PostGIS 3.1.8 Manual

PostGIS 3.1.8 Manual ii

Contents

1 Introduction 1
1.1 Project Steering COMMILIEE o v vttt et e e e e e e e e e e e e e e e e e 1
1.2 Core Contributors Present 1
1.3 Core Contributors Past L 2
1.4 Other Contributors o o e e e e e e e 2

2 PostGIS Installation 5
2.1 Short Version e e e e 5
2.2 Compiling and Install from Source e 5

2.2.1 Gettingthe Source e 6

2.2.2 Install Requirements e e e e e e e e e e e e e 6

2.2.3 Build configuration L e 7

224 Building 9

2.2.5 Building PostGIS Extensions and Deployingthem 9

226 Testing e e e e e e e e e 11

227 Installation e e e e e e e 26

2.3 Installing and Using the address standardizer 26
2.3.1 Installing Regex::Assemble e e e e e 27

2.4 Installing, Upgrading Tiger Geocoder and loading data 27
2.4.1 Tiger Geocoder Enabling your PostGIS database: Using Extension 27
24.1.1 Converting a Tiger Geocoder Regular Install to Extension Model 30

2.4.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions 30

2.4.3 Using Address Standardizer Extension with Tiger geocoder 31

244 Loading TigerData 31

2.4.5 Upgrading your Tiger Geocoder Install 31

2.5 Common Problems during installation e 32

PostGIS 3.1.8 Manual iii

3 PostGIS Administration 33
3.1 Performance Tuning L e e e e e e 33
311 Startup ..o e e e 33
3.1.2 Runtime oo e e e e 34

3.2 Configuring raster SUPPOTt v v v v v i e 34
3.3 Creating spatial databases e e e 35
3.3.1 Spatially enable database using EXTENSION 35

3.3.2 Spatially enable database without using EXTENSION (discouraged) 35

3.3.3 Create a spatially-enabled database from atemplate 36

3.4 Upgrading spatial databases L e e e e e e e 36
34.1 Softupgrade L 36
3.4.1.1 Soft Upgrade Pre 9.1+ or without extensions 36

34.1.2 Soft Upgrade 9.1+ using eXtensions v v v v v v v v i e e e 37

342 Hardupgrade oL 38

4 PostGIS Usage 40
4.1 DataManagement L e e e e e e e e e e e e e e 40
4.1.1 GISObJects o o e e 40
4.1.1.1 OpenGISWKBand WKT e 40

4.1.1.2 PostGIS EWKB, EWKT and Canonical Forms 41

4.1.13 SQL-MMPart3 e 42

4.1.2 PostGIS Geography Type o e e e 43
4.12.1 Geography Basics e 44

4.1.2.2 When to use Geography Data type over Geometry datatype 46

4.1.2.3 Geography Advanced FAQ L 46

4.1.3 Spatial Metadata Tables L e e 46
4.13.1 The SPATTIAL_REF_SYS Table and Spatial Reference Systems 47

4.1.3.2 The GEOMETRY_COLUMNS Viewo o ittt i e et 48

4.1.3.3 Creatinga Spatial Table e 48

4.1.3.4 Manually Registering Geometry Columns 49

4.1.4 Geometry Validation L. 51

4.1.5 Loading Spatial Data e e e e 55
4151 UsingSQLtoLoadData 55

4.1.5.2 Using the Shapefile Loader 55

4.1.6 Extracting Spatial Data 56
4.1.6.1 UsingSQLtoExtractData 57

4.1.6.2 Using the Shapefile Dumper e 58

4.1.77 Building Spatial Indexes 58

4.1.7.1 GISTIndexes o e 59

PostGIS 3.1.8 Manual iv

4.1.77.2 BRINIndexes e 59

4.1.7.3 SP-GiSTIndexes e 61

4174 UsingIndexes e e 61

42 Spatial QUETIes e e e e e e e e e e 62
4.2.1 Determining Spatial Relationships L 62
4.2.1.1 Dimensionally Extended 9-Intersection Model 62

4.2.1.2 Named Spatial Relationships 64

4.2.1.3 General Spatial Relationships e 65

422 Taking Advantage of Indexes 67

4.2.3 Examples of Spatial SQL L. e e e e 67

4.3 Performance Tips L e 70
4.3.1 Small tables of large geometries L e e e e e e e 70
43.1.1 Problemdescription e e 70

43.1.2 Workarounds e 70

4.3.2 CLUSTERIing on geometry indices ittt 70

4.3.3 Avoiding dimension CONVEISION v v v v v v it e e e e e e e e e e e e e e 71

4.4 Building Applications e e e 71
4.4.1 Using MapServer o i e e e e e e e e e e e e 71
44.1.1 BasicUsage e 71

4.4.1.2 Frequently Asked QUestions e e e e e 73

44.1.3 Advanced Usage e e e e 73

4.4.1.4 Examples e e e 74

442 JavaClients JDBC) e 76
443 CClients (IIbpq) . . . o v o v v e 77
4431 TextCUISOTS v v v vt et e e e e e e e e e e e e e e e e 77

4432 BIinary CUrSOTS v v o e e e e e e e e e e e e e e e e e e e 77

4.5 Raster Data Management, Queries, and Applications L L L o 77
4.5.1 Loading and Creating Rasters 0 i e e e 77
4.5.1.1 Usingraster2pgsql toload rasters L oL 77

4.5.1.2 Creating rasters using PostGIS raster functions 81

452 RasterCatalogs L e 81
4.52.1 Raster Columns Catalog e e e 82

4522 Raster OVEIrvVIEWS ottt e e e e e e e e e 83

4.5.3 Building Custom Applications with PostGIS Raster 83
4.53.1 PHP Example Outputting using ST_AsPNG in concert with other raster functions 84

4.53.2 ASP.NET C# Example Outputting using ST_AsPNG in concert with other raster functions . . 84

4.5.3.3 Java console app that outputs raster query as Image file 86

4.53.4 Use PLPython to dump outimages viaSQL 87

4.5.3.5 Outputting Rasters with PSQL o 88

PostGIS 3.1.8 Manual v

4.6 Topology 88
4.6.1 Topology Types o o o e e e e e e e 88
4.6.1.1 getfaceedges_returntype Lo e e e e e 88

4.6.1.2 TopoGeOMELTY . . . v v v v v i e e e e e e e e e e e e e e e e e 89

4.6.1.3 validatetopology_returntypeot i e 89

4.6.2 Topology Domains e e e e e e 90
4.6.2.1 TopoElement. e 90

4.6.2.2 TopoElementArray i it e e e e e e e e e e e e 90

4.6.3 Topology and TopoGeometry Management 91
4.6.3.1 AddTopoGeometryColumn e e 91

4.63.2 DropTopology e 92

4.6.3.3 DropTopoGeometryColumn e e 93

4.6.3.4 Populate_Topology_Layer. e 93

4.6.3.5 TopologySummaryttt e e e e e e e e e e e e e 94

4.63.6 ValidateTopology e 95

4.6.4 Topology Statistics Management Lt e e e e e e e e 95
4.6.5 Topology CONnStruCtors o v i v v it et e e e e e e e e 96
4.6.5.1 CreateTopology o i e e e e e 96

4.6.5.2 CopyTopology« . e e e 96

4.6.5.3 ST _InitTopoGeo o o e e e e e e 97

4.6.5.4 ST _CreateTopoGeo i i i it e e e 98

4.6.5.5 TopoGeo_AddPoint e e e e 98

4.6.5.6 TopoGeo_AddLineString e e 99

4.6.5.7 TopoGeo_AddPolygon e e 99

4.6.6 Topology Editors L e e e 100
4.6.6.1 ST_AddIsoNode e e 100

4.6.6.2 ST_AddIsoEdge e 100

4.6.6.3 ST_AddEdgeNewFaces e 101

4.6.6.4 ST_AddEdgeModFace 102

4.6.6.5 ST _RemEdgeNewFace e 102

4.6.6.6 ST _RemEdgeModFace 103

4.6.6.7 ST_ChangeEdgeGeom i e 104

4.6.6.8 ST _ModEdgeSplit e e 104

4.6.6.9 ST _ModEdgeHeal e 105
4.6.6.10 ST _NewEdgeHeal e 106
4.6.6.11 ST _MovelsoNode e 106
4.6.6.12 ST_NewEdgesSplit e 107
4.6.6.13 ST RemovelsoNode e 107

4.6.6.14 ST _RemovelsoEdge e 108

PostGIS 3.1.8 Manual Vi

4.7

4.6.7 Topology ACCESSOIS . . .« o v v v v it e e e e e e e e e e 108
4.6.7.1 GetEdgeByPoint e e 108
4.6.7.2 GetFaceByPoint L 109
4.6.7.3 GetNodeByPoint. e 110
4.6.7.4 GetTopologyID e 111
4.6.7.5 GetTopologySRID e 112
4.6.7.6 GetTopologyName i e e 112
4.6.7.7 ST_GetFaceEdges e 113
4.6.7.8 ST_GetFaceGeometry it it e e e e e 114
4.6.7.9 GetRingEdges e 114
4.6.7.10 GetNodeEdges 115
4.6.8 Topology Processing o e e e e e e 115
4.6.8.1 Polygonize e 115
4.6.82 AddNode. e 116
4683 AddEdge e 117
4.6.84 AddFace e 118
4.6.8.5 ST_Simplify e 119
4.6.9 TopoGeometry CONSIIUCIOTS v v v v v v v e i e e e e e e e e e e e e e e e e 120
4.69.1 CreateTopoGeom e 120
4.6.9.2 toTopoGeOm e e e e e e 121
4.6.93 TopoElementArray_Agg e 122
4.6.10 TopoGeometry Editors e e e e e 123
4.6.10.1 clearTopoGeom o e e e e e e e 123
4.6.10.2 TopoGeom_addElement e e 123
4.6.10.3 TopoGeom_remElement L e 124
4.6.10.4 toTopoGeOmM o e e e e e e e 124
4.6.11 TopoGeometry ACCESSOIS v v v v v ittt e e e et e e e e 125
4.6.11.1 GetTopoGeomEIementAIray v v v i v v it e et e e e e e e 125
4.6.11.2 GetTopoGeomElements e 125
4.6.12 TopoGeometry OULPULS o v v v v e 126
4.6.12.1 AsGML e 126
4.6.12.2 ASTopoJSON e e e 128
4.6.13 Topology Spatial Relationships L 129
4.6.13.1 Equals e e e e 129
4.6.13.2 INterseCtS v i e e e e e e e e e e e e e 130
Address Standardizer L. L e 131
4.7.1 How the Parser Works e 131
4772 Address Standardizer Types oL e 131

4721 stdaddr e 131

PostGIS 3.1.8 Manual vii

473 Address Standardizer Tables L 132
473.1 rulestable e 132

47732 lextable e 135

47733 gaztable 135

4774 Address Standardizer Functions oL 135
4741 parse_address e e e 135

4.7.42 standardize_address e 136

4.8 PostGIS EXtras e e e 138
4.8.1 Tiger Geocoder e e e e 138
4.8.1.1 Drop_Indexes_Generate_Scripto e e e 138

4.8.1.2 Drop_Nation_Tables_Generate_Script e 139

4.8.1.3 Drop_State_Tables_Generate_Script 140

4.8.1.4 Geocodel e 141

4.8.1.5 Geocode INtersection v it e e e e 143

4.8.1.6 Get_Geocode_Setting e e e e 144

4.8.1.7 Get_Tract e e e 145

4.8.1.8 Install_Missing_Indexes L e 146

4.8.1.9 Loader_Generate_Census_SCript v it 146

4.8.1.10 Loader_Generate_SCript v v v v v e i e e e e e e e e e e 148

4.8.1.11 Loader_Generate_Nation_Script i 150

4.8.1.12 Missing_Indexes_Generate_Scripto 151

4.8.1.13 Normalize Address e e 152

4.8.1.14 Pagc_Normalize_Address e 153

4.8.1.15 Pprint_Addy e 155

4.8.1.16 Reverse_Geocode 156

4.8.1.17 Topology Load_Tiger e 157

4.8.1.18 Set_Geocode_Setting e e e e e e 159

5 PostGIS Reference 161
5.1 PostGIS Geometry/Geography/Box Data Types o o i i i 161
S0 box2d ... 161
5.1.2 box3d . .. e 161
5.1.3 0 EOMEMIYo e e 162

5.1.4 geometry_dump e e e e e e e e e e 162

5.1.5 geographyo e 163

5.2 Table Management Functions L e 163
5.2.1 AddGeometryColumn e e e e e e e 163

5.2.2 DropGeometryColumn e e e e 165

5.23 DropGeometryTable e 166

PostGIS 3.1.8 Manual viii

53

54

524 Find_SRID e 167
5.2.5 Populate_Geometry_Columns e e e e e e 167
5.2.6 UpdateGeometrySRID L 169
Geometry CONSLIUCIOTS v v v v v i e 170
5.3.1 ST_Collect o o e 170
5.3.2 ST LineFromMultiPoint e e 171
5.3.3 ST_MakeEnvelope e 172
5.3.4 ST _Makeline e e 172
5.3.5 ST_MakePoint 174
5.3.6 ST _MakePointM e 175
5.377 ST_MakePolygon e e 176
5.3.8 ST _Point e 178
5.3.9 ST Polygon e 179
5.3.10 ST_TileEnvelope e e e e e e 180
5.3.11 ST_HexagonGrid o o e e 181
5.3.12 ST_SquareGrid e e e e e e 183
5.3.13 ST_Hexagon e e e e e 184
5.3.14 ST_Square o o e e e e e e 185
GEOMELTY ACCESSOTS « & v v v v v et e 186
54.1 GeometryType o o e e e e e e e e 186
542 ST _Boundary L e e e e 187
543 ST CoordDIm e e 189
5.4.4 ST DImension o o o o e 189
545 ST Dump o o e e 190
5.4.6 ST _DumpPoints e e e e e e e 192
5477 ST_DumpRings o . e e e e e e e e 196
54.8 ST_EndPoint e 197
549 ST_Envelope e e e e 198
5.4.10 ST_BoundingDiagonal e 199
5.4.11 ST_ExteriorRing e e e e 200
5412 ST_GeometryN o L e e e e 201
5.4.13 ST_GeometryType o o o ot e e e e e e e e e e e 203
5414 ST_HasArc 204
5.4.15 ST_InteriorRingN o o e 205
54.16 ST _IsPolygonCCW e e 206
5.4.17 ST_IsPolygonCW e 206
5418 ST_IsClosed o o 207
5.4.19 ST _ISCollection o o o e e e 209

5420 ST_ISEMPLY . . o o oo oo e e 210

PostGIS 3.1.8 Manual iX

55

5421 ST_ISRING o o 211
5422 ST_IsSimpleo 212
5423 ST M . o o 213
5424 ST_MemSize o e 213
5425 STNDIMS oot o e e 215
5426 ST NPOINES e e e e 215
5427 ST_NRINGS . . . o o oo o e e 216
5428 ST NumGEOMELIIES o v v o o e e e e e e e e e 216
5.4.29 ST _NumlnteriorRings e 217
5.4.30 ST_NumlnteriorRing L e e 218
5.4.31 ST NumPatches e e 218
5.4.32 ST NumPoInts o e e e 219
5433 ST PatchN e 219
5434 ST_PointN 220
5435 ST PoInts o o e e 222
5.4.36 ST _StartPoint e 222
5437 ST_Summary oo e e e e e e e e e 224
5438 ST_X . o o 225
5439 STLY . o o o 225
5440 ST_Z . . . o o 226
5441 ST Zmflag o o e e 227
Geometry EItors L e e e e e 228
5.5.1 ST_AddPoint o o e e 228
5.52 ST CollectionEXtract e e e e e 229
5.5.3 ST_CollectionHomogenize 0 vttt e e e 230
554 ST _ CurveToLine e e 231
5.5.5 ST_FlipCoordinates o i it et e e e e e e e 233
5.5.6 ST _Force2D e e 234
5.5.7 ST_Force3D e 235
5.5.8 ST _Force3DZ e e 235
559 ST_Force3DM e e 236
5.5.10 ST _ForcedD e e 237
5.5.11 ST _ForcePolygonCCW e 238
5.5.12 ST ForceCollection 0 e e e e 238
5.5.13 ST _ForcePolygonCW e 239
5.5.14 ST _ForceSFES e 240
5.5.15 ST_ForceRHR 240
5.5.16 ST _ForceCurve o o o e e 241
5.5.17 ST_LineMerge o o o i e e e e e 242

PostGIS 3.1.8 Manual X

5.6

5.7

5.8

5.5.18 ST LineToCurve o o o e 243
5.5.19 ST _Multi oo e 244
5.520 ST Normalize 245
5.5.21 ST_QuantizeCoordinates o v i i it e e e e e e e 245
5.5.22 ST RemovePoint e 247
5.5.23 ST_RemoveRepeatedPoints e 248
5.524 ST _REVEISE o o e e 249
5.525 ST_Segmentize o o i i e e e e e e e e e e e e e 249
5.5.26 ST_SetPoint e 250
5.5.27 ST_ShiftLongitude e 251
5.5.28 ST_WrapX o o 252
5.5.29 ST_SnapToGrid e e e e e e 253
5530 ST_Snap 254
5.5.31 ST_SwapOrdinates o v i e e e e e e e e e e e 257
Geometry Validation 258
5.6.1 ST_IsValid 258
5.6.2 ST_IsValidDetail 259
5.6.3 ST IsValidReason e 261
5.6.4 ST _MakeValid e 262
Spatial Reference System Functions L e e e 265
5.7.1 ST_SetSRID e 265
572 ST_SRID 265
5.7.3 ST Transform e 266
Geometry Input L e e e 268
5.8.1 Well-Known Text (WKT) e e e 268
5.8.1.1 ST_BdPolyFromText e e e e e e 268
5.8.1.2 ST_BdMPolyFromText e 269
5.8.1.3 ST_GeogFromText e e 270
5.8.1.4 ST _GeographyFromText 270
5.8.1.5 ST _GeomCollFromText e 270
5.8.1.6 ST_GeomFromEWKT e 271
5.8.1.7 ST_GeometryFromText e e 272
5.8.1.8 ST_GeomFromText e 273
5.8.1.9 ST LineFromText o o o e e e e e 274
5.8.1.10 ST_MLineFromText e 275
5.8.1.11 ST _MPointFromText e e 276
5.8.1.12 ST_MPolyFromText e 276
5.8.1.13 ST _PointFromText e e e 277

5.8.1.14 ST PolygonFromText 278

PostGIS 3.1.8 Manual Xi

5.8.1.15 ST _WKTToSQL e 279

5.8.2 Well-Known Binary (WKB) e 279
5.82.1 ST_GeogFromWKB e 279

5.82.2 ST _GeomFromEWKB e 280
5.8.2.3 ST GeomFromWKB e 281

5.82.4 ST LineFromWKB e 282
5.8.2.5 ST _LinestringFromWKB L 283
5.82.6 ST PointFromWKB e 284
5.8277 ST _WKBToSQL 285

5.83 OtherFormats 285
5.8.3.1 ST Box2dFromGeoHash 285

5.8.3.2 ST _GeomFromGeoHash e 286
5.8.3.3 ST GeomFromGML e 287
5.8.3.4 ST _GeomFromGeoJSON e 289

5.8.3.5 ST GeomFromKML e 290
5.83.6 ST _GeomFromTWKB e 291

5.83.77 ST_GMLToSQL 291
5.8.3.8 ST_LineFromEncodedPolyline 292
5.8.3.9 ST PointFromGeoHash 292

5.9 Geometry OULPUL o o it e e e e e e e e e e e e e 293
5.9.1 Well-Known Text (WKT) e e e e 293
5O.1.1 ST_ASEWKT e 293

59.1.2 ST ASTeXt o o i e 294

5.9.2 Well-Known Binary (WKB) e e 296
5921 ST _AsBinary e 296
5922 ST_ASEWKB 297
5923 ST ASHEXEWKB 299

5.9.3 OtherFormats 299
5.93.1 ST_AsEncodedPolyline 299

5932 ST _AsGeobuf 0300
5933 ST _AsGeoJSON 301
5934 ST _AsGML s 303
5935 ST _AsKML . . . o 305
5.9.3.6 ST _AsLatLonText e e 307
5937 ST _ASMVTGeom 308
5938 ST_ASMVT 309
5939 ST _ASSVG . . . o o 310
59310 ST_ASTWKB o e 310

5.93.11 ST_AsX3D e 311

PostGIS 3.1.8 Manual Xii

59312 ST GeoHash. e 314

510 Operators o i e e e e e e e e e e e 315
5.10.1 Bounding Box Operators i e e e e 315
SHOLT && .o oo e 315
5.10.1.2 &&(geometry,box2df) L 316
5.10.1.3 &&(box2df,geometry) L. e e e e e e 317
5.10.1.4 &&(box2df,box2df) 318
S0LS &&& . . . o o 318
5.10.1.6 &&&(geometry,gidx) 320
5.10.1.7 &&&(gIAX,ZEOMELrY) e e e e e e e e 320
5.10.1.8 &&&(gidx,gidX) 321
5019 &< oo 322
50110 &<l oo 323
STOLIT &> .o o 324
STOL2 K< oo o 324
SOLI3 <<l oo 325
S0.1.14 = o o 326
SOLIS >> Lo 327
50116 @ . Lo 328
5.10.1.17 @(geometry,box2df) 328
5.10.1.18 @(box2df,geometry) L 329
5.10.1.19 @(box2df,box2df) 0330
50120 &> . . o o o 331
STOL2L I>> Lo o33
S.0.1.22 ~ o 332
5.10.1.23 ~(geometry,box2df) 333
5.10.1.24 ~(box2df,geometry) e e e e e e e 334
5.10.1.25 ~(box2df,box2df) 0334
S5.00.1.26 ~= . L L 335

5.10.2 Distance Operators v v v i i e o336
SJ02.1 <> 0 o o 336
5022 1=l o 338
50023 <#>. Lo 339
51024 <<>> 00 e 340
50025 <<H#>> . oL e 340

5.11 Spatial Relationships L L e e e e e 341
5.11.1 Topological Relationships e 341
5.11.1.1 ST 3DINtErsectS v v v v v e e e e e e e e e e e 341

5.11.1.2 ST _Contains o v e e e e e e e e e 342

PostGIS 3.1.8 Manual xiii

5.11.1.3 ST_ContainsProperly 345
5.11.1.4 ST_COVEIS . . o v v o o o o e e e e e e e e 346
5.11.1.5 ST_CoveredBy e 348
5.11.1.6 ST_CIOSSES . v v v v v o o e e e e e e e e 349
5.11.1.7 ST_LineCrossingDirection it 351
SA1.1.8 ST_Disjoint o oot e e e 353
5.01.1.9 ST _Equals o e e 354
S5.01.1.10 ST_INErsects o v v o e e e e e e e e e e e 355
5.11.1.11 ST_OrderingEquals 357
SALLA2 ST_Overlaps o o o o e e e e e e 358
SALLI3 ST Relate o o o e e 360
5.11.1.14 ST _RelateMatch e 362
SAL.1.15 ST_Touches o o e e 363
SAL1.16 ST_Within 0 0 o oo 364

5.11.2 Distance Relationships 366
5.11.2.1 ST 3DDWithin e 366
5.11.2.2 ST_3DDFullyWithin 367
5.11.23 ST _DFullyWithin o o e 368
5.11.2.4 ST _DWithin L e 368
5.11.2.5 ST PointlnsideCircle e e 0370

5.12 Measurement Functions e e 371
5.12.1 ST_ArEa o e e s 3
5122 ST_Azimutho L 372
5123 ST_Angle o o o e e e 3T4
5.12.4 ST _ClosestPoint e e 374
5.12.5 ST 3DClosestPoint e e e . 3706
5.12.6 ST DiStance o v o o e e e e e e e 377
5.12.7 ST 3DDIStance o v v o e e e e e 039
5.12.8 ST_DistanceSphere L e e e 380
5.12.9 ST_DistanceSpheroid e e e e e L 38
5.12.10 ST _FrechetDistance 0 e e 381
5.12.11 ST _HausdorffDistance 0 e e e e 382
S5A2.128T_Length o o 384
512 13ST_Length2D o L o e 385
5.12.14 ST_3DLength 385
5.12.15 ST_LengthSpheroid e 386
5.12.16 ST_Longestline o o o e e e e e e e e e 387
5.12.17ST_3DLongestline o o e e e 390

5.12.18 ST _MaxDistance o o e e e e e 392

PostGIS 3.1.8 Manual Xiv

5.12.19 ST _3DMaxDIistance o v v v o e e e e e e 392
5.12.20 ST_MinimumClearancet e e e e e e e 393
5.12.21 ST MinimumClearancelLine o 394
5.1222 ST Perimeter o o e e e e e e 394
5.12.23 ST Perimeter2D e 396
5.12.24 ST _3DPerimeter o o o e e e e e e e 397
SA225ST_Project o o o e e 397
5.12.26 ST_Shortestine o e e e 398
5.12.27 ST _3DShortestline L 399
5.13 Overlay Functions e e e e e e e 401
5.13.1 ST_ClipByBox2D e 401
5.13.2 ST _Difference o o e e 401
5.13.3 ST INtersection o o o o e 403
5.13.4 ST MemUnion o o o e e 405
5.13.5 ST_Node e 405
5.13.6 ST_SpLit o e e 406
5.13.7 ST_Subdivide L 409
5.13.8 ST_SymbDifference e e e e e e 411
5139 ST_Union o o0 o 413
SA310ST_UnaryUnion o vt ot e e e e e e e e e e e e e e e e e e 415
5.14 Geometry Processing e e e 416
5.14.1 ST_Buffer o 416
5.142 ST_BuildArea e 420
5.14.3 ST Centroid o e e 421
5.14.4 ST ConcaveHull e 423
5.145 ST_ConvexHull e 428
5.14.6 ST_DelaunayTriangles e 429
5.1477 ST_FilterByM o e 434
5.14.8 ST _GeneratePoints e e 435
5.14.9 ST GeometricMedian e e 436
5.14.10 ST_MaximumlnscribedCircle e 437
5.14.11 ST_MinimumBoundingCircle e 438
5.14.12 ST_MinimumBoundingRadius 440
5.14.13 ST_OrientedEnvelope e e e e e e 440
5.14.14 ST_OffsetCurve o e e 44?2
5.14.15 ST _PointOnSurface e e e 445
5.14.16 ST_Polygonize e e 446
5.14.17 ST_ReducePrecision e e e 447

5.14.18 ST_SharedPaths e 448

PostGIS 3.1.8 Manual XV

5.15

5.16

5.17

5.18

51419 ST_Simplify o o e 450
5.14.20 ST_SimplifyPreserveTopology o e e e e 451
51421 ST_Simplify VW . . o L L e 452
5.14.22 ST_ChaikinSmoothing e e e e 453
5.14.23 ST _SetEffectiveArea 453
5.1424 ST VoronoiLines e e e 455
5.1425 ST_VoronoiPolygons 456
Affine Transformations L e 459
5.A5.1 ST_Affine o o o e 459
5.15.2 ST Rotate e e e 461
5.15.3 ST_RotateX o o e e 462
5.15.4 ST _RotateY e e 463
5.15.5 ST_RotateZ o o e 463
5.15.6 ST_Scale e 465
5.15.7 ST _Translate e e e 466
5.15.8 ST TransScale e e 467
Clustering Functions e 468
5.16.1 ST_ClusterDBSCAN e 468
5.16.2 ST_ClusterIntersecting i i e e 470
5.16.3 ST ClusterKMeans e e e e e e e 470
5.16.4 ST ClusterWithin e 472
Bounding Box Functions e e e e e e 473
5.07.1 Box2D . .o 473
5172 Box3D . .o 473
5.17.3 ST EstimatedEXtent e 474
5174 ST_Expand e e e e 475
5.07.5 ST_EXtento o e 476
5.17.6 ST_3DEXtent o i e e 478
5177 ST_MakeBox2D e 479
5.17.8 ST_3DMakeBox o e 480
5079 ST_XMaAX o o oot e 480
SATAOST_XMIN . . . o o e e e e 481
SATALST_YMaAX o e 482
SATA2ST_YMIN . . . o o e 483
SATIA3ST_ZMaX oo e e e 484
SATIAAST_ZMIN o o o e e 485
Linear Referencing o . L e e 486
5.18.1 ST_LinelnterpolatePoint e e 486

5.18.2 ST_3DLinelnterpolatePoint e 488

PostGIS 3.1.8 Manual XVi

5.19

5.20

5.21

5.22

5.18.3 ST_LinelnterpolatePoints 488
5.18.4 ST LineLocatePoint e e 489
5.18.5 ST_LineSubstring o o oo e e e 490
5.18.6 ST_LocateAIONg o o i e e e e e e e e e e e 492
5.18.7 ST LocateBetween e e 493
5.18.8 ST LocateBetweenElevations o e 494
5.18.9 ST_InterpolatePoint e 495
5.18.10 ST _AdAMeasure o o o e e e e 496
Trajectory Functions 496
5.19.1 ST_IsValidTrajectory o 0 o o e e e e e e e e e e e e 496
5.19.2 ST_ClosestPointOfApproach 497
5.19.3 ST DistanceCPA e e 498
5.19.4 ST_CPAWIthin 499
SFCGAL FUNCtions« . o ottt ittt e e e e e e s e e e e e s s 500
5.20.1 postgis_sfcgal_version 500
5.20.2 ST_Extrude e 500
5.20.3 ST_StraightSkeleton 501
5.20.4 ST_ApproximateMedialAXis e e e e e e 502
5.20.5 ST IsPlanar e s 503
5.20.6 ST _Orientation v v v o e e e e e e e 504
5.20.7 ST_ForceLHR e 504
5.20.8 ST_MinkowskiSum L 505
5.20.9 ST_ConstrainedDelaunayTriangles 506
5.20.10 ST_3DINtersection v v v i e e e e e e e e 507
5.20.11 ST _3DDifference o o e e e e 509
52012 ST 3DUNION o oot s e e e e 510
520.13ST_3DArea o o 511
5.20.14 ST _Tesselate o o e e e 512
520.15ST_Volume o L 514
5.20.16 ST_MakeSolid e 515
5.20.17 ST_IsSolid o 515
Long Transaction SUPPOIt o 0 i e e e e e e e e e e e e e e e e 516
521.1 AddAuth 516
5.21.2 CheckAuth 517
5.21.3 DisableLongTransactions e 517
5.21.4 EnableLongTransactions vttt 518
5.21.5 LockROW o o e e e 518
5.21.6 UnlockROWS e 519
Version Functions L e e e e 519

PostGIS 3.1.8 Manual XVii

5.22.1 PostGIS_Extensions_Upgrade e 519
5.22.2 PostGIS_Full_Version e 520
5.22.3 PostGIS_GEOS_Version 0 e e e e 521
5.22.4 PostGIS_Liblwgeom_Version e e e e 521
5.22.5 PostGIS_LibXML_Version v v v i i ot e e e e e 522
5.22.6 PostGIS_Lib_Build_Date0 522
5.22.7 PostGIS_Lib_Version e 523
5.22.8 PostGIS_PROJ _Version v v e e e e e 523
5.22.9 PostGIS_Wagyu_Version e e e 524
5.22.10 PostGIS_Scripts_Build_Date e 524
5.22.11 PostGIS_Scripts_Installed e 525
5.22.12 PostGIS_Scripts_Released 525
52213 PostGIS_Version o e e e e 526

5.23 Grand Unified Custom Variables (GUCS) s e e 526
5.23.1 postgis.backend Lo e 526
5.23.2 postgis.gdal_datapath e 527
5.23.3 postgis.gdal_enabled_drivers 528
5.23.4 postgis.enable_outdb_rasters L e e e e e e e 529
5.24 Troubleshooting Functions e e 530
5.24.1 PostGIS_AddBBOX e 530
5.24.2 PostGIS_DropBBox e e e e 530
5.24.3 PostGIS_HasBBoxX o e 531

6 Raster Reference 533
6.1 Raster Support Data types e e e 534
6.1.1 geomval e e e e 534
6.1.2 addbandarg 534
6.1.3 rastbandarg 534
6.1.4 TaSter e e 535
6.1.5 reclassargo e 535
6.1.6 summarystats L. e e e e e 536
6.1.7 UNioNarg e e e e e e e e e e e e e 536

