since page breaks can considerably affect readability there will be none at all
unless you insert lines consisting of just %*. Pages will end here and only here, but
not necessarily here. (That is, you allow (or recommend) a page break. It will be
taken if needed.)

You can insert your own code by using a line starting with %= in the program%=
text. Whatever you enter after that is left in the output, exactly as you typed it. It
will be executed in a strange environment, so doing anything fancy is very tricky.
A macro, \Line, is provided to help you do simple things. For example,\Line

%[
%=\Line{________\vdots}

a = 1;
%]

produces:
...
a = 1;

(Within the program text, _ is active and expands to a fixed-width space. A
whole bunch of macros are also defined. If you understand how LGrind sets lines
up, you can replace the 8 _’s with a call to \Tab—but I’ll let you hang yourself
on that one.)

The %<〈file〉 command includes 〈file〉 as a program listing in your document.%<
Before inclusion it will be pretty printed. This is the almost the same as LGrinding
the 〈file〉 separately and with -i and including it via \lgrindfile, only that it’s
simpler for you. With %!〈command〉 the input is taken from a shell command.%!

While you can specify the language used on the command line, this does not
suffice for mixed-language programs (or projects). The command %#〈language〉%#
provides you a means to change the language on the fly wherever you want.

The shorthand @ is very useful, and since @ is not usable in normal LATEX text%@
there is no conflict. If, however, you use @ in your text (after \makeatletter) the
result produced by LGrind is not satisfactory. To disable the shorthand you can
use a command line option, or locally %@-. Using %@+ will switch it on again.

Important rules:

• % and the following character must be the first two characters on the line to
be recognized.

• Put nothing on the line after the % and the key character. If you do that,
LGrind will provide a default environment that will produce an \hbox for
%()%, and a \vbox for %[%]. If you put stuff on the line, LGrind assumes
you want to control the format completely. Doing this requires understanding
exactly what the code LGrind produces is doing. (Sometimes I’m not sure I
do!)

5

• %) and %] are simply ignored outside of a code group, but any extra %(or
%[produces a warning, so a missing %) or %] is usually caught.

• Remember that the code between %(/%[and %)/%] is put into a single box.
Expect the usual problems with long boxes! Use %* if needed.

3.4 Formatting your source code
Well, LGrind uses a different font for comments. This has as a consequence that
functions you refer to are typeset differently in the program and in the comments,
which is unsatisfactory. And, wouldn’t it be great to use LATEX commands to
produce e. g. ‘©’?

The lgrindef-file defines environments for exactly these purposes. They are
usually defined as follows, but of course it is possible to use other strings if the
standard collides with the syntax of the language in question.

Text which is surrounded by %% is directly passed to LATEX, a pair of%% %%
curled braces around it. So the copyright symbol would be produced with
%%\copyright%%. The %$〈text〉$% works much the same, except that 〈text〉 is set%$ $%
in math mode.

When LGrind discovers a line that contains only a comment beginning right at
the start of the line and ending at the very end (no spaces), containing only LATEX
text as in the environment described above, the line will be copied verbatim into
the resulting LATEX document, with a newline appended. This allows (e. g., in C):

/*%%\section{Main program}%%*/
int main()
{

//%%\subsection{Variables}%%
int a;

The underscore which is normally the subscripting operator in math mode is
used internally in LGrind. You can still use the command \sb instead (and \sp for
superscripts).

In %|〈text〉|% a kind of verbatim environment is provided. 〈Text〉 is typeset in%| |%
typewriter.

Program text within a comment is surrounded by @. The text is processed@ @
exactly as if it wasn’t a comment. To produce an at-sign you have to use @@.

3.5 Greater control. . .
Many things are controllable by re-defining various macros. You can change what
fonts LGrind will use for various kinds of things, how much it indents the output,
whether it adds line numbers, and if so at what interval it prints them and whether
it sticks them on the left or right, and so on. This stuff is all described below in the
code section, though probably not very well. The default settings produce output
that looks reasonable to me, though I can’t say I’m ecstatic about it. Doing a
really good job would require defining some special fonts.

Nonetheless as an example my own private font setup. After having defined
a font family called ttp (for typewriter proportional), using Boton (a commercial
font which has a nice ‘code look’ to it), I define:

\def\CMfont{\ttpfamily\itshape}

6

\def\KWfont{\ttpfamily\bfseries}
\def\VRfont{\ttpfamily}
\def\BGfont{\ttpfamily}

You can put these redefinitions in the preamble of your LATEX-file when using
embedded and included mode; for stand-alone listings you have to put them into
the lgrindef-file. This will change fonts for all modes.

