```
RH:C 216
NJC 7540
Categories: 1).3, (i.j
updates: None
Obsoletes: None
```

Felnet Aecess lo. HCSB's On-Linc Systom
s Soptember 71
James l:. White
Computer Rosoarch lab
University of Cialiformia
Santal Barbara
I. Motivation 1
lI. I,initations 1
ll. Systom Documentation 2
IV. System Access. 5
V. Software Structure 6
VT. Virtual OLS Keyboard 8
VIL. NETOLS C'ommands. 15
A. HELP 16
B. PRIEIX 16
C. SHIIT and UNSHIFI 17
 17
1: STMT: 17
F. LO ioljT. 18
VIIJ. OLS Display. 18
IX. Instracting a User Telnct. 19
X. Examples 22
A. 1.0\%on 22
B. Newton-Raphson Squaro Root Ipproximation 24
(. Renote Job Entry. 25

Figures

Figure 1. OlS keyboard 3
ligure 2. Keys With One-for-Onc Mappings 11
Figure 3. Keys Represented as Strings. 12
ligure 1. Characters With One-for-One Mappings 20
Figure 5. Charicters Which May lnto Strings 21

Abstract

A telotype-compatible interface to ucisb's on-lane System (OLS) has been implemented in accordance with the Telnet protocol alopted by the Nivi. This Server Telnet is respunsive to connection requests directed by user lelnct's to socket number 1 , host address 3. Although OLS is not a teletype system and although much of its power as a mathematical tool rests in its graphical display capabilitics, enough of the System survives the Telnet transformation to justify such an implementation.

II. Limitutions

1n this Tclnct-style implementation of OLS , all curvilinear display gencrated by the user. on Levels Il and ITI, Real and Complex, is discarded by the System and hence not returned to the user through the Net. The same is truc of the display of special, uscr-created characters. Although special eharacters may be constructed and stored, their display will be suppresscl, both during the process of construction and later when they are invoked from the lype level. N11 other display generated by the system will be relayed to the user intact, in some cases with stylistic transformations having
first been applicd. For example, Greck characters are displayed as lower-case a-z. All such transformations are described in detail in this document: linally, those clements of the system (the operators which edit uscr programs arc prime cxamplos) which assume a fixod-screcn display device function abnormajly in a felnet enviromment. For such a device, the Systom ean 'reniember' the position on the sereon of a previously displayed sogment of text and return to that position to, for example, underscore it. But when the 'screcn' marches forward--relentlessly--through a contimuous melium, as it doos with lelnet's virtual teletype, that kind of strategy fails. Hence, the underscoring is not relocated, but rather appears on the current line, beginning in tho next available character franc.

OLS assumes, normally, that the user.is equipped with the syecially-designod doublo keyborard depicted in ligure 1 . Conventions are defined in this document which conalo a felnot user to simulate that keyboard; jn particular, a means is provided for designating keys on the uppur, or operator heyboard.
111. Systorn Mocumontation

This document has three purposis:

ω

Figure 1. Ol.S Keyboard
(l) to describe the means by which a lelnet user simulates an OLS keyboard,
(2) to describe the transformations applied to output gencrated by the System, and
(3) to cmumerate those aspects of the System which are unique to or behave differently for Network (Telnet) users.

In particular, this docament is not a user's manaal for olas. Such a manual is available and onfile with the NIC. In addition, a copy should cxist at each Network site in its NIC collection; the user should consult his station Agent. 'lhe document is titled 'UCSB On-line System inanal' [NDC5748]; its contents are current as of 1 January 7l. A revision to the manual is currently in preparation and will be distributcd when available. In addition, tutorial manaals for two of the subsystems available under oLS--MOLSF (Mathematically-Oricnted Language Single-rrecision ! loating-Foint) and CoL (Card Oricnted Language)-will soon be made available. Tho latter has already Ween puhlished and is being transmitted to the NlC for distribution, while the formex is ncaring completion.