6.2 Raster Management e e e e e 537
6.2.1 AddRasterConstraints e e e 537
6.2.2 DropRasterConstraints e e e e e 538
6.2.3 AddOverviewConStraints e e e e e e 539
6.2.4 DropOverviewConStraints o v v vt i e e e e e e e e e e e e e e e e 540
6.2.5 PoStGIS_GDAL_VEISION v v e e e e e e e e e 541

6.2.6 PostGIS_Raster_Lib_Build_Date e 541

PostGIS 3.1.8 Manual XViii

6.3

6.4

6.5

6.2.7 PostGIS_Raster Lib_Version 542
6.2.8 ST_GDALDIIVErS e e 542
6.2.9 UpdateRasterSRID 546
6.2.10 ST _CreateOVEIVIEW v v v o o e e e e e e e e e e e e e e e 547
Raster Constructors L e 548
6.3.1 ST_AddBand 548
6.3.2 ST _ASRASter e 550
6.33 ST Band 552
6.3.4 ST _MakeEmptyCoverage o it it e e e e 554
6.3.5 ST_MakeEmptyRaster e e e e 555
6.3.6 ST Tile o e e 556
6.3.7 ST_Retile 558
6.3.8 ST FromGDALRAStEr o e 558
RaSter ACCESSOIS v o v i e e e 559
6.4.1 ST GeoReference e, 559
6.42 ST_Height 560
6.43 ST_ISEmpty e 561
6.44 ST MemSize 561
6.4.5 ST MetaData e e 562
6.4.6 ST NumBands e 563
6.4.7 ST _PixelHeight o o 563
6.4.8 ST_PixelWidth 564
6.4.9 ST_ScaleX e 565
6.4.10 ST_ScaleY 566
6.4.11 ST RasterToWorldCoord e 567
6.4.12 ST _RasterToWorldCoordX e e 567
6.4.13 ST RasterToWorldCoordY e e 568
6.4.14 ST _Rotation o o e e e 569
6.4.15 ST_SkewX o e 570
6.4.16 ST_SKkewY 571
6.4.17 ST_SRID e 571
6.4.18 ST_Summary o o e e e e e e e e e e e e 572
6.4.19 ST UpperLeftX o 573
6.4.20 ST_UpperLeftY o . e e e e e 573
6.421 ST_Width o 574
6.4.22 ST WorldToRasterCoord o e e 574
6.4.23 ST WorldToRasterCoordX e 575
6.4.24 ST WorldToRasterCoordY o o e 576
Raster Band Accessors L e 576

PostGIS 3.1.8 Manual Xix

6.6

6.7

6.8

6.5.1 ST BandMetaData 576
6.5.2 ST _BandNoDataValue e e 578
6.5.3 ST BandIsNoData e 578
6.54 ST BandPath 580
6.5.5 ST BandFileSize e 580
6.5.6 ST_BandFileTimestamp 0 it et e e e e e e e 581
6.5.7 ST_BandPixelType o e 581
6.5.8 ST _MinPossibleValue e e e 582
6.5.9 ST HasNoBand e 583
Raster Pixel Accessors and Setters 583
6.6.1 ST_PixelAsPolygon 583
6.6.2 ST_PixelAsPolygons e e e e e 584
6.6.3 ST PixelAsPoint e 585
6.6.4 ST PixelAsPoints e 586
6.6.5 ST PixelAsCentroid o e, 587
6.6.6 ST PixelAsCentroids e 587
6.6.7 ST_Value e 588
6.6.8 ST NearestValue e 591
6.6.9 ST_Neighborhood e 593
6.6.10 ST_SetValue 595
6.6.11 ST SetValues e e 596
6.6.12 ST_DumpValues e e e e e e 604
6.6.13 ST _PixelOfValue 605
Raster EAItors o 606
6.7.1 ST _SetGeoReference e 606
6.7.2 ST _SetRotation e e e 608
6.7.3 ST_SetScale e 608
6.7.4 ST_SetSkew o 609
6.7.5 ST_SetSRID e 610
6.7.6 ST_SetUpperLeft e e e e e e 610
6.7.7 ST_Resample L e e e e 611
6.7.8 ST _Rescale e e 612
6.7.9 ST Reskew e 613
6.7.10 ST_SnapToGrid e e e 614
6.7.11 ST_Resize o e 615
6.7.12 ST _Transform e e e 617
Raster Band Editors e e 620
6.8.1 ST SetBandNoDataValue e 620

6.8.2 ST SetBandIsNoData e e 620

PostGIS 3.1.8 Manual XX

6.9

6.10

6.11

6.12

6.13

6.8.3 ST_SetBandPath 622
6.8.4 ST SetBandIndex e 623
Raster Band Statistics and Analytics L 625
6.9.1 ST _Count e 625
6.9.2 ST _CountAgg i i e 625
6.9.3 ST_Histogram e e e e e e e e e e e 626
6.94 ST Quantile e 628
6.9.5 ST_SummaryStats e e e e e e e e e e e 630
6.9.6 ST _SummaryStatsSAZg e e e e e e e 632
6.9.7 ST ValueCount e 633
Raster Inputs L e e 635
6.10.1 ST RastFromWKB e e 635
6.10.2 ST RastFromHexWKB e 636
Raster Outputs e e e e e e e e e e e e 637
6.11.1 ST_AsBinary/ST_AsWKB e 637
6.11.2 ST_AsHexWKB 638
6.11.3 ST_ASGDALRaSter 638
6.11.4 ST_ASIPEG o e 639
6.11.5 ST_ASPNG 640
6.11.6 ST_ASTIFF 641
Raster Processing: Map Algebra 642
6.12.1 ST_CLp o o e 642
6.12.2 ST_ColorMap e e 645
6.12.3 ST_Grayscale o o e e e e e e 648
6.12.4 ST INtersection v v i i e e e e 650
6.12.5 ST_MapAlgebra (callback function version) o i 651
6.12.6 ST_MapAlgebra (eXpression VErsion)o v v v i it e e 658
6.12.7 ST_MapAlgebraEXpr e e e e e e e 660
6.12.8 ST _MapAlgebraExpr e 662
6.12.9 ST_MapAlgebraFct. e e e e 667
6.12.10 ST_MapAlgebraFct. e 671
6.12.11 ST_MapAlgebraFctNgb e e e e e 675
6.12.12ST_Reclass e e 677
6.12. 13 ST _UNION e e e e e e 678
Built-in Map Algebra Callback Functions 680
6.13.1 ST _Distinctdma o o e e e e e e 680
6.13.2 ST_InvDistWeightdma o e e 681
6.13.3 ST _Max4ma o o e e e e 681

6.13.4 ST Meandma o o e e e e e 682

PostGIS 3.1.8 Manual XXi

6.14

6.15

6.16

6.17

6.13.5 ST_MiIndma o e e e 684
6.13.6 ST _MinDistdma o e e e 685
6.13.7 ST_Rangedma e 685
6.13.8 ST_StdDev4ma 686
6.13.9 ST Sumdma e 687
Raster Processing: DEM (Elevation) 0 i e e e e e e 688
6.14.1 ST_ASPect o o e 688
6.14.2 ST_HillShade 690
6.14.3 ST_Roughness e 692
6.14.4 ST_Slope o 692
6.14.5 ST_TPI o e 694
6.14.6 ST_TRI 695
Raster Processing: Raster to Geometry 695
6.15.1 Box3D 695
6.15.2 ST ConvexHull e 696
6.15.3 ST_DumpAsPolygons e e e e 697
6.15.4 ST_Envelope e e 698
6.15.5 ST _MinConvexHull 699
6.15.6 ST_Polygon e 700
Raster Operators i e e e e e e e e e e e 701
6.16.1 && . . . o 701
6.10.2 &< .. 702
6.16.3 &> . . 702
6.160.4 = . . 703
6.16.5 @ . . . 704
6.16.6 ~= . . . 704
6.16.7 ~ 705
Raster and Raster Band Spatial Relationships e 705
6.17.1 ST Contains o o e e e e e e e 705
6.17.2 ST_ContainsProperly e e e e e 706
6.17.3 ST _COVEIS e e e e 707
6.17.4 ST_CoveredBYy e e e e e e 708
6.17.5 ST_DIiSjoint o oo i e e e e e e e 709
6.17.6 ST_INtErsects o o v o e e e e e e 710
6.17.7 ST_Overlaps o e e 710
6.17.8 ST _Touches e e 711
6.17.9 ST_SameAlignment e e e e 712
6.17.10 ST_NotSameAlignmentReason e 713

6.17. 11 ST_Within L e 714

PostGIS 3.1.8 Manual XXii
6.17.12ST_DWithin e e 715
6.17.13ST_DFullyWithin 716

6.18 Raster Tips o e e e e e 717
6.18.1 Out-DB Rasters e e e 717
6.18.1.1 Directory containing many files L 717

6.18.1.2 Maximum Numberof Open Files 717

6.18.1.2.1 Maximum number of open files for the entire system 718

6.18.1.2.2 Maximum number of open files per process 718

7 PostGIS Frequently Asked Questions 720

8 PostGIS Raster Frequently Asked Questions 724

9 PostGIS Special Functions Index 728

9.1 PostGIS Aggregate Functions e e e e e 728
9.2 PostGIS Window Functions e 728
9.3 PostGIS SQL-MM Compliant Functions e 729
9.4 PostGIS Geography Support Functions e 733
9.5 PostGIS Raster Support Functions e e e 734
9.6 PostGIS Geometry / Geography / Raster Dump Functions 739
9.7 PostGIS Box Functions e e 740
9.8 PostGIS Functions that support 3D 741
9.9 PostGIS Curved Geometry Support Functions 745
9.10 PostGIS Polyhedral Surface Support Functions 748
9.11 PostGIS Function Support Matrix e e e 751
9.12 New, Enhanced or changed PostGIS Functions 758
9.12.1 PostGIS Functions new or enhancedin3.1 758
9.12.2 PostGIS Functions new or enhancedin 3.0 o 760
9.12.3 PostGIS Functions new or enhanced in2.5 L oL 761
9.12.4 PostGIS Functions new or enhanced in2.4 oL 762
9.12.5 PostGIS Functions new or enhanced in2.3 Lo 764
9.12.6 PostGIS Functions new or enhanced in 2.2 Lo 766
9.12.7 PostGIS functions breaking changesin2.2 L o oo 768
9.12.8 PostGIS Functions new or enhanced in2.1 oo 769
9.12.9 PostGIS functions breaking changesin 2.1 e 772
9.12.10 PostGIS Functions new, behavior changed, or enhancedin2.0 773
9.12.11 PostGIS Functions changed behaviorin2.0 781
9.12.12 PostGIS Functions new, behavior changed, or enhancedin 1.5 783
9.12.13 PostGIS Functions new, behavior changed, or enhancedin 1.4 784
9.12.14 PostGIS Functionsnew in 1.3 e 784

PostGIS 3.1.8 Manual xxiii
10 Reporting Problems 785
10.1 Reporting Software Bugs L e e 785
10.2 Reporting Documentation Issues L 785
A Appendix 786
Al Release 3.1.8 L L e e 786
A.1.1 Bugand Security Fixes e e 786

A2 Release 3.1.7 786
A2.1 BugFixeso e e 786

A3 Release 3.1.6 e 787
A3l BugFixes e 787

A4 Release 3.1.5 . . . o L e e 787
A4l BugFixes e e e e 787

A5 Release 3.1.4 787
AS.1 BugFixes e 787

A6 Release 3.1.3 e 788
A6.1 BugFixes e 788

A7 Release 3.1.2 e 788
AT.1 BugFixes 788

A.8 Release 3.1.2 L e e e 789
A8.1 BugFixes o e e e e e 789

A9 Release 3.1.1 L e 789
A9.1 BugFixes e e 789

A.10 Release 3.1.0betal L e e 789
A.10.1 Breakingchanges L e 789
A.10.2 Enhancements L e e e 790

A.l11 Release 3.1.0alpha3 e 790
A.11.1 Breakingchanges 790
A1L2 New features L . 0 e e 790
A.11.3 Enhancements L e e 790

A 14 BugFixes o o e e 791

A.12 Release 3.1.0alpha2 L e e e e 791
A.12.1 New Features 0 e e 791
A.12.2 Enhancements e e e e 791
Ad23 BugfiXes o 792
A.13 Release 3.1.0alphal o e 792
A.13.1 Breaking Changes e e e e 792
A13.2 New features o o e 792
A.13.3 Enhancements L e e e e e 792

PostGIS 3.1.8 Manual XXiV

A.14 Release 3.0.0 L e 793
A.14.1 New Features 0 e 793
A.14.2 Breaking Changes e 793
A.14.3 Enhancements e e e e e 794

A.15 Release 3.0.0rC2 L L e e e 795
A.15.1 Major highlights e e e 795

A.16 Release 3.0.0rcl L L 795
A.16.1 Major highlights e e e 795

A.17 Release 3.0.0betal L e e 796
A.17.1 Major highlights e e e 796

A.18 Release 3.0.0alphad L e 796
A.18.1 Major highlights e e 796

A.19 Release 3.0.0alpha3 e 797
A.19.1 Major highlights e e e e 797

A.20 Release 3.0.0alpha2 L e 797
A.20.1 Major highlights e e e e 798

A.21 Release 3.0.0alphal e 798
A21.1 New Features e 798

A22 Release 2.5.0 L e e 798
A22.1 New Features e 798
A.22.2 Breaking Changes 799

A23 Release 2.4.5 . . . L e 799
A23.1 BugFixes e 800

A24 Release 2.4.4 . . . L L L e 800
A24.1 BugFixes 800
A.24.2 Enhancements e e 800

A25 Release 2.4.3 . . . L e e e 801
A.25.1 Bug Fixes and Enhancements 801

A26 Release 2.4.2 801
A.26.1 BugFixes and Enhancements 801

A2T7 Release 2.4.1 L L e e e 801
A.27.1 Bug Fixes and Enhancements 801

A28 Release 2.4.0 L e e 802
A28.1 New Features e e 802
A.28.2 Enhancements and Fixes L e 802
A.28.3 Breaking Changes L e 803

A29 Release 2.3.3 . . . L L e e 803
A.29.1 Bug Fixes and Enhancements e 803

A30 Release 2.3.2 e e 803

PostGIS 3.1.8 Manual XXV

A.30.1 Bug Fixes and Enhancements 804
A3l Release 2.3.1 e e 804
A.31.1 Bug Fixes and Enhancements 804
A32 Release 2.3.0 e 804
A.32.1 Important / Breaking Changes 804
A322 New Features e 805
A323 BugFixes 805
A.32.4 Performance Enhancements L e 805
A33 Release 2.2.2 . . . L L e e e e 806
A33.1 New Features e 806
A34 Release 2.2.1 L e e e 806
A34.1 New Features e 806
A35 Release 2.2.0 . . . L e e 807
A35.1 New Features e 807
A.35.2 Enhancements L e e e e e e 808
A36 Release 2.1.8 e 809
A36.1 BugFixes 809
A3T Release 2.1.7 e e 809
A37.1 BugFixes 809
A38Release 2.1.6 e 809
A.38.1 Enhancements L e e e e e 810
A38.2 BUugFixes o e e e e e e 810
A39 Release 2.1.5 . . . L L e 810
A.39.1 Enhancements e e 810
A392 BugFixes o o o e 810
AdO Release 2.1.4 L L e 810
A.40.1 Enhancements L e e e e e 811
A40.2 BugFixes o e e e e e e e 811
A4l Release 2.1.3 L e e e 811
A41.1 Important changes e e e e e e e e e e e 812
AA4L2 BugFixes o o e e 812
Ad2 Release 2.1.2 . . . L L L e 812
AA42.1 BugFixes o e e 812
A42.2 Enhancementso e e e e 813
Ad3 Release 2.1.1 L L e e e e 813
A43.1 Important Changes L e e 813
AA432 BugFixes o e 813
A.43.3 Enhancementso e e 813

Ad4 Release 2.1.0 L e 813

PostGIS 3.1.8 Manual XXVi

A.44.1 Important / Breaking Changes 814
Ad42 New Features 0 e 814
A44.3 Enhancementsl e e e e e e e e e 816
AdA4 FIXES . . o v v e e 817
AA44S5 KnownIssues oL e e e e 818
A4S Release 2.0.5 . . . L L 818
A4S5.1 BugFixes o e 818
A45.2 Tmportant Changes i e e e e e e e e e e e e 818
Ad6 Release 2.0.4 819
A46.1 BugFixes o e e e e e 819
A.46.2 Enhancements e 819
A46.3 KnownlIssues L. 819
AA4T Release 2.0.3 . . . L e e e 820
AAT. 1T BugFixes o e e e e e e e 820
AA47.2 Enhancements Ll e e e e e e e e 820
Ad8 Release 2.0.2 e 820
A48.1 BugFixes e 820
A48.2 Enhancements e e e 821
A49 Release 2.0.1 L e e 822
AA49.1 BugFixes o e e e e 822
A49.2 Enhancements L e e e e e e 823
ASO0Release 2.0.0 e 823
A.50.1 Testers - Our unsung heroes e e e e 823
A.50.2 Important / Breaking Changes e e e e 823
A.50.3 New Features o . . e e e 824
A.50.4 Enhancements e e 824
AS505 BugFixes e 825
A.50.6 Release specificcredits L. e e e e e e e e e 825
AST Release 1.5.4 . . . o L L e e e 825
ASLT BugFixes o e e e e e e 825
AS2 Release 1.5.3 . . . o L e 826
AS2.1 BugFixes o e e e e 826
AS3 Release 1.5.2 . . . o L e e 826
AS3.1 BugFixes oo 827
AS4 Release 1.5.1 L L e e e 827
AS54.1 BugFixes o o o e 827
ASS5 Release 1.5.0 . . . o L e 828
AS55.1 APIStability e 828

A55.2 Compatibility L. e 828

PostGIS 3.1.8 Manual XXVii

AS553 NewFeatures e 828
A.55.4 Enhancements 829
ASS55 Bugfixes 829
AS56 Release 1.4.0 829
AS56.1 APIStability 829
AS56.2 Compatibility o 829
AS563 New Features o i e e 829
A.56.4 Enhancements 830
AS56.5 Bugfixes e 830
ASTRelease 1.3.6 830
AS8 Release 1.3.5 e 830
AS9 Release 1.3.4 831
A.60 Release 1.3.3 831
A6l Release 1.3.2 831
A.62 Release 1.3.1 . . . o o o e e 831
A.63 Release 1.3.0 831
A.63.1 Added Functionality 831
A.63.2 Performance Enhancements o o 831
A.63.3 Other Changes i 832
A.64 Release 1.2.1o 832
A64.1 Changes o o 832
A65 Release 1.2.0 832
A65.1 Changes o o e e e 832
A66 Release 1.1.6 832
A.66.1 Upgrading o e 832
A66.2 Bugfixes 833
A.66.3 Otherchanges. e 833
A.67 Release 1.1.5 o L L 833
A.67.1 Upgrading e e 833
AB7.2 BUuZfiXes o i e e e e e e 833
A.67.3 New Features e 833
A68 Release 1.1.4 L L 833
A.68.1 Upgrading 834
A68.2 Bugfixes 834
A.68.3 Javachanges 834
A69 Release 1.1.3 L L L 834
A.69.1 Upgrading e 834
A.69.2 Bug fiXes / COITECINESS v v v v v e e e e e e e e e e e 834

A.69.3 New functionalities e e 835

PostGIS 3.1.8 Manual XXViii

A.69.4 JDBC changes i i i i e e e 835
A.69.5 Otherchanges. 0 e e e 835
A0 Release 1.1.2 . . . o L L e e 835
AT70.1 Upgrading o o e e e e e e e e 835
AT70.2 BugfiXes e 835
A.70.3 New functionalities L e 836
A.70.4 Otherchanges. e e 836
A1 Release 1.1.1 . . . o . 0 o e e 836
ATL1 Upgrading oL e 836
ATL2 Bugfixes o o i e e e e e e e 836
A.71.3 New functionalities 836
AT72 Release 1.1.0 o e 837
AT2.1 Credits 837
AT72.2 Upgrading o o e e e e e e e 837
A.72.3 New functions e 837
AT2.4 Bugfixes o i e e e e e e e 838
A.72.5 Function semantic changes e 838
A.72.6 Performance improvements e e e e e e e e e e e e e e e 838
AT72.7 JDBC2 WOTKS o o e 838
A.72.8 Othernew things e e e e e e e 838
A72.9 Otherchanges. e 838
AT3 Release 1.0.6 o 839
A73.1 Upgrading e e 839
AT3.2 BUugfixes o . i e e e e e e 839
AT33 Improvementso e e 839
AT4 Release 1.0.5 . . . o L L e 839
AT4.1 Upgrading Lo e 839
A.74.2 Library changes e e e e e e e e 840
A743 Loaderchanges L e 840
A74.4 Otherchanges. o o i i e e e e e e e e 840
A75 Release 1.0.4 . . . o L e e 840
AT5.1 Upgrading o e e e e e e 840
AT52 Bugfixes e e 840
AT53 TMProvementS o v v i e 841
A76 Release 1.0.3 . . . o L L e e e 841
A76.1 Upgrading oL e 841
AT6.2 Bugfixes e 841
AT6.3 TMProvementS v v v i e 841

A77 Release 1.0.2 L e 841

PostGIS 3.1.8 Manual XXiX

AT77.1 Upgrading L e 842
ATT7.2 BUugfiXes o v o e e e e e e e e e 842
AT7.3 ITMProvements ottt e e e e e e e e e e e e e e e e e e 842
AT8 Release 1.0.1 842
A78.1 Upgrading L e 842
A.78.2 Library changes e e e e e e 842
A.78.3 Other changes/additions L 842
AT9 Release 1.0.0 843
A79.1 Upgrading o e 843
A.79.2 Library changes e e e e e e e e 843
A.79.3 Other changes/additions L 843
AB0 Release 1.0.0RCO 843
A.80.1 Upgrading e 843
A.80.2 Library changes e e e e e e 843
A.80.3 Scriptschanges e 843
A.80.4 Otherchanges. e e e e e e 844
A.81 Release 1.0.0RCS 844
A8L.1 Upgrading e e e e 844
A.81.2 Librarychanges L 844
A.81.3 Otherchanges. e e e e e e 844
A.82 Release 1.0.0RC4 844
A82.1 Upgrading e e e e e e e 844
A.82.2 Librarychanges L 844
A.82.3 Scriptschanges e e e e e e e e e 845
A82.4 Otherchanges. e 845
A83 Release 1.0.ORC3 L . e 845
A83.1 Upgrading 845
A.83.2 Library changes e e e e 845
A83.3 Scriptschanges 845
A.83.4 JDBCchanges e e e e 846
A83.5 Otherchanges. e 846
A84 Release 1.0.ORC2 L 846
AB4.1 Upgrading 846
A.84.2 Librarychanges o e 846
A84.3 Scriptschanges e 846
A.84.4 Otherchanges. e 847
A.85 Release 1.0.0RCL o L 847
A85.1 Upgrading L e 847

AB52 Changes e 847

Abstract

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Sys-
tems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for
analysis and processing of GIS objects.

Spatial PostgreSQL */ 0SGeo

Project

This is the manual for version 3.1.8

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License. Feel free to use
this material any way you like, but we ask that you attribute credit to the PostGIS Project and wherever possible, a link back to
http://postgis.net.

https://www.postgresql.org/
http://creativecommons.org/licenses/by-sa/3.0/
http://postgis.net

PostGIS 3.1.8 Manual 1/847

Chapter 1

Introduction

PostGIS is a spatial extension for the PostgreSQL relational database that was created by Refractions Research Inc, as a spatial
database technology research project. Refractions is a GIS and database consulting company in Victoria, British Columbia,
Canada, specializing in data integration and custom software development.

PostGIS is now a project of the OSGeo Foundation and is developed and funded by many FOSS4G developers and organizations
all over the world that gain great benefit from its functionality and versatility.

The PostGIS project development group plans on supporting and enhancing PostGIS to better support a range of important GIS
functionality in the areas of OpenGIS and SQL/MM spatial standards, advanced topological constructs (coverages, surfaces,
networks), data source for desktop user interface tools for viewing and editing GIS data, and web-based access tools.

1.1 Project Steering Committee

The PostGIS Project Steering Committee (PSC) coordinates the general direction, release cycles, documentation, and outreach
efforts for the PostGIS project. In addition the PSC provides general user support, accepts and approves patches from the general
PostGIS community and votes on miscellaneous issues involving PostGIS such as developer commit access, new PSC members
or significant API changes.

Raiil Marin Rodriguez MVT support, Bug fixing, Performance and stability improvements, GitHub curation, alignment of
PostGIS with PostgreSQL releases

Regina Obe Buildbot Maintenance, Windows production and experimental builds, documentation, alignment of PostGIS with
PostgreSQL releases, X3D support, TIGER geocoder support, management functions.

Darafei Praliaskouski Index improvements, bug fixing and geometry/geography function improvements, SFCGAL, raster,
GitHub curation, and Travis bot maintenance.

Paul Ramsey (Chair) Co-founder of PostGIS project. General bug fixing, geography support, geography and geometry index
support (2D, 3D, nD index and anything spatial index), underlying geometry internal structures, GEOS functionality inte-
gration and alignment with GEOS releases, alignment of PostGIS with PostgreSQL releases, loader/dumper, and Shapefile
GUI loader.

Sandro Santilli Bug fixes and maintenance, buildbot maintenance, git mirror management, management functions, integration
of new GEOS functionality and alignment with GEOS releases, topology support, and raster framework and low level API
functions.

1.2 Core Contributors Present

Nicklas Avén Distance function enhancements (including 3D distance and relationship functions) and additions, Tiny WKB
(TWKB) output format and general user support

PostGIS 3.1.8 Manual 2 /847

Dan Baston Geometry clustering function additions, other geometry algorithm enhancements, GEOS enhancements and general
user support

Martin Davis GEOS enhancements and documentation
Bjorn Harrtell MapBox Vector Tile and GeoBuf functions. Gogs testing and GitLab experimentation.

Aliaksandr Kalenik Geometry Processing, PostgreSQL gist, general bug fixing

1.3 Core Contributors Past

Bborie Park Raster development, integration with GDAL, raster loader, user support, general bug fixing, testing on various OS
(Slackware, Mac, Windows, and more)

Mark Cave-Ayland Prior PSC Member. Coordinated bug fixing and maintenance effort, spatial index selectivity and binding,
loader/dumper, and Shapefile GUI Loader, integration of new and new function enhancements.

Olivier Courtin (Emeritus) Input/output XML (KML,GML)/GeoJSON functions, 3D support and bug fixes.
Chris Hodgson Prior PSC Member. General development, site and buildbot maintenance, OSGeo incubation management

Kevin Neufeld Prior PSC Member. Documentation and documentation support tools, buildbot maintenance, advanced user
support on PostGIS newsgroup, and PostGIS maintenance function enhancements.

Dave Blasby The original developer/Co-founder of PostGIS. Dave wrote the server side objects, index bindings, and many of
the server side analytical functions.

Pierre Racine Raster overall architecture, prototyping, programming support

Jorge Arévalo Raster development, GDAL driver support, loader

Mark Leslie Ongoing maintenance and development of core functions. Enhanced curve support. Shapefile GUI loader.
Mateusz Loskot CMake support for PostGIS, built original raster loader in python and low level raster API functions
Jeff Lounsbury Original development of the Shapefile loader/dumper.

David Zwarg Raster development (mostly map algebra analytic functions)

1.4 Other Contributors

PostGIS 3.1.8 Manual

3/847

Individual Contributors

Alex Bodnaru
Alex Mayrhofer
Andrea Peri
Andreas Forg Tollefsen
Andreas Neumann
Anne Ghisla
Antoine Bajolet
Artur Zakirov
Barbara Phillipot
Ben Jubb
Bernhard Reiter
Bjorn Esser

Brian Hamlin
Bruce Rindahl
Bruno Wolff III
Bryce L. Nordgren
Carl Anderson
Charlie Savage
Christoph Berg
Christoph Moench-Tegeder
Dane Springmeyer
Dave Fuhry

David Garnier
David Skea

David Techer
Dmitry Vasilyev
Eduin Carrillo
Eugene Antimirov
Even Rouault
Frank Warmerdam
George Silva

Gerald Fenoy
Gino Lucrezi
Greg Troxel
Guillaume Lelarge
Haribabu Kommi
Havard Tveite
IIDA Tetsushi
Ingvild Nystuen
Jackie Leng
James Marca
Jason Smith

Jeff Adams
Jonne Savolainen
Jose Carlos Martinez Llari
Jorg Habenicht
Julien Rouhaud
Kashif Rasul
Klaus Foerster
Kris Jurka
Laurenz Albe
Lars Roessiger
Leo Hsu

Loic Dachary
Luca S. Percich
Maria Arias de Reyna
Marc Ducobu
Mark Sondheim
Markus Schaber
Markus Wanner
Matt Amos
Matthias Bay

Maxime Guillaud
Maxime van Noppen
Michael Fuhr

Mike Toews

Nathan Wagner
Nathaniel Clay
Nikita Shulga
Norman Vine
Patricia Tozer

Rafal Magda

Ralph Mason

Rémi Cura

Richard Greenwood
Roger Crew

Ron Mayer
Sebastiaan Couwenberg
Sergey Fedoseev
Shinichi Sugiyama
Shoaib Burq

Silvio Grosso
Steffen Macke
Stepan Kuzmin
Stephen Frost

Talha Rizwan

Tom Glancy

Tom van Tilburg
Vincent Mora
Vincent Picavet
Volf Tomas

Corporate Sponsors These are corporate entities that have contributed developer time, hosting, or direct monetary funding to
the PostGIS project. In alphabetical order:

e Arrival 3D

* Associazione Italiana per I’'Informazione Geografica Libera (GFOSS.it)

* AusVet

* Avencia

* Azavea

* Boundless

* Cadcorp

e Camptocamp

e Carto

* City of Boston (DND)

* City of Helsinki

* Clever Elephant Solutions

* Cooperativa Alveo

* Deimos Space

¢ Faunalia

* Geographic Data BC

* Hunter Systems Group

e [Sciences, LLC

https://arrival3d.com
http://gfoss.it
https://www.ausvet.com.au
https://www.azavea.com
https://www.boundlessgeo.com
https://www.cadcorp.com
https://www.camptocamp.com
https://carto.com
https://www.boston.gov
https://www.hel.fi
https://blog.cleverelephant.ca
https://www.alveo.coop
http://www.elecnor-deimos.com
https://www.faunalia.eu
https://gov.bc.ca
http://www.hunterbiometrics.com
https://www.isciences.com

PostGIS 3.1.8 Manual 4/847

* Lidwala Consulting Engineers
* LISAsoft
* Logical Tracking & Tracing International AG
* Maponics
* Michigan Tech Research Institute
* Natural Resources Canada
* Norwegian Forest and Landscape Institue
* Norwegian Institute of Bioeconomy Research (NIBIO)
* OSGeo
* Oslandia
* Palantir Technologies
 Paragon Corporation
* R3GIS
* Refractions Research
* Regione Toscana - SITA
» Safe Software
* Sirius Corporation plc
 Stadt Uster
* UC Davis Center for Vectorborne Diseases
* Université Laval
e U.S. Department of State (HIU)
* Zonar Systems
Crowd Funding Campaigns Crowd funding campaigns are campaigns we run to get badly wanted features funded that can
service a large number of people. Each campaign is specifically focused on a particular feature or set of features. Each
sponsor chips in a small fraction of the needed funding and with enough people/organizations contributing, we have the

funds to pay for the work that will help many. If you have an idea for a feature you think many others would be willing to
co-fund, please post to the PostGIS newsgroup your thoughts and together we can make it happen.

PostGIS 2.0.0 was the first release we tried this strategy. We used PledgeBank and we got two successful campaigns out
of it.

postgistopology - 10 plus sponsors each contributed $250 USD to build toTopoGeometry function and beef up topology
support in 2.0.0. It happened.

postgis6dwindows - 20 someodd sponsors each contributed $100 USD to pay for the work needed to work out PostGIS
64-bit issues on windows. It happened.
Important Support Libraries The GEOS geometry operations library

The GDAL Geospatial Data Abstraction Library used to power much of the raster functionality introduced in PostGIS 2.
In kind, improvements needed in GDAL to support PostGIS are contributed back to the GDAL project.