3.6 Error messages
The output of LGrind always contains exactly one output line for each input line.
Hence, you can look up line numbers in TEX error messages in your original file,
rather than in the LGrinded (LGround?) file. (Of course, if the problem is in the
LGrind output. . .)

3.7 Variable substitution
LGrind usually prints variables exactly the way they appear in the source code.
However, very often one uses names for variables which really denote symbols and
have special formatting, only that the input alphabet of the target language does
of course not allow anything fancier than plain ASCII.

I find myself using greek variables very often, because they are used in the prob-
lem domain. So there is a ‘delta’ which really should be ‘δ’, there is a ‘gamma_1’
for ‘γ1’ and so forth. LG allows you to change those names back to what you desire
by use of a variable substution file (using option -v).

This file is very simple, and so is its parser. There is one substitution per line,
giving the original name, an equality sign, and the text replacing the original:

delta=δ
gamma_1=$\gamma\sb1$

You can do everything you want to here. Remember that usually variable names
are set upright and not in math mode. Therefore don’t forget the dollar-sign, and
use \sb instead of _ (see section 3.4).

4 The lgrindef-file
The lgrindef-file is LGrind’s language definition data base. It is here where LGrind
learns what are keywords, what comments, where are functions, how to distinguish
plain comments from LATEX-commands etc.

The first field is just the language name (and any variants of it). Thus the C
language could be specified to LGrind as ‘c’ or ‘C’.

4.1 Capabilities
Capabilities are of two types: Boolean capabilities which indicate that the language
has some particular feature and string capabilities which give a regular expression
or keyword list.

7

Entries may continue onto multiple lines by giving a \ as the last character of
a line. Lines starting with # are comments.

The following table names and describes each capability.

ab Regular expression for the start of an alternate form comment

ae Regular expression for the end of an alternate form comment

bb Regular expression for the start of a block

be Regular expression for the end of a lexical block

cb Regular expression for the start of a comment

ce Regular expression for the end of a comment

cf (Boolean) Use specialized routine for detecting C functions

id String giving characters other than letters and digits that may legally occur
in identifiers (default ‘_’)

kw A list of keywords separated by spaces

lb Regular expression for the start of a character constant

le Regular expression for the end of a character constant

mb Regular expression for the start of TEX math within a comment

me Regular expression for the end of TEX math within a comment

np Regular expression for a line that does not contain the start of a procedure
(e. g. prototypes)

oc (Boolean) Present means upper and lower case are equivalent

pb Regular expression for start of a procedure

pl (Boolean) Procedure definitions are constrained to the lexical level matched
by the ‘px’ capability

px A match for this regular expression indicates that procedure definitions may
occur at the next lexical level. Useful for lisp-like languages in which proce-
dure definitions occur as subexpressions of defuns.

rb Regular expression for the start of block outside the actual code.2

sb Regular expression for the start of a string

se Regular expression for the end of a string

tb Regular expression for the start of TEX text within a comment

tc (String) Use the named language entry as a continuation of the current one
2I included this especially for the objects and records in Pascal and Modula-2. They end

(with the <be> expression), but shouldn’t have any influence on the surrounding procedure. When
defining record as normal block start, its end ends the procedure. Workaround: Make record
itself a procedure start. But that prints a continuation mark when procnames is on.

8

te Regular expression for the end of TEX text within a comment

tl (Boolean) Present means procedures are only defined at the top lexical level

vb Regular expression for the start of typewriter text within a comment

ve Regular expression for the end of typewriter text within a comment

zb Regular expression for the start of program text within a comment

ze Regular expression for the end of program text within a comment

4.2 Regular Expressions
lgrindef uses regular expressions similar to those of ex and lex. The characters
‘^’, ‘$’, ‘|’, ‘:’, stopzone VIM syncing and ‘\’ are reserved characters and must be
‘quoted’ with a preceding \ if they are to be included as normal characters.

The meta-symbols and their meanings are:

$ The end of a line

ˆ The beginning of a line

\d A delimiter (space, tab, newline, start of line)

\a Matches any string of symbols (like ‘.*’ in lex)

\p Matches any identifier. In a procedure definition (the ‘pb’ capability) the string
that matches this symbol is used as the procedure name.