Documentation of the third subsystam of OLS--NEI-has already been distributed through the $N[C$ as two RIO's: 'Network ()n-line ()perators' [21 April 71,
 an Initial Implementation' [9 August 7l, Rl: 206 , N1C 7176】.

NI'l currently houses a set of operators for system-call~ level interaction with UCSB's NCP, a User lelnet, and an operator (invoked by ID on Level II) which returas the status of Network hosts.

Staff members at the Computer Center will be happy to ficla questions about ol.S from Network users. In particular, an Ol.S consultant is available for such purposes at ($8(5)$ 90l-40:1 . Questions about OLS, including those specific to use of the system through the Network, may also be addressed to Jim White, UCSB's rechnical Liaison, at (805) 961-3454 (iffnecessary, messages cin be left at tho Computer Center office, (805) 901-2261).
IV. Systom nceoss

The Networh user is encouragod to explore the System and is invited to do so with the following accounting parametors:

```
I!ser Number: 196
    1d Nu:mber: 57372
User Vame: ARP^
Problom Name: (affi]iation)-(name)
                            in lo characters or less
                            (e.g., UCOSB-WIII!I:)
```

Such usc or tho systom will not be jilled. production uscrs are asked to establish their own accounts with the

Computer Center ((905) 961-2261), the use of which will be billed in accordance with the then-current rate structure.

V. Software Structure

This document is the description of a Network front-end to the On-Linc System, logically distinct from OLS itsolf. This front-ond is hereafter referred to as NETOLS. NETOLS is always responsive to connection requests directed to socket 1 . When contacted by a Network uscr, NETCIS porforms the Notwork functions required to ostablish a duplox conncetion to him. The number of such duplex comections (and hence the number of Network uscrs) is bounded by an assembly parameter whose current value is five.

Before the Network comection is established, NIFOLS socures for the uscr a port into OLS. Sixtyfour such ports exist and are shared by local, dial-up, and Network users. Should none be available, Nl:TOLS will abort the comection sequence.

Once a port has been secured and a Network connection costablishod, Nl:TOLS will effectively push the SYST key for the uscr by transmitting to ols the S-bit code representing that key. A login sequence is thus initiated and the

UCSB ON-LINI: SYSTIEM
ENTER USER NUMBIER
to which he should respond with his user number. Beginning at this point in time and continuing for the life of the Network connection, NETOLS's sole function is that of interpreter--interpreting input from the user and making it meaningful to OIS, and interpreting output from OLS and making it moaningful to the user (it is at this point, for example, that curvilincar amal special-character aisplay arediscarded).

When the user breaks his Netwark connection to NLTOLS, if he hasn't logged out of oLS already, NHMOLS performs that function for lim by pushing SYST DOWN, just as it pushed the initia! SYST. The OLS port acquired for the user is then released, and hence availablefor use by other users. It should be noted that the tac ean log out of OHS alablack on again without the Network connection's being broken, since that action is transfarcnt to Nliols. who attaches no special significunce to the kicy sequenco wifich accomplishos it.

VI. Virtual OLS Keyboard

A major function of Natols is to provide a mapping between elcments of the felnet character set and the keys on an OLS keyboard (Figure 1). The lower, or operand portion of that keyboard is fairly casily represented, since it's similar to atandarl typewriter keyboard. Most of the keys on the lowor keybord are mapped on a one-for-onc basis from elements of the Telnet character set. Upper-case alphabetics are mapped into the alphabetics, lower-case alphabetics into the Greck characters, numerics into numerics, and a miscelany of punctuation into itself. All such one-for-one mapings are depicted in ligure 2. A line of that figure reads as follows:

```
For '>':
Tlac koy labcled '->' (moaning logical not)
on the lower portion of an ols keyboard is
struck by causing the user's User leelnct to
transmit '~' (tilde).
```

Those lower-beyboard keys not listed in Figure 2, amd all the keys on the upper-keyboard (hereafter referred to collectively as non-stindard keys), are represented by the felnet user in the following manner. For each such koy, a character string has becn defined; the string is called the name of the key. In most cascs, the name
of a key is identical to its label in ligure 1. The name of the SIN key, for example, is 'SIN' (in the On-Line System User's Manual, upper-keyboard keys are denoted by underscoring their labels, to distinguish, for example, the koy SIN from the threc keys 'SIN').
livery non-standard key on the OLS keyboard is struck by typing its name (or any unique abbreviation thercof), preceded by a special prefix character and followed by a space.