The PROJ cartographic projection library

Last but not least, PostgreSQL, the giant that PostGIS stands on. Much of the speed and flexibility of PostGIS would not be
possible without the extensibility, great query planner, GIST index, and plethora of SQL features provided by PostgreSQL.

https://www.lidwala.com
https://www.jirotech.com
http://www.mtri.org
https://www.nrcan.gc.ca
https://www.nibio.no/
https://www.osgeo.org
https://oslandia.com
https://www.palantir.com
https://www.paragoncorporation.com
https://www.r3-gis.com
http://www.refractions.net
https://www.regione.toscana.it
https://www.safe.com
http://www.uster.ch
https://www.ucdavis.edu
https://www.ulaval.ca
https://hiu.state.gov
https://www.zonarsystems.com
https://lists.osgeo.org/mailman/listinfo/postgis-users
http://www.pledgebank.com
http://www.pledgebank.com/postgistopology
http://www.pledgebank.com/postgis64windows
https://geos.osgeo.org
https://www.gdal.org
https://www.proj4.org
http://www.postgresql.org

PostGIS 3.1.8 Manual 5/847

Chapter 2

PostGIS Installation

This chapter details the steps required to install PostGIS.

2.1 Short Version

To compile assuming you have all the dependencies in your search path:

tar xvfz postgis-3.1.8.tar.gz
cd postgis-3.1.8

./configure

make

make install

Once PostGIS is installed, it needs to be enabled (Section 3.3) or upgraded (Section 3.4) in each individual database you want to
use it in.

2.2 Compiling and Install from Source

Note
Many OS systems now include pre-built packages for PostgreSQL/PostGIS. In many cases compilation is only neces-
sary if you want the most bleeding edge versions or you are a package maintainer.

Ncrld This section includes general compilation instructions, if you are compiling for Windows etc or another OS, you may
find additional more detailed help at PostGIS User contributed compile guides and PostGIS Dev Wiki.
Pre-Built Packages for various OS are listed in PostGIS Pre-built Packages
If you are a windows user, you can get stable builds via Stackbuilder or PostGIS Windows download site We also have
windows experimental builds that are built whenever there is a change in the PostGIS source code. You can use these
to experiment with the in progress releases of PostGIS or to get a bug patch before it is released.

The PostGIS module is an extension to the PostgreSQL backend server. As such, PostGIS 3.1.8 requires full PostgreSQL server
headers access in order to compile. It can be built against PostgreSQL versions 9.6- 14. Earlier and later versions of PostgreSQL
are not supported.

Refer to the PostgreSQL installation guides if you haven’t already installed PostgreSQL. http://www.postgresql.org .

http://trac.osgeo.org/postgis/wiki/UsersWikiInstall
http://trac.osgeo.org/postgis/wiki/DevWikiMain
http://trac.osgeo.org/postgis/wiki/UsersWikiPackages
https://postgis.net/windows_downloads
https://postgis.net/windows_downloads
http://www.postgresql.org

PostGIS 3.1.8 Manual 6/847

Note
For GEOS functionality, when you install PostgresSQL you may need to explicitly link PostgreSQL against the standard

¢ C++ library:
Note

LDFLAGS=-1stdc++ ./configure [YOUR OPTIONS HERE]

This is a workaround for bogus C++ exceptions interaction with older development tools. If you experience weird
problems (backend unexpectedly closed or similar things) try this trick. This will require recompiling your PostgreSQL
from scratch, of course.

The following steps outline the configuration and compilation of the PostGIS source. They are written for Linux users and will
not work on Windows or Mac.

2.2.1 Getting the Source

Retrieve the PostGIS source archive from the downloads website http://download.osgeo.org/postgis/source/postgis-3.1.8.tar.gz
wget http://download.osgeo.org/postgis/source/postgis—-3.1.8.tar.gz

tar -xvzf postgis-3.1.8.tar.gz

This will create a directory called postgis—3.1.8 in the current working directory.

Alternatively, checkout the source from the git repository https://git.osgeo.org/gitea/postgis/postgis/ .

git clone https://git.osgeo.org/gitea/postgis/postgis.git postgis

Change into the newly created postgis directory to continue the installation.

2.2.2 Install Requirements

PostGIS has the following requirements for building and usage:
Required

* PostgreSQL 9.6 - 14. A complete installation of PostgreSQL (including server headers) is required. PostgreSQL is available
from http://www.postgresql.org .

For a full PostgreSQL / PostGIS support matrix and PostGIS/GEOS support matrix refer to http://trac.osgeo.org/postgis/wiki/-
UsersWikiPostgreSQLPostGIS

* GNU C compiler (gcc). Some other ANSI C compilers can be used to compile PostGIS, but we find far fewer problems when
compiling with gcc.

* GNU Make (gmake or make). For many systems, GNU make is the default version of make. Check the version by invoking
make -v. Other versions of make may not process the PostGIS Makefile properly.

* Proj4 reprojection library. Proj4 4.9 or above is required. The Proj4 library is used to provide coordinate reprojection support
within PostGIS. Proj4 is available for download from http://trac.osgeo.org/proj/ .

* GEOS geometry library, version 3.6 or greater, but GEOS 3.9+ is required to take full advantage of all the new functions and
features. GEOS is available for download from http://trac.osgeo.org/geos/ .

* LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports functions (ST_GeomFromGML and ST_GeomFromKI
LibXML2 is available for download from http://xmlsoft.org/downloads.html.

* JSON-C, version 0.9 or higher. JSON-C is currently used to import GeoJSON via the function ST_GeomFromGeolJson.
JSON-C is available for download from https://github.com/json-c/json-c/releases/.

* GDAL, version 2+ is required 3+ is preferred. This is required for raster support. http://trac.osgeo.org/gdal/wiki/DownloadSource.

http://download.osgeo.org/postgis/source/postgis-3.1.8.tar.gz
https://git-scm.com/
https://git.osgeo.org/gitea/postgis/postgis/
http://www.postgresql.org
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
http://trac.osgeo.org/proj/
http://trac.osgeo.org/geos/
http://xmlsoft.org/downloads.html
https://github.com/json-c/json-c/releases
http://trac.osgeo.org/gdal/wiki/DownloadSource

PostGIS 3.1.8 Manual 7 /847

e If compiling with PostgreSQL+JIT, LLVM version >=6 is required https://trac.osgeo.org/postgis/ticket/4125.
Optional

* GDAL (pseudo optional) only if you don’t want raster you can leave it out. Also make sure to enable the drivers you want to
use as described in Section 3.2.

* GTK (requires GTK+2.0, 2.8+) to compile the shp2pgsql-gui shape file loader. http://www.gtk.org/ .

* SFCGAL, version 1.1 (or higher) could be used to provide additional 2D and 3D advanced analysis functions to PostGIS cf
Section 5.20. And also allow to use SFCGAL rather than GEOS for some 2D functions provided by both backends (like
ST_Intersection or ST_Area, for instance). A PostgreSQL configuration variable postgis.backend allow end user to
control which backend he want to use if SFCGAL is installed (GEOS by default). Nota: SFCGAL 1.2 require at least CGAL
4.3 and Boost 1.54 (cf: http://oslandia.github.io/SFCGAL/installation.html) https://github.com/Oslandia/SFCGAL.

* In order to build the Section 4.7 you will also need PCRE http://www.pcre.org (which generally is already installed on nix sys-
tems). Regex: : Assemble perl CPAN package is only needed if you want to rebuild the data encoded in parseaddress—-stcit:
h. Section 4.7 will automatically be built if it detects a PCRE library, or you pass in a valid ——with-pcre-dir=/path/to/pcre
during configure.

* To enable ST_AsMVT protobuf-c library 1.1.0 or higher (for usage) and the protoc-c compiler (for building) are required.
Also, pkg-config is required to verify the correct minimum version of protobuf-c. See protobuf-c. By default, Postgis will use
Wagyu to validate MVT polygons faster which requires a c++11 compiler. It will use CXXFLAGS and the same compiler as
the PostgreSQL installation. To disable this and use GEOS instead use the ——without-wagyu during the configure step.

e CUnit (CUnit). This is needed for regression testing. http://cunit.sourceforge.net/
* DocBook (xs1ltproc) is required for building the documentation. Docbook is available from http://www.docbook.org/ .

* DBLatex (dblatex)is required for building the documentation in PDF format. DBLatex is available from http://dblatex.sourceforge.1

¢ ImageMagick (convert) is required to generate the images used in the documentation. ImageMagick is available from
http://www.imagemagick.org/ .

2.2.3 Build configuration

As with most linux installations, the first step is to generate the Makefile that will be used to build the source code. This is done
by running the shell script

Jconfigure

With no additional parameters, this command will attempt to automatically locate the required components and libraries needed
to build the PostGIS source code on your system. Although this is the most common usage of ./configure, the script accepts
several parameters for those who have the required libraries and programs in non-standard locations.

The following list shows only the most commonly used parameters. For a complete list, use the --help or --help=short parame-
ters.

--with-library-minor-version Starting with PostGIS 3.0, the library files generated by default will no longer have the minor
version as part of the file name. This means all PostGIS 3 libs will end in postgis—-3. This was done to make pg_upgrade
easier, with downside that you can only install one version PostGIS 3 series in your server. To get the old behavior of file
including the minor version: e.g. postgis—3. 0 add this switch to your configure statement.

--prefix=PREFIX This is the location the PostGIS loader executables and shared libs will be installed. By default, this location
is the same as the detected PostgreSQL installation.

o
< 1 » Caution
~ This parameter is currently broken, as the package will only install into the PostgreSQL installation directory. Visit
http://trac.osgeo.org/postgis/ticket/635 to track this bug.

https://trac.osgeo.org/postgis/ticket/4125
http://www.gtk.org/
http://oslandia.github.io/SFCGAL/installation.html
https://github.com/Oslandia/SFCGAL
http://www.pcre.org
https://github.com/protobuf-c/protobuf-c
http://cunit.sourceforge.net/
http://www.docbook.org/
http://dblatex.sourceforge.net/
http://dblatex.sourceforge.net/
http://www.imagemagick.org/
http://trac.osgeo.org/postgis/ticket/635

PostGIS 3.1.8 Manual 8 /847

--with-pgconfig=FILE PostgreSQL provides a utility called pg_config to enable extensions like PostGIS to locate the Post-
greSQL installation directory. Use this parameter (--with-pgconfig=/path/to/pg_config) to manually specify a particular
PostgreSQL installation that PostGIS will build against.

--with-gdalconfig=FILE GDAL, a required library, provides functionality needed for raster support gdal-config to enable soft-
ware installations to locate the GDAL installation directory. Use this parameter (--with-gdalconfig=/path/to/gdal-config)
to manually specify a particular GDAL installation that PostGIS will build against.

--with-geosconfig=FILE GEOS, a required geometry library, provides a utility called geos-config to enable software installa-
tions to locate the GEOS installation directory. Use this parameter (--with-geosconfig=/path/to/geos-config) to manually
specify a particular GEOS installation that PostGIS will build against.

--with-xml2config=FILE LibXML is the library required for doing GeomFromKML/GML processes. It normally is found
if you have libxml installed, but if not or you want a specific version used, you’ll need to point PostGIS at a specific
xml2-config confi file to enable software installations to locate the LibXML installation directory. Use this parameter
(>--with-xml2config=/path/to/xml2-config) to manually specify a particular LibXML installation that PostGIS will build
against.

--with-projdir=DIR Proj4 is a reprojection library required by PostGIS. Use this parameter (--with-projdir=/path/to/projdir)
to manually specify a particular Proj4 installation directory that PostGIS will build against.

--with-libiconv=DIR Directory where iconv is installed.

--with-jsondir=DIR JSON-C is an MIT-licensed JSON library required by PostGIS ST_GeomFromJSON support. Use this
parameter (--with-jsondir=/path/to/jsondir) to manually specify a particular JSON-C installation directory that PostGIS
will build against.

--with-pcredir=DIR PCRE is an BSD-licensed Perl Compatible Regular Expression library required by address_standardizer
extension. Use this parameter (--with-pcredir=/path/to/pcredir) to manually specify a particular PCRE installation di-
rectory that PostGIS will build against.

--with-gui Compile the data import GUI (requires GTK+2.0). This will create shp2pgsql-gui graphical interface to shp2pgsql.
--without-raster Compile without raster support.

--without-topology Disable topology support. There is no corresponding library as all logic needed for topology is in postgis-
3.1.8 library.

--with-gettext=no By default PostGIS will try to detect gettext support and compile with it, however if you run into incompatibil-
ity issues that cause breakage of loader, you can disable it entirely with this command. Refer to ticket http://trac.osgeo.org/-
postgis/ticket/748 for an example issue solved by configuring with this. NOTE: that you aren’t missing much by turning
this off. This is used for international help/label support for the GUI loader which is not yet documented and still experi-
mental.

--with-sfcgal=PATH By default PostGIS will not install with sfcgal support without this switch. PATH is an optional argument
that allows to specify an alternate PATH to sfcgal-config.

--without-wagyu When building with MVT support, Postgis will use Wagyu to clip and validate MVT polygons. Wagyu is the
fastest alternative and guarantees producing correct values for this specific case, but it requires a C++-11 compiler. With
this optional argument you can disable using this library; GEOS will be used instead.

--without-phony-revision Disable updating postgis_revision.h to match current HEAD of the git repository.

Note
. If you obtained PostGIS from the code repository , the first step is really to run the script
Note! Jautogen.sh
This script will generate the configure script that in turn is used to customize the installation of PostGIS.
If you instead obtained PostGIS as a tarball, running ./autogen.sh is not necessary as configure has already been
generated.

http://oss.metaparadigm.com/json-c/
http://www.pcre.org/
http://trac.osgeo.org/postgis/ticket/748
http://trac.osgeo.org/postgis/ticket/748
https://github.com/mapbox/wagyu/
https://trac.osgeo.org/postgis/wiki/CodeRepository

PostGIS 3.1.8 Manual 9 /847

2.2.4 Building

Once the Makefile has been generated, building PostGIS is as simple as running
make
The last line of the output should be "PostGIS was built successfully. Ready to install.”

As of PostGIS v1.4.0, all the functions have comments generated from the documentation. If you wish to install these comments
into your spatial databases later, run the command which requires docbook. The postgis_comments.sql and other package
comments files raster_comments.sql, topology_comments.sql are also packaged in the tar.gz distribution in the doc folder so no
need to make comments if installing from the tar ball. Comments are also included as part of the CREATE EXTENSION install.

make comments

Introduced in PostGIS 2.0. This generates html cheat sheets suitable for quick reference or for student handouts. This requires
xsltproc to build and will generate 4 files in doc folder topology_cheatsheet.html, tiger_geocoder_cheatsheet.
html, raster_cheatsheet.html, postgis_cheatsheet.html

You can download some pre-built ones available in html and pdf from PostGIS / PostgreSQL Study Guides

make cheatsheets

2.2.5 Building PostGIS Extensions and Deploying them

The PostGIS extensions are built and installed automatically if you are using PostgreSQL 9.1+.

If you are building from source repository, you need to build the function descriptions first. These get built if you have docbook
installed. You can also manually build with the statement:

make comments

Building the comments is not necessary if you are building from a release tar ball since these are packaged pre-built with the tar
ball already.

The extensions should automatically build as part of the make install process. You can if needed build from the extensions folders
or copy files if you need them on a different server.

cd extensions

cd postgis

make clean

make

export PGUSER=postgres #overwrite psqgl variables
make check #to test before install

make install

to test extensions

make check RUNTESTFLAGS=--extension

N:"""! Note

make check uses psqlto run tests and as such can use psql environment variables. Common ones useful to override
are PGUSER,PGPORT, and PGHOST. Refer to psql environment variables

The extension files will always be the same for the same version of PostGIS and PostgreSQL regardless of OS, so it is fine to
copy over the extension files from one OS to another as long as you have the PostGIS binaries already installed on your servers.

If you want to install the extensions manually on a separate server different from your development, You need to copy the
following files from the extensions folder into the PostgreSQL / share / extension folder of your PostgreSQL install
as well as the needed binaries for regular PostGIS if you don’t have them already on the server.

* These are the control files that denote information such as the version of the extension to install if not specified. postgis.
control, postgis_topology.control.

http://www.postgis.us/study_guides
https://www.postgresql.org/docs/current/libpq-envars.html

PostGIS 3.1.8 Manual 10/ 847

 All the files in the /sql folder of each extension. Note that these need to be copied to the root of the PostgreSQL share/extension
folder extensions/postgis/sql/*.sql, extensions/postgis_topology/sql/*.sql

Once you do that, you should see postgis, postgis_topology as available extensions in PgAdmin -> extensions.
If you are using psql, you can verify that the extensions are installed by running this query:

SELECT name, default_version,installed_version
FROM pg_available_extensions WHERE name LIKE 'postgis$%' or name LIKE 'address$%$';

installed_version

address_standardizer_data_us
postgis

postgis_raster
postgis_sfcgal
postgis_tiger_geocoder
postgis_topology

(6 rows)

|
+
address_standardizer |
|
|
|
|
|
|

If you have the extension installed in the database you are querying, you’ll see mention in the installed_version column.
If you get no records back, it means you don’t have postgis extensions installed on the server at all. PgAdmin III 1.14+ will also
provide this information in the extensions section of the database browser tree and will even allow upgrade or uninstall by
right-clicking.

If you have the extensions available, you can install postgis extension in your database of choice by either using pgAdmin
extension interface or running these sql commands:

CREATE EXTENSION postgis;

CREATE EXTENSION postgis_raster;

CREATE EXTENSION postgis_sfcgal;

CREATE EXTENSION fuzzystrmatch; —--needed for postgis_tiger_geocoder
—--optional used by postgis_tiger_geocoder, or can be used standalone
CREATE EXTENSION address_standardizer;

CREATE EXTENSION address_standardizer_data_us;

CREATE EXTENSION postgis_tiger_geocoder;

CREATE EXTENSION postgis_topology;

In psql you can use to see what versions you have installed and also what schema they are installed.

\connect mygisdb
\x
\dx postgis=

List of installed extensions

—[RECORD 1 Jomm—mmmmmm oo
Name | postgis
Version | 3.1.8
Schema | public
Description | PostGIS geometry, geography, and raster spat..
=[RECORD 2 [m————————————— e e
Name | postgis_raster
Version | 3.0.0dev
Schema | public
Description | PostGIS raster types and functions
=[RECORD 3]=————————cee——cooeeeeeeeeeseeseeeeseessee e
Name | postgis_tiger_geocoder
Version | 3.1.8
Schema | tiger
Description | PostGIS tiger geocoder and reverse geocoder
]

—[RECORD 4

PostGIS 3.1.8 Manual 11/847

Name | postgis_topology

Version | 3.1.8

Schema | topology

Description | PostGIS topology spatial types and functions

Warning
Extension tables spatial_ref_sys, layer, topology can not be explicitly backed up. They can only be backed
up when the respective postgis or postgis_topology extension is backed up, which only seems to happen
0 when you backup the whole database. As of PostGIS 2.0.1, only srid records not packaged with PostGIS are backed
up when the database is backed up so don’t go around changing srids we package and expect your changes to be
there. Put in a ticket if you find an issue. The structures of extension tables are never backed up since they are created
with CREATE EXTENSION and assumed to be the same for a given version of an extension. These behaviors are
built into the current PostgreSQL extension model, so nothing we can do about it.

If you installed 3.1.8, without using our wonderful extension system, you can change it to be extension based by running the
below commands to package the functions in their respective extension.

CREATE EXTENSION postgis FROM unpackaged;

CREATE EXTENSION postgis_raster FROM unpackaged;

CREATE EXTENSION postgis_topology FROM unpackaged;
CREATE EXTENSION postgis_tiger_ geocoder FROM unpackaged;

2.2.6 Testing

If you wish to test the PostGIS build, run
make check

The above command will run through various checks and regression tests using the generated library against an actual Post-
greSQL database.

) Note
Note
If you configured PostGIS using non-standard PostgreSQL, GEOS, or Proj4 locations, you may need to add their library

locations to the LD_LIBRARY_PATH environment variable.

Caution

& 1 % Currently, the make check relies on the PATH and PGPORT environment variables when performing the checks - it
does not use the PostgreSQL version that may have been specified using the configuration parameter --with-pgconfig.
So make sure to modify your PATH to match the detected PostgreSQL installation during configuration or be prepared
to deal with the impending headaches.

If successful, the output of the test should be similar to the following:

CUnit - A unit testing framework for C - Version 2.1-3
http://cunit.sourceforge.net/

Suite: algorithm
Test: test_lw_segment_side ...passed
Test: test_lw_segment_intersects ...passed
Test: test_lwline_crossing_short_lines ...passed

PostGIS 3.1.8 Manual

12/ 847

Test: test_lwline_crossing_long_lines ...passed
Test: test_lwline_crossing_bugs ...passed
Test: test_lwpoint_set_ordinate ...passed
Test: test_lwpoint_get_ordinate ...passed
Test: test_point_interpolate ...passed
Test: test_lwline_interpolate_points ...passed
Test: test_lwline_interpolate_point_3d ...passed
Test: test_lwline_clip ...passed
Test: test_lwpoly_clip ...passed
Test: test_lwtriangle_clip ...passed
Test: test_lwline_clip_big ...passed
Test: test_lwmline_clip ...passed
Test: test_geohash_point ...passed
Test: test_geohash_precision ...passed
Test: test_geohash ...passed
Test: test_geohash_point_as_int ...passed
Test: test_isclosed ...passed
Test: test_lwgeom_ simplify ...passed
Test: test_lw_arc_center ...passed
Test: test_point_density ...passed
Test: test_kmeans ...passed
Test: test_median_handles_3d_correctly ...passed
Test: test_median_robustness ...passed
Test: test_lwpoly_construct_circle ...passed
Test: test_trim bits ...passed
Test: test_lwgeom_remove_repeated_points ...passed
Suite: buildarea
Test: buildareal ...passed
Test: buildarea2 ...passed
Test: buildarea3 ...passed
Test: buildaread ...passed
Test: buildareadb ...passed
Test: buildareab ...passed
Test: buildarea6 ...passed
Test: buildarea7 ...passed
Suite: geometry_clean
Test: test_lwgeom_make_valid ...passed
Suite: clip_by_rectangle
Test: test_lwgeom_clip_by_rect ...DEBUGl: lwgeom_clip_by_rect:
IllegalArgumentException:
or >= 4
passed
Suite: force_sfs
Test: test_sfs_11 ...passed
Test: test_sfs_12 ...passed
Test: test_sglmm ...passed
Suite: geodetic
Test: test_sphere_direction ...passed
Test: test_sphere_project ...passed
Test: test_lwgeom_area_sphere ...passed
Test: test_gbox_from_spherical_ coordinates ...passed
Test: test_gserialized_get_gbox_geocentric ...passed
Test: test_clairaut ...passed
Test: test_edge_intersection ...passed
Test: test_edge_intersects ...passed
Test: test_edge_distance_to_point ...passed
Test: test_edge_distance_to_edge ...passed
Test: test_lwgeom_distance_sphere ...passed
Test: test_lwgeom_check_geodetic ...passed
Test: test_gserialized_from lwgeom ...passed
Test: test_spheroid_distance ...passed
Test: test_spheroid_area ...passed

GEOS Error:

<

Invalid number of points in LinearRing found 3 - must be 0 <+

PostGIS 3.1.8 Manual

13 /847

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:

Suite:

Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

test_lwpoly_covers_point2d ...passed
test_gbox_utils ...passed
test_vector_angle ...passed
test_vector_rotate ...passed
test_lwgeom_segmentize_sphere ...passed
test_ptarray_contains_point_sphere ...passed
test_ptarray_contains_point_sphere_iowa ...passed
test_gbox_to_string_truncated ...passed
geos

test_geos_noop ...passed
test_geos_subdivide ...passed
test_geos_linemerge ...passed
test_geos_offsetcurve ...passed
test_geos_offsetcurve_crash ...passed
test_geos_makevalid ...passed

clustering

basic_test ...passed

nonsequential_ test ...passed
basic_distance_test ...passed
single_input_test ...passed
empty_inputs_test ...passed
multipoint_test ...passed

dbscan_test ...passed

dbscan_test_3612a ...passed
dbscan_test_3612b ...passed
dbscan_test_3612c ...passed
clustering_unionfind

test_unionfind_create ...passed
test_unionfind_union ...passed
test_unionfind_ordered_by_cluster ...passed
test_unionfind_path_compression ...passed
test_unionfind_collapse_cluster_ids ...passed
homogenize

test_coll_point ...passed

test_coll_line ...passed

test_coll_poly ...passed

test_coll_coll ...passed

test_geom ...passed

test_coll_curve ...passed
encoded_polyline_input
in_encoded_polyline_test_geoms ...passed
in_encoded_polyline_test_precision ...passed
geojson_input

in_geojson_test_srid ...passed
in_geojson_test_bbox ...passed
in_geojson_test_geoms ...passed

iterator

test_point_count ...passed

test_ordering ...passed

test_modification ...passed
test_mixed_rw_access ...passed
test_cannot_modify_read_only ...passed
test_no_memory_leaked_when_iterator_is_partially_used
twkb_input

test_twkb_in_point ...passed
test_twkb_in_linestring ...passed
test_twkb_in_polygon ...passed
test_twkb_in multipoint ...passed
test_twkb_in _multilinestring ...passed
test_twkb_in_multipolygon ...passed
test_twkb_in_collection ...passed
test_twkb_in_precision ...passed

...passed

PostGIS 3.1.8 Manual

14 / 847

<

Suite: serialization/deserialization
Test: test_typmod_macros ...passed
Test: test_flags_macros ...passed
Test: test_serialized_srid ...NOTICE: SRID value -3005 converted to the officially <«
unknown SRID value 0
passed
Test: test_gserialized_from lwgeom_size ...passed
Test: test_gbox_serialized_size ...passed
Test: test_lwgeom_ from_gserialized ...passed
Test: test_lwgeom_count_vertices ...passed
Test: test_on_gser_ lwgeom_count_vertices ...passed
Test: test_geometry_ type_from string ...passed
Test: test_lwcollection_extract ...passed
Test: test_lwgeom_ free ...passed
Test: test_lwgeom_swap_ordinates ...passed
Test: test_f2d ...passed
Test: test_lwgeom_clone ...passed
Test: test_lwgeom_ force_clockwise ...passed
Test: test_lwgeom_calculate_gbox ...passed
Test: test_lwgeom_is_empty ...passed
Test: test_lwgeom_same ...passed
Test: test_lwline_from_lwmpoint ...passed
Test: test_lwgeom_as_curve ...passed
Test: test_lwgeom_scale ...passed
Test: test_gserialized_is_empty ...passed
Test: test_gserialized_peek_gbox_p_no_box_when_empty ...passed
Test: test_gserialized_peek_gbox_p_gets_correct_box ...passed
Test: test_gserialized_peek_gbox_p_fails_for_unsupported_cases ...passed
Test: test_gbox_same_2d ...passed
Test: test_signum_macro ...passed
Suite: lwstroke
Test: test_lwcurve_linearize ...passed
Test: test_unstroke ...passed
Suite: measures
Test: test_mindistance2d_tolerance ...passed
Test: test_mindistance3d_tolerance ...NOTICE: One or both of the geometries is missing z- <«
value. The unknown z-value will be regarded as "any value"
NOTICE: One or both of the geometries is missing z-value. The unknown z-value will be <+
regarded as "any value"
passed
Test: test_rect_tree_contains_point ...passed
Test: test_rect_tree_intersects_tree ...passed
Test: test_lwgeom_segmentize2d ...NOTICE: ptarray.c:448 - ptarray_segmentize2d: Too many
segments required (1.000000e+101)
NOTICE: liblwgeom code interrupted
NOTICE: liblwgeom code interrupted
NOTICE: liblwgeom code interrupted
NOTICE: liblwgeom code interrupted
passed
Test: test_lwgeom_locate_along ...passed
Test: test_lw_dist2d_pt_arc ...passed
Test: test_lw_dist2d_seg_arc ...passed
Test: test_lw_dist2d_arc_arc ...passed
Test: test_lw_arc_length ...passed
Test: test_lw_dist2d_pt_ptarrayarc ...passed
Test: test_lw_dist2d_ptarray_ptarrayarc ...passed
Test: test_lwgeom_tcpa ...passed
Test: test_lwgeom_is_trajectory ...NOTICE: Geometry is not a LINESTRING
NOTICE: Line does not have M dimension
NOTICE: Measure of vertex 1 (1) not bigger than measure of vertex 0 (1)
NOTICE: Measure of vertex 1 (0) not bigger than measure of vertex 0 (1)
NOTICE: Measure of vertex 2 (2) not bigger than measure of vertex 1 (3)

PostGIS 3.1.8 Manual

15/ 847

passed

Test: test_rect_tree_distance_tree ...passed
Suite: effectivearea

Test: do_test_lwgeom_effectivearea_lines ...passed

Test: do_test_lwgeom_effectivearea_polys ...passed
Suite: chaikin

Test: do_test_chaikin_lines ...passed

Test: do_test_chaikin_polygons ...passed
Suite: filterm

Test: do_test_filterm_single_geometries ...passed

Test: do_test_filterm_collections ...passed
Suite: minimum_bounding_circle

Test: basic_test ...passed

Test: test_empty ...passed
Suite: miscellaneous

Test: test_misc_force_2d ...passed

Test: test_misc_simplify ...passed

Test: test_misc_count_vertices ...passed

Test: test_misc_area ...passed

Test: test_misc_wkb ...passed

Test: test_grid ...passed

Test: test_grid_in_place ...passed

Test: test_clone ...passed

Test: test_lwmpoint_from_lwgeom ...passed
Suite: noding

Test: test_lwgeom_node ...passed
Suite: encoded_polyline_output

Test: out_encoded_polyline_test_geoms ...passed

Test: out_encoded_polyline_test_srid ...passed

Test: out_encoded_polyline_test_precision ...passed
Suite: geojson_output

Test: out_geojson_test_precision ...passed

Test: out_geojson_test_dims ...passed

Test: out_geojson_test_srid ...passed

Test: out_geojson_test_bbox ...passed

Test: out_geojson_test_geoms ...passed
Suite: gml_output

Test: out_gml_test_precision ...passed

Test: out_gml_test_srid ...passed

Test: out_gml_test_dims ...passed

Test: out_gml_test_geodetic ...passed

Test: out_gml_test_geoms ...passed

Test: out_gml_test_geoms_prefix ...passed

Test: out_gml_test_geoms_nodims ...passed

Test: out_gml2_extent ...passed

Test: out_gml3_extent ...passed
Suite: kml_output

Test: out_kml_test_precision ...passed

Test: out_kml_test_dims ...passed

Test: out_kml_test_geoms ...passed

Test: out_kml_test_prefix ...passed
Suite: svg_output

Test: out_svg_test_precision ...passed

Test: out_svg_test_dims ...passed

Test: out_svg_test_relative ...passed

Test: out_svg_test_geoms ...passed

Test: out_svg_test_srid ...passed
Suite: x3d_output

Test: out_x3d3_test_precision ...passed

Test: out_x3d3_test_geoms ...passed

Test: out_x3d3_test_option ...passed
Suite: ptarray

PostGIS 3.1.8 Manual

16/ 847

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:

Suite:

Test:

Suite:

Test:
Test:

Suite:

Test:
Test:

Suite:

Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:

Suite:

Test:
Test:
IT2SE 3
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

test_ptarray_append_point ...passed
test_ptarray_append_ptarray ...passed
test_ptarray_locate_point ...passed
test_ptarray_isccw ...passed
test_ptarray_signed_area ...passed
test_ptarray_insert_point ...passed
test_ptarray_contains_point ...passed
test_ptarrayarc_contains_point ...passed
test_ptarray_scale ...passed
printing
test_lwprint_default_format ...passed
test_lwprint_format_orders ...passed
test_lwprint_optional_ format ...passed
test_lwprint_oddball_formats ...passed
test_lwprint_bad_formats ...passed
sfcgal
test_sfcgal _noop ...passed
split
test_lwline_split_by_point_to ...passed
test_lwgeom_split ...passed
stringbuffer
test_stringbuffer_append ...passed
test_stringbuffer_aprintf ...passed
surface
triangle_parse ...passed
tin_parse ...passed
polyhedralsurface_parse ...passed
surface_dimension ...passed
spatial_trees
test_tree_circ_create ...passed
test_tree_circ_pip ...passed
test_tree_circ_pip2 ...passed
test_tree_circ_distance ...passed
test_tree_circ_distance_threshold ...passed
triangulate
test_lwgeom_delaunay_triangulation ...passed
test_lwgeom_voronoi_diagram ...passed
test_lwgeom_voronoi_diagram_expected_empty ...passed
test_lwgeom_voronoi_diagram_custom_envelope ...passed
twkb_output
test_twkb_out_point ...passed
test_twkb_out_linestring ...passed
test_twkb_out_polygon ...passed
test_twkb_out_multipoint ...passed
test_twkb_out_multilinestring ...passed
test_twkb_out_multipolygon ...passed
test_twkb_out_collection ...passed
test_twkb_out_idlist ...passed
varint
test_zigzag ...passed
test_varint ...passed
test_varint_roundtrip ...passed
wkb_input
test_wkb_in_point ...passed
test_wkb_in_linestring ...passed
test_wkb_in_polygon ...passed
test_wkb_in_multipoint ...passed
test_wkb_in_multilinestring ...passed
test_wkb_in_multipolygon ...passed
test_wkb_in_collection ...passed
test_wkb_in_circularstring ...passed
test_wkb_in_compoundcurve ...passed

PostGIS 3.1.8 Manual 17 / 847

Test: test_wkb_in_curvpolygon ...passed
Test: test_wkb_in_multicurve ...passed
Test: test_wkb_in_multisurface ...passed
Test: test_wkb_in_malformed ...passed
Suite: wkb_output
Test: test_wkb_out_point ...passed
Test: test_wkb_out_linestring ...passed
Test: test_wkb_out_polygon ...passed
Test: test_wkb_out_multipoint ...passed
Test: test_wkb_out_multilinestring ...passed
Test: test_wkb_out_multipolygon ...passed
Test: test_wkb_out_collection ...passed
Test: test_wkb_out_circularstring ...passed
Test: test_wkb_out_compoundcurve ...passed
Test: test_wkb_out_curvpolygon ...passed
Test: test_wkb_out_multicurve ...passed
Test: test_wkb_out_multisurface ...passed
Test: test_wkb_out_polyhedralsurface ...passed
Suite: wkt_input
Test: test_wkt_in_point ...passed
Test: test_wkt_in_linestring ...passed
Test: test_wkt_in_polygon ...passed
Test: test_wkt_in_multipoint ...passed
Test: test_wkt_in multilinestring ...passed
Test: test_wkt_in_multipolygon ...passed
Test: test_wkt_in_collection ...passed
Test: test_wkt_in_circularstring ...passed
Test: test_wkt_in_compoundcurve ...passed
Test: test_wkt_in_curvpolygon ...passed
Test: test_wkt_in_multicurve ...passed
Test: test_wkt_in_multisurface ...passed
Test: test_wkt_in_tin ...passed
Test: test_wkt_in_polyhedralsurface ...passed
Test: test_wkt_in_errlocation ...passed
Test: test_wkt_double ...passed
Suite: wkt_output
Test: test_wkt_out_point ...passed
Test: test_wkt_out_linestring ...passed
Test: test_wkt_out_polygon ...passed
Test: test_wkt_out_multipoint ...passed
Test: test_wkt_out_multilinestring ...passed
Test: test_wkt_out_multipolygon ...passed
Test: test_wkt_out_collection ...passed
Test: test_wkt_out_circularstring ...passed
Test: test_wkt_out_compoundcurve ...passed
Test: test_wkt_out_curvpolygon ...passed
Test: test_wkt_out_multicurve ...passed
Test: test_wkt_out_multisurface ...passed
Suite: wrapx
Test: test_lwgeom _wrapx ...passed
Run Summary: Type Total Ran Passed Failed Inactive
suites 44 44 n/a 0 0
tests 300 300 300 0 0
asserts 4215 4215 4215 0 n/a
Elapsed time = 0.229 seconds

PostgreSQL 12devel on x86_64-w64-mingw32, compiled by gcc.exe (x86_64-posix-seh-rev0, Built <«
by MinGW-W64 project) 8.1.0, 64-bit
Postgis 3.0.0dev - rl17081 - 2018-11-28 18:50:02
scripts 3.0.0dev rl17081
GEOS: 3.7.0-CAPI-1.11.0 673b9939

PostGIS 3.1.8 Manual 18 /847

PROJ: Rel. 5.2.0, September 15th, 2018
Running tests

./loader/Point ok
./loader/PointM ok
./loader/PointZo.o... ok
../loader/MultiPoint ok
./loader/MultiPointM ok
./loader/MultiPointZ ok
./loader/Arc ... ok
../loader/ArcMc.0.... ok
./loader/ArCZ ...t ok
./1loader/Polygoneeenee.. ok
./loader/PolygonM ok
./loader/PolygonZ ok
../loader/TSTPolygon ok
./loader/TSIPolygon ok
./loader/TSTIPolygon ok
./loader/PointWithSchema ok
./loader/NoTransPoint ok
../loader/NotReallyMultiPoint ok
./loader/MultiToSinglePoint ok
./loader/ReprojectPts ok
./loader/ReprojectPtsGeog ok
./loader/Latinl ok
../loader/Latinl-implicit ok
./loader/mfile ok
./dumper/literalsrid ok
../dumper/realtable ok

affine .. ok

bestsrid .. ok

binary .. ok

boundary .. ok

chaikin .. ok

filterm .. ok

cluster .. ok

concave_hull .. ok

concave_hull_hard .. ok

ctors .. ok

curvetoline .. ok

dump .. ok

dumppoints .. ok

empty .. ok

estimatedextent .. ok

forcecurve .. ok

geography .. ok

geometric_median .. ok

in_geohash .. ok

in_gml .. ok

in_kml .. ok

in_encodedpolyline .. ok

iscollection .. ok

legacy .. ok

long_xact .. ok

lwgeom_regress .. ok

measures .. ok

minimum_bounding_circle .. ok

normalize .. ok

operators .. ok

orientation .. ok

out_geometry .. ok

PostGIS 3.1.8 Manual

19/ 847

out_geography .. ok
polygonize .. ok
polyhedralsurface .. ok
postgis_type_name .. ok
quantize_coordinates .. ok
regress .. ok
regress_bdpoly .. ok
regress_gist_index_nd .. ok
regress_index .. ok
regress_index_nulls .. ok
regress_management .. ok
regress_selectivity .. ok
regress_1lrs .. ok
regress_ogc .. ok
regress_ogc_cover .. ok
regress_ogc_prep .. ok
regress_proj .. ok

relate .. ok
remove_repeated_points .. ok
removepoint .. ok

reverse .. ok

setpoint .. ok

simplify .. ok

simplifyvw .. ok

size .. ok

snaptogrid .. ok

split .. ok
sgl-mm-serialize .. ok
sgl-mm-circularstring .. ok
sgl-mm-compoundcurve .. ok
sgl-mm-curvepoly .. ok
sgl-mm—general .. ok
sgl-mm-multicurve .. ok
sgl-mm-multisurface .. ok
swapordinates .. ok
summary .. ok

temporal .. ok

tickets .. ok

twkb .. ok

typmod .. ok

wkb .. ok

wkt .. ok

wmsservers .. ok
knn_recheck .. ok
temporal_knn .. ok
hausdorff .. ok
regress_buffer_params .. ok
frechet .. ok

offsetcurve .. ok
relatematch .. ok
isvaliddetail .. ok
sharedpaths .. ok

snap .. ok

node .. ok

unaryunion .. ok

clean .. ok

relate_bnr .. ok
delaunaytriangles .. ok
clipbybox2d .. ok
subdivide .. ok

voronoi .. ok

minimum_clearance .. ok

PostGIS 3.1.8 Manual 20/847
oriented_envelope .. ok

in_geojson .. ok

regress_brin_index .. ok

regress_brin_index_3d .. ok

regress_brin_index_geography .. ok

regress_spgist_index_2d .. ok

regress_spgist_index_3d .. ok

regress_spgist_index_nd .. ok

mvt .. ok

geobuf ok

mvt_jsonb .. ok

uninstall .. ok (4643)
Run tests: 134
Failed: O
—— 1f you build with SFCGAL
PostgreSQL 12devel on x86_64-w64-mingw32, compiled by gcc.exe (x86_64-posix—seh-rev0, Built <«

by MinGW-W64 project) 8.1.0, 64-bit
s 3.0.0dev - r17081 - 2018-11-28 18:50:02

Postgi
script
GEOS:
PROJ:
SFCGAL

Running

regress
empty
geograp
legacy
measure
regress
regress
regress
tickets
concave
WIMSServ
approxi
uninsta

Run test
Failed:

-- 1if yo

CUnit - A unit testing framework for C - Version 2.1-2

htt

Suite: p
Test:
Test:
Test:
Test:
Test:
Test:

Suite: r

s 3.0.0dev r17081
3.7.0-CAPI-1.11.0 673b9939
Rel. 5.2.0, September 15th,
: 1.3.2

tests

_sfcgal .. ok
ok
hy .. ok
ok
s .. ok
_ogc_prep .. ok
_ogc .. ok
ok
ok
_hull .. ok
ers .. ok
matemedialaxis .. ok
11 .. ok (4643)

s: 13
0

u built with raster support

p://cunit.sourceforge.net/

ixtype

test_pixtype_size ...passed
test_pixtype_alignment ...pa
test_pixtype_name ...passed
test_pixtype_index_from_ name
test_pixtype_get_min_value

2018

ssed

...passed

...passed

test_pixtype_compare_clamped_values

aster_basics

...passed

PostGIS 3.1.8 Manual 21/847
Test: test_raster_new ...passed
Test: test_raster_empty ...passed
Test: test_raster_metadata ...passed
Test: test_raster_clone ...passed
Test: test_raster_from_band ...passed
Test: test_raster_replace_band ...passed
Suite: band_basics
Test: test_band_metadata ...passed
Test: test_band_pixtype_1BB ...passed
Test: test_band_pixtype_2BUI ...passed
Test: test_band_pixtype_4BUI ...passed
Test: test_band_pixtype_8BUI ...passed
Test: test_band_pixtype_8BSI ...passed
Test: test_lband pixtype_16BUI ...passed
Test: test_band pixtype_16BSI ...passed
Test: test_band_pixtype_ 32BUI ...passed
Test: test_lband_pixtype_32BSI ...passed
Test: test_band_pixtype_32BF ...passed
Test: test_band_pixtype_64BF ...passed
Test: test_band _get_pixel_line ...WARNING: Limiting returning number values to 1
WARNING: Attempting to get pixel values with out of range raster coordinates:
passed
Test: test_band_new_offline_from path ...passed
Suite: raster_wkb
Test: test_raster_wkb ...SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
SRID value -1 converted to the officially unknown SRID value 0
passed
Suite: gdal
Test: test_gdal_configured ...passed
Test: test_gdal_drivers ...passed
Test: test_gdal_rasterize ...passed
Test: test_gdal_polygonize ...passed
Test: test_raster_to_gdal ...Warning 6: PNG driver doesn't support data type Float64d. <&

Only eight bit (Byte) and sixteen bit (UIntl6) bands supported. Defaulting to Byte

passed
Test: test_gdal_to_raster ...passed
Test: test_gdal_warp ...passed
Suite: raster_geometry
Test: test_raster_envelope ...passed
Test: test_raster_envelope_geom ...passed
Test: test_raster_convex_hull ...passed
Test: test_raster_surface ...INFO: Ring Self-intersection at or near point 2 -2

INFO: Ring Self-intersection at or near point 3 -3
passed

Test: test_raster_perimeter ...passed

Test: test_raster_pixel_as_polygon ...passed
Suite: raster_misc

Test: test_raster_cell_to_geopoint ...passed

Test: test_raster_geopoint_to_cell ...passed

Test: test_raster_from_two_rasters ...passed

Test: test_raster_compute_skewed_raster ...passed
Suite: band_stats

Test: test_band_stats ...passed

Test: test_band_value_count ...passed
Suite: band _misc

Test: test_band_get_nearest_pixel ...passed

Test: test_band_get_pixel_of_value ...passed

PostGIS 3.1.8 Manual 22/ 847

Test: test_pixel set_to_array ...passed
Suite: mapalgebra
Test: test_raster_iterator ...passed
Test: test_band_reclass ...passed
Test: test_raster_colormap ...passed
Suite: spatial_relationship
Test: test_raster_geos_overlaps ...passed
Test: test_raster_geos_touches ...passed
Test: test_raster_geos_contains ...passed
Test: test_raster_geos_contains_properly ...passed
Test: test_raster_geos_covers ...passed
Test: test_raster_geos_covered_by ...passed
Test: test_raster_within_distance ...passed
Test: test_raster fully_within_distance ...passed
Test: test_raster_intersects ...passed
Test: test_raster_same_alignment ...passed
Suite: misc
Test: test_rgb_to_hsv ...passed
Test: test_hsv_to_rgb ...passed
Test: test_util_gdal_open ...passed
Run Summary: Type Total Ran Passed Failed Inactive
suites 12 12 n/a 0 0
tests 65 65 65 0 0
asserts 45896 45896 45896 0 n/a
Elapsed time = 0.499 seconds

Loading Raster into 'postgis_reg'
PostgreSQL 1l2devel on x86_64-w64-mingw32, compiled by gcc.exe (x86_64-posix—-seh-rev0, Built <«
by MinGW-W64 project) 8.1.0, 64-bit
Postgis 3.0.0dev - r17081 - 2018-11-28 18:50:02
scripts 3.0.0dev rl17081
raster scripts 3.0.0dev rl17081
GEOS: 3.7.0-CAPI-1.11.0 673b9939
PROJ: Rel. 5.2.0, September 15th, 2018
GDAL: GDAL 2.3.1, released 2018/06/22

Running tests

check_gdal .. ok
load_outdb ... ok
check_raster_columns .. ok
check_raster_overviews .. ok
rt_io .. ok

rt_bytea .. ok

rt_wkb .. ok

box3d .. ok

rt_addband .. ok

rt_band .. ok

rt_tile .. ok
rt_dimensions .. ok
rt_scale .. ok
rt_pixelsize .. ok
rt_upperleft .. ok
rt_rotation .. ok
rt_georeference .. ok
rt_set_properties .. ok
rt_isempty .. ok
rt_hasnoband .. ok
rt_metadata .. ok
rt_rastertoworldcoord .. ok

PostGIS 3.1.8 Manual

23/847

rt_worldtorastercoord

rt_convexhull .. ok
rt_envelope .. ok
rt_band_properties

rt_set_band_properties

rt_pixelaspolygons

rt_pixelaspoints .. ok

rt_pixelascentroids
rt_setvalues_array

rt_summarystats
rt_count .. ok
rt_histogram
rt_quantile
rt_valuecount
rt_valuepercent
rt_bandmetadata
rt_pixelvalue
rt_neighborhood
rt_nearestvalue
rt_pixelofvalue

rt_polygon .. ok

rt_setbandpath

rt_utility .. ok
rt_fromgdalraster

rt_asgdalraster
rt_astiff .. ok
rt_asjpeg .. ok
rt_aspng .. ok

rt_reclass .. ok

rt_gdalwarp
rt_asraster
rt_dumpvalues

ok

ok

ok
ok
ok

ok

ok
ok
ok

ok

ok

ok

rt_makeemptycoverage

ok

ok
ok
ok

ok
ok

ok

ok

rt_createoverview .. ok
rt_mapalgebraexpr .. ok
rt_mapalgebrafct .. ok
rt_mapalgebraexpr_2raster .. ok
rt_mapalgebrafct_2raster .. ok

rt_mapalgebrafctngb

ok

rt_mapalgebrafctngb_userfunc

rt_intersection
rt_clip .. ok
rt_mapalgebra

ok

ok

rt_mapalgebra_expr
rt_mapalgebra_mask
rt_union .. ok
rt_invdistweight4ma
rt_4ma .. ok
rt_setvalues_geomval

rt_elevation_functions

rt_colormap .. ok
rt_grayscale .. ok
rt_gist_relationships
rt_intersects .. ok

rt_samealignment .. ok

rt_geos_relationships
rt_iscoveragetile
bug_test_car5 .. ok

permitted_gdal_drivers

tickets .. ok
loader/Basic .. ok
loader/Projected

ok
ok

ok

ok

ok

ok

ok

ok

ok

ok

PostGIS 3.1.8 Manual

24/ 847

loader/BasicCopy .. ok
loader/BasicFilename .. o
loader/BasicOutDB .. ok
loader/Tiled10x10 .. ok
loader/Tiled10x10Copy
loader/Tiled8x8 .. ok
clean .. ok

uninstall .. ok (4643)

Run tests: 101
Failed: 0

—— topology regress

PostgreSQL 12devel on x86_

by MinGW-W64 project)
Postgis 3.0.0dev - rl1l708
scripts 3.0.0dev r17081
GEOS: 3.7.0-CAPI-1.11.0

k

ok

64-w64-mingw32, compiled by gcc.exe

8.1.0, 64-bit
1 - 2018-11-28 18:50:02

67309939

PROJ: Rel. 5.2.0, September 15th, 2018

Running tests

regress/legacy_validate
regress/legacy_predicate
regress/legacy_invalid
regress/sglmm .. ok

ok
ok
ok

regress/legacy_query .. ok

regress/addnode .. ok
regress/addedge .. ok
regress/addface .. ok
regress/addface2.5d .. ok
regress/addtopogeometryco
regress/polygonize .. ok
regress/st_addisoedge
regress/st_addisonode
regress/st_addedgemodface
regress/st_addedgenewface

regress/st_changeedgegeom

regress/st_createtopogeo

lumn .. ok

ok

ok
ok

s .. ok
ok
ok

regress/st_getfacegeometry .. ok

regress/st_getfaceedges
regress/st_modedgeheal
regress/st_modedgesplit
regress/st_newedgeheal
regress/st_newedgessplit
regress/st_remedgenewface
regress/st_remedgemodface
regress/st_simplify .. ok
regress/topoelement .. ok

regress/topoelementarray_

regress/topogeo_addlinest
regress/topogeo_addpoint

ok
ok
ok
ok
ok
ok
ok

agg .. ok
ring .. ok
ok

regress/topogeo_addpolygon .. ok

regress/topogeom_edit
regress/topogeometry_type
regress/topojson .. ok
regress/topologysummary
regress/topo2.5d .. ok
regress/totopogeom .. ok
regress/droptopology .. o
regress/droptopogeometryc

ok
ok

ok

k
olumn .. ok

regress/copytopology .. ok

(x86_64-posix—seh-rev0,

Built <

PostGIS 3.1.8 Manual 25/ 847

regress/createtopogeom .. ok
regress/createtopology .. ok
regress/gml .. ok
regress/getnodebypoint .. ok
regress/getedgebypoint .. ok
regress/getfacebypoint .. ok
regress/getringedges .. ok
regress/gettopogeomelements .. ok
regress/layertrigger .. ok
regress/validatetopology .. ok
uninstall .. ok (4643)

Run tests: 51
Failed: 0

—-— if you built --with-gui, you should see this too
CUnit - A unit testing framework for C - Version 2.1-2

http://cunit.sourceforge.net/

Suite: Shapefile Loader File shp2pgsgl Test

Test: test_ShpLoaderCreate() ...passed
Test: test_ShpLoaderDestroy () ...passed
Suite: Shapefile Loader File pgsgl2shp Test
Test: test_ShpDumperCreate() ...passed
Test: test_ShpDumperDestroy () ...passed
Run Summary: Type Total Ran Passed Failed Inactive
suites 2 2 n/a 0 0
tests 4 4 4 0 0
asserts 4 4 4 0 n/a

The postgis_tiger_geocoder and address_standardizer extensions, currenlty only support the standard Post-
greSQL installcheck. To test these use the below. Note: the make install is not necessary if you already did make install at root
of PostGIS code folder.

For address_standardizer:

cd extensions/address_standardizer
make install
make installcheck

Output should look like:

=== dropping database "contrib_regression" ==
DROP DATABASE

creating database "contrib_regression"
CREATE DATABASE
ALTER DATABASE

running regression test queries

test test-init-extensions ... ok
test test-parseaddress ... ok
test test-standardize_address_1 ... ok
test test-standardize_address_2 ... ok

All 4 tests passed.

For tiger geocoder, make sure you have postgis and fuzzystrmatch extensions available in your PostgreSQL instance. The
address_standardizer tests will also kick in if you built postgis with address_standardizer support:

PostGIS 3.1.8 Manual 26 / 847

cd extensions/postgis_tiger_geocoder
make install
make installcheck

output should look like:

dropping database "contrib_regression"
DROP DATABASE

=== == creating database "contrib_regression" ==============
CREATE DATABASE

ALTER DATABASE

=== == installing fuzzystrmatch == ==
CREATE EXTENSION

=== == installing postgis ~ ======

CREATE EXTENSION

installing postgis_tiger_geocoder
CREATE EXTENSION

=== installing address_standardizer == ==
CREATE EXTENSION

—————————————— running regression test queries ==============
test test-normalize_address ... ok

test test-pagc_normalize_address ... ok

All 2 tests passed.

2.2.7 Installation

To install PostGIS, type

make install

This will copy the PostGIS installation files into their appropriate subdirectory specified by the --prefix configuration parameter.
In particular:

* The loader and dumper binaries are installed in [prefix] /bin.

e The SQL files, such as postgis.sqgl, are installed in [prefix]/share/contrib.

¢ The PostGIS libraries are installed in [prefix]/lib.

If you previously ran the make comments command to generate the postgis_comments.sql, raster_comments.sqgl
file, install the sql file by running

make comments-install

N;ld Note

postgis_comments.sqgl, raster_comments.sql, topology_comments.sqgl was separated from the
typical build and installation targets since with it comes the extra dependency of xsltproc.

2.3 Installing and Using the address standardizer

The address_standardizer extension used to be a separate package that required separate download. From PostGIS 2.2
on, it is now bundled in. For more information about the address_standardize, what it does, and how to configure it for your
needs, refer to Section 4.7.

PostGIS 3.1.8 Manual 27 / 847

This standardizer can be used in conjunction with the PostGIS packaged tiger geocoder extension as a replacement for the
Normalize_Address discussed. To use as replacement refer to Section 2.4.3. You can also use it as a building block for your own
geocoder or use it to standardize your addresses for easier compare of addresses.

The address standardizer relies on PCRE which is usually already installed on many Nix systems, but you can download the
latest at: http://www.pcre.org. If during Section 2.2.3, PCRE is found, then the address standardizer extension will automatically
be built. If you have a custom pcre install you want to use instead, pass to configure ——with-pcredir=/path/to/pcre
where /path/to/pcre is the root folder for your pcre include and lib directories.

For Windows users, the PostGIS 2.1+ bundle is packaged with the address_standardizer already so no need to compile and can
move straight to CREATE EXTENSION step.

Once you have installed, you can connect to your database and run the SQL.:

CREATE EXTENSION address_standardizer;

The following test requires no rules, gaz, or lex tables

SELECT num, street, city, state, zip
FROM parse_address ('l Devonshire Place PH301, Boston, MA 02109');

Output should be
num | street | city | state | zip
————— B e et
1 | Devonshire Place PH301 | Boston | MA | 02109

2.3.1 Installing Regex::Assemble

Perl Regex:Assemble is no longer needed for compiling address_standardizer extension since the files it generates are part of the
source tree. However if you need to edit the usps—-st—-city-orig.txt orusps—st-city-orig.txt usps—-st-city-adc
tx, you need to rebuild parseaddress-stcities.h which does require Regex: Assemble.

cpan Regexp::Assemble

or if you are on Ubuntu / Debian you might need to do

sudo perl -MCPAN -e "install Regexp::Assemble"

2.4 Installing, Upgrading Tiger Geocoder and loading data

Extras like Tiger geocoder may not be packaged in your PostGIS distribution. If you are missing the tiger geocoder extension or
want a newer version than what your install comes with, then use the share/extension/postgis_tiger_geocoder. *
files from the packages in Windows Unreleased Versions section for your version of PostgreSQL. Although these packages are for
windows, the postgis_tiger_geocoder extension files will work on any OS since the extension is an SQL/plpgsql only extension.

2.4.1 Tiger Geocoder Enabling your PostGIS database: Using Extension

If you are using PostgreSQL 9.1+ and PostGIS 2.1+, you can take advantage of the new extension model for installing tiger
geocoder. To do so:

1. First get binaries for PostGIS 2.1+ or compile and install as usual. This should install the necessary extension files as well
for tiger geocoder.

2. Connect to your database via psql or pgAdmin or some other tool and run the following SQL commands. Note that if you
are installing in a database that already has postgis, you don’t need to do the first step. If you have fuzzystrmatch
extension already installed, you don’t need to do the second step either.

http://www.pcre.org
http://postgis.net/windows_downloads/

PostGIS 3.1.8 Manual 28 / 847

CREATE EXTENSION postgis;

CREATE EXTENSION fuzzystrmatch;

CREATE EXTENSION postgis_tiger_geocoder;

—-—this one is optional if you want to use the rules based standardizer («
pagc_normalize_address)

CREATE EXTENSION address_standardizer;

If you already have postgis_tiger_geocoder extension installed, and just want to update to the latest run:
ALTER EXTENSION postgis UPDATE;

ALTER EXTENSION postgis_tiger_geocoder UPDATE;

If you made custom entries or changes to tiger.loader_platformand tiger.loader_variables you may
need to update these.

3. To confirm your install is working correctly, run this sql in your database:

SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
FROM normalize_address ('l Devonshire Place, Boston, MA 02109') AS na;

Which should output
address | streetname | streettypeabbrev | zip
————————— e
1 | Devonshire | P1 | 02109

4. Create a new record in tiger.loader_platform table with the paths of your executables and server.

So for example to create a profile called debbie that follows sh convention. You would do:

INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psqgl, <+
path_sep,
loader, environ_set_command, county_process_command)
SELECT 'debbie', declare_sect, pgbin, wget, unzip_command, psqgl, path_sep,
loader, environ_set_command, county_process_command
FROM tiger.loader_platform
WHERE os = 'sh';

And then edit the paths in the declare_sect column to those that fit Debbie’s pg, unzip,shp2pgsql, psql, etc path locations.

If you don’t edit this 1oader_plat form table, it will just contain common case locations of items and you’ll have to
edit the generated script after the script is generated.

5. As of PostGIS 2.4.1 the Zip code-5 digit tabulation area zcta5 load step was revised to load current zcta5 data and is part
of the Loader_Generate_Nation_Script when enabled. It is turned off by default because it takes quite a bit of time to load
(20 to 60 minutes), takes up quite a bit of disk space, and is not used that often.

To enable it, do the following:

UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zctabl0';

If present the Geocode function can use it if a boundary filter is added to limit to just zips in that boundary. The Re-
verse_Geocode function uses it if the returned address is missing a zip, which often happens with highway reverse geocod-
ing.

6. Create a folder called gisdata on root of server or your local pc if you have a fast network connection to the server.
This folder is where the tiger files will be downloaded to and processed. If you are not happy with having the folder on
the root of the server, or simply want to change to a different folder for staging, then edit the field staging_fold in the
tiger.loader_variables table.

7. Create a folder called temp in the gisdata folder or whereever you designated the staging_fold to be. This will be
the folder where the loader extracts the downloaded tiger data.

PostGIS 3.1.8 Manual 29 /847

8.

10.

11.

12.

13.

14.

15.

Then run the Loader_Generate_Nation_Script SQL function make sure to use the name of your custom profile and copy
the script to a .sh or .bat file. So for example to build the nation load:

psgl —c "SELECT Loader_Generate_Nation_Script ('debbie')" -d geocoder -tA > /gisdata/ ¢
nation_script_load.sh

Run the generated nation load commandline scripts.

cd /gisdata
sh nation_script_load.sh

After you are done running the nation script, you should have three tables in your tiger_data schema and they should
be filled with data. Confirm you do by doing the following queries from psql or pgAdmin

SELECT count (x) FROM tiger_data.county_all;

By default the tables corresponding to bg, tract, tabblock are not loaded. These tables are not used by the geocoder
but are used by folks for population statistics. If you wish to load them as part of your state loads, run the following
statement to enable them.

UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name IN ¢
("tract', 'bg', 'tabblock');

Alternatively you can load just these tables after loading state data using the Loader_Generate_Census_Script

For each state you want to load data for, generate a state script Loader_Generate_Script.

Warning
DO NOT Generate the state script until you have already loaded the nation data, because the state script utilizes
county list loaded by nation script.

psgl —-c "SELECT Loader_Generate_Script (ARRRAY['MA'], 'debbie')" -d geocoder -tA > / <
gisdata/ma_load.sh

Run the generated commandline scripts.

cd /gisdata
sh ma_load.sh

After you are done loading all data or at a stopping point, it’s a good idea to analyze all the tiger tables to update the stats
(include inherited stats)

PostGIS 3.1.8 Manual 30/ 847

SELECT install_missing_indexes();

vacuum (analyze, verbose) tiger.addr;
vacuum (analyze, verbose) tiger.edges;
vacuum (analyze, verbose) tiger.faces;
vacuum (analyze, verbose) tiger.featnames;
vacuum (analyze, verbose) tiger.place;

(
(
(
(
(
vacuum (analyze, verbose) tiger.cousub;
(
(
(
(
(

vacuum (analyze, verbose) tiger.county;

vacuum (analyze, verbose) tiger.state;

vacuum (analyze, verbose) tiger.zip_lookup_base;
vacuum (analyze, verbose) tiger.zip_state;
vacuum (analyze, verbose) tiger.zip_state_loc;

2.4.1.1 Converting a Tiger Geocoder Regular Install to Extension Model

If you installed the tiger geocoder without using the extension model, you can convert to the extension model as follows:

1. Follow instructions in Section 2.4.5 for the non-extension model upgrade.

2. Connect to your database with psql or pgAdmin and run the following command:

CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.4.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions

First install PostGIS using the prior instructions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.1.8.tar.gz
tar xvfz postgis-3.1.8.tar.gz

cd postgis-3.1.8/extras/tiger_geocoder

Editthe tiger_loader_2015. sqgl (or latest loader file you find, unless you want to load different year) to the paths of your
executables server etc or alternatively you can update the 1loader_plat form table once installed. If you don’t edit this file or
the loader_platform table, it will just contain common case locations of items and you’ll have to edit the generated script
after the fact when you run the Loader_Generate_Nation_Script and Loader_Generate_Script SQL functions.

If you are installing Tiger geocoder for the first time edit either the create_geocode . bat script If you are on windows or the
create_geocode. sh if you are on Linux/Unix/Mac OSX with your PostgreSQL specific settings and run the corresponding
script from the commandline.

Verify that you now have a t iger schema in your database and that it is part of your database search_path. If it is not, add it
with a command something along the line of:

ALTER DATABASE geocoder SET search_path=public, tiger;

The normalizing address functionality works more or less without any data except for tricky addresses. Run this test and verify
things look like this:

SELECT pprint_addy (normalize_address ('202 East Fremont Street, Las Vegas, Nevada 89101'")) —
As pretty_address;
pretty_address

202 E Fremont St, Las Vegas, NV 89101

http://download.osgeo.org/postgis/source/postgis-3.1.8.tar.gz

PostGIS 3.1.8 Manual 31 /847

2.4.3 Using Address Standardizer Extension with Tiger geocoder

One of the many complaints of folks is the address normalizer function Normalize_Address function that normalizes an address
for prepping before geocoding. The normalizer is far from perfect and trying to patch its imperfectness takes a vast amount of
resources. As such we have integrated with another project that has a much better address standardizer engine. To use this new
address_standardizer, you compile the extension as described in Section 2.3 and install as an extension in your database.

Once you install this extension in the same database as you have installed postgis_tiger_geocoder, then the Pagc_Normalize Ac
can be used instead of Normalize_Address. This extension is tiger agnostic, so can be used with other data sources such

as international addresses. The tiger geocoder extension does come packaged with its own custom versions of rules table (
tiger.pagc_rules), gaztable (tiger.pagc_gaz), and lex table (tiger.pagc_lex). These you can add and update

to improve your standardizing experience for your own needs.