() Grouping

| Alternation

? Last item is optional

\e Preceding any string means that the string will not match an input string if
the input string is preceded by an escape character (\). This is typically
used for languages (like C) that can include the string delimiter in a string
by escaping it.

Unlike other regular expressions in the system, these match words and not
characters. Hence something like ‘(tramp|steamer)flies?’ would match ‘tramp’,
‘steamer’, ‘trampflies’, or ‘steamerflies’. Contrary to some forms of regular expres-
sions, lgrindef alternation binds very tightly. Grouping parentheses are likely to
be necessary in expressions involving alternation.

4.3 Keyword List
The keyword list is just a list of keywords in the language separated by spaces. If
the ‘oc’ boolean is specified, indicating that upper and lower case are equivalent,
then all the keywords should be specified in lower case.

9

4.4 Configuration options
In addition to the language definitions the lgrindef-file contains various config-
uration data. When the entries do not exist, default values are used:

firstpreamble is the (LATEX-)text that comes at the beginning of an stand-alone
file created by LGrind from source code (it must contain \begin{document}
somewhere).

postamble is the (LATEX-)text that comes at the end of an stand-alone file (and
must contain \end{document}). This is the place to put a \printindex if
you wish so (don’t forget \usepackage{makeidx} and \makeindex in the
preamble).

filepreamble is inserted before every processed source file in a stand-alone LATEX-
file. In these two preambles you can use \f, which will be substituted by the
current input file (e. g. to put it into the header).

configuration follows the opening of the lgrind-environment. This is used for
redefining the macros used within it, e. g. the fonts or the width of a space
(the \@ts unit).

chartab is a list of characters that will be substituted by a LATEX-string. This is
useful when you do (or can) not use any of the fancy methods to persuade
LATEX into using your extended ASCII-characters. The format is a two digit
hex number (the ASCII- (or whatever) value of the character), an equal
sign, and the according LATEX-string, ended with a colon. You have to escape
certain characters (like the backslash). So if you, e. g., have IBM ASCII code
page 437 input and use the german-package, you can have your ä using 84="a.
Note that the substituting string must contain more than one character;
otherwise it will be ignored. To print a ‘b’ instead of an ‘a’ you can use
61={b}.

5 The Implementation of LGrind.sty
1 〈∗package〉

\LGnuminterval
\lc@unt
\ln@xt

The counter \LGnuminterval represents the line numbering interval. Its default is
10, it is set by two options and can be changed everywhere you want to. \lc@unt
counts the current line, \ln@xt contains the next line to get numbered.

2 \newcount\lc@unt
3 \newcount\ln@xt
4 \newcount\LGnuminterval
5 \LGnuminterval=10
6 \DeclareOption{nolineno}{\LGnuminterval=50000}
7 \DeclareOption{lineno5}{\LGnuminterval=5}

\LGleftnum Line numbers are usually on the right. By setting LGleftnum to true or false this
behaviour can be altered.

8 \newif\ifLGleftnum
9 \DeclareOption{leftno}{\LGleftnumtrue}

10

\LGindent \LGindent is the indentation for all display style listing lines.
10 \newskip\LGindent
11 \LGindent=1.6667\parindent
12 \DeclareOption{noindent}{\LGindent=0pt}

\LGnorules Normally LGrind puts rules around everything that is included (via \lagrind and
\lgrindfile), this can be changed with an option.
13 \newif\ifLGnorules
14 \DeclareOption{norules}{\LGnorulestrue}

\LGsloppy \LGsloppy is the amount that a horizontal box may be overfull without getting
a warning from LATEX. This is useful since there are often many boxes which are
overfull by only a few points, and this does not really show since listings are very
ragged.
15 \newlength{\LGsloppy}
16 \setlength{\LGsloppy}{7.2pt}
17 \DeclareOption{fussy}{\LGsloppy=0pt}

\Proc
\ProcCont

There’s a \Proc{〈ProcName〉} at the start of each procedure. If the language
allows nested procedures (e. g. Pascal), there will be a \ProcCont{〈ProcName〉}
at the end of each inner procedure. (In this case, 〈ProcName〉 is the name of the
outer procedure. I. e., \ProcCont marks the continuation of 〈ProcName〉).

\DefaultProc
\DefaultProcCont

Default is not to do anything with the name. Optionally the names are printed in
the same margin as the line numbers. The name is put into a box which will be
output whenever it is not empty.