NETOLS intercepts the prefix, name, and space and from them gencrates a single, S-bit code which it forwards to OLS.

I'ho default prefix chiracter is semi-colon (';'), chosen simply because for touch typists it's one of the home keys. The prefix can be changod by the user to any character listed in ligure 2. The procedure for so doing is doscribed in Section VIl-B. To send the prefix character through NE'lOLS to OIS, type it twice in succossion. lhus, if tho default prefix is in effect, '; ;' is mapped into a single somi-colon and relayed to OLS.
'he ntmes of all non-standard 'eys are listed in ligure 3. A lide of that figure relds as follows:

Ior SIN:

The key denoted SIN in the OlS User's Manual (the trigonometric function sinc) is named 'SIN', and hence is struck hy typing 'SIN', preceded by the prefix and followed by a space.

Assuming, then, that the dotault jretix '; is in effect, SlN is struck by typing ';SIN_' ('_' is used here and in following examples to denote a space). Iurtherinure, if the user chouses, he may abbreviate that as '; SI_', since tho key desired remains uniquely identirica. Iurther abbreviation (to '; S_') is unsatisfactory and hence disallowed since the single character ' S^{\prime} is insufficient to distinguish between a number of keys whose names begin.with that character. Key mames may be typed by the user in either upperor lower-casc.

As each charactor ol a non-standard key's name is typed by the user, Nl:luls consults its table of key names.

If tho character string so far specificd cannot possjbly load to a valid name, the most recent character is ignored ('?' cchocd). Hence, typing '; SJIN_' will be accepted as SIN, the erroncous 'J' being ignored (and.a question mark echoed), and the suliseywent 'IN_' aceejted. If when the terminating suace is typed, no singlo key is uniquely identified a '?' is echocd and the sjace ignored. Thus '; S_l_' wi. 1 be recognized as SIN; the first space is

'10 insh	$\begin{aligned} & (0) S \\ & \text { Explanation) } \end{aligned}$	Scnd	$\begin{aligned} & (\text { locnct } \\ & \text { lixplanation) } \end{aligned}$
()-9	Vecimad ligits	()- !	Wecimal Digits
A-2	Alphabetics	$\wedge-\ddot{Z}$	UCN N1phabetics
$\alpha-5$	Greek Characters	: - z	1.C Alphabetics
!	lixclamat ion Mark	$!$	Lxclamation Mark
+	Plus Sign	+	Plus Sign
	Underscore		Uncerscore
二	Minus Sign	-	Mi.nus Sign
(0)	Commercial At	1	Commercial At
1	Slasly	1	Slant
H	Number Sign	\#	Number Sign
1	Apostrophe	1	Apostrophe
\&	Nmpersand	ε	Ampersand
\$)ollar Sign	\$	Dollar Sign
*	Asterisk	*	Asterisk
$\stackrel{0}{\circ}$	Percont	${ }_{0}$	Porcent
=	liqual Sign	$=$	liqual Sign
$\underline{13}$	loriauntal fab.	11.1	lloriz. 'lib) (Tf)
-	(:olon	.	colon
;	Serii-Colon	;	Somi-colon
[lieft bracket	1	Left Bracket
]	Kight Brachet]	Right Bracket
(l.eft Parenthesis	〔	Left Parenthesis
)	Right Parenthesis)	Right Parenthesis
$<$	Less lhan	$<$	Less lhan
>	Greator lhan	$>$	Greater Than
,	Comma	,	Comma
-	Period	-	Period
"	Quotation Marks	1	Quotation Marks
$?$	Question Mark	?	Question Mark
\rightarrow	Logical Not	\sim	Tilde
,	logical Ux	$!$	Vertical Line
$13 \wedge C \mathrm{C}$	Backspace	BS, D l: t ,	Backspace/Rubout
RIJJTR	Carriage Return	ER	Carr. Return (\uparrow M)
SPACJ	spacco	$S \mathrm{P}$	Space