2.4.4 Loading Tiger Data
The instructions for loading data are available in a more detailed form in the extras/tiger_geocoder/tiger_2011/
README. This just includes the general steps.

The load process downloads data from the census website for the respective nation files, states requested, extracts the files,
and then loads each state into its own separate set of state tables. Each state table inherits from the tables defined in tiger
schema so that its sufficient to just query those tables to access all the data and drop a set of state tables at any time using the
Drop_State_Tables_Generate_Script if you need to reload a state or just don’t need a state anymore.

In order to be able to load data you’ll need the following tools:

* A tool to unzip the zip files from census website.
For Unix like systems: unzip executable which is usually already installed on most Unix like platforms.

For Windows, 7-zip which is a free compress/uncompress tool you can download from http://www.7-zip.org/
* shp2pgsqgl commandline which is installed by default when you install PostGIS.

* wget which is a web grabber tool usually installed on most Unix/Linux systems.

If you are on windows, you can get pre-compiled binaries from http://gnuwin32.sourceforge.net/packages/wget.htm

If you are upgrading from tiger_2010, you’ll need to first generate and run Drop_Nation_Tables_Generate_Script. Before you
load any state data, you need to load the nation wide data which you do with Loader_Generate_Nation_Script. Which will
generate a loader script for you. Loader_Generate_Nation_Script is a one-time step that should be done for upgrading (from
2010) and for new installs.

To load state data refer to Loader_Generate_Script to generate a data load script for your platform for the states you desire. Note
that you can install these piecemeal. You don’t have to load all the states you want all at once. You can load them as you need
them.

After the states you desire have been loaded, make sure to run the:

SELECT install missing_indexes () ;

as described in Install_Missing_Indexes.

To test that things are working as they should, try to run a geocode on an address in your state using Geocode

2.4.5 Upgrading your Tiger Geocoder Install

If you have Tiger Geocoder packaged with 2.0+ already installed, you can upgrade the functions at any time even from an interim
tar ball if there are fixes you badly need. This will only work for Tiger geocoder not installed with extensions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-3.1.8.tar.gz

tar xvfz postgis-3.1.8.tar.gz

http://www.7-zip.org/
http://gnuwin32.sourceforge.net/packages/wget.htm
http://download.osgeo.org/postgis/source/postgis-3.1.8.tar.gz

PostGIS 3.1.8 Manual 32 /847

cd postgis-3.1.8/extras/tiger_geocoder/tiger_2011

Locate the upgrade_geocoder .bat script If you are on windows or the upgrade_geocoder. sh if you are on Linux/U-
nix/Mac OSX. Edit the file to have your postgis database credentials.

If you are upgrading from 2010 or 2011, make sure to unremark out the loader script line so you get the latest script for loading
2012 data.

Then run th corresponding script from the commandline.
Next drop all nation tables and load up the new ones. Generate a drop script with this SQL statement as detailed in Drop_Nation_Tables_(

SELECT drop_nation_tables_generate_script();

Run the generated drop SQL statements.
Generate a nation load script with this SELECT statement as detailed in Loader_Generate_Nation_Script
For windows

SELECT loader_generate_nation_script ('windows"');

For unix/linux

SELECT loader_generate_nation_script ('sh');

Refer to Section 2.4.4 for instructions on how to run the generate script. This only needs to be done once.

N;‘t"! Note

You can have a mix of 2010/2011 state tables and can upgrade each state separately. Before you upgrade a state to
2011, you first need to drop the 2010 tables for that state using Drop_State_Tables_Generate_Script.

2.5 Common Problems during installation

There are several things to check when your installation or upgrade doesn’t go as you expected.

1. Check that you have installed PostgreSQL 9.6 or newer, and that you are compiling against the same version of the
PostgreSQL source as the version of PostgreSQL that is running. Mix-ups can occur when your (Linux) distribution has
already installed PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten about it. PostGIS will only
work with PostgreSQL 9.6 or newer, and strange, unexpected error messages will result if you use an older version. To
check the version of PostgreSQL which is running, connect to the database using psql and run this query:

SELECT version();

If you are running an RPM based distribution, you can check for the existence of pre-installed packages using the rpm
command as follows: rpm -qa | grep postgresql

2. If your upgrade fails, make sure you are restoring into a database that already has PostGIS installed.
SELECT postgis_full_version();
Also check that configure has correctly detected the location and version of PostgreSQL, the Proj4 library and the GEOS library.

1. The output from configure is used to generate the postgis_config.h file. Check that the POSTGIS_PGSQL_VERSION,
POSTGIS_PROJ_VERSION and POSTGIS_GEOS_VERSION variables have been set correctly.

PostGIS 3.1.8 Manual 33 /847

Chapter 3

PostGIS Administration

3.1 Performance Tuning

Tuning for PostGIS performance is much like tuning for any PostgreSQL workload. The only additional consideration is that
geometries and rasters are usually large, so memory-related optimizations generally have more of an impact on PostGIS than
other types of PostgreSQL queries.

For general details about optimizing PostgreSQL, refer to Tuning your PostgreSQL Server.

For PostgreSQL 9.4+ configuration can be set at the server level without touching postgresgl.conf orpostgresgl.auto.con?
by using the ALTER SYSTEM command.

ALTER SYSTEM SET work_mem = '256MB';

—-— this forces non-startup configs to take effect for new connections
SELECT pg_reload_conf ();

—-— show current setting value

—— use SHOW ALL to see all settings

SHOW work_mem;

In addition to the Postgres settings, PostGIS has some custom settings which are listed in Section 5.23.

3.1.1 Startup
These settings are configured in postgresqgl.conf:
constraint_exclusion

* Default: partition

* This is generally used for table partitioning. The default for this is set to "partition" which is ideal for PostgreSQL 8.4 and
above since it will force the planner to only analyze tables for constraint consideration if they are in an inherited hierarchy and
not pay the planner penalty otherwise.

shared_buffers

* Default: ~128MB in PostgreSQL 9.6

* Set to about 25% to 40% of available RAM. On windows you may not be able to set as high.

max_worker_processes This setting is only available for PostgreSQL 9.4+. For PostgreSQL 9.6+ this setting has additional
importance in that it controls the max number of processes you can have for parallel queries.

e Default: 8

* Sets the maximum number of background processes that the system can support. This parameter can only be set at server start.

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.postgresql.org/docs/current/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAX-WORKER-PROCESSES

PostGIS 3.1.8 Manual 34 /847

3.1.2 Runtime

work_mem - sets the size of memory used for sort operations and complex queries

Default: 1-4MB
* Adjust up for large dbs, complex queries, lots of RAM
* Adjust down for many concurrent users or low RAM.

* If you have lots of RAM and few developers:

SET work_mem TO '256MB';

maintenance_work_mem - the memory size used for VACUUM, CREATE INDEX, etc.

* Default: 16-64MB
* Generally too low - ties up I/O, locks objects while swapping memory

* Recommend 32MB to 1GB on production servers w/lots of RAM, but depends on the # of concurrent users. If you have lots
of RAM and few developers:

SET maintenance_work_mem TO '1GB';

max_parallel_workers_per_gather

This setting is only available for PostgreSQL 9.6+ and will only affect PostGIS 2.3+, since only PostGIS 2.3+ supports parallel
queries. If set to higher than 0, then some queries such as those involving relation functions like ST_Intersects can use
multiple processes and can run more than twice as fast when doing so. If you have a lot of processors to spare, you should change
the value of this to as many processors as you have. Also make sure to bump up max_worker_processes to at least as high
as this number.

e Default: 0

* Sets the maximum number of workers that can be started by a single Gat her node. Parallel workers are taken from the pool
of processes established by max_worker_processes. Note that the requested number of workers may not actually be
available at run time. If this occurs, the plan will run with fewer workers than expected, which may be inefficient. Setting this
value to 0, which is the default, disables parallel query execution.

3.2 Configuring raster support

If you enabled raster support you may want to read below how to properly configure it.

As of PostGIS 2.1.3, out-of-db rasters and all raster drivers are disabled by default. In order to re-enable these, you need to set the
following environment variables POSTGIS_GDAL_ENABLED_DRIVERS and POSTGIS_ENABLE_OUTDB_RASTERS in the
server environment. For PostGIS 2.2, you can use the more cross-platform approach of setting the corresponding Section 5.23.

If you want to enable offline raster:

POSTGIS_ENABLE_OUTDB_RASTERS=1

Any other setting or no setting at all will disable out of db rasters.
In order to enable all GDAL drivers available in your GDAL install, set this environment variable as follows

POSTGIS_GDAL_ENABLED_DRIVERS=ENABLE_ALL

http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-WORK-MEM
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM
https://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAX-PARALLEL-WORKERS-PER-GATHER

PostGIS 3.1.8 Manual 35/847

If you want to only enable specific drivers, set your environment variable as follows:

POSTGIS_GDAL_ENABLED_DRIVERS="GTiff PNG JPEG GIF XYZ"

N;’l"! Note

If you are on windows, do not quote the driver list

Setting environment variables varies depending on OS. For PostgreSQL installed on Ubuntu or Debian via apt-postgresql, the
preferred way is to edit /etc/postgresql/10/main/environment where 10 refers to version of PostgreSQL and main
refers to the cluster.

On windows, if you are running as a service, you can set via System variables which for Windows 7 you can get to by right-
clicking on Computer->Properties Advanced System Settings or in explorer navigating to Control Panel\All Control
Panel Items\System. Then clicking Advanced System Settings ->Advanced->Environment Variables and adding new sys-
tem variables.

After you set the environment variables, you’ll need to restart your PostgreSQL service for the changes to take effect.

3.3 Creating spatial databases

3.3.1 Spatially enable database using EXTENSION

If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/postgis modules, you can turn a database into
a spatial one using the EXTENSION mechanism.

Core postgis extension includes geometry, geography, spatial_ref sys and all the functions and comments. Raster and topology
are packaged as a separate extension.

Run the following SQL snippet in the database you want to enable spatially:

CREATE EXTENSION IF NOT EXISTS plpgsqgl;

CREATE EXTENSION postgis;

CREATE EXTENSION postgis_raster; —-—- OPTIONAL
CREATE EXTENSION postgis_topology; —-— OPTIONAL

3.3.2 Spatially enable database without using EXTENSION (discouraged)

ste} Note
N This is generally only needed if you cannot or don’t want to get PostGIS installed in the PostgreSQL extension directory
(for example during testing, development or in a restricted environment).

Adding PostGIS objects and function definitions into your database is done by loading the various sql files located in [prefix]
/share/contrib as specified during the build phase.

The core PostGIS objects (geometry and geography types, and their support functions) are in the postgis. sqgl script. Raster
objects are in the rtpostgis. sqgl script. Topology objects are in the topology . sgl script.

For a complete set of EPSG coordinate system definition identifiers, you can also load the spatial_ref_sys.sqgl definitions
file and populate the spatial_ref_sys table. This will permit you to perform ST_Transform() operations on geometries.

If you wish to add comments to the PostGIS functions, you can find them in the postgis_comments. sql script. Comments
can be viewed by simply typing \dd [function_name] from a psql terminal window.

Run the following Shell commands in your terminal:

PostGIS 3.1.8 Manual 36 /847

DB=[yourdatabase]
SCRIPTSDIR="pg_config —--sharedir” /contrib/postgis-3.1/

Core objects

psgl -d ${DB} -f ${SCRIPTSDIR}/postgis.sqgl

psgl -d ${DB} -f ${SCRIPTSDIR}/spatial_ref_sys.sql

psgl -d ${DB} -f ${SCRIPTSDIR}/postgis_comments.sql # OPTIONAL

Raster support (OPTIONAL)
psgl -d ${DB} -f ${SCRIPTSDIR}/rtpostgis.sqgl
psgl -d ${DB} —-f ${SCRIPTSDIR}/raster_comments.sqgl # OPTIONAL

Topology support (OPTIONAL)
psgl -d ${DB} —-f ${SCRIPTSDIR}/topology.sql
psgl -d ${DB} —-f ${SCRIPTSDIR}/topology_comments.sqgl # OPTIONAL

3.3.3 Create a spatially-enabled database from a template

Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >= 1.1.5) load the PostGIS functions
into a template database called template_postgis. If the template_postgis database exists in your PostgreSQL
installation then it is possible for users and/or applications to create spatially-enabled databases using a single command. Note
that in both cases, the database user must have been granted the privilege to create new databases.

From the shell:

createdb -T template_postgis my_spatial_db

From SQL:

postgres=# CREATE DATABASE my_spatial_db TEMPLATE=template_postgis

3.4 Upgrading spatial databases

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions.
Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and a HARD UPGRADE procedure for major
releases.

Before attempting to upgrade PostGIS, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will
always be able to restore the dump with a HARD UPGRADE.

3.4.1 Soft upgrade

If you installed your database using extensions, you’ll need to upgrade using the extension model as well. If you installed using
the old sql script way, then you should upgrade using the sql script way. Please refer to the appropriate.

3.4.1.1 Soft Upgrade Pre 9.1+ or without extensions

This section applies only to those who installed PostGIS not using extensions. If you have extensions and try to upgrade with
this approach you’ll get messages like:

can't drop ... because postgis extension depends on it

PostGIS 3.1.8 Manual 37 /847

NOTE: if you are moving from PostGIS 1.* to PostGIS 2.* or from PostGIS 2.* prior to r7409, you cannot use this procedure
but would rather need to do a HARD UPGRADE.

After compiling and installing (make install) you should find a set of x_upgrade. sql files in the installation folders. You can
list them all with:

ls “pg_config --sharedir™/contrib/postgis—-3.1.8/x_upgrade.sqgl

Load them all in turn, starting from postgis_upgrade.sql.

psql —-f postgis_upgrade.sgl -d your_spatial_database

The same procedure applies to raster, topology and sfcgal extensions, with upgrade files named rtpostgis_upgrade.sql,
topology_upgrade.sqgl and sfcgal_upgrade. sql respectively. If you need them:

psgl —-f rtpostgis_upgrade.sqgl —-d your_spatial_database
psgl —-f topology_upgrade.sgl -d your_spatial_database

psgl -f sfcgal_upgrade.sgl -d your_spatial_database

=

Ncrld Note

If you can’t find the postgis_upgrade. sqgl specific for upgrading your version you are using a version too early
for a soft upgrade and need to do a HARD UPGRADE.

The PostGIS_Full_Version function should inform you about the need to run this kind of upgrade using a "procs need upgrade"
message.

3.4.1.2 Soft Upgrade 9.1+ using extensions
If you originally installed PostGIS with extensions, then you need to upgrade using extensions as well. Doing a minor upgrade
with extensions, is fairly painless.

ALTER EXTENSION postgis UPDATE TO "3.1.8";
ALTER EXTENSION postgis_topology UPDATE TO "3.1.8";

If you get an error notice something like:

No migration path defined for ... to 3.1.8

Then you’ll need to backup your database, create a fresh one as described in Section 3.3.1 and then restore your backup ontop of
this new database.

If you get a notice message like:

Version "3.1.8" of extension "postgis" is already installed

Then everything is already up to date and you can safely ignore it. UNLESS you’re attempting to upgrade from an development
version to the next (which doesn’t get a new version number); in that case you can append "next" to the version string, and next
time you’ll need to drop the "next" suffix again:

ALTER EXTENSION postgis UPDATE TO "3.1.8next";
ALTER EXTENSION postgis_topology UPDATE TO "3.1.8next";

PostGIS 3.1.8 Manual 38/847

s Note
Nf"""! If you installed PostGIS originally without a version specified, you can often skip the reinstallation of postgis extension
before restoring since the backup just has CREATE EXTENSION postgis and thus picks up the newest latest
version during restore.

Note
If you are upgrading PostGIS extension from a version prior to 3.0.0 you'll end up with an unpackaged PostGIS Raster
support. You can repackage the raster support using:

Note

CREATE EXTENSION postgis_raster FROM unpackaged;

And then, if you don’t need it, drop it with:

DROP EXTENSION postgis_raster;

3.4.2 Hard upgrade

By HARD UPGRADE we mean full dump/reload of postgis-enabled databases. You need a HARD UPGRADE when PostGIS
objects’ internal storage changes or when SOFT UPGRADE is not possible. The Release Notes appendix reports for each version
whether you need a dump/reload (HARD UPGRADE) to upgrade.

The dump/reload process is assisted by the postgis_restore.pl script which takes care of skipping from the dump all definitions
which belong to PostGIS (including old ones), allowing you to restore your schemas and data into a database with PostGIS
installed without getting duplicate symbol errors or bringing forward deprecated objects.

Supplementary instructions for windows users are available at Windows Hard upgrade.

The Procedure is as follows:

1. Create a "custom-format" dump of the database you want to upgrade (let’s call it o1ddb) include binary blobs (-b) and
verbose (-v) output. The user can be the owner of the db, need not be postgres super account.

pg_dump -h localhost -p 5432 -U postgres -Fc -b -v —-f "/somepath/olddb.backup" olddb

2. Do a fresh install of PostGIS in a new database -- we’ll refer to this database as newdb. Please refer to Section 3.3.2 and
Section 3.3.1 for instructions on how to do this.

The spatial_ref_sys entries found in your dump will be restored, but they will not override existing ones in spatial_ref_sys.
This is to ensure that fixes in the official set will be properly propagated to restored databases. If for any reason you really
want your own overrides of standard entries just don’t load the spatial_ref_sys.sql file when creating the new db.

If your database is really old or you know you’ve been using long deprecated functions in your views and functions, you
might need to load legacy. sql for all your functions and views etc. to properly come back. Only do this if _really_
needed. Consider upgrading your views and functions before dumping instead, if possible. The deprecated functions can
be later removed by loading uninstall_legacy.sql.

3. Restore your backup into your fresh newdb database using postgis_restore.pl. Unexpected errors, if any, will be printed
to the standard error stream by psql. Keep a log of those.

perl utils/postgis_restore.pl "/somepath/olddb.backup" | psgl -h localhost -p 5432 -U <>
postgres newdb 2> errors.txt

Errors may arise in the following cases:

1. Some of your views or functions make use of deprecated PostGIS objects. In order to fix this you may try loading
legacy.sqgl script prior to restore or you’ll have to restore to a version of PostGIS which still contains those objects
and try a migration again after porting your code. If the 1legacy . sqgl way works for you, don’t forget to fix your code to
stop using deprecated functions and drop them loading uninstall_legacy.sql.

http://trac.osgeo.org/postgis/wiki/UsersWikiWinUpgrade

PostGIS 3.1.8 Manual 39/847

2. Some custom records of spatial_ref_sys in dump file have an invalid SRID value. Valid SRID values are bigger than 0 and
smaller than 999000. Values in the 999000.999999 range are reserved for internal use while values > 999999 can’t be used
at all. All your custom records with invalid SRIDs will be retained, with those > 999999 moved into the reserved range,
but the spatial_ref_sys table would lose a check constraint guarding for that invariant to hold and possibly also its primary
key (when multiple invalid SRIDS get converted to the same reserved SRID value).

In order to fix this you should copy your custom SRS to a SRID with a valid value (maybe in the 910000..910999 range),
convert all your tables to the new srid (see UpdateGeometrySRID), delete the invalid entry from spatial_ref _sys and re-
construct the check(s) with:

ALTER TABLE spatial_ref_ sys ADD CONSTRAINT spatial_ref sys_srid_check check (srid > 0 <«
AND srid < 999000);

ALTER TABLE spatial_ref_ sys ADD PRIMARY KEY (srid));

If you are upgrading an old database containing french IGN cartography, you will have probably SRIDs out of range and
you will see, when importing your database, issues like this :

WARNING: SRID 310642222 converted to 999175 (in reserved zone)
In this case, you can try following steps : first throw out completely the IGN from the sql which is resulting from post-
gis_restore.pl. So, after having run :

perl utils/postgis_restore.pl "/somepath/olddb.backup" > olddb.sqgl

run this command :

grep -v IGNF olddb.sgl > olddb-without-IGN.sqgl

Create then your newdb, activate the required Postgis extensions, and insert properly the french system IGN with : this
script After these operations, import your data :

psgl -h localhost -p 5432 -U postgres -d newdb -f olddb-without-IGN.sgl 2> errors.txt

https://en.wikipedia.org/wiki/Institut_g%C3%A9ographique_national
https://raw.githubusercontent.com/Remi-C/IGN_spatial_ref_for_PostGIS/master/Put_IGN_SRS_into_Postgis.sql
https://raw.githubusercontent.com/Remi-C/IGN_spatial_ref_for_PostGIS/master/Put_IGN_SRS_into_Postgis.sql

PostGIS 3.1.8 Manual 40/ 847

Chapter 4

PostGIS Usage

4.1 Data Management

4.1.1 GIS Objects

The GIS objects supported by PostGIS are a superset of the "Simple Features" standard defined by the OpenGIS Consortium
(OGC). PostGIS supports all the objects and functions specified in the OGC "Simple Features for SQL" specification (SFS).

PostGIS extends the standard with support for embedded SRID information.

4.1.1.1 OpenGIS WKB and WKT

The OpenGIS specification defines two standard ways of expressing spatial objects: the Well-Known Text (WKT) form and the
Well-Known Binary (WKB) form. Both WKT and WKB include information about the type of the object and the coordinates
which form the object.

Examples of the text representations (WKT) of the spatial objects of the features are as follows:

« POINT(0 0)

« POINT Z (0 0 0)

« POINT ZM (0 0 0 0)

« LINESTRING(0 0,1 1,1 2)

« POLYGON((0 0,4 0,44,04,00),(11,21,22,12,1 1))

« MULTIPOINT((0 0),(1 2))

« MULTIPOINT Z ((0 0 0),(1 2 3))

« MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

« MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,22,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1,-1 -1)))
« GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

The OpenGIS specification also requires that the internal storage format of spatial objects include a spatial referencing system
identifier (SRID). The SRID is required when creating spatial objects for insertion into the database.

Input/Output of these formats are available using the following interfaces:

PostGIS 3.1.8 Manual 41/ 847

bytea WKB = ST_AsBinary (geometry) ;

text WKT = ST_AsText (geometry);

geometry = ST_GeomFromWKB (bytea WKB, SRID) ;
ST_GeometryFromText (text WKT, SRID);

geometry

For example, a valid insert statement to create and insert an OGC spatial object would be:

INSERT INTO geotable (the_geom, the_name)
VALUES (ST_GeomFromText ('POINT(-126.4 45.32)', 312), 'A Place');

4.1.1.2 PostGIS EWKB, EWKT and Canonical Forms

First OpenGIS specifications (prior to 1.2.0) only support 2D geometries, and the associated SRID is *never* embedded in the
input/output representations.

Even though the last OpenGIS specification 1.2.1 supports 3DM and 3DZ coordinates specifing ZM qualifiers, it does not include
yet the associated SRID in the input/output representations.

PostGIS extended formats add 3DM, 3DZ, 4D coordinates support and embedded SRID information. However, PostGIS EWK-
B/EWKT outputs have several peculiarities:

 For 3DZ geometries they will drop the Z qualifier:
OpenGIS: POINT Z (1 2 3)
EWKB/EWKT: POINT(1 2 3)

* For 3DM geometries they will keep the M qualifier:
OpenGIS: POINT M (1 2 3)
EWKB/EWKT: POINTM(1 2 3)

* For 4D geometries they will drop the ZM qualifiers:
OpenGIS: POINT ZM (123 4)
EWKB/EWKT: POINT(1 2 3 4)

By doing this, PostGIS EWKB/EWKT avoids over-specifying dimensionality and a whole categories of potential errors that ISO
admits, e.g.:

« POINT ZM (1 1)
« POINTZM (11 1)
« POINT(1111)

‘&% Caution
' 1 PostGIS extended formats are currently superset of the OGC one (every valid WKB/WKT is a valid EWKB/EWKT) but
this might vary in the future, specifically if OGC comes out with a new format conflicting with our extensions. Thus you
SHOULD NQOT rely on this feature!

Examples of the text representations (EWKT) of the extended spatial objects of the features are as follows.

* POINT(000) -- XYZ
* SRID=32632;POINT(0 0) -- XY with SRID
e POINTM(0 0 0) -- XYM

PostGIS 3.1.8 Manual 42 |/ 847

« POINT(0 0 0 0) -- XYZM

« SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

« MULTILINESTRING((000,1 10,12 1),23 1,32 1,54 1))

« POLYGON((0 0 0,400,440,040,000),(110,210,220,120,110))

« MULTIPOLYGON(((0 00,4 00,44 0,04 0,0 00),(110,210,220,120,1 1 0)),((-1 -1 0,-1-20,-2-20,-2 -1 0,-1 -1 0)))
« GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4,3 4 5))

« MULTICURVE((0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

« POLYHEDRALSURFACE(((000,001,011,010,000)),((000,010,110,100,000)),((000,100,101,001,0
00),((110,111,101,100,110)),((010,011,111,110,010)),(©01,101,111,011,001)))

« TRIANGLE ((00,09, 9 0, 0 0))
« TIN(((000,001,010,000)),((000,010,110,000)))

Conversion between these formats is available using the following interfaces:

bytea EWKB = ST_ASEWKB (geometry);

text EWKT = ST_ASEWKT (geometry) ;
geometry = ST_GeomFromEWKB (bytea EWKB) ;
geometry = ST_GeomFromEWKT (text EWKT) ;

For example, a valid insert statement to create and insert a PostGIS spatial object would be:

INSERT INTO geotable (the_geom, the_name)
VALUES (ST_GeomFromEWKT ('SRID=312;POINTM(-126.4 45.32 15)'"), 'A Place')

The "canonical forms" of a PostgreSQL type are the representations you get with a simple query (without any function call) and
the one which is guaranteed to be accepted with a simple insert, update or copy. For the PostGIS ’geometry’ type these are:

— Output

— binary: EWKB

ascii: HEXEWKB (EWKB in hex form)
- Input

— binary: EWKB

ascii: HEXEWKB |EWKT

For example this statement reads EWKT and returns HEXEWKB in the process of canonical ascii input/output:

=# SELECT 'SRID=4;POINT(0 0)'::geometry;

geometry

01010000200400000000000000000000000000000000000000
(1 row)

4.1.1.3 SQL-MM Part 3

The SQL Multimedia Applications Spatial specification extends the simple features for SQL spec by defining a number of
circularly interpolated curves.
The SQL-MM definitions include 3DM, 3DZ and 4D coordinates, but do not allow the embedding of SRID information.

The Well-Known Text extensions are not yet fully supported. Examples of some simple curved geometries are shown below:

PostGIS 3.1.8 Manual 43 / 847

* CIRCULARSTRING(00,11,10)
CIRCULARSTRING(00,40,44,04,00)

The CIRCULARSTRING is the basic curve type, similar to a LINESTRING in the linear world. A single segment required
three points, the start and end points (first and third) and any other point on the arc. The exception to this is for a closed circle,
where the start and end points are the same. In this case the second point MUST be the center of the arc, ie the opposite
side of the circle. To chain arcs together, the last point of the previous arc becomes the first point of the next arc, just like in
LINESTRING. This means that a valid circular string must have an odd number of points greater than 1.

* COMPOUNDCURVE(CIRCULARSTRING(00, 11,1 0),(10,0 1))

A compound curve is a single, continuous curve that has both curved (circular) segments and linear segments. That means that
in addition to having well-formed components, the end point of every component (except the last) must be coincident with the
start point of the following component.

¢ CURVEPOLYGON(CIRCULARSTRING(00,40,44,04,00),(11,33,31,11))

Example compound curve in a curve polygon: CURVEPOLY GON(COMPOUNDCURVE(CIRCULARSTRING(0 0,20, 2 1,
23,43),(43,45,14,00)), CIRCULARSTRING(1.71,1.40.4,1.604,1.60.5,1.7 1))

A CURVEPOLYGON is just like a polygon, with an outer ring and zero or more inner rings. The difference is that a ring can
take the form of a circular string, linear string or compound string.

As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.

* MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))

The MULTICURVE is a collection of curves, which can include linear strings, circular strings or compound strings.

* MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(00,40,44,04,00),(11,33,31,11)),((1010, 14 12, 11 10,
1010),(11 11, 11.5 11, 11 11.5, 11 11)))

This is a collection of surfaces, which can be (linear) polygons or curve polygons.

N:"R’! Note

All floating point comparisons within the SQL-MM implementation are performed to a specified tolerance, currently 1E-
8.

4.1.2 PostGIS Geography Type

The geography type provides native support for spatial features represented on "geographic" coordinates (sometimes called
"geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in angular units
(degrees).

The basis for the PostGIS geometry type is a plane. The shortest path between two points on the plane is a straight line. That
means calculations on geometries (areas, distances, lengths, intersections, etc) can be calculated using cartesian mathematics and
straight line vectors.

The basis for the PostGIS geographic type is a sphere. The shortest path between two points on the sphere is a great circle arc.
That means that calculations on geographies (areas, distances, lengths, intersections, etc) must be calculated on the sphere, using
more complicated mathematics. For more accurate measurements, the calculations must take the actual spheroidal shape of the
world into account.

Because the underlying mathematics is much more complicated, there are fewer functions defined for the geography type than
for the geometry type. Over time, as new algorithms are added, the capabilities of the geography type will expand.

It uses a data type called geography. None of the GEOS functions support the geography type. As a workaround one can
convert back and forth between geometry and geography types.

Prior to PostGIS 2.2, the geography type only supported WGS 84 long lat (SRID:4326). For PostGIS 2.2 and above, any long/lat
based spatial reference system defined in the spatial_ref_sys table can be used. You can even add your own custom
spheroidal spatial reference system as described in geography type is not limited to earth.

http://www.bostongis.com/blog/index.php?/archives/266-geography-type-is-not-limited-to-earth.html

PostGIS 3.1.8 Manual 44/ 847

Regardless which spatial reference system you use, the units returned by the measurement (ST_Distance, ST_Length, ST_Perimeter,
ST_Area) and for input of ST_DWithin are in meters.

The geography type uses the PostgreSQL typmod definition format so that a table with a geography field can be added in a single
step. All the standard OGC formats except for curves are supported.

4.1.2.1 Geography Basics

The geography type does not support curves, TINS, or POLYHEDRALSURFACE:s, but other geometry types are supported.
Standard geometry type data will autocast to geography if it is of SRID 4326. You can also use the EWKT and EWKB conven-
tions to insert data.

* POINT: Creating a table with 2D point geography when srid is not specified defaults to 4326 WGS 84 long lat:

CREATE TABLE ptgeogwgs (gid serial PRIMARY KEY, geog geography (POINT));

POINT: Creating a table with 2D point geography in NADS83 longlat:

CREATE TABLE ptgeognad83(gid serial PRIMARY KEY, geog geography (POINT,4269));

Creating a table with z coordinate point and explicitly specifying srid

CREATE TABLE ptzgeogwgs84 (gid serial PRIMARY KEY, geog geography (POINTZ,4326));

e LINESTRING
CREATE TABLE lgeog(gid serial PRIMARY KEY, geog geography (LINESTRING));

* POLYGON

——polygon NAD 1927 long lat
CREATE TABLE lgeognad27(gid serial PRIMARY KEY, geog geography (POLYGON, 4267));

* MULTIPOINT

* MULTILINESTRING

* MULTIPOLYGON

* GEOMETRYCOLLECTION

The geography fields get registered in the geography_columns system view.
Now, check the "geography_columns" view and see that your table is listed.
You can create a new table with a GEOGRAPHY column using the CREATE TABLE syntax.

CREATE TABLE global_points (
id SERIAL PRIMARY KEY,
name VARCHAR (64),
location GEOGRAPHY (POINT, 4326)

)i

Note that the location column has type GEOGRAPHY and that geography type supports two optional modifiers: a type modifier
that restricts the kind of shapes and dimensions allowed in the column; an SRID modifier that restricts the coordinate reference
identifier to a particular number.

Allowable values for the type modifier are: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MUL-
TIPOLYGON. The modifier also supports dimensionality restrictions through suffixes: Z, M and ZM. So, for example a modifier
of 'LINESTRINGM’ would only allow line strings with three dimensions in, and would treat the third dimension as a measure.
Similarly, "POINTZM’ would expect four dimensional data.