18 \newcommand{\DefaultProc}{\@gobble}
19 \newcommand{\DefaultProcCont}{\@gobble}
20 \DeclareOption{procnames}{
21 \renewcommand{\DefaultProc}[1]{\renewcommand{\Procname}{#1}%
22 \global\setbox\procbox=\hbox{\PNsize #1}}
23 \renewcommand{\DefaultProcCont}[1]{\renewcommand\Procname{#1}
24 \global\setbox\procbox=\hbox{\PNsize\dots #1}}}
25 \newbox\procbox
26 \newcommand{\Procname}{}

\ifLGnoprocindex

27 \newif\ifLGnoprocindex
28 \DeclareOption{noprocindex}{\LGnoprocindextrue}

End of initialization, execute any options.
29 \ProcessOptions

\BGfont
\CMfont
\NOfont
\KWfont
\STfont
\TTfont
\VRfont
\PNsize
\LGsize

\LGfsize

These are the fonts and sizes for background (everything that doesn’t fit else-
where), comments, numbers, keywords, strings, verbatim text, variables, the
procedure names in the margins, displayed code (%[]%), and included code
(\lgrindfile and \lagrind), respectively. Note that the suffixes ‘font’ and ‘size’
have been chosen solely for the author’s intention; you can do anything you want,
e. g. \tiny comments. You have to use, however, font changes which don’t require
an argument.

11

30 \def\BGfont{\sffamily}
31 \def\CMfont{\rmfamily\itshape}
32 \def\NOfont{\sffamily}
33 \def\KWfont{\rmfamily\bfseries}
34 \def\STfont{\ttfamily}
35 \def\TTfont{\ttfamily\upshape}
36 \def\VRfont{\rmfamily}
37 \def\PNsize{\BGfont\small}
38 \def\LGsize{\small}
39 \def\LGfsize{\footnotesize}

\ifLGinline
\ifLGd@fault

\LGbegin
\LGend

The flag LGinline is true for in-line code. \LGbegin and \LGend are default com-
mands to open and close a code example and use it to perform certain ops de-
pending whether we’re in-line or display style.\LGend is a no-op unless \LGbegin
(where LGd@fault is set true) was executed, so you can provide explicit open code
on the %[or %(line without providing any special code on the matching %] or %)
line.
40 \newif\ifLGinline
41 \newif\ifLGd@fault
42 \def\LGbegin{\ifLGinline$\hbox\else$$\vbox\fi\bgroup\LGd@faulttrue}
43 \def\LGend{\ifLGd@fault\egroup\ifLGinline$\else$$\fi\LGd@faultfalse\fi}

stopzone VIM syncing

\ifc@omment
\ifstr@ng

These two conditions indicate if we are setting a comment or maybe a string
constant, respectively.
44 \newif\ifc@mment
45 \newif\ifstr@ng

\ifright@ To get decent quotes (opening and closing) within comments, we remember
whether the next one is going to be ‘“’ or, if true, ‘” ’.
46 \newif\ifright@

\ls@far
\tb@x

\TBw@d

These three are all for the sake of tabbing. \ls@far stores the “line so far”. The
tabwidth goes in \TBw@d, whilst \tb@x is merely a temporary variable for \Tab
and setting \@ts.
47 \newbox\ls@far
48 \newbox\tb@x
49 \newdimen\TBw@d

The underscore marks a point where the pre-processor wants a fixed-width space
(of width \@ts).
50 \newdimen\@ts
51 {\catcode‘_=\active \gdef\@setunder{\let_=\sp@ce}}

\lgrindhead
\lgrindfilename
\lgrindfilesize
\lgrindmodyear

\lgrindmodmonth
\lgrindmodday

\lgrindmodtime

We pollute the global namspace once more with these macros, for when they are
used in the headers or footers, their values must still be known. Therefore they
cannot be local to the lgrind environment.
52 \newcommand{\lgrindhead}{}
53 \newcommand{\lgrindfilename}{}\newcommand{\lgrindfilesize}{}
54 \newcommand{\lgrindmodyear}{}\newcommand{\lgrindmodmonth}{}
55 \newcommand{\lgrindmodday}{}\newcommand{\lgrindmodtime}{}

12

lgrind This is the environment that eventually defines all necessary macros for formatting.
All LGrinded text goes into such an environment, no matter if directly so or from
within another one. It takes one optional argument, the line number.
56 \newenvironment{lgrind}[1][1]{%