ligure 2. Keys With Onc-for-onc Mappings

1igure $\overline{\text { in }}$ Koys Roprescnted As Strings

$\begin{aligned} & \text { To } \\ & \text { lusj } \end{aligned}$	$\begin{aligned} & (\text { OLS } \\ & \text { Explanation) } \end{aligned}$	The key Name [s
1. I S' ${ }^{\prime}$	List	LIS'
LOAD	Load	LOAD
LOG	logarithm	LOG
	Na'tors Command	1.06007
1, S	1.elt shilt	LS
$\overline{M N X}$	Maximum	MAX
$\overline{\text { MOI }}$	Modulus	Mu1)
\bigcirc	Multiply	Musit
Ni:6	Negatc	N1: ${ }^{\text {d }}$
-	logical Not	NO'T
1	Logical or	OR
PRED	Predicate	PRLED
	NETOLS Command	PRIETX
PROD	Running Product	PROD
PT	Point	PT
TINR	Power	PWR
REA」	Real	REAL
REFI,	Reflect	R $\mathrm{BL} / \mathrm{I} \mathrm{L}$
REDT	kepoat	REP'
RIESET	Resot	RESET
RETURN	Curriage Return	RETURN
$\overline{\mathrm{R}} \mathrm{S}$	Right Shift	RS
0-9	Superscript 0-9	S0-S9
51:1,	Sclect	S1: I.IECH
SI:T	Sct Tab	S1:'19
	Natols Command	SIIIET
SIN	Sinc	SIN
SOR'	Sort	SOR'I
SQ	Square	SQ
SQR'	Square Root	SQR'I
	NE'TOLS Command	STATE
STOR1:	Sture	STORE:
SUB	Substitute	SUB
θ	Subtract	SUBTRACOT
SUM	Kunning Sum	Susi
SYST	System	SYS'I
TEST	Tost	TEST
TYPE	Type	TYPE
(11)	NJTOLS Command Up	$\begin{aligned} & \text { UNSHIFT } \\ & \text { up } \end{aligned}$
WST1:12	User	USI:R

Eigurc 3 (cont'd) Koys Rcprescntod As Strings

1. N1cornate names for $\Theta, \Theta(\Theta, ~ R 1$ TURN, and \varnothing are 'muld', 'Ant', 'subrrac'r', 'BGURN', and 'DIV', respectively. RETURN can also be represented as the single character CR (carriage return), as indicated in figure 2.
2. Nn alternate name for Θ is ${ }^{\prime}+{ }^{\prime}$.
3. Nlternates for BACK are the single characters BS (backspace) and bjif (rubout), as indicated in figure 2.
4. An alternate name for \varnothing is 'viv'.
5. NETOLS commands arc explaincd in Scetion VII.
6. An afternatc name for Θ is 'muli'.
7. An alternate for ' \rightarrow ' is tho single character '~' (tilde), as indicated in ligure 2.
8. An alternate for '\|' is the single character '!' (vertical linc), as indicated in ligure 2.
9. An alternate name for RLTURN is '.'. RETURN can also be represented as the single character CR (carriage return), as indicated in ligure 2.
10. An alternate name for θ is ' '.

Notes for ligure 3.
ignored (and a '?' cchoed, indicating that 'S' alone is ambiguous).