If you do not specify an SRID, the SRID will default to 4326 WGS 84 long/lat will be used, and all calculations will proceed
using WGS84.

Once you have created your table, you can see it in the GEOGRAPHY_COLUMNS table:

PostGIS 3.1.8 Manual 45/ 847

—— See the contents of the metadata view
SELECT x FROM geography_columns;

You can insert data into the table the same as you would if it was using a GEOMETRY column:

—— Add some data into the test table

INSERT INTO global_points (name, location) VALUES ('Town', 'SRID=4326;POINT(-110 30)");
INSERT INTO global_points (name, location) VALUES ('Forest', 'SRID=4326;POINT(-109 29)");
INSERT INTO global_points (name, location) VALUES ('London', 'SRID=4326;POINT(0 49)"'");

Creating an index works the same as GEOMETRY. PostGIS will note that the column type is GEOGRAPHY and create an
appropriate sphere-based index instead of the usual planar index used for GEOMETRY.

—— Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_points USING GIST (location);

Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values
should be expected in meters (or square meters for areas).

—-— Show a distance query and note, London is outside the 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin (location, 'SRID=4326;POINT (=110 29)':: <
geography, 1000000) ;

You can see the power of GEOGRAPHY in action by calculating how close a plane flying from Seattle to London (LINESTRING(-
122.33 47.606, 0.0 51.5)) comes to Reykjavik (POINT(-21.96 64.15)).

—— Distance calculation using GEOGRAPHY (122.2km)
SELECT ST_Distance ('LINESTRING(-122.33 47.606, 0.0 51.5)'::geography, 'POINT(-21.96 <+
64.15) '::geography) ;

—— Distance calculation using GEOMETRY (13.3 "degrees")
SELECT ST_Distance ('LINESTRING(-122.33 47.606, 0.0 51.5)"'::geometry, 'POINT(-21.96 64.15) <
'::geometry) ;

Testing different lon/lat projects. Any long lat spatial reference system listed in spatial_ref_sys table is allowed.

—-— NAD 83 lon/lat
SELECT 'SRID=4269;POINT (=123 34)'::geography;
geography

0101000020AD1000000000000000CO5ECO0000000000004140
(1 row)

-— NAD27 lon/lat
SELECT 'SRID=4267;POINT (=123 34)'::geography;

geography

0101000020AB1000000000000000CO5EC0O0000000000004140
(1 row)

—— NAD83 UTM zone meters, yields error since its a meter based projection
SELECT 'SRID=26910;POINT (-123 34) '::geography;

ERROR: Only lon/lat coordinate systems are supported in geography.
LINE 1: SELECT 'SRID=26910;POINT (-123 34)'::geography;

The GEOGRAPHY type calculates the true shortest distance over the sphere between Reykjavik and the great circle flight path
between Seattle and London.

Great Circle mapper The GEOMETRY type calculates a meaningless cartesian distance between Reykjavik and the straight line
path from Seattle to London plotted on a flat map of the world. The nominal units of the result might be called "degrees", but the
result doesn’t correspond to any true angular difference between the points, so even calling them "degrees" is inaccurate.

http://gc.kls2.com/cgi-bin/gc?PATH=SEA-LHR

PostGIS 3.1.8 Manual 46/ 847

4.1.2.2 When to use Geography Data type over Geometry data type

The geography type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions defined on
GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.

The type you choose should be conditioned on the expected working area of the application you are building. Will your data
span the globe or a large continental area, or is it local to a state, county or municipality?

* If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the
best solution, in terms of performance and functionality available.

* If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without
having to worry about projection details. You store your data in longitude/latitude, and use the functions that have been defined
on GEOGRAPHY.

* If you don’t understand projections, and you don’t want to learn about them, and you’re prepared to accept the limitations in
functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY. Simply load
your data up as longitude/latitude and go from there.

Refer to Section 9.11 for compare between what is supported for Geography vs. Geometry. For a brief listing and description of
Geography functions, refer to Section 9.4

4.1.2.3 Geography Advanced FAQ

1. Do you calculate on the sphere or the spheroid?

By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in
local areas match up will with local planar results in good local projections. Over larger areas, the spheroidal calculations
will be more accurate than any calculation done on a projected plane. All the geography functions have the option of
using a sphere calculation, by setting a final boolean parameter to 'FALSE’. This will somewhat speed up calculations,
particularly for cases where the geometries are very simple.

2. What about the date-line and the poles?

All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude) so a shape
that crosses the dateline is, from a calculation point of view, no different from any other shape.

3. What is the longest arc you can process?

We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up
two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined
by the *shorter* of the two paths along the great circle. As a consequence, shapes that have arcs of more than 180 degrees
will not be correctly modelled.

4. Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?

Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge, so the index tends to pull
the feature no matter what query you run; the number of vertices is huge, and tests (distance, containment) have to traverse
the vertex list at least once and sometimes N times (with N being the number of vertices in the other candidate feature).
As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you
"denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and
so queries don’t have to pull out the whole object every time. Please consult ST_Subdivide function documentation. Just
because you *can* store all of Europe in one polygon doesn’t mean you *should*.

4.1.3 Spatial Metadata Tables

The OpenGIS "Simple Features Specification for SQL" defines some metadata tables to describe geometry table structure and
coordinate systems. In order to ensure that metadata remains consistent, operations such as creating and removing a spatial
column are carried out through special procedures defined by OpenGIS.

There are two OpenGIS meta-data tables: SPATIAL_REF_SYS and GEOMETRY_COLUMNS. The SPATIAL_REF_SYS table
holds the numeric IDs and textual descriptions of coordinate systems used in the spatial database.

PostGIS 3.1.8 Manual 47 | 847

4.1.3.1 The SPATIAL_REF_SYS Table and Spatial Reference Systems

The SPATIAL_REF_SYS table used by PostGIS is an OGC-compliant database table that lists over 3000 known spatial refer-
ence systems and details needed to transform (reproject) between them.

The PostGIS SPATIAL_REF_SYS table contains over 3000 of the most common spatial reference system definitions that are
handled by the PROJ projection library. But there are many coordinate systems that it does not contain. You can define your own
custom spatial reference system if you are familiar with PROJ constructs. Keep in mind that most spatial reference systems are
regional and have no meaning when used outside of the bounds they were intended for.

A resource for finding spatial reference systems not defined in the core set is http://spatialreference.org/

Some commonly used spatial reference systems are: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 - WGS 84 World
Mercator, 2163 - US National Atlas Equal Area, and the 60 WGS84 UTM zones. UTM zones are one of the most ideal for
measurement, but only cover 6-degree regions. (To determine which UTM zone to use for your area of interest, see the utmzone
PostGIS plpgsql helper function.)

US states use State Plane spatial reference systems (meter or feet based) - usually one or 2 exists per state. Most of the meter-based
ones are in the core set, but many of the feet-based ones or ESRI created ones will need to be copied from spatialreference.org.

You can even define non-Earth-based coordinate systems, such as Mars 2000 This Mars coordinate system is non-planar (it’s in
degrees spheroidal), but you can use it with the geography type to obtain length and proximity measurements in meters instead
of degrees.

The SPATIAL_REF_SYS table definition is:

CREATE TABLE spatial_ref_sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth_name VARCHAR (256),
auth_srid INTEGER,
srtext VARCHAR (2048),
projdtext VARCHAR (2048)

The columns are:

SRID An integer code that uniquely identifies the Spatial Reference System (SRS) within the database.

AUTH_NAME The name of the standard or standards body that is being cited for this reference system. For example, "EPSG"
is a valid AUTH_NAME.

AUTH_SRID The ID of the Spatial Reference System as defined by the Authority cited in the AUTH_NAME. In the case of
EPSG, this is where the EPSG projection code would go.

SRTEXT The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

PROJCS ["NAD83 / UTM Zone 10N",
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101]
]I
PRIMEM["Greenwich", 0],
UNIT["degree",0.0174532925199433]
]I
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin", 0],
PARAMETER["central_meridian",-123],
PARAMETER["scale_factor",0.99967],
PARAMETER["false_easting", 5000007,
PARAMETER["false_northing",0],
UNIT["metre", 1]

https://en.wikipedia.org/wiki/Spatial_reference_system
https://en.wikipedia.org/wiki/Spatial_reference_system
https://proj.org
http://spatialreference.org/
http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/4269/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/2163/
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://spatialreference.org
http://spatialreference.org/ref/iau2000/mars-2000/
http://en.wikipedia.org/wiki/SRID

PostGIS 3.1.8 Manual 48 / 847

For a listing of EPSG projection codes and their corresponding WKT representations, see http://www.opengeospatial.org/.
For a discussion of SRS WKT in general, see the OpenGIS "Coordinate Transformation Services Implementation Speci-
fication" at http://www.opengeospatial.org/standards. For information on the European Petroleum Survey Group (EPSG)
and their database of spatial reference systems, see http://www.epsg.org.

PROJ4TEXT PostGIS uses the PROJ library to provide coordinate transformation capabilities. The PROJ4TEXT column
contains the Proj4 coordinate definition string for a particular SRID. For example:

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

For more information see the Proj4 web site. The spatial_ref_sys.sql file contains both SRTEXT and PROJATEXT
definitions for all EPSG projections.

4.1.3.2 The GEOMETRY_COLUMNS View

GEOMETRY_COLUMNS is a view reading from database system catalog tables. Its structure is:

\d geometry_columns

View "public.geometry_columns"

Column | Type Modifiers

f_table_catalog
f_table_schema

f table_name
f_geometry_column

character varying (256
character varying (256
character varying (256
character varying (256

e

|
+
|
|
|
|
|
|
|

coord_dimension integer
srid integer
type character varying (30)

The columns are:

F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME The fully qualified name of the feature table containing
the geometry column. Note that the terms "catalog" and "schema" are Oracle-ish. There is not PostgreSQL analogue of
"catalog" so that column is left blank -- for "schema" the PostgreSQL schema name is used (public is the default).

F_GEOMETRY_COLUMN The name of the geometry column in the feature table.
COORD_DIMENSION The spatial dimension (2, 3 or 4 dimensional) of the column.

SRID The ID of the spatial reference system used for the coordinate geometry in this table. It is a foreign key reference to the
SPATIAIL_REF_SYS.

TYPE The type of the spatial object. To restrict the spatial column to a single type, use one of: POINT, LINESTRING, POLY-
GON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or corresponding XYM
versions POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM,
GEOMETRYCOLLECTIONM. For heterogeneous (mixed-type) collections, you can use "GEOMETRY" as the type.

Nw Note

This attribute is (probably) not part of the OpenGIS specification, but is required for ensuring type homogeneity.

4.1.3.3 Creating a Spatial Table

Creating a table with spatial data, can be done in one step. As shown in the following example which creates a roads table with
a 2D linestring geometry column in WGS84 long lat

http://www.opengeospatial.org/
http://www.opengeospatial.org/standards
http://www.epsg.org/
https://proj.org/

PostGIS 3.1.8 Manual 49/ 847

CREATE TABLE ROADS (ID serial, ROAD_NAME text, geom geometry (LINESTRING, 4326));

We can add additional columns using standard ALTER TABLE command as we do in this next example where we add a 3-D
linestring.

ALTER TABLE roads ADD COLUMN geom2 geometry (LINESTRINGZ,4326);

4.1.3.4 Manually Registering Geometry Columns

Two of the cases where you may need this are the case of SQL Views and bulk inserts. For bulk insert case, you can correct
the registration in the geometry_columns table by constraining the column or doing an alter table. For views, you could expose
using a CAST operation. Note, if your column is typmod based, the creation process would register it correctly, so no need to do
anything. Also views that have no spatial function applied to the geometry will register the same as the underlying table geometry
column.

—— Lets say you have a view created like this

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395) As geom, f_name
FROM public.mytable;

-— For it to register correctly

—-— You need to cast the geometry

DROP VIEW public.vwmytablemercator;

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom, 3395)::geometry (Geometry, 3395) As geom, f_name
FROM public.mytable;

—-— If you know the geometry type for sure is a 2D POLYGON then you could do
DROP VIEW public.vwmytablemercator;
CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom,3395) ::geometry (Polygon, 3395) As geom, f_name
FROM public.mytable;

—-Lets say you created a derivative table by doing a bulk insert

SELECT poi.gid, poi.geom, citybounds.city_name

INTO myschema.my_special_pois

FROM poi INNER JOIN citybounds ON ST_Intersects (citybounds.geom, poi.geom);

—— Create 2D index on new table
CREATE INDEX idx_myschema_myspecialpois_geom_gist
ON myschema.my_special_pois USING gist (geom) ;

-— If your points are 3D points or 3M points,
—— then you might want to create an nd index instead of a 2D index
CREATE INDEX my_special_pois_geom_gist_nd

ON my_special_pois USING gist (geom gist_geometry_ops_nd);

—-— To manually register this new table's geometry column in geometry_columns.
—— Note it will also change the underlying structure of the table to

—-— to make the column typmod based.

SELECT populate_geometry_columns ('myschema.my_special_pois'::regclass);

—— If you are using PostGIS 2.0 and for whatever reason, you

—— you need the constraint based definition behavior

—— (such as case of inherited tables where all children do not have the same type and srid)
—-— set optional use_typmod argument to false

SELECT populate_geometry_columns ('myschema.my_special_pois'::regclass, false);

PostGIS 3.1.8 Manual 50/ 847

Although the old-constraint based method is still supported, a constraint-based geometry column used directly in a view, will not
register correctly in geometry_columns, as will a typmod one. In this example we define a column using typmod and another
using constraints.

CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY, poi_name text, cat text, geom geometry (POINT <>
,4326)) ;

SELECT AddGeometryColumn ('pois_ny', 'geom_2160', 2160, 'POINT', 2, false);

If we run in psql

\d pois_ny;

We observe they are defined differently -- one is typmod, one is constraint

Table "public.pois_ny"

Column | Type | Modifiers

___________ B
gid | integer | not null default nextval ('pois_ny_gid_seq'::regclass)
poi_name | text |

cat | character varying(20) |

geom | geometry (Point,4326) |

geom_2160 | geometry |

Indexes:

"pois_ny_pkey" PRIMARY KEY, btree (gid)
Check constraints:

"enforce_dims_geom_2160" CHECK (st_ndims (geom_2160) = 2)

"enforce_geotype_geom_2160" CHECK (geometrytype (geom_2160) = 'POINT'::text
OR geom_2160 IS NULL)

"enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)

In geometry_columns, they both register correctly

SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns

WHERE f_table_name = 'pois_ny';
f_table_name | f_geometry_column | srid | type
————————————— Bt ittt
pois_ny | geom | 4326 | POINT
pois_ny | geom_2160 | 2160 | POINT

However -- if we were to create a view like this

CREATE VIEW vw_pois_ny_parks AS
SELECT =

FROM pois_ny

WHERE cat='park';

SELECT f_table_name, f_geometry_column, srid, type

FROM geometry_columns
WHERE f_table_name = 'vw_pois_ny_parks';

The typmod based geom view column registers correctly, but the constraint based one does not.

f_table_name | f_geometry_column | srid | type
—————————————————— e e T
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_ 2160 | 0 | GEOMETRY

This may change in future versions of PostGIS, but for now to force the constraint-based view column to register correctly, you
need to do this:

PostGIS 3.1.8 Manual 51/847

DROP VIEW vw_pois_ny_parks;

CREATE VIEW vw_pois_ny_parks AS

SELECT gid, poi_name, cat,
geom,
geom_2160: :geometry (POINT, 2160) As geom_2160
FROM pois_ny
WHERE cat = 'park';

SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns

WHERE f_table_name = 'vw_pois_ny_parks';
f_table_name | f_geometry_column | srid | type
—————————————————— B e nh sttt
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_2160 | 2160 | POINT

4.1.4 Geometry Validation

PostGIS is compliant with the Open Geospatial Consortium’s (OGC) OpenGIS Specifications. As such, many PostGIS methods
require, or more accurately, assume that geometries that are operated on are both simple and valid. For example, it does not
make sense to calculate the area of a polygon that has a hole defined outside of the polygon, or to construct a polygon from a
non-simple boundary line.

According to the OGC Specifications, a simple geometry is one that has no anomalous geometric points, such as self intersection
or self tangency and primarily refers to 0 or 1-dimensional geometries (i.e. [MULTI]POINT, [MULTI]LINESTRING).
Geometry validity, on the other hand, primarily refers to 2-dimensional geometries (i.e. [MULTI]POLYGON) and defines the
set of assertions that characterizes a valid polygon. The description of each geometric class includes specific conditions that
further detail geometric simplicity and validity.

A POINT is inherently simple as a O-dimensional geometry object.
MULTIPOINTSs are simple if no two coordinates (POINTSs) are equal (have identical coordinate values).

A LINESTRING is simple if it does not pass through the same POINT twice (except for the endpoints, in which case it is referred
to as a linear ring and additionally considered closed).

(a) (b)

PostGIS 3.1.8 Manual

52 /847

(]

(a) and (c) are simple LINESTRINGS, (b) and (d) are not.

(d)

A MULTILINESTRING is simple only if all of its elements are simple and the only intersection between any two elements

occurs at POINTS that are on the boundaries of both elements.

(e)

(e) and (f) are simple MULTILINESTRINGS, (g) is not.

®

(g

By definition, a POLYGON is always simple. It is valid if no two rings in the boundary (made up of an exterior ring and interior
rings) cross. The boundary of a POLYGON may intersect at a POINT but only as a tangent (i.e. not on a line). A POLYGON may
not have cut lines or spikes and the interior rings must be contained entirely within the exterior ring.

PostGIS 3.1.8 Manual 53 /847

(1)

O

(k) M (m)

(h) and (i) are valid POLYGONS, (j-m) cannot be represented as single POLYGONs, but (j) and (m) could be represented as
a valid MULTIPOLYGON.

A MULTIPOLYGON is valid if and only if all of its elements are valid and the interiors of no two elements intersect. The
boundaries of any two elements may touch, but only at a finite number of POINTS.

PostGIS 3.1.8 Manual 54 /847

(m) (0)

(n) and (o) are not valid MULTIPOLYGONS. (p), however, is valid.

Most of the functions implemented by the GEOS library rely on the assumption that your geometries are valid as specified by
the OpenGIS Simple Feature Specification. To check simplicity or validity of geometries you can use the ST_IsSimple() and
ST_IsValid()

—-— Typically, it doesn't make sense to check
—-— for validity on linear features since it will always return TRUE.
—— But in this example, PostGIS extends the definition of the OGC IsValid
—-— by returning false if a LineString has less than 2 xdistinct* vertices.
gisdb=# SELECT

ST_IsValid('LINESTRING(O 0, 1 1)"),

ST_IsValid('LINESTRING(O O, 0 0, 0 0)");

st_isvalid | st_isvalid
____________ +___________
t | f

By default, PostGIS does not apply this validity check on geometry input, because testing for validity needs lots of CPU time for
complex geometries, especially polygons. If you do not trust your data sources, you can manually enforce such a check to your
tables by adding a check constraint:

ALTER TABLE mytable
ADD CONSTRAINT geometry_valid_check
CHECK (ST_IsValid(the_geom)) ;

If you encounter any strange error messages such as "GEOS Intersection() threw an error!" when calling PostGIS functions with
valid input geometries, you likely found an error in either PostGIS or one of the libraries it uses, and you should contact the
PostGIS developers. The same is true if a PostGIS function returns an invalid geometry for valid input.

® Note

N"‘M Strictly compliant OGC geometries cannot have Z or M values. The ST_IsValid() function won’t consider higher dimen-

! sioned geometries invalid! Invocations of AddGeometryColumn() will add a constraint checking geometry dimensions,
so it is enough to specify 2 there.

PostGIS 3.1.8 Manual 55 /847

4.1.5 Loading Spatial Data

Once you have created a spatial table, you are ready to upload spatial data to the database. There are two built-in ways to get
spatial data into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shapefile loader.

4.1.5.1 Using SQL to Load Data

If spatial data can be converted to a text representation (as either WKT or WKB), then using SQL might be the easiest way to get
data into PostGIS. Data can be bulk-loaded into PostGIS/PostgreSQL by loading a text file of SQL INSERT statements using
the psgl SQL utility.

A SQL load file (roads . sgl for example) might look like this:

BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (1, '"LINESTRING (191232 243118,191108 243242)"','Jeff Rd'");
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (2, 'LINESTRING (189141 244158,189265 244817)"', 'Geordie Rd');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (3, "'LINESTRING (192783 228138,192612 229814) "', 'Paul St');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (4, 'LINESTRING (189412 252431,189631 259122)"', 'Graeme Ave');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (5, '"LINESTRING (190131 224148,190871 228134)"','Phil Tce');
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (6, 'LINESTRING (198231 263418,198213 268322) "', 'Dave Cres');
COMMIT;

The SQL file can be loaded into PostgreSQL using psql:

psgl —-d [database] —-f roads.sgl

4.1.5.2 Using the Shapefile Loader

The shp2pgsqgl data loader converts Shapefiles into SQL suitable for insertion into a PostGIS/PostgreSQL database either in
geometry or geography format. The loader has several operating modes selected by command line flags.

There is also a shp2pgsgl—-gui graphical interface with most of the options as the command-line loader. This may be easier
to use for one-off non-scripted loading or if you are new to PostGIS. It can also be configured as a plugin to PgAdminlIII.

(claldlp) These are mutually exclusive options:

-c¢ Creates a new table and populates it from the Shapefile. This is the default mode.

-a Appends data from the Shapefile into the database table. Note that to use this option to load multiple files, the files
must have the same attributes and same data types.

-d Drops the database table before creating a new table with the data in the Shapefile.

-p Only produces the table creation SQL code, without adding any actual data. This can be used if you need to completely
separate the table creation and data loading steps.

-? Display help screen.

-D Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and -d. It is much faster to load
than the default "insert" SQL format. Use this for very large data sets.

-s [<RFROM_SRID>:]<SRID> Creates and populates the geometry tables with the specified SRID. Optionally specifies that the
input shapefile uses the given FROM_SRID, in which case the geometries will be reprojected to the target SRID.

-k Keep identifiers’ case (column, schema and attributes). Note that attributes in Shapefile are all UPPERCASE.

PostGIS 3.1.8 Manual 56 / 847

-i Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the DBF header signature appears to warrant
it.

-I Create a GiST index on the geometry column.

-m -m a_file_name Specify a file containing a set of mappings of (long) column names to 10 character DBF column names.
The content of the file is one or more lines of two names separated by white space and no trailing or leading space. For
example:

COLUMNNAME DBFFIELD1
AVERYLONGCOLUMNNAME DBFFIELD2

-S Generate simple geometries instead of MULTI geometries. Will only succeed if all the geometries are actually single (LE. a
MULTIPOLYGON with a single shell, or or a MULTIPOINT with a single vertex).

-t <dimensionality> Force the output geometry to have the specified dimensionality. Use the following strings to indicate the
dimensionality: 2D, 3DZ, 3DM, 4D.

If the input has fewer dimensions that specified, the output will have those dimensions filled in with zeroes. If the input
has more dimensions that specified, the unwanted dimensions will be stripped.

-w Output WKT format, instead of WKB. Note that this can introduce coordinate drifts due to loss of precision.

-e Execute each statement on its own, without using a transaction. This allows loading of the majority of good data when there
are some bad geometries that generate errors. Note that this cannot be used with the -D flag as the "dump" format always
uses a transaction.

-W <encoding> Specify encoding of the input data (dbf file). When used, all attributes of the dbf are converted from the
specified encoding to UTF8. The resulting SQL output will contain a SET CLIENT_ENCODING to UTF8 command,
so that the backend will be able to reconvert from UTF§ to whatever encoding the database is configured to use internally.

-N <policy> NULL geometries handling policy (insert*,skip,abort)

-n -n Only import DBF file. If your data has no corresponding shapefile, it will automatically switch to this mode and load just
the dbf. So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no
geometry.

-G Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)

-T <tablespace> Specify the tablespace for the new table. Indexes will still use the default tablespace unless the -X parameter
is also used. The PostgreSQL documentation has a good description on when to use custom tablespaces.

-X <tablespace> Specify the tablespace for the new table’s indexes. This applies to the primary key index, and the GIST spatial
index if - is also used.

An example session using the loader to create an input file and loading it might look like this:

shp2pgsgl -c -D -s 4269 -1 -I shaperoads.shp myschema.roadstable > roads.sqgl
psgl -d roadsdb -f roads.sql

A conversion and load can be done in one step using UNIX pipes:

shp2pgsgl shaperoads.shp myschema.roadstable | psgl -d roadsdb

4.1.6 Extracting Spatial Data

Spatial data can be extracted from the database using either SQL or the Shapefile dumper. The section on SQL presents some of
the functions available to do comparisons and queries on spatial tables.

PostGIS 3.1.8 Manual 57 /847

4.1.6.1 Using SQL to Extract Data

The most straightforward way of extracting spatial data out of the database is to use a SQL SELECT query to define the data set
to be extracted and dump the resulting columns into a parsable text file:

db=# SELECT road_id, ST_AsText (road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
________ S T
1 | LINESTRING (191232 243118,191108 243242) | Jeff Rd
2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING (192783 228138,192612 229814) | Paul St
4 | LINESTRING (189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING (190131 224148,190871 228134) | Phil Tce
6 | LINESTRING (198231 263418,198213 268322) | Dave Cres
7 | LINESTRING (218421 284121,224123 241231) | Chris Way
(6 rows)

There will be times when some kind of restriction is necessary to cut down the number of records returned. In the case of
attribute-based restrictions, use the same SQL syntax as used with a non-spatial table. In the case of spatial restrictions, the
following functions are useful:

ST_Intersects This function tells whether two geometries share any space.

= This tests whether two geometries are geometrically identical. For example, if "'POLYGON((0 0,1 1,1 0,0 0))’ is the same as
"POLYGON((0 0,1 1,1 0,0 0))’ (it is).

Next, you can use these operators in queries. Note that when specifying geometries and boxes on the SQL command line, you
must explicitly turn the string representations into geometries function. The 312 is a fictitious spatial reference system that
matches our data. So, for example:

SELECT road_id, road_name
FROM roads
WHERE roads_geom="'SRID=312; LINESTRING (191232 243118,191108 243242) '::geometry;

The above query would return the single record from the "ROADS_GEOM" table in which the geometry was equal to that value.
To check whether some of the roads passes in the area defined by a polygon:

SELECT road_id, road_name
FROM roads
WHERE ST_Intersects (roads_geom, 'SRID=312;POLYGON((...))");

The most common spatial query will probably be a "frame-based" query, used by client software, like data browsers and web
mappers, to grab a "map frame" worth of data for display.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a GEOMETRY. When you specify
a GEOMETRY, however, its bounding box will be used for the comparison.

Using a "BOX3D" object for the frame, such a query looks like this:

SELECT ST_AsText (roads_geom) AS geom
FROM roads
WHERE
roads_geom && ST_MakeEnvelope (191232, 243117,191232, 243119,312);

Note the use of the SRID 312, to specify the projection of the envelope.

PostGIS 3.1.8 Manual 58 /847

4.1.6.2 Using the Shapefile Dumper
The pgsgl2shp table dumper connects to the database and converts a table (possibly defined by a query) into a shape file. The
basic syntax is:

pgsgl2shp [<options>] <database> [<schema>.]<table>
pgsgl2shp [<options>] <database> <query>
The commandline options are:

-f <filename> Write the output to a particular filename.

-h <host> The database host to connect to.

-p <port> The port to connect to on the database host.

-P <password> The password to use when connecting to the database.
-u <user> The username to use when connecting to the database.

-g <geometry column> In the case of tables with multiple geometry columns, the geometry column to use when writing the
shape file.

-b Use a binary cursor. This will make the operation faster, but will not work if any NON-geometry attribute in the table lacks a
cast to text.

-r Raw mode. Do not drop the gid field, or escape column names.

-m filename Remap identifiers to ten character names. The content of the file is lines of two symbols separated by a single
white space and no trailing or leading space: VERYLONGSYMBOL SHORTONE ANOTHERVERYLONGSYMBOL
SHORTER etc.

4.1.7 Building Spatial Indexes

Indexes make using a spatial database for large data sets possible. Without indexing, a search for features would require a
sequential scan of every record in the database. Indexing speeds up searching by organizing the data into a structure which can
be quickly traversed to find records.

The B-tree index method commonly used for attribute data is not very useful for spatial data, since it only supports storing and
querying data in a single dimension. Data such as geometry which has 2 or more dimensions) requires an index method that
supports range query across all the data dimensions. (That said, it is possible to effectively index so-called XY data using a B-tree
and explict range searches.) One of the main advantages of PostgreSQL for spatial data handling is that it offers several kinds of
indexes which work well for multi-dimensional data: GiST, BRIN and SP-GiST indexes.

"non non

* GiST (Generalized Search Tree) indexes break up data into "things to one side", "things which overlap", "things which are
inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree index implemented on top
of GiST to index spatial data. GiST is the most commonly-used and versatile spatial index method, and offers very good query
performance.

* BRIN (Block Range Index) indexes operate by summarizing the spatial extent of ranges of table records. Search is done via
a scan of the ranges. BRIN is only appropriate for use for some kinds of data (spatially sorted, with infrequent or no update).
But it provides much faster index create time, and much smaller index size.

* SP-GiST (Space-Partitioned Generalized Search Tree) is a generic index method that supports partitioned search trees such
as quad-trees, k-d trees, and radix trees (tries).

For more information see the PostGIS Workshop, and the PostgreSQL documentation.

https://postgis.net/workshops/postgis-intro/indexing.html
https://www.postgresql.org/docs/current/indexes.html

PostGIS 3.1.8 Manual 59 /847

4.1.7.1 GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of indexing. In addition to GIS indexing, GiST is used to speed
up searches on all kinds of irregular data structures (integer arrays, spectral data, etc) which are not amenable to normal B-Tree
indexing.

Once a GIS data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data
(unless all your searches are based on attributes, in which case you’ll want to build a normal index on the attribute fields).

The syntax for building a GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);

The above syntax will always build a 2D-index. To get the an n-dimensional index for the geometry type, you can create one
using this syntax:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);

Building a spatial index is a computationally intensive exercise. It also blocks write access to your table for the time it creates,
so on a production system you may want to do in in a slower CONCURRENTLY-aware way:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING GIST ([geometryfield]);

After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query
plans:

VACUUM ANALYZE [table_name] [(column_name)];

4.1.7.2 BRIN Indexes

BRIN stands for "Block Range Index". It is an general-purpose index method introduced in PostgreSQL 9.5. BRIN is a lossy
index method, meaning that a a secondary check is required to confirm that a record matches a given search condition (which is
the case for all provided spatial indexes). It provides much faster index creation and much smaller index size, with reasonable
read performance. Its primary purpose is to support indexing very large tables on columns which have a correlation with their
physical location within the table. In addition to spatial indexing, BRIN can speed up searches on various kinds of attribute data
structures (integer, arrays etc).

Once a spatial table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data. GiST
indexes are very performant as long as their size doesn’t exceed the amount of RAM available for the database, and as long as
you can afford the index storage size, and the cost of index update on write. Otherwise, for very large tables BRIN index can be
considered as an alternative.

A BRIN index stores the bounding box enclosing all the geometries contained in the rows in a contiguous set of table blocks,
called a block range. When executing a query using the index the block ranges are scanned to find the ones that intersect the
query extent. This is efficient only if the data is physically ordered so that the bounding boxes for block ranges have minimal
overlap (and ideally are mutually exclusive). The resulting index is very small in size, but is typically less performant for read
than a GiST index over the same data.

Building a BRIN index is much less CPU-intensive than building a GiST index. It’s common to find that a BRIN index is ten
times faster to build than a GiST index over the same data. And because a BRIN index stores only one bounding box for each
range of table blocks, it’s common to use up to a thousand times less disk space than a GiST index.

You can choose the number of blocks to summarize in a range. If you decrease this number, the index will be bigger but will
probably provide better performance.