\Line The \Line macro is provided for use with %= in embedded listings. It’s just there
to hide the actual structure of this, for nobody really wants to know anyway.
57 \def\Line##1{\L{\LB{##1}}}%

\Head
\File

The next are primarily meant for stand-alone listings. \Head and \File are in-
serted by LGrind, they define macros that contain a user-specified string (the
header option -h), the name, size and modification time of the processed file.
These can then be used e. g. in the headers and footers.
58 \newcommand{\Head}[1]{\gdef\lgrindhead{##1}}%
59 \newcommand{\File}[6]{\gdef\lgrindfilename{##1}\message{(LGround: ##1)}%
60 \gdef\lgrindmodyear{##2}\gdef\lgrindmodmonth{##3}%
61 \gdef\lgrindmodday{##4}\gdef\lgrindmodtime{##5}%
62 \gdef\lgrindfilesize{##6}}%

The \Procs now get what was specified for them in the options section.
63 \let\Proc=\DefaultProc%
64 \let\ProcCont=\DefaultProcCont%
65 \ifLGnoprocindex%
66 \let\index\@gobble%
67 \fi%

We set a \hfuzz to prevent some of the lesser overfull hbox warnings.
68 \hfuzz=\LGsloppy%

\NewPage Each formfeed in the input is replaced by a \NewPage macro. If you really want a
page break here, define this as \vfill\eject.
69 \def\NewPage{\filbreak\bigskip}%

\L Each line of displayed program text is enclosed by a \L{. . . }. We turn each line
into an hbox. Firstly we look whether we are in-line. Every \LGnuminterval lines
we output a small line number in past the margin.
70 \ifLGinline%
71 \def\L##1{\setbox\ls@far\null{\CF\strut##1}\ignorespaces}%

\r@ghtlno
\l@ftlno

Things get more difficult for display style listings. Here we set \r@ghtlno and
\l@ftlno to no-ops, only to redefine them shortly after.
72 \else%
73 \let\r@ghtlno\relax\let\l@ftlno\relax%
74 \ifnum\LGnuminterval>\z@%
75 \ifLGleftnum%

If there was a procedure name somewhere, \procbox is not empty and thus ready
to be printed. Otherwise we test \lc@unt against \ln@ext to determine whether
or not to print a line number.
76 \def\l@ftlno{\ifnum\lc@unt>\ln@xt%
77 \global\advance\ln@xt by\LGnuminterval%
78 \llap{{\normalfont\scriptsize\the\lc@unt\quad}}\fi}%
79 \def\r@ghtlno{\rlap{\enspace\box\procbox}}%

13

And once again when the line number is meant to be on the right.
80 \else%
81 \def\r@ghtlno{\ifnum\lc@unt>\ln@xt%
82 \global\advance\ln@xt by\LGnuminterval%
83 \rlap{{\normalfont\scriptsize\enspace\the\lc@unt%
84 \enspace\box\procbox}}%
85 \else\rlap{\enspace\box\procbox}\fi}%
86 \fi%
87 \fi%

\lc@unt is incremented and everything is squeezed into a \hbox.
88 \def\L##1{\@@par\setbox\ls@far=\null\strut%
89 \global\advance\lc@unt by1%
90 \hbox to \linewidth{\hskip\LGindent\l@ftlno ##1\egroup%
91 \hfil\r@ghtlno}%
92 \ignorespaces}%
93 \fi%

The initialization of \lc@unt and \ln@xt. Every lgrind-environment starts over
unless given a line number as argument.
94 \lc@unt=#1\advance\lc@unt by-1%
95 \ln@xt=\LGnuminterval\advance\ln@xt by-1%
96 \loop\ifnum\lc@unt>\ln@xt\advance\ln@xt by\LGnuminterval\repeat%

\LB
\Tab

The following weirdness is to deal with tabs. “Pieces” of a line between tabs
are output as \LB{. . . }. E. g., a line with a tab at column 16 would be output as
\LB{xxx}\Tab{16}\LB{yyy}. (Actually, to reduce the number of characters in the
.tex file the \Tab macro supplies the 2nd & subsequent \LBs.) We accumulate the
\LB stuff in an \hbox. When we see a \Tab, we grab this hbox (using \lastbox)
and turn it into a box that extends to the tab position. We stash this box in
\ls@far & stick it on in front of the next piece of the line. (There must be a
better way of doing tabs but I’m not enough of a TEXwizard to come up with
it. Suggestions would be appreciated. Oh, well, this comment’s been in here for a
decade. I don’t believe in Santa Claus.)
97 \def\LB{\hbox\bgroup\bgroup\box\ls@far\CF\let\next=}%
98 \def\Tab##1{\egroup\setbox\tb@x=\lastbox\TBw@d=\wd\tb@x%
99 \advance\TBw@d by 1\@ts\ifdim\TBw@d>##1\@ts%