Abstract

At any point in the entry of a key name, either Altmode (LSC) or '?' may be typed by the user. NETOI.S

 will then determine whethor a key has beon uniquely spocificd by the characters already typed. If so, it will echo the remaining characters of tho key's name, and consider them entered by the user. Λ subsequent space from the user will cause the indicated key to be pushed. If no single key is uniquely specified, NE'TOLS will ccho Bel, causing a boll to be rung on many terminals. More of the key name is then expected from the user.If after at deast one chalacter of tho key name has becn entered by the user and arecepted by NLTOLS (and before the terminating space is typed) the prefix is typed a sccond time, all alroad: entered characters of the natc are discarcled by Nl'HOLA. l'hus ';CO;SIN_ is intorpreted as SIN. If a čarriage return is typed in the same context, the initial pref. x will also be discamicd. Jence, '; COos' (${ }^{\circ} \mathrm{O}$ ' denotes carriage return) is interpreted as the lowor-keyboald key 'S'.
VII. NI:'OIS Comenands

A number of commands to Nl:loLs are defined and

Abstract

all are described in this section: fhe format for each such command is the same as that for non-standard keys, and hence the command keywords are included in ligure 3. Mll of the conventions of Section Vl apply as well to the entry of eommands. fhe user should understand, however, that such commands aro processed by Nlelol.S, not OhS, and that they are dedined only for Network users of OLS.

A. H1:LI.

The HELP command (invokcd with '; HELP_'if';' is the prefix) reproduces for the user the third column of ${ }^{\text {i igure }} 3$; the names of all non-standard keys and the keywords for all definod NElols commands are listed in their collating sequence on the user's virtual teletypo.

B. PREF1X

lssuing the PRIIJIX command couscs the next character typed to become the prefix, provided it is one of those listed in figure 2. Conscquently, '; PRlilix_e' makes' '@' the prolix, '@PRl:lix;' restores the dofault situation.
C. SHIFT and UNSHIFT

The SHIFT command causes a perturbation of lines 2 and 3 of rigure 2. After Sllfr is issued, all subsequent upper-casc alphabetics are mapped into the Greek characters (rather than into the alphabetics), and lowercasc alphabetics into alphabetics (rather than into the Creek characters). This convention change may be found convenient if the user's User lelnet sends lower-case alphabetics by default, and requires, for example, that a shift key be held down to send upper-casc characters.

The UNSHIF' command mullifics the effect of SHIFT.

Issuing the lULIDDUPLEX command causes all subsequent characters typod by the user to be echoed by
 disabling ceho by NETOIS. Half-durlex is the default situation.

1: STATI:
'lhe Sintil command causes the surrent prefix, the mode of operation ('HALIDDULEX' or 'FULLDUPLEX'),

```
and the case convention ('SHIlT IS ON' or 'SHIFF IS OFF')
to be displayed on the user's virtual teletype in the
following form:
```

 PREFIX IS ;
 HADIIOUPLEX
SHIFT IS OFF
F. LOGOUT
lssuing the LOGOUT command causes the user to be logged out of OLS (i.e., SYST DOWN to bc pushed) and his Networ: conncction to NETOLS to be broken. About three scconds elapsc between the two events.
VIII. OLS Display

NE'TOL; suppresses all but alphameric display before it reaches the user. Alphameric display is mapped into the relnct character set according to Figures 4 and 5. Figure 4 lists all thosc 0 LS display characters which have onc-for-one mappings. A line of that figure reads as follows:

```
For 'M':
```

The character logical not, displayed as $\quad \rightarrow 1$ on an ols forminal, is represented in lelnet as '~' (tillo).