For BRIN to be effective, the table data should be stored in a physical order which minimizes the amount of block extent overlap.
It may be that the data is already sorted appropriately (for instance, if it is loaded from another dataset that is already sorted in
spatial order). Otherwise, this can be accomplished by sorting the data by a one-dimensional spatial key. One way to do this is
to create a new table sorted by the geometry values (which in recent PostGIS versions uses an efficient Hilbert curve ordering):

https://www.postgresql.org/docs/current/brin.html

PostGIS 3.1.8 Manual 60/ 847

CREATE TABLE table_sorted AS
SELECT x FROM table ORDER BY geom;

Alternatively, data can be sorted in-place by using a GeoHash as a (temporary) index, and clustering on that index:

CREATE INDEX idx_temp_geohash ON table
USING btree (ST_GeoHash(ST_Transform(geom, 4326), 20));
CLUSTER table USING idx_temp_geohash;

The syntax for building a BRIN index on a geomet ry column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geome_col]);

The above syntax builds a 2D index. To build a 3D-dimensional index, use this syntax:

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_3d);

You can also get a 4D-dimensional index using the 4D operator class:

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col] brin_geometry_inclusion_ops_4d);

The above commands use the default number of blocks in a range, which is 128. To specify the number of blocks to summarise
in a range, use this syntax

CREATE INDEX [indexname] ON [tablename]
USING BRIN ([geome_col]) WITH (pages_per_range = [number]);

Keep in mind that a BRIN index only stores one index entry for a large number of rows. If your table stores geometries with
a mixed number of dimensions, it’s likely that the resulting index will have poor performance. You can avoid this performance
penalty by choosing the operator class with the least number of dimensions of the stored geometries

The geography datatype is supported for BRIN indexing. The syntax for building a BRIN index on a geography column is:

CREATE INDEX [indexname] ON [tablename] USING BRIN ([geog_col]);

The above syntax builds a 2D-index for geospatial objects on the spheroid.

Currently, only "inclusion support" is provided, meaning that just the & &, ~ and @ operators can be used for the 2D cases (for both
geometry and geography), and just the & & & operator for 3D geometries. There is currently no support for kNN searches.

An important difference between BRIN and other index types is that the database does not maintain the index dynamically.
Changes to spatial data in the table are simply appended to the end of the index. This will cause index search performance to de-

grade over time. The index can be updated by performing a VACUUM, or by using a special functionbrin_summarize_ new_values
For this reason BRIN may be most appropriate for use with data that is read-only, or only rarely changing. For more information

refer to the manual.

To summarize using BRIN for spatial data:

* Index build time is very fast, and index size is very small.

* Index query time is slower than GiST, but can still be very acceptable.
* Requires table data to be sorted in a spatial ordering.

* Requires manual index maintenance.

* Most appropriate for very large tables, with low or no overlap (e.g. points), and which are static or change infrequently.

https://www.postgresql.org/docs/current/brin-intro.html#BRIN-OPERATION

PostGIS 3.1.8 Manual 61/847

4.1.7.3 SP-GiST Indexes

SP-GiST stands for "Space-Partitioned Generalized Search Tree" and is a generic form of indexing that supports partitioned
search trees, such as quad-trees, k-d trees, and radix trees (tries). The common feature of these data structures is that they
repeatedly divide the search space into partitions that need not be of equal size. In addition to GIS indexing, SP-GiST is used to
speed up searches on many kinds of data, such as phone routing, ip routing, substring search, etc.

As it is the case for GiST indexes, SP-GiST indexes are lossy, in the sense that they store the bounding box enclosing spatial
objects. SP-GiST indexes can be considered as an alternative to GiST indexes. The performance tests reveal that SP-GiST
indexes are especially beneficial when there are many overlapping objects, that is, with so-called “spaghetti data”.

Once a GIS data table exceeds a few thousand rows, an SP-GiST index may be used to speed up spatial searches of the data. The
syntax for building an SP-GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield]);

The above syntax will build a 2-dimensional index. A 3-dimensional index for the geometry type can be created using the 3D
operator class:

CREATE INDEX [indexname] ON [tablename] USING SPGIST ([geometryfield] +—
spgist_geometry_ops_3d);

Building a spatial index is a computationally intensive operation. It also blocks write access to your table for the time it creates,
so on a production system you may want to do in in a slower CONCURRENTLY-aware way:

CREATE INDEX CONCURRENTLY [indexname] ON [tablename] USING SPGIST ([geometryfield]);
After building an index, it is sometimes helpful to force PostgreSQL to collect table statistics, which are used to optimize query

plans:

VACUUM ANALYZE [table_name] [(column_name)];
An SP-GiST index can accelerate queries involving the following operators:

¢ << &<, &>, >>, <<, &<, 1&>, [>>, &&, @>, <@, and ~=, for 2-dimensional indexes,

e &/&, ~==, @>>, and << @, for 3-dimensional indexes.

There is no support for KNN searches at the moment.

4.1.7.4 Using Indexes

Ordinarily, indexes invisibly speed up data access: once the index is built, the PostgreSQL query planner automatically decides
when to use index information to speed up a query plan. Unfortunately, the query planner sometimes does not optimize the use
of GiST indexes, so queries end up using slow sequential scans instead of a spatial index.

If you find your spatial indexes are not being used, there are a couple things you can do:

* Examine the query plan and check your query actually computes the thing you need. An erroneous JOIN, either forgotten or
to the wrong table, can unexpectedly retrieve table records multiple times. To get the query plan, execute with EXPLAIN in
front of the query.

* Make sure statistics are gathered about the number and distributions of values in a table, to provide the query planner with
better information to make decisions around index usage. VACUUM ANALYZE will compute both.

You should regularly vacuum your databases anyways - many PostgreSQL DBAs have VACUUM run as an off-peak cron job
on a regular basis.

PostGIS 3.1.8 Manual 62 /847

¢ If vacuuming does not help, you can temporarily force the planner to use the index information by using the set enable_seqscan
to off; command. This way you can check whether planner is at all capable to generate an index accelerated query plan for
your query. You should only use this command only for debug: generally speaking, the planner knows better than you do about
when to use indexes. Once you have run your query, do not forget to set ENABLE_SEQSCAN back on, so that other queries
will utilize the planner as normal.

* If set enable_seqscan to off; helps your query to run, your Postgres is likely not tuned for your hardware. If you find the
planner wrong about the cost of sequential vs index scans try reducing the value of random_page_cost in postgresql.conf
or using set random_page_cost to 1.1;. Default value for the parameter is 4, try setting it to 1 (on SSD) or 2 (on fast magnetic
disks). Decreasing the value makes the planner more inclined of using Index scans.

* If set enable_seqscan to off; does not help your query, the query may be using a SQL construct that the Postgres planner is
not yet able to optimize. It may be possible to rewrite the query in a way that the planner is able to handle. For example, a
subquery with an inline SELECT may not produce an efficient plan, but could possibly be rewritten using a LATERAL JOIN.

4.2 Spatial Queries

The raison d’etre of spatial databases is to perform queries inside the database which would ordinarily require desktop GIS
functionality. Using PostGIS effectively requires knowing what spatial functions are available, how to use them in queries, and
ensuring that appropriate indexes are in place to provide good performance.

4.2.1 Determining Spatial Relationships

Spatial relationships indicate how two geometries interact with one another. They are a fundamental capability for querying
geometry.

4.2.1.1 Dimensionally Extended 9-Intersection Model

According to the OpenGIS Simple Features Implementation Specification for SQL, "the basic approach to comparing two ge-
ometries is to make pair-wise tests of the intersections between the Interiors, Boundaries and Exteriors of the two geometries and
to classify the relationship between the two geometries based on the entries in the resulting ’intersection’ matrix."

In the theory of point-set topology, the points in a geometry embedded in 2-dimensional space are categorized into three sets:

Boundary

The boundary of a geometry is the set of geometries of the next lower dimension. For POINTs, which have a dimension
of 0, the boundary is the empty set. The boundary of a LINESTRING is the two endpoints. For POLYGONSs, the boundary
is the linework of the exterior and interior rings.

Interior

The interior of a geometry are those points of a geometry that are not in the boundary. For POINTS, the interior is the point
itself. The interior of a LINESTRING is the set of points between the endpoints. For POLYGONs, the interior is the areal
surface inside the polygon.

Exterior

The exterior of a geometry is the rest of the space in which the geometry is embedded; in other words, all points not in the
interior or on the boundary of the geometry. It is a 2-dimensional non-closed surface.

The Dimensionally Extended 9-Intersection Model (DE-9IM) describes the spatial relationship between two geometries by spec-
ifying the dimensions of the 9 intersections between the above sets for each geometry. The intersection dimensions can be
formally represented in a 3x3 intersection matrix.

For a geometry g the Interior, Boundary, and Exterior are denoted using the notation I(g), B(g), and E(g). Also, dim(s) denotes
the dimension of a set s with the domain of {0, 1,2,F}:

http://www.opengeospatial.org/standards/sfs
http://en.wikipedia.org/wiki/DE-9IM

PostGIS 3.1.8 Manual 63 /847
e 0 => point
e 1 =>line
e 2 =>area
* F' =>empty set
Using this notation, the intersection matrix for two geometries a and b is:
Interior Boundary Exterior
Interior dim(I(a) N I(b)) dim(I(a) N B(b)) dim(I(a) N E(b))
Boundary dim(B(a) N I(b)) dim(B(a) N B(b)) dim(B(a) N E(b))
Exterior dim(E(a) N I(b)) dim(E(a) N B(b)) dim(E(a) N E(b))

Visually, for two overlapping polygonal geometries, this looks like:

PostGIS 3.1.8 Manual 64 /847

Interior Boundary Exterior
Interior
dim(I(a) N I(b))=2 | dim(I(a) NB(b)=1 | dim(I(a) NEDb))=2
Boundary
dim(B(a)N1I(b))=1 dim(B(a) Om B(b))= | dim(B(a) lm Eb)) =
Exterior
dim(E(a)n1(b)) =2 | 4 E(“)lm BO)) =\ i E(a) A Eb) =2

Reading from left to right and top to bottom, the intersection matrix is represented as the text string *212101212’.

For more information, refer to:

* OpenGIS Simple Features Implementation Specification for SQL (version 1.1, section 2.1.13.2)
» Wikipedia: Dimensionally Extended Nine-Intersection Model (DE-91IM)
* GeoTools: Point Set Theory and the DE-9IM Matrix

4.2.1.2 Named Spatial Relationships
To make it easy to determine common spatial relationships, the OGC SFS defines a set of named spatial relationship predi-

cates. PostGIS provides these as the functions ST_Contains, ST_Crosses, ST_Disjoint, ST_Equals, ST_Intersects, ST_Overlaps,
ST_Touches, ST_Within. It also defines the non-standard relationship predicates ST_Covers, ST_CoveredBy, and ST_ContainsProperly.

http://www.opengeospatial.org/standards/sfs
https://en.wikipedia.org/wiki/DE-9IM
http://docs.geotools.org/latest/userguide/library/jts/dim9.html

PostGIS 3.1.8 Manual 65 /847

Spatial predicates are usually used as conditions in SQL WHERE or JOIN clauses. The named spatial predicates automatically
use a spatial index if one is available, so there is no need to use the bounding box operator & & as well. For example:

SELECT city.name, state.name, city.geom
FROM city JOIN state ON ST _Intersects(city.geom, state.geom);

For more details and illustrations, see the PostGIS Workshop.

4.2.1.3 General Spatial Relationships

In some cases the named spatial relationships are insufficient to provide a desired spatial filter condition.

For example, consider a linear dataset representing a road network. It may be required to identify all road segments that
cross each other, not at a point, but in a line (perhaps to validate some business rule). In this case ST_Crosses does not
provide the necessary spatial filter, since for linear features it returns t rue only where they cross at a point.

A two-step solution would be to first compute the actual intersection (ST _Intersection) of pairs of road lines that spatially
intersect (ST_Intersects), and then check if the intersection’s ST_GeometryType is 'LINESTRING’ (properly dealing
with cases that return GEOMETRYCOLLECTIONS of [MULTI]POINTSs, [MULTI]LINESTRINGS, etc.).

Clearly, a simpler and faster solution is desirable.

https://postgis.net/workshops/postgis-intro/spatial_relationships.html

PostGIS 3.1.8 Manual 66 / 847

A second example is locating wharves that intersect a lake’s boundary on a line and where one end of the wharf is up on
shore. In other words, where a wharf is within but not completely contained by a lake, intersects the boundary of a lake on
a line, and where exactly one of the wharf’s endpoints is within or on the boundary of the lake. It is possible to use a
combination of spatial predicates to find the required features:

¢ ST_Contains(lake, wharf) = TRUE
» ST_ContainsProperly(lake, wharf) = FALSE
e ST_GeometryType(ST_Intersection(wharf, lake)) = "LINESTRING’

ST_NumGeometries(ST_Multi(ST_Intersection(ST_Boundary(wharf), ST_Boundary(lake)))) = 1

... but needless to say, this is quite complicated.

These requirements can be met by computing the full DE-9IM intersection matrix. PostGIS provides the ST_Relate function to
do this:

SELECT ST_Relate('LINESTRING (1 1, 5 5)',
'"POLYGON ((3 3, 3 7, 7 7, 7 3, 33))");
st_relate

1010F0212

To test a particular spatial relationship, an intersection matrix pattern is used. This is the matrix representation augmented with
the additional symbols {T, *}:

e T => intersection dimension is non-empty; i.e. isin {0, 1, 2}

e x =>don’t care

Using intersection matrix patterns, specific spatial relationships can be evaluated in a more succinct way. The ST_Relate and the
ST_RelateMatch functions can be used to test intersection matrix patterns. For the first example above, the intersection matrix
pattern specifying two lines intersecting in a line is *1#1#%%]1 %%

—-— Find road segments that intersect in a line
SELECT a.id
FROM roads a, roads b
WHERE a.id != b.id
AND a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '"lxlxx*xlxx");

PostGIS 3.1.8 Manual 67 /847

For the second example, the intersection matrix pattern specifying a line partly inside and partly outside a polygon is "102101FF2’:

—-— Find wharves partly on a lake's shoreline
SELECT a.lake_id, b.wharf_ id
FROM lakes a, wharfs b
WHERE a.geom && b.geom
AND ST_Relate(a.geom, b.geom, '102101FF2");

4.2.2 Taking Advantage of Indexes

When constructing queries using spatial conditions it is important to ensure that a spatial index is used, if one exists (see Sec-
tion 4.1.7). To do this, an index-aware spatial operator or function must be used in the WHERE or ON clause. Spatial operators
include the bounding box-based operators (of which the most commonly used is &&) and the distance operators used in nearest-
neighbour queries (the most common being <->.) Index-aware functions include most of the named spatial predicates (such as
ST_Intersects), and most of the distance predicates (such as ST_DWithin.)

Functions such as ST_Distance do not use indexes to optimize their operation. For example, the following query would be quite
slow on a large table:

SELECT the_geom
FROM geom_table
WHERE ST_Distance (the_geom, 'SRID=312;POINT (100000 200000)"') < 100

This query selects all the geometries in geom_table which are within 100 units of the point (100000, 200000). It will be
slow because it is calculating the distance between each point in the table and the specified point, ie. one ST_Distance ()
calculation is computed for every row in the table.

We can reduce the number of rows processed by using the index-aware function ST_DWithin:

SELECT the_geom
FROM geom_table
WHERE ST_DWithin (the_geom, 'SRID=312;POINT (100000 200000)"', 100)

This query selects the same geometries, but it does it in a more efficient way. This is enabled by ST_DWithin () using the &&
operator internally on an expanded bounding box of the query geometry. If there is a spatial index on the_geom, the query
planner will recognize that it can use the index to reduce the number of rows scanned before calculating the distance. The spatial
index allows retrieving only records with geometries whose bounding boxes overlap the expanded extent and hence which might
be within the required distance. The actual distance is then computed to confirm whether to include the record in the result set.

4.2.3 Examples of Spatial SQL

The examples in this section will make use of two tables, a table of linear roads, and a table of polygonal municipality boundaries.
The table definitions for the bc_roads table is:

Column | Type | Description

____________ +___________________+___________________

gid | integer | Unique ID

name | character varying | Road Name

the_geom | geometry | Location Geometry (Linestring)

The table definition for the bc_municipality table is:

Column | Type | Description

,,,,,,,,,,, T

gid | integer | Unique ID

code | integer | Unique ID

name | character varying | City / Town Name

the_geom | geometry | Location Geometry (Polygon)

PostGIS 3.1.8 Manual 68 /847

1. What is the total length of all roads, expressed in kilometers?

You can answer this question with a very simple piece of SQL:

SELECT sum(ST_Length (the_geom)) /1000 AS km_roads FROM bc_roads;

70842.1243039643
(1 row)

2. How large is the city of Prince George, in hectares?

This query combines an attribute condition (on the municipality name) with a spatial calculation (of the area):

SELECT

ST_Area (the_geom) /10000 AS hectares
FROM bc_municipality
WHERE name = 'PRINCE GEORGE';

hectares

32657.9103824927
(1 row)

3. What is the largest municipality in the province, by area?

This query brings a spatial measurement into the query condition. There are several ways of approaching this problem, but
the most efficient is below:

SELECT

name,

ST_Area (the_geom) /10000 AS hectares
FROM

bc_municipality
ORDER BY hectares DESC

LIMIT 1;

name | hectares
777777777777777 +77777777777777777
TUMBLER RIDGE | 155020.02556131
(1 row)

Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a lot it would
make sense to add an area column to the table that we could separately index for performance. By ordering the results in a
descending direction, and them using the PostgreSQL "LIMIT" command we can easily pick off the largest value without
using an aggregate function like max().

4. What is the length of roads fully contained within each municipality?

This is an example of a "spatial join", because we are bringing together data from two tables (doing a join) but using a
spatial interaction condition ("contained") as the join condition rather than the usual relational approach of joining on a
common key:

SELECT
m.name,
sum (ST_Length (r.the_geom)) /1000 as roads_km
FROM
bc_roads AS r,
bc_municipality AS m
WHERE
ST_Contains (m.the_geom, r.the_geom)
GROUP BY m.name
ORDER BY roads_km;

PostGIS 3.1.8 Manual 69 /847

PRINCE GEORGE 694.37554369147

name | roads_km

____________________________ +__________________

SURREY | 1539.47553551242

VANCOUVER | 1450.33093486576

LANGLEY DISTRICT | 833.793392535662

BURNABY | 773.769091404338
|

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for our
particular example table). For smaller overlays (several thousand records on several hundred) the response can be very
fast.

5. Create a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of spatially clipped or
cut resultants. Unlike the "spatial join" demonstrated above, this query actually creates new geometries. An overlay is like
a turbo-charged spatial join, and is useful for more exact analysis work:

CREATE TABLE pg_roads as
SELECT
ST_Intersection(r.the_geom, m.the_geom) AS intersection_geom,
ST_Length (r.the_geom) AS rd_orig_length,
r.*
FROM
bc_roads AS r,
bc_municipality AS m
WHERE
m.name = 'PRINCE GEORGE'
AND ST_Intersects(r.the_geom, m.the_geom);

6. What is the length in kilometers of "Douglas St" in Victoria?

SELECT

sum (ST_Length (r.the_geom)) /1000 AS kilometers
FROM

bc_roads r,

bc_municipality m

WHERE
r.name = 'Douglas St'
AND m.name = 'VICTORIA'

AND ST_Intersects (m.the_geom, r.the_geom);

kilometers

4.89151904172838
(1 row)

7. What is the largest municipality polygon that has a hole?

SELECT gid, name, ST_Area(the_geom) AS area
FROM bc_municipality

WHERE ST_NRings (the_geom) > 1

ORDER BY area DESC LIMIT 1;

PostGIS 3.1.8 Manual 70/ 847

4.3 Performance Tips

4.3.1 Small tables of large geometries

4.3.1.1 Problem description

Current PostgreSQL versions (including 9.6) suffer from a query optimizer weakness regarding TOAST tables. TOAST tables
are a kind of "extension room" used to store large (in the sense of data size) values that do not fit into normal data pages (like long
texts, images or complex geometries with lots of vertices), see the PostgreSQL Documentation for TOAST for more information).

The problem appears if you happen to have a table with rather large geometries, but not too many rows of them (like a table
containing the boundaries of all European countries in high resolution). Then the table itself is small, but it uses lots of TOAST
space. In our example case, the table itself had about 80 rows and used only 3 data pages, but the TOAST table used 8225 pages.

Now issue a query where you use the geometry operator && to search for a bounding box that matches only very few of those
rows. Now the query optimizer sees that the table has only 3 pages and 80 rows. It estimates that a sequential scan on such a
small table is much faster than using an index. And so it decides to ignore the GIST index. Usually, this estimation is correct.
But in our case, the && operator has to fetch every geometry from disk to compare the bounding boxes, thus reading all TOAST
pages, too.

To see whether your suffer from this issue, use the "EXPLAIN ANALYZE" postgresql command. For more information and
the technical details, you can read the thread on the postgres performance mailing list: http://archives.postgresql.org/pgsql-
performance/2005-02/msg00030.php

and newer thread on PostGIS https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

4.3.1.2 Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-aware. For now, here are two
workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan TO off;" to the server before
issuing the query. This basically forces the query planner to avoid sequential scans whenever possible. So it uses the GIST index
as usual. But this flag has to be set on every connection, and it causes the query planner to make misestimations in other cases,
so you should "SET enable_seqscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks. This can be achieved by creating an
additional column that "caches" the bbox, and matching against this. In our example, the commands are like:

SELECT AddGeometryColumn ('myschema', 'mytable', "bbox', '4326"', '"GEOMETRY', '2");
UPDATE mytable SET bbox = ST_Envelope (ST_Force2D (the_geom)) ;

Now change your query to use the && operator against bbox instead of geom_column, like:

SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID('BOX3D(0 0,1 1)'::box3d,4326);

Of course, if you change or add rows to mytable, you have to keep the bbox "in sync". The most transparent way to do this would
be triggers, but you also can modify your application to keep the bbox column current or run the UPDATE query above after
every modification.

4.3.2 CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is used for the majority of queries, PostgreSQL offers the CLUS-
TER command. This command physically reorders all the data rows in the same order as the index criteria, yielding two
performance advantages: First, for index range scans, the number of seeks on the data table is drastically reduced. Second, if
your working set concentrates to some small intervals on the indices, you have a more efficient caching because the data rows

http://www.postgresql.org/docs/current/static/storage-toast.html
http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
http://archives.postgresql.org/pgsql-performance/2005-02/msg00030.php
https://lists.osgeo.org/pipermail/postgis-devel/2017-June/026209.html

PostGIS 3.1.8 Manual 71/847

are spread along fewer data pages. (Feel invited to read the CLUSTER command documentation from the PostgreSQL manual
at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST indices simply ignores NULL
values, you get an error message like:

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "the_geom" NOT NULL.

As the HINT message tells you, one can work around this deficiency by adding a "not null" constraint to the table:

lwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null;
ALTER TABLE

Of course, this will not work if you in fact need NULL values in your geometry column. Additionally, you must use the above
method to add the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK (geometry is not null);" will
not work.

4.3.3 Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but always access it using OpenGIS compliant ST_AsText() or
ST_AsBinary() functions that only output 2D geometries. They do this by internally calling the ST_Force2D() function, which
introduces a significant overhead for large geometries. To avoid this overhead, it may be feasible to pre-drop those additional
dimensions once and forever:

UPDATE mytable SET the_geom = ST_Force2D (the_geom) ;
VACUUM FULL ANALYZE mytable;

Note that if you added your geometry column using AddGeometryColumn() there’ll be a constraint on geometry dimension. To
bypass it you will need to drop the constraint. Remember to update the entry in the geometry_columns table and recreate the
constraint afterwards.

In case of large tables, it may be wise to divide this UPDATE into smaller portions by constraining the UPDATE to a part of the
table via a WHERE clause and your primary key or another feasible criteria, and running a simple "VACUUM;" between your
UPDATEs. This drastically reduces the need for temporary disk space. Additionally, if you have mixed dimension geometries,
restricting the UPDATE by "WHERE dimension(the_geom)>2" skips re-writing of geometries that already are in 2D.

4.4 Building Applications

4.41 Using MapServer

The Minnesota MapServer is an internet web-mapping server which conforms to the OpenGIS Web Map Service specification.
* The MapServer homepage is at http://mapserver.org.

* The OpenGIS Web Map Service specification is at http://www.opengeospatial.org/standards/wms.

4.41.1 Basic Usage

To use PostGIS with MapServer, you need to know how to configure MapServer, which is beyond the scope of this documentation.
This section covers specific PostGIS issues and configuration details.

To use PostGIS with MapServer, you will need:

¢ Version 0.6 or newer of PostGIS.

http://mapserver.org
http://www.opengeospatial.org/standards/wms

PostGIS 3.1.8 Manual 72 /847

* Version 3.5 or newer of MapServer.

MapServer accesses PostGIS/PostgreSQL data like any other PostgreSQL client, using the 1ibpq interface. This means that
MapServer can be installed on any machine with network access to the PostGIS server, and use PostGIS as a source of data. The
faster the connection between the systems, the better.

1. Compile and install MapServer, with whatever options you desire, including the "--with-postgis" configuration option.

2. In your MapServer map file, add a PostGIS layer. For example:

LAYER
CONNECTIONTYPE postgis
NAME "widehighways"
Connect to a remote spatial database
CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
PROCESSING "CLOSE_CONNECTION=DEFER"
Get the lines from the 'geom' column of the 'roads' table
DATA "geom from roads using srid=4326 using unique gid"

STATUS ON

TYPE LINE

Of the lines in the extents, only render the wide highways
FILTER "type = 'highway' and numlanes >= 4"

CLASS

Make the superhighways brighter and 2 pixels wide
EXPRESSION ([numlanes] >= 6)
STYLE
COLOR 255 22 22
WIDTH 2
END
END
CLASS
All the rest are darker and only 1 pixel wide
EXPRESSION ([numlanes] < 6)
STYLE
COLOR 205 92 82
END
END
END

In the example above, the PostGIS-specific directives are as follows:

CONNECTIONTYPE For PostGIS layers, this is always "postgis".

CONNECTION The database connection is governed by the a ’connection string’ which is a standard set of keys and
values like this (with the default values in <>):
user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>
An empty connection string is still valid, and any of the key/value pairs can be omitted. At a minimum you will
generally supply the database name and username to connect with.

DATA The form of this parameter is "<geocolumn> from <tablename> using srid=<srid> using unique <primary key>"
where the column is the spatial column to be rendered to the map, the SRID is SRID used by the column and the
primary key is the table primary key (or any other uniquely-valued column with an index).

You can omit the "using srid" and "using unique" clauses and MapServer will automatically determine the correct
values if possible, but at the cost of running a few extra queries on the server for each map draw.

PROCESSING Putting in a CLOSE_CONNECTION=DEFER if you have multiple layers reuses existing connections
instead of closing them. This improves speed. Refer to for MapServer PostGIS Performance Tips for a more detailed
explanation.

FILTER The filter must be a valid SQL string corresponding to the logic normally following the "WHERE" keyword in
a SQL query. So, for example, to render only roads with 6 or more lanes, use a filter of "num_lanes >= 6".

3. In your spatial database, ensure you have spatial (GiST) indexes built for any the layers you will be drawing.

http://blog.cleverelephant.ca/2008/10/mapserverpostgis-performance-tips.html

PostGIS 3.1.8 Manual 73 /847

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

. If you will be querying your layers using MapServer you will also need to use the "using unique" clause in your DATA

statement.

MapServer requires unique identifiers for each spatial record when doing queries, and the PostGIS module of MapServer
uses the unique value you specify in order to provide these unique identifiers. Using the table primary key is the best
practice.

4.41.2 Frequently Asked Questions

1.

When I use an EXPRESSTION in my map file, the condition never returns as true, even though I know the values exist in
my table.

Unlike shape files, PostGIS field names have to be referenced in EXPRESSIONS using lower case.

EXPRESSION ([numlanes] >= 6)

. The FILTER I use for my Shapefiles is not working for my PostGIS table of the same data.

Unlike shape files, filters for PostGIS layers use SQL syntax (they are appended to the SQL statement the PostGIS con-
nector generates for drawing layers in MapServer).

FILTER "type = 'highway' and numlanes >= 4"

. My PostGIS layer draws much slower than my Shapefile layer, is this normal?

In general, the more features you are drawing into a given map, the more likely it is that PostGIS will be slower than
Shapefiles. For maps with relatively few features (100s), PostGIS will often be faster. For maps with high feature density
(1000s), PostGIS will always be slower. If you are finding substantial draw performance problems, it is possible that you
have not built a spatial index on your table.

postgis# CREATE INDEX geotable_gix ON geotable USING GIST (geocolumn);
postgis# VACUUM ANALYZE;

. My PostGIS layer draws fine, but queries are really slow. What is wrong?

For queries to be fast, you must have a unique key for your spatial table and you must have an index on that unique key. You
can specify what unique key for mapserver to use with the USING UNIQUE clause in your DATA line:

DATA "geom FROM geotable USING UNIQUE gid"

. Can Il use "geography" columns (new in PostGIS 1.5) as a source for MapServer layers?

Yes! MapServer understands geography columns as being the same as geometry columns, but always using an SRID of
4326. Just make sure to include a "using srid=4326" clause in your DATA statement. Everything else works exactly the
same as with geometry.

DATA "geog FROM geogtable USING SRID=4326 USING UNIQUE gid"

4.41.3 Advanced Usage

The USING pseudo-SQL clause is used to add some information to help mapserver understand the results of more complex
queries. More specifically, when either a view or a subselect is used as the source table (the thing to the right of "FROM" in a
DATA definition) it is more difficult for mapserver to automatically determine a unique identifier for each row and also the SRID
for the table. The USING clause can provide mapserver with these two pieces of information as follows:

PostGIS 3.1.8 Manual 74 /847

DATA "geom FROM (
SELECT
tablel.geom AS geom,
tablel.gid AS gid,
table2.data AS data
FROM tablel
LEFT JOIN table2
ON tablel.id = table2.id
) AS new_table USING UNIQUE gid USING SRID=4326"

USING UNIQUE <uniqueid> MapServer requires a unique id for each row in order to identify the row when doing map
queries. Normally it identifies the primary key from the system tables. However, views and subselects don’t automatically
have an known unique column. If you want to use MapServer’s query functionality, you need to ensure your view or
subselect includes a uniquely valued column, and declare it with USING UNIQUE. For example, you could explicitly
select nee of the table’s primary key values for this purpose, or any other column which is guaranteed to be unique for the
result set.

N;‘“’! Note

"Querying a Map" is the action of clicking on a map to ask for information about the map features in that location.
Don’t confuse "map queries” with the SQL query in a DATA definition.

USING SRID=<srid> PostGIS needs to know which spatial referencing system is being used by the geometries in order to
return the correct data back to MapServer. Normally it is possible to find this information in the "geometry_columns" table
in the PostGIS database, however, this is not possible for tables which are created on the fly such as subselects and views.
So the USING SRID= option allows the correct SRID to be specified in the DATA definition.

4.4.1.4 Examples

Lets start with a simple example and work our way up. Consider the following MapServer layer definition:

LAYER
CONNECTIONTYPE postgis
NAME "roads"
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "geom from roads"
STATUS ON
TYPE LINE
CLASS
STYLE
COLOR 0 0 O
END
END
END

This layer will display all the road geometries in the roads table as black lines.

Now lets say we want to show only the highways until we get zoomed in to at least a 1:100000 scale - the next two layers will
achieve this effect:

LAYER
CONNECTIONTYPE postgis
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
PROCESSING "CLOSE_CONNECTION=DEFER"
DATA "geom from roads"
MINSCALE 100000
STATUS ON
TYPE LINE

PostGIS 3.1.8 Manual 75 /847

FILTER "road_type = 'highway'"
CLASS
COLOR 0 0 O
END
END
LAYER

CONNECTIONTYPE postgis
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
PROCESSING "CLOSE_CONNECTION=DEFER"
DATA "geom from roads"
MAXSCALE 100000
STATUS ON
TYPE LINE
CLASSITEM road_type
CLASS
EXPRESSION "highway"
STYLE
WIDTH 2
COLOR 255 0 0
END
END
CLASS
STYLE
COLOR 0 0 O
END
END
END

The first layer is used when the scale is greater than 1:100000, and displays only the roads of type "highway" as black lines. The
FILTER option causes only roads of type "highway" to be displayed.

The second layer is used when the scale is less than 1:100000, and will display highways as double-thick red lines, and other
roads as regular black lines.