100 \setbox\ls@far=\hbox{\box\ls@far \box\tb@x \sp@ce}\else%
101 \setbox\ls@far=\hbox to ##1\@ts{\box\ls@far \box\tb@x \hfil}\fi\LB}%

A normal space is too thin for code listings. We make spaces & tabs be in \@ts
units, which for displays are 80 % the width of a “0” in the typewriter font. For
inline stuff, on the other hand, we prefer a somewhat smaller space – actually, the
same size as normal inter-word spaces – to help make the included stuff look like
a unit.

102 \ifLGinline\def\sp@ce{{\hskip .3333em}}%
103 \else \setbox\tb@x=\hbox{\texttt{0}}%
104 \@ts=0.8\wd\tb@x \def\sp@ce{{\hskip 1\@ts}}\fi%
105 \catcode‘_=\active \@setunder%

\CF
\N
\K
\V

\ic@r
\C

\CE
\S

\SE

Font changing. Since we are usually changing the font inside of a \LB macro, we
remember the current font in \CF & stick a \CF at the start of each new box.

14

Also, the characters “"” and “’” behave differently in comments than in code,
and others behave differently in strings than in code.
\N is for numbers, \K marks keywords, \V variables, \C and \CE surround com-
ments, \S and \SE strings. \ic@r inserts an optional \/.

106 \def\CF{\ifc@mment\CMfont\else\ifstr@ng\STfont\fi\fi}%
107 \def\N##1{{\NOfont ##1}\global\futurelet\next\ic@r}%
108 \def\K##1{{\KWfont ##1}\global\futurelet\next\ic@r}%
109 \def\V##1{{\VRfont ##1}\global\futurelet\next\ic@r}%
110 \def\ic@r{\let\@tempa\/\ifx.\next\let\@tempa\relax%
111 \else\ifx,\next\let\@tempa\relax\fi\fi\@tempa}%
112 \def\C{\egroup\bgroup\CMfont \global\c@mmenttrue \global\right@false}%
113 \def\CE{\egroup\bgroup \global\c@mmentfalse}%
114 \def\S{\egroup\bgroup\STfont \global\str@ngtrue}%
115 \def\SE{\egroup\bgroup \global\str@ngfalse}%

\,
\!

We need positive and negative thinspaces in both text and math modes, so we
re-define \, and \! here. The definition for \, isn’t really needed for LATEX, but
we try to be more complete. Note that in LATEX terms, the new definition isn’t
robust, like the old – but nothing we produce here is likely to be robust – or needs
to be! – anyway!

116 \def\,{\relax \ifmmode\mskip\thinmuskip \else\thinspace \fi}%
117 \def\!{\relax \ifmmode\mskip-\thinmuskip \else\negthinspace \fi}%

Special characters. \CH chooses its first option alone in math mode; its second
option in a string; and its third option, enclosed in $s, stopzone VIM syncing
otherwise. (At the moment, nothing is ever set in math mode, but you never know
. . .)

118 \def\CH##1##2##3{\relax\ifmmode ##1\relax%
119 \else\ifstr@ng ##2\relax\else$##3$\fi\fi }%
120 \def\|{\CH|||}% not necessary for T1
121 \def\<{\CH<<<}% dto.
122 \def\>{\CH>>>}% dto.
123 \def\-{\CH---}% minus sign nicer than hyphen
124 \def_{\ifstr@ng {\char’137}\else%
125 \leavevmode \kern.06em \vbox{\hrule width.35em}%
126 \ifdim\fontdimen\@ne\font=\z@ \kern.06em \fi\fi }%
127 \def\#{{\STfont\char’043}}%
128 \def\2{\CH\backslash {\char’134}\backslash }% % \
129 \def\3{\ifc@mment\ifright@ ’’\global\right@false%
130 \else‘‘\global\right@true \fi%
131 \else{\texttt{\char’042}}\fi}% % "
132 \def\5{{\texttt{\char’136}}}% % ^

Finally we don’t want any indentation other than our own. We allow LATEX to
stretch our listings a bit. Then we open a group, select the background font and
(fanfare!) are ready to begin.