Alphabetics are mapped into upper-case alphabetics and Greek characters into lower-case alphabetics. Numerics are mapped into numerics, and a miscellany of punctuation into itself. In addition a number of carriage control characters are appropriately mapped-line feed down into $L F, T A B$ into $H T$, $B A C K$ into $B S$, etc.; dine fecd up is suppressed. ERASLis represented. as Bel. Figure 5 lists those OLS display characters which are mapped into strings of Telnet characters. In most cases, thesc character strings are stylistic representations of characters peculiar to oLS. For example, the \DD key is normally displayed in List mode as ' $+{ }^{\prime}$. In this Telnet implementation, '(+)' is an attempt to represent that graphic. Superscripts are represented as underscored numerics. Carriage return is represented as CR LF. No attempt is made to effectively represent RS which, on an OLS display device, repositions the beall to the upper left corner of the screen; it is made equivalent to carriage return.
IX. Instructing a User Telnet

For local users, all echoing that's done at all

$\begin{aligned} & \text { To } \\ & \text { Display } \end{aligned}$	$\begin{aligned} & (0 \mathrm{LS} \\ & \text { Explanation }) \end{aligned}$	OLS Sends	$\begin{aligned} & \text { (Tclnet } \\ & \text { Explanation) } \end{aligned}$
0-9	Decimal Digits	0-9	Dccimal Digits
A-z	Alphabetics	A-Z	UC Alphabetics
$\alpha-5$	Greek Characters	$a-z$	LC Alphabetics
!	Exclamation Mar!	!	Exclamation Mark
+	Plus Sign	+	Plus Sign
	Underscore		Underscore
-	Minus Sign	-	Minus Sign
${ }^{(1)}$	Commercial At	\bigcirc	Commercial At
/	Slash	/	Slant
\#	Number Sign	\#	Number Sign
'	Apostrophe	1	Apostrophe
ξ	Ampersand	ξ_{4}	Ampersand
\$	Dollar Sign	\$	Dollar Sign
*	Asterisk	*	Asterisk
$\%$	Percent	$\%$	Percent
$=$	Equal Sign	$=$	Equal Sign
TAB	Horizontal Tab.	HT.	Horiz. Tab. (TI)
:	Colon	:	Colon
;	Semi-Colon	;	Semi-Colon
[Left Bracket	[Left Bracket
]	Right Bracket]	Right Bracket
(Left Parenthesis	(left Parenthesis
)	Right Parenthesis)	Right Parenthesis
$<$	Less Than	$<$	Less Than
>	Greater Than	$>$	Greater Than
,	Comma	,	Comma
-	Period	.	Period
"	Quotation Marks	"	Quotation Marks
?	Question Mark	?	Question Mark
$\overrightarrow{1}$	Logical Not	\sim	Tilde
1	Logical Or	;	Vertical Line
BACK	Backspace	BS	Backspace
SPACE	Space	SP	Space
1:NL/ / \uparrow	Line Feed Up		
CON $/ \downarrow$	Linc Feed Down	LF	Line.Feed (\uparrow J)
	List Mode Space		Underscore
汤	List Mode Rubout	$\bar{\chi}$	Upper-case X
	List Mode pointer		Underscore
BTREAK	Break	$s \bar{P}$	Space
ERASE	Erase	BLE	Bell (${ }_{\text {(}}$ ($)$

Figure 4. Characters With One-for-One Mappings

$\begin{aligned} & \text { To } \\ & \text { Display } \end{aligned}$	$\begin{aligned} & (0) S \\ & \quad \text { Explanation) } \end{aligned}$	OLS Sends
	Post List List Mode Add List Mode Subtract List Mode Multiply List Mode Divide List Carriage Return Carriage Return Reset to Upper left Cent Sign Superscript 0-9	$(:)$ $(+)$ $(-)$ $(*)$ $(/)$ (1) $C R$ CR LF CR LI: C BS 0 0 BS 9 9

Eigure 5. Characters Which Mal Into Strings
is done by oLS; the terminal nover echos. In general, OLS does not echo the user's input. There are exceptions to this rule, but they are relatively fow in number and occur primarily on the SYS' level. In particular, upper keyboard keys are nover echoed except in list mode. The Network user is adviscd to instruct his relnet to operate in full-dupiex mode, i.e. to echo nothing. The FULLDUPLEX command provided by NETOLS is provided because. is can be provided easily, but its use is not recommended.