133 \parindent\z@\parskip\z@ plus 1pt%
134 \bgroup\BGfont%
135 }

This is the end of the lgrind environment. Rather short (in comparison!)
136 {\egroup\@@par} % end of environment lgrind

15

The following are generated as part of opening and closing included code sequences.
137 \def\lgrinde{\ifLGinline\else\LGsize\fi\begin{lgrind}}
138 \def\endlgrinde{\end{lgrind}}

\lagrind The lagrind environment is one of two for including files. It puts its argument
inside a figure environment. It can be used without or with a star (first line),
and with or without the usual floating arguments (second and third).

139 \def\lagrind{\@ifstar{\@slagrind}{\@lagrind}}
140
141 \def\@lagrind{\@ifnextchar[{\@@lagrind}{\@@lagrind[t]}}
142 \def\@slagrind{\@ifnextchar[{\@@slagrind}{\@@slagrind[t]}}

\@@lagrind The unstarred version. Everything is pretty obvious, we open a figure, put in a
minipage, input the file in question, make caption and label and that’s it.

143 \def\@@lagrind[#1]#2#3#4{%
144 \begin{figure}[#1]
145 \ifLGnorules\else\hrule\fi
146 \vskip .5\baselineskip
147 \begin{minipage}\columnwidth\LGsize\LGindent\z@
148 \begin{lgrind}
149 \input #2\relax
150 \end{lgrind}
151 \end{minipage}
152 \vskip .5\baselineskip plus .5\baselineskip
153 \ifLGnorules\else\hrule\fi\vskip .5\baselineskip
154 \begingroup
155 \setbox\z@=\hbox{#4}%
156 \ifdim\wd\z@>\z@
157 \caption{#3}%
158 \label{#4}%
159 \else
160 \captcont{#3}%
161 \fi
162 \endgroup
163 \vskip 2pt
164 \end{figure}
165 }

\@@slagrind Déjà vu? The starred version got an asterisk attached to figure.
166 \def\@@slagrind[#1]#2#3#4{%
167 \begin{figure*}[#1]
168 \ifLGnorules\else\hrule\fi
169 \vskip .5\baselineskip
170 \begin{minipage}\linewidth\LGsize\LGindent\z@
171 \begin{lgrind}
172 \input #2\relax
173 \end{lgrind}
174 \end{minipage}
175 \vskip .5\baselineskip plus .5\baselineskip
176 \ifLGnorules\else\hrule\fi\vskip .5\baselineskip
177 \begingroup
178 \setbox\z@=\hbox{#4}%
179 \ifdim\wd\z@>\z@

16

180 \caption{#3}%
181 \label{#4}%
182 \else
183 \captcont{#3}%
184 \fi
185 \endgroup
186 \vskip 2pt
187 \end{figure*}
188 }

\lgrindfile This is similar. We draw lines above and below, no figure. But it can get longer
than one page.

189 \def\lgrindfile#1{%
190 \par\addvspace{0.1in}
191 \ifLGnorules\else\hrule\fi
192 \vskip .5\baselineskip
193 \begingroup\LGfsize\LGindent\z@
194 \begin{lgrind}
195 \input #1\relax
196 \end{lgrind}
197 \endgroup
198 \vskip .5\baselineskip
199 \ifLGnorules\else\hrule\vspace{0.1in}\fi
200 }

And now . . .
201 〈/package〉
That’s it. Thank you for reading up to here.
Michael Piefel

Change History

v1.0
General: Written 1

v2.0
General: Upgrade to LATEX2.09 . . . 1

v3.0
General: Added package options . 11

Upgrade to LATEX 2ε 1
\DefaultProc: Reintroduced proce-

dure names in the margins . . 11
v3.1

General: C functions are now de-
tected much more reliably 8

Pascal objects now treated prop-
erly . 8

The LATEX-text put into the files
can be configured 10

\NOfont: Numbers can now have an
own style (i. e. font) 11

v3.3
General: lgrindef position can be

changed permanently 2
Allow page breaks in embedded
listings 5

\File: given a meaningful defini-
tion 13

v3.4
General: Prevent slightly overfull

hboxes. New option fussy. . . . 11
Rules around included material
can be suppressed. New option
norules. 11

v3.5
General: Now testing for LGRINDEF

environment variable. 2
Output redirection (-o) imple-
mented. 2

Procedure names added to index

17

in addition to printing them in
the margin. 3

v3.6
General: Complete LATEX lines al-

lowed 6
\ifLGnoprocindex: Added option

to suppress indexing of func-
tions 11

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\, 116
=\! 116
@ @ (environment) . . 4, 6
\@@lagrind 143
\@@slagrind 166
%! (environment) 5
%(%) (environment) . . 4
%* (environment) 5
%< (environment) 5
%= (environment) 5
%@ (environment) 5
%[%] (environment) . . 5
%# (environment) 5
%$ $% (environment) . . 6
%% %% (environment) . . 6
%| |% (environment) . . 6

B
\BGfont 30

C
\C 106
\CE 106
\CF 106
\CMfont 30

D
\DefaultProc 18
\DefaultProcCont . . 18

E
environments:

@ @ 4, 6
%! 5
%(%) 4
%* 5
%< 5
%= 5
%@ 5

%[%] 5
%# 5
%$ $% 6
%% %% 6
lgrind 13

F
\File 58

H
\Head 58

I
\ic@r 106
\ifc@omment 44
\ifLGd@fault 40
\ifLGinline 40
\ifLGnoprocindex . . 27
\ifright@ 46
\ifstr@ng 44

K
\K 106
\KWfont 30

L
\L 70
\l@ftlno 72
\lagrind 4, 139
\LB 97
\lc@unt 2
\LGbegin 40
\LGend 40
\LGfsize 30
\LGindent 10
\LGleftnum 8
\LGnorules 13
\LGnuminterval 2
lgrind (environment) 56
\lgrindfile 4, 189

\lgrindfilename . . . 52
\lgrindfilesize . . . 52
\lgrindhead 52
\lgrindmodday 52
\lgrindmodmonth . . . 52
\lgrindmodtime 52
\lgrindmodyear 52
\LGsize 30
\LGsloppy 15
\Line 5, 57
\ln@xt 2
\ls@far 47

N
\N 106
\NewPage 69
\NOfont 30

P
\PNsize 30
\Proc 18
\ProcCont 18

R
\r@ghtlno 72

S
\S 106
\SE 106
\STfont 30

T
\Tab 97
\tb@x 47
\TBw@d 47
\TTfont 30

V
\V 106
\VRfont 30

18

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\, 116
=\! 116
@ @ (environment) . . 4, 6
\@@lagrind 143
\@@slagrind 166
%! (environment) 5
%(%) (environment) . . 4
%* (environment) 5
%< (environment) 5
%= (environment) 5
%@ (environment) 5
%[%] (environment) . . 5
%# (environment) 5
%$ $% (environment) . . 6
%% %% (environment) . . 6
%| |% (environment) . . 6

B
\BGfont 30

C
\C 106
\CE 106
\CF 106
\CMfont 30

D
\DefaultProc 18
\DefaultProcCont . . 18

E
environments:

@ @ 4, 6
%! 5
%(%) 4
%* 5
%< 5
%= 5
%@ 5

%[%] 5
%# 5
%$ $% 6
%% %% 6
lgrind 13

F
\File 58

H
\Head 58

I
\ic@r 106
\ifc@omment 44
\ifLGd@fault 40
\ifLGinline 40
\ifLGnoprocindex . . 27
\ifright@ 46
\ifstr@ng 44

K
\K 106
\KWfont 30

L
\L 70
\l@ftlno 72
\lagrind 4, 139
\LB 97
\lc@unt 2
\LGbegin 40
\LGend 40
\LGfsize 30
\LGindent 10
\LGleftnum 8
\LGnorules 13
\LGnuminterval 2
lgrind (environment) 56
\lgrindfile 4, 189

\lgrindfilename . . . 52
\lgrindfilesize . . . 52
\lgrindhead 52
\lgrindmodday 52
\lgrindmodmonth . . . 52
\lgrindmodtime 52
\lgrindmodyear 52
\LGsize 30
\LGsloppy 15
\Line 5, 57
\ln@xt 2
\ls@far 47

N
\N 106
\NewPage 69
\NOfont 30

P
\PNsize 30
\Proc 18
\ProcCont 18

R
\r@ghtlno 72

S
\S 106
\SE 106
\STfont 30

T
\Tab 97
\tb@x 47
\TBw@d 47
\TTfont 30

V
\V 106
\VRfont 30

19