OLS is meant to be used in character-at-a-time mode, and the uscr should so instrict his User Telnet. For those users provided with only a line-at-a-time mode, the end-of-line character should not be transmitted to NETOLS.

NI:'OLS flushes without comment all lelnet control characters it detects in the input stream. Characters in the l'clnct character sct whicll lave no meaning to NEJOLS are echood as '?' and discaided. Exceptions are LF (line feed) and NUL, which are slushod without comment.
X. Examples
A. Logon

The dialoguc which logs a user onto OLS, assuming the uscr number of Section lV, is as follows:

TIELNE'J ENTRY

196\%
57372%
$\triangle R P A$ 。
UCSB- KI!ITE: MOLSF:

OLS QUERY/RESPONSE

UCSB ON-LINE SYSTEM ENTER USER NUMBER (196)
ID NUMBER=
USER NAME= (ARPA)
JOB NAME = (UCSB-WHITE)
AUTOSAVE CODE = integer
LOAD) (MOLSF)
FILE LOADED

In this and succecding examples, ' ${ }_{\circ}$ ' denotes CR (carriage return). Entrics echocd, by OLS are enclosed in parentheses above. The user should substitute for 'UCSB-WlIITE' his own affiliation and name. The procedure above loads the math subsystem of OLS. To load instead either COL or NET, substitute its nanc for 'MOLSI'. To. load a different subsystem (say COL) after logging in:

CELNET MNTRY
; SYS'
; LOAD COLóo

OLS QUERY/RESPONSE

WORK AREAS UPDATED
LOAD (COL)
IILE LOADED

Again, ' ' denotes a space, not an underscore.

A simple user program can be constructed to

 approximate the square root of a number N using the Newton-kaphson iteration procedure which derives the $(k+1)^{\text {th }}$ approximation from the $k^{\text {th }}$ by the following algorithm:$$
x_{k+1}=\left(x_{k}+N / x_{k}\right) / 2
$$

The following entries construct the user program:

```
;LIST_;TYPE_% ENTER_N
;1_ ;REAL_;LOAD_;ENTIR_;STORE_N
;TYPE_% EN:TER_FIRST_GUESS
;1_ ;LOAD_;ENTER_;STORE_X
;TYPE_% #_OF_ITERATIUNS?
;O_ ;LOAD_;ENTER_;STORE_N
;1_ ;REPT_(;,OAD_N ;/_X ;+_X ; /_2
    ;STORI_X ;DISP_%)N% ;USER_;SQRT_
;LIST_;STORE_;USER_;l_;SQRT_
```

To display the user program, enter:

```
;USER_;DISP_;SQRT_
```

When executed, the program obtains from the user the number N whose square root is sought, an initial guess, ana the number of iterations to be performed. The program then computes and displays the result of each iteration, and then calls itself, permitting a second square root to be computed. The program is executed as follows:

A filc of card images can be constructed with the help of the COL subsystem of. OLS ard submitted as a batch job. Assuming COL has been joaded, the following entries co.rstruct a card file which invokes the Fortran compiler:

```
;2_//jobname_JOB_(acct#, name,,,,,,T) ; STORE_
// EXEC FOR'IGCLG ; STORL
//FORI.SYSIN (I) ** ;SJORE
source-statement-1 ;STORL
    source-statement-N ; STORL
    /* ; STORE
To display the completed file, type:
;3_;DISP_%
To submit tho filc, type:
;4_;SUB_%
lo watch for it in exccution, type:
    ;DISP_J%%%%.
When execution is complete, 'printed' output can be
retrieved with the following dialo&fue:
```

```
TELNE'I ENTRY
OLS QUERY/RESPONSE
_CMPLX_;LOAD__
UNI'l'= (2314)
VOL=SER=(MVI'180)
DSNAME = (RJEOUT)
MEMBER = (jobname)
NOW LOADING
FILE LOADED
```

The output can then be examined by entering:

```
;2_;DISP_1%%%%..
```