So, we have done a couple of interesting things using only MapServer functionality, but our DATA SQL statement has remained
simple. Suppose that the name of the road is stored in another table (for whatever reason) and we need to do a join to get it and
label our roads.

LAYER
CONNECTIONTYPE postgis
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "geom FROM (SELECT roads.gid AS gid, roads.geom AS geom,
road_names.name as name FROM roads LEFT JOIN road_names ON
roads.road_name_id = road_names.road_name_id)
AS named_roads USING UNIQUE gid USING SRID=4326"
MAXSCALE 20000
STATUS ON
TYPE ANNOTATION
LABELITEM name
CLASS
LABEL
ANGLE auto
SIZE 8
COLOR 0 192 0
TYPE truetype
FONT arial
END
END
END

This annotation layer adds green labels to all the roads when the scale gets down to 1:20000 or less. It also demonstrates how to
use an SQL join in a DATA definition.

PostGIS 3.1.8 Manual 76 /847

4.4.2 Java Clients (JDBC)

Java clients can access PostGIS "geometry" objects in the PostgreSQL database either directly as text representations or using
the JDBC extension objects bundled with PostGIS. In order to use the extension objects, the "postgis.jar" file must be in your
CLASSPATH along with the "postgresql.jar" JDBC driver package.

import java.sqgl.x;
import java.util.x;
import java.lang.x*;
import org.postgis.x;
public class JavaGIS {

public static void main(String[] args) {

java.sqgl.Connection conn;

try {
/ *
* Load the JDBC driver and establish a connection.
*/
Class.forName ("org.postgresqgl.Driver");
String url = "jdbc:postgresqgl://localhost:5432/database";
conn = DriverManager.getConnection (url, "postgres", "");
/ *

* Add the geometry types to the connection. Note that you

* must cast the connection to the pgsgl-specific connection

+ implementation before calling the addDataType () method.

x/

((org.postgresqgl.PGConnection) conn) .addDataType ("geometry",Class.forName ("org.postgis. ¢
PGgeometry"));

((org.postgresgl .PGConnection) conn) .addDataType ("box3d",Class.forName ("org.postgis. <
PGbox3d")) ;

/ *
* Create a statement and execute a select query.
x/
Statement s = conn.createStatement () ;
ResultSet r = s.executeQuery("select geom,id from geomtable");
while(r.next ()) {
/ *

* Retrieve the geometry as an object then cast it to the geometry type.
* Print things out.

*/

PGgeometry geom = (PGgeometry)r.getObject (1);
int id = r.getInt(2);

System.out.println("Row " + id + ":");

System.out.println (geom.toString());
}

s.close();
conn.close();

}
catch(Exception e) {
e.printStackTrace () ;

}

The "PGgeometry" object is a wrapper object which contains a specific topological geometry object (subclasses of the abstract
class "Geometry") depending on the type: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon.

PGgeometry geom = (PGgeometry)r.getObject (1);
if(geom.getType () == Geometry.POLYGON) {

PostGIS 3.1.8 Manual 77 1 847

Polygon pl = (Polygon)geom.getGeometry () ;
for(int r = 0; r < pl.numRings(); r++) {
LinearRing rng = pl.getRing(r);
System.out.println ("Ring: " + r);
for(int p = 0; p < rng.numPoints(); p++) {
Point pt = rng.getPoint (p);
System.out.println ("Point: " + p);
System.out.println (pt.toString());
}

The JavaDoc for the extension objects provides a reference for the various data accessor functions in the geometric objects.

4.4.3 C Clients (libpq)

4.4.3.1 Text Cursors

4.4.3.2 Binary Cursors

4.5 Raster Data Management, Queries, and Applications

4.5.1 Loading and Creating Rasters

For most use cases, you will create PostGIS rasters by loading existing raster files using the packaged raster2pgsql raster
loader.

4.5.1.1 Using raster2pgsql to load rasters

The raster2pgsql is a raster loader executable that loads GDAL supported raster formats into sql suitable for loading into a
PostGIS raster table. It is capable of loading folders of raster files as well as creating overviews of rasters.

Since the raster2pgsql is compiled as part of PostGIS most often (unless you compile your own GDAL library), the raster types
supported by the executable will be the same as those compiled in the GDAL dependency library. To get a list of raster types
your particular raster2pgsql supports use the -G switch. These should be the same as those provided by your PostGIS install
documented here ST_GDALDrivers if you are using the same gdal library for both.

s Note
N"‘l"! The older version of this tool was a python script. The executable has replaced the python script. If you still find the
need for the Python script Examples of the python one can be found at GDAL PostGIS Raster Driver Usage. Please
note that the raster2pgsql python script may not work with future versions of PostGIS raster and is no longer supported.

No'ld Note

When creating overviews of a specific factor from a set of rasters that are aligned, it is possible for the overviews to not
align. Visit http:/trac.osgeo.org/postgis/ticket/1764 for an example where the overviews do not align.

http://trac.osgeo.org/gdal/wiki/frmts_wtkraster.html
http://trac.osgeo.org/postgis/ticket/1764

PostGIS 3.1.8 Manual 78 /847

EXAMPLE USAGE:

raster2pgsqgl raster_options_go_here raster_file someschema.sometable > out.sqgl

-? Display help screen. Help will also display if you don’t pass in any arguments.
-G Print the supported raster formats.
(claldlp) These are mutually exclusive options:

-¢ Create new table and populate it with raster(s), this is the default mode
-a Append raster(s) to an existing table.
-d Drop table, create new one and populate it with raster(s)

-p Prepare mode, only create the table.
Raster processing: Applying constraints for proper registering in raster catalogs

-C Apply raster constraints -- srid, pixelsize etc. to ensure raster is properly registered in raster_columns view.
-x Disable setting the max extent constraint. Only applied if -C flag is also used.

-r Set the constraints (spatially unique and coverage tile) for regular blocking. Only applied if -C flag is also used.
Raster processing: Optional parameters used to manipulate input raster dataset
-s <SRID> Assign output raster with specified SRID. If not provided or is zero, raster’s metadata will be checked to

determine an appropriate SRID.

-b BAND Index (1-based) of band to extract from raster. For more than one band index, separate with comma (,). If
unspecified, all bands of raster will be extracted.

-t TILE_SIZE Cut raster into tiles to be inserted one per table row. TILE_SIZE is expressed as WIDTHXxHEIGHT or
set to the value "auto" to allow the loader to compute an appropriate tile size using the first raster and applied to all
rasters.

-P Pad right-most and bottom-most tiles to guarantee that all tiles have the same width and height.

-R, --register Register the raster as a filesystem (out-db) raster.
Only the metadata of the raster and path location to the raster is stored in the database (not the pixels).

-l OVERVIEW_FACTOR Create overview of the raster. For more than one factor, separate with comma(,). Overview
table name follows the pattern o_overview factor_table, where overview factor is a placeholder for
numerical overview factor and table is replaced with the base table name. Created overview is stored in the
database and is not affected by -R. Note that your generated sql file will contain both the main table and overview
tables.

-N NODATA NODATA value to use on bands without a NODATA value.
Optional parameters used to manipulate database objects

-f COLUMN Specify name of destination raster column, default is ’rast’
-F Add a column with the name of the file

-n COLUMN Specify the name of the filename column. Implies -F.

-q Wrap PostgreSQL identifiers in quotes.

-I Create a GiST index on the raster column.

-M Vacuum analyze the raster table.

-k Skip NODATA value checks for each raster band.

-T tablespace Specify the tablespace for the new table. Note that indices (including the primary key) will still use the
default tablespace unless the -X flag is also used.

-X tablespace Specify the tablespace for the table’s new index. This applies to the primary key and the spatial index
if the -I flag is used.

PostGIS 3.1.8 Manual 79 /847

-Y Use copy statements instead of insert statements.
-e Execute each statement individually, do not use a transaction.

-E ENDIAN Control endianness of generated binary output of raster; specify 0 for XDR and 1 for NDR (default); only NDR
output is supported now

-V version Specify version of output format. Default is 0. Only 0 is supported at this time.

An example session using the loader to create an input file and uploading it chunked in 100x100 tiles might look like this:

N;’R’! Note

You can leave the schema name out e.g demelevation instead of public.demelevation and the raster table
will be created in the default schema of the database or user

raster2pgsql -s 4326 -I -C -M x.tif -F -t 100x100 public.demelevation > elev.sqgl
psgl -d gisdb -f elev.sqgl

A conversion and upload can be done all in one step using UNIX pipes:

raster2pgsqgl -s 4326 -I -C -M *.tif -F -t 100x100 public.demelevation | psgl -d gisdb

Load rasters Massachusetts state plane meters aerial tiles into a schema called aerial and create a full view, 2 and 4 level
overview tables, use copy mode for inserting (no intermediary file just straight to db), and -e don’t force everything in a transaction
(good if you want to see data in tables right away without waiting). Break up the rasters into 128x128 pixel tiles and apply raster
constraints. Use copy mode instead of table insert. (-F) Include a field called filename to hold the name of the file the tiles were
cut from.

raster2pgsgql -I -C -e -Y -F -s 26986 -t 128x128 -1 2,4 bostonaerials2008/x.jpg aerials. ¢
boston | psgl -U postgres -d gisdb -h localhost -p 5432

-—get a list of raster types supported:
raster2pgsql -G

The -G commands outputs a list something like

Available GDAL raster formats:
Virtual Raster
GeoTIFF
National Imagery Transmission Format
Raster Product Format TOC format
ECRG TOC format
Erdas Imagine Images (.img)
CEOS SAR Image
CEOS Image
JAXA PALSAR Product Reader (Level 1.1/1.5)
Ground-based SAR Applications Testbed File Format (.gff)
ELAS
Arc/Info Binary Grid
Arc/Info ASCII Grid
GRASS ASCII Grid
SDTS Raster
DTED Elevation Raster
Portable Network Graphics
JPEG JFIF
In Memory Raster
Japanese DEM (.mem)
Graphics Interchange Format (.gif)

PostGIS 3.1.8 Manual 80 /847

Graphics Interchange Format (.gif)
Envisat Image Format

Maptech BSB Nautical Charts

X11 PixMap Format

MS Windows Device Independent Bitmap
SPOT DIMAP

AirSAR Polarimetric Image

RadarSat 2 XML Product

PCIDSK Database File

PCRaster Raster File

ILWIS Raster Map

SGI Image File Format 1.0

SRTMHGT File Format

Leveller heightfield

Terragen heightfield

USGS Astrogeology ISIS cube (Version 3)
USGS Astrogeology ISIS cube (Version 2)
NASA Planetary Data System
EarthWatch .TIL

ERMapper .ers Labelled

NOAA Polar Orbiter Level 1lb Data Set
FIT Image

GRIdded Binary (.grb)

Raster Matrix Format

EUMETSAT Archive native (.nat)
Idrisi Raster A.1

Intergraph Raster

Golden Software ASCII Grid (.grd)
Golden Software Binary Grid (.grd)
Golden Software 7 Binary Grid (.grd)
COSAR Annotated Binary Matrix (TerraSAR-X)
TerraSAR-X Product

DRDC COASP SAR Processor Raster

R Object Data Store

Portable Pixmap Format (netpbm)
USGS DOQ (0Old Style)

USGS DOQ (New Style)

ENVI .hdr Labelled

ESRI .hdr Labelled

Generic Binary (.hdr Labelled)

PCI .aux Labelled

Vexcel MFF Raster

Vexcel MFF2 (HKV) Raster

Fuji BAS Scanner Image

GSC Geogrid

EOSAT FAST Format

VIP .bt (Binary Terrain) 1.3 Format
Erdas .LAN/.GIS

Convair PolGASP

Image Data and Analysis

NLAPS Data Format

Erdas Imagine Raw

DIPEXx

FARSITE v.4 Landscape File (.lcp)
NOAA Vertical Datum .GTX

NADCON .los/.las Datum Grid Shift
NTv2 Datum Grid Shift

ACE2

Snow Data Assimilation System
Swedish Grid RIK (.rik)

USGS Optional ASCII DEM (and CDED)
GeoSoft Grid Exchange Format

PostGIS 3.1.8 Manual 81/847

Northwood Numeric Grid Format .grd/.tab
Northwood Classified Grid Format .grc/.tab
ARC Digitized Raster Graphics

Standard Raster Product (ASRP/USRP)
Magellan topo (.blx)

SAGA GIS Binary Grid (.sdat)

Kml Super Overlay

ASCII Gridded XYZ

HF2/HFZ heightfield raster

OziExplorer Image File

USGS LULC Composite Theme Grid

Arc/Info Export E00 GRID

ZMap Plus Grid

NOAA NGS Geoid Height Grids

4.5.1.2 Creating rasters using PostGIS raster functions

On many occasions, you’ll want to create rasters and raster tables right in the database. There are a plethora of functions to do
that. The general steps to follow.

1. Create a table with a raster column to hold the new raster records which can be accomplished with:

CREATE TABLE myrasters(rid serial primary key, rast raster);

2. There are many functions to help with that goal. If you are creating rasters not as a derivative of other rasters, you will
want to start with: ST_MakeEmptyRaster, followed by ST_AddBand

You can also create rasters from geometries. To achieve that you’ll want to use ST_AsRaster perhaps accompanied with
other functions such as ST_Union or ST_MapAlgebraFct or any of the family of other map algebra functions.

There are even many more options for creating new raster tables from existing tables. For example you can create a raster
table in a different projection from an existing one using ST_Transform

3. Once you are done populating your table initially, you’ll want to create a spatial index on the raster column with something
like:

CREATE INDEX myrasters_rast_st_convexhull_ idx ON myrasters USING gist (ST_ConvexHull (<
rast));

Note the use of ST_ConvexHull since most raster operators are based on the convex hull of the rasters.

:rtd Note
N Pre-2.0 versions of PostGIS raster were based on the envelop rather than the convex hull. For the spatial indexes
to work properly you'll need to drop those and replace with convex hull based index.

4. Apply raster constraints using AddRasterConstraints

4.5.2 Raster Catalogs

There are two raster catalog views that come packaged with PostGIS. Both views utilize information embedded in the constraints
of the raster tables. As a result the catalog views are always consistent with the raster data in the tables since the constraints are
enforced.

1. raster_columns this view catalogs all the raster table columns in your database.

2. raster_overviews this view catalogs all the raster table columns in your database that serve as overviews for a finer
grained table. Tables of this type are generated when you use the —1 switch during load.

PostGIS 3.1.8 Manual 82 /847

4.5.2.1 Raster Columns Catalog

The raster_columns is a catalog of all raster table columns in your database that are of type raster. It is a view utilizing the
constraints on the tables so the information is always consistent even if you restore one raster table from a backup of another
database. The following columns exist in the raster_columns catalog.

If you created your tables not with the loader or forgot to specify the —C flag during load, you can enforce the constraints after
the fact using AddRasterConstraints so that the raster_columns catalog registers the common information about your raster
tiles.

r_table_catalog The database the table is in. This will always read the current database.
r_table_schema The database schema the raster table belongs to.
r_table_name raster table

r_raster_column the column in the r_table_name table that is of type raster. There is nothing in PostGIS preventing
you from having multiple raster columns per table so its possible to have a raster table listed multiple times with a different
raster column for each.

srid The spatial reference identifier of the raster. Should be an entry in the Section 4.1.3.1.

scale_x The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column
have the same scale_x and this constraint is applied. Refer to ST_ScaleX for more details.

scale_y The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column
have the same scale_y and the scale_y constraint is applied. Refer to ST_ScaleY for more details.

blocksize_x The width (number of pixels across) of each raster tile . Refer to ST_Width for more details.
blocksize_y The width (number of pixels down) of each raster tile . Refer to ST_Height for more details.

same_alignment A boolean that is true if all the raster tiles have the same alignment . Refer to ST_SameAlignment for
more details.

regular_blocking If the raster column has the spatially unique and coverage tile constraints, the value with be TRUE.
Otherwise, it will be FALSE.

num_bands The number of bands in each tile of your raster set. This is the same information as what is provided by
ST _NumBands

pixel_types An array defining the pixel type for each band. You will have the same number of elements in this array as
you have number of bands. The pixel_types are one of the following defined in ST_BandPixelType.

nodata_values An array of double precision numbers denoting the nodata_value for each band. You will have the
same number of elements in this array as you have number of bands. These numbers define the pixel value for each band that
should be ignored for most operations. This is similar information provided by ST_BandNoDataValue.

out_db An array of boolean flags indicating if the raster bands data is maintained outside the database. You will have the
same number of elements in this array as you have number of bands.

extent This is the extent of all the raster rows in your raster set. If you plan to load more data that will change the extent of the
set, you’ll want to run the DropRasterConstraints function before load and then reapply constraints with AddRasterConstraints
after load.

spatial_index A boolean that is true if raster column has a spatial index.

PostGIS 3.1.8 Manual 83 /847

4.5.2.2 Raster Overviews

raster_overviews catalogs information about raster table columns used for overviews and additional information about

them that is useful to know when utilizing overviews. Overview tables are cataloged in both raster_columns and raster_overvi
because they are rasters in their own right but also serve an additional special purpose of being a lower resolution caricature of a
higher resolution table. These are generated along-side the main raster table when you use the —1 switch in raster loading or can

be generated manually using AddOverviewConstraints.

Overview tables contain the same constraints as other raster tables as well as additional informational only constraints specific to
overviews.

= Note
Nﬂ"l"! The information in raster_overviews does not duplicate the information in raster_columns. If you need
the information about an overview table present in raster_columns you can join the raster_overviews and
raster_columns together to get the full set of information you need.

Two main reasons for overviews are:

1. Low resolution representation of the core tables commonly used for fast mapping zoom-out.

2. Computations are generally faster to do on them than their higher resolution parents because there are fewer records and
each pixel covers more territory. Though the computations are not as accurate as the high-res tables they support, they can
be sufficient in many rule-of-thumb computations.

The raster_overviews catalog contains the following columns of information.

* o_table_catalog The database the overview table is in. This will always read the current database.

* o_table_schema The database schema the overview raster table belongs to.

* o_table_name raster overview table name

* o_raster_column the raster column in the overview table.

* r_table_catalog The database the raster table that this overview services is in. This will always read the current database.
* r_table_schema The database schema the raster table that this overview services belongs to.

e r table_name raster table that this overview services.

e r raster_column the raster column that this overview column services.

* overview_factor - this is the pyramid level of the overview table. The higher the number the lower the resolution of
the table. raster2pgsql if given a folder of images, will compute overview of each image file and load separately. Level 1
is assumed and always the original file. Level 2 is will have each tile represent 4 of the original. So for example if you
have a folder of 5000x5000 pixel image files that you chose to chunk 125x125, for each image file your base table will have
(5000%5000)/(125*125) records = 1600, your (1=2) o__2 table will have ceiling(1600/Power(2,2)) = 400 rows, your (I=3) o_3
will have ceiling(1600/Power(2,3)) = 200 rows. If your pixels aren’t divisible by the size of your tiles, you’ll get some scrap
tiles (tiles not completely filled). Note that each overview tile generated by raster2pgsql has the same number of pixels as its
parent, but is of a lower resolution where each pixel of it represents (Power(2,overview_factor) pixels of the original).

4.5.3 Building Custom Applications with PostGIS Raster

The fact that PostGIS raster provides you with SQL functions to render rasters in known image formats gives you a lot of optoins
for rendering them. For example you can use OpenOffice / LibreOffice for rendering as demonstrated in Rendering PostGIS
Raster graphics with LibreOffice Base Reports. In addition you can use a wide variety of languages as demonstrated in this
section.

http://www.postgresonline.com/journal/archives/244-Rendering-PostGIS-Raster-graphics-with-LibreOffice-Base-Reports.html
http://www.postgresonline.com/journal/archives/244-Rendering-PostGIS-Raster-graphics-with-LibreOffice-Base-Reports.html

PostGIS 3.1.8 Manual 84 /847

4.5.3.1 PHP Example Outputting using ST_AsPNG in concert with other raster functions
In this section, we’ll demonstrate how to use the PHP PostgreSQL driver and the ST_AsGDALRaster family of functions to
output band 1,2,3 of a raster to a PHP request stream that can then be embedded in an img src html tag.

The sample query demonstrates how to combine a whole bunch of raster functions together to grab all tiles that intersect a
particular wgs 84 bounding box and then unions with ST_Union the intersecting tiles together returning all bands, transforms to
user specified projection using ST_Transform, and then outputs the results as a png using ST_AsPNG.

You would call the below using

http://mywebserver/test_raster.php?srid=2249

to get the raster image in Massachusetts state plane feet.

<?php
/*+ contents of test_raster.php x**/
Sconn_str ='dbname=mydb host=localhost port=5432 user=myuser password=mypwd';

Sdbconn = pg_connect ($Sconn_str) ;
header ('Content-Type: image/png');
/**If a particular projection was requested use it otherwise use mass state plane meters <
*x/
if (!empty($_REQUEST['srid']) && is_numeric($_REQUEST['srid'])) {
$input_srid = intval ($_REQUEST|['srid']);

}
else { $input_srid = 26986; }
/** The set bytea_output may be needed for PostgreSQL 9.0+, but not for 8.4 xx/
Ssgl = "set bytea_output='escape';
SELECT ST_ASPNG(ST_Transform(

ST_AddBand (ST_Union(rast, 1), ARRAY[ST_Union(rast,2),ST_Union(rast,3)])

, $input_srid)) As new_rast
FROM aerials.boston
WHERE
ST_Intersects(rast, ST _Transform(ST_MakeEnvelope(-71.1217, 42.227, -71.1210, —

42.218,4326),26986))";
Sresult = pg_query ($sql);
Srow = pg_fetch_row ($Sresult);
pg_free_result ($Sresult);

if ($Srow === false) return;
echo pg_unescape_bytea ($Srow[0]);
7>

4.5.3.2 ASP.NET C# Example Outputting using ST_AsPNG in concert with other raster functions
In this section, we’ll demonstrate how to use Npgsql PostgreSQL .NET driver and the ST_AsGDALRaster family of functions
to output band 1,2,3 of a raster to a PHP request stream that can then be embedded in an img src html tag.

You will need the npgsql .NET PostgreSQL driver for this exercise which you can get the latest of from http://npgsql.projects.postgresql.o
. Just download the latest and drop into your ASP.NET bin folder and you’ll be good to go.

The sample query demonstrates how to combine a whole bunch of raster functions together to grab all tiles that intersect a
particular wgs 84 bounding box and then unions with ST_Union the intersecting tiles together returning all bands, transforms to
user specified projection using ST_Transform, and then outputs the results as a png using ST_AsPNG.

This is same example as Section 4.5.3.1 except implemented in C#.
You would call the below using

http://mywebserver/TestRaster.ashx?srid=2249

to get the raster image in Massachusetts state plane feet.

http://npgsql.projects.postgresql.org/
http://npgsql.projects.postgresql.org/

PostGIS 3.1.8 Manual

85/847

—— web.config connection string section —-
<connectionStrings>
<add name="DSN"

connectionString="server=localhost;database=mydb;Port=5432;User Id=myuser;password= <>

mypwd" />
</connectionStrings>

// Code for TestRaster.ashx
<%@ WebHandler Language="C#" Class="TestRaster" %>
using System;
using System.Data;
using System.Web;
using Npgsql;

public class TestRaster

{

IHttpHandler

public void ProcessRequest (HttpContext context)

{

context.Response.ContentType = "image/png";
context.Response.BinaryWrite (GetResults (context));

public bool IsReusable {
get { return false; }

public bytel[]

{

GetResults (HttpContext context)

byte[] result = null;
NpgsglCommand command;

string sqgl

= null;

int input_srid = 26986;

try {
using

(NpgsglConnection conn

if (context.Request |

{

= new NpgsglConnection (System.Configuration. <«
ConfigurationManager.ConnectionStrings["DSN"] .ConnectionString)) {
conn.Open () ;

"srid"] != null)

input_srid = Convert.ToInt32 (context.Request["srid"]);

}

sqgql = Q"SELECT ST_AsPNG (

ST_Trans
ST_AddBand (

form (

ST_Union(rast, 1),
srid)) As new_rast

, tinput_

FROM aerials
WHERE

.boston

ST_Intersects (rast,
ST_Transform (ST_MakeEnvelope (=71.1217, 42.227, <~

-71.1210,

command = new NpgsqglCommand(sgl, conn);
command.Parameters.Add (new NpgsglParameter ("input_srid",

ARRAY [ST_Union(rast,2),ST_Union(rast,3)])

42.218,4326),26986)

result = (byte[]) command.ExecuteScalar();

conn.Close();

)"

input_srid));

PostGIS 3.1.8 Manual 86 /847

catch (Exception ex)
{
result = null;
context .Response.Write (ex.Message.Trim());

}

return result;

4.5.3.3

Java console app that outputs raster query as Image file

This is a simple java console app that takes a query that returns one image and outputs to specified file.

You can download the latest PostgreSQL JDBC drivers from http://jdbc.postgresql.org/download.html

You can compile the following code using a command something like:

set env CLASSPATH .:..\postgresqgl-9.0-801.jdbc4.jar

javac

SaveQueryImage. java

jar cfm SaveQueryImage.jar Manifest.txt =x.class

And call it from the command-line with something like

java —jar SaveQuerylImage.jar "SELECT ST_AsPNG(ST_AsRaster (ST_Buffer (ST_Point(1,5),10, ' <
quad_segs=2"'),150, 150, '8BUI',100));" "test.png"

—-— Manifest.txt ——

Class-—

Path: postgresgl-9.0-801.jdbc4. jar

Main-Class: SaveQueryImage

// Code for SaveQueryImage.java

import
import
import
import
import

public
publ

java.sqgl.Connection;
java.sql.SQLException;
java.sqgl.PreparedStatement;
java.sqgl.ResultSet;
java.io.x;

class SaveQueryImage {
ic static void main (String[] argv) {
System.out.println ("Checking if Driver is registered with DriverManager.");

try {
//java.sql.DriverManager.registerDriver (new org.postgresqgl.Driver());
Class.forName ("org.postgresgl.Driver") ;

}

catch (ClassNotFoundException cnfe) {
System.out.println("Couldn't find the driver!");
cnfe.printStackTrace () ;
System.exit (1) ;

Connection conn = null;
try {
conn = DriverManager.getConnection ("jdbc:postgresqgl://localhost:5432/mydb", "myuser <
Al , "mypwd") ,.

conn.setAutoCommit (false) ;

PreparedStatement sGetImg = conn.prepareStatement (argv[0]);

http://jdbc.postgresql.org/download.html

PostGIS 3.1.8 Manual

87 /847

ResultSet rs = sGetImg.executeQuery();

FileOutputStream fout;

try

{
rs.next ();
/x* Output to file name requested by user *x/
fout = new FileOutputStream(new File (argv[1l]));
fout.write (rs.getBytes(1l));
fout.close();

}

catch (Exception e)

{
System.out.println ("Can't create file");
e.printStackTrace () ;

rs.close();
sGetImg.close();
conn.close();
}
catch (SQLException se) {

System.out.println("Couldn't connect: print out a stack trace and exit.");

se.printStackTrace();
System.exit (1) ;

4.5.3.4 Use PLPython to dump out images via SQL

This is a plpython stored function that creates a file in the server directory for each record. Requires you have plpython installed.

Should work fine with both plpythonu and plpython3u.

CREATE OR REPLACE FUNCTION write_file (param_bytes bytea, param_filepath text)
RETURNS text

AS $$

f = open(param_filepath, 'wb+')

f.write (param_bytes)

return param_filepath

$$ LANGUAGE plpythonu;

—--write out 5 images to the PostgreSQL server in varying sizes
—-— note the postgresgl daemon account needs to have write access to folder
—— this echos back the file names created;

SELECT write_file (ST_ASPNG (

ST_AsRaster (ST_Buffer (ST_Point (1,5), j*5, 'quad_segs=2'),150%j, 150«7j, '8BUI',100)),

'C:/temp/slices'|| J || '.png")
FROM generate_series(1,5) As j;

write_file
C:/temp/slicesl.png
C:/temp/slices2.png
C:/temp/slices3.png
C:/temp/slices4.png
C:/temp/slices5.png

PostGIS 3.1.8 Manual 88 /847

4.5.3.5 Outputting Rasters with PSQL

Sadly PSQL doesn’t have easy to use built-in functionality for outputting binaries. This is a bit of a hack that piggy backs on
PostgreSQL somewhat legacy large object support. To use first launch your psql commandline connected to your database.

Unlike the python approach, this approach creates the file on your local computer.

SELECT oid, lowrite(lo_open(oid, 131072), png) As num_bytes
FROM
(VALUES (lo_create(0),
ST_AsSPNG((SELECT rast FROM aerials.boston WHERE rid=1l))
)) As v (oid,png);
—-— you'll get an output something like --
oid | num_bytes
,,,,,,,,, o
2630819 | 74860

—-— next note the oid and do this replacing the c:/test.png to file path location
—-— on your local computer
\lo_export 2630819 'C:/temp/aerial_samp.png'

—— this deletes the file from large object storage on db
SELECT lo_unlink (2630819);

4.6 Topology

The PostGIS Topology types and functions are used to manage topological objects such as faces, edges and nodes.

Sandro Santilli’s presentation at PostGIS Day Paris 2011 conference gives a good synopsis of PostGIS Topology and where it is
headed Topology with PostGIS 2.0 slide deck.

Vincent Picavet provides a good synopsis and overview of what is Topology, how is it used, and various FOSS4G tools that
support it in PostGIS Topology PGConf EU 2012.

An example of a topologically based GIS database is the US Census Topologically Integrated Geographic Encoding and Ref-
erencing System (TIGER) database. If you want to experiment with PostGIS topology and need some data, check out Topol-
ogy_Load_Tiger.

The PostGIS topology module has existed in prior versions of PostGIS but was never part of the Official PostGIS documentation.
In PostGIS 2.0.0 major cleanup is going on to remove use of all deprecated functions in it, fix known usability issues, better
document the features and functions, add new functions, and enhance to closer conform to SQL-MM standards.

Details of this project can be found at PostGIS Topology Wiki
All functions and tables associated with this module are installed in a schema called topology.
Functions that are defined in SQL/MM standard are prefixed with ST_ and functions specific to PostGIS are not prefixed.

Topology support is build by default starting with PostGIS 2.0, and can be disabled specifying --without-topology configure
option at build time as described in Chapter 2

4.6.1 Topology Types

4.6.1.1 getfaceedges_returntype

getfaceedges_returntype — A composite type that consists of a sequence number and edge number. This is the return type for
ST_GetFacekdges.

http://strk.kbt.io/projects/postgis/Paris2011_TopologyWithPostGIS_2_0.pdf
https://github.com/Oslandia/presentations/blob/master/pgconf_eu_2012/pgconfeu2012_vincent_picavet_postgis_topology.pdf?raw=true
https://www.census.gov/geo/maps-data/data/tiger.html
https://www.census.gov/geo/maps-data/data/tiger.html
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgisTopology

PostGIS 3.1.8 Manual 89 /847

Description

A composite type that consists of a sequence number and edge number. This is the return type for ST_GetFaceEdges function.

1. sequence is an integer: Refers to a topology defined in the topology.topology table which defines the topology schema
and srid.

2. edge is an integer: The identifier of an edge.

4.6.1.2 TopoGeometry

TopoGeometry — A composite type representing a topologically defined geometry.

Description

A composite type that refers to a topology geometry in a specific topology layer, having a specific type and a specific id. The
elements of a TopoGeometry are the properties: topology_id, layer_id, id integer, type integer.

1. topology_id is an integer: Refers to a topology defined in the topology.topology table which defines the topology
schema and srid.

2. layer_idis an integer: The layer_id in the layers table that the TopoGeometry belongs to. The combination of topol-
ogy_id, layer_id provides a unique reference in the topology.layers table.

3. id is an integer: The id is the autogenerated sequence number that uniquely defines the topogeometry in the respective
topology layer.

4. type integer between 1 - 4 that defines the geometry type: 1:[multi]point, 2:[multi]line, 3:[multi]poly, 4:collection

Casting Behavior

This section lists the automatic as well as explicit casts allowed for this data type

Cast To Behavior
geometry automatic
See Also
CreateTopoGeom

4.6.1.3 validatetopology_returntype

validatetopology_returntype — A composite type that consists of an error message and id1 and id2 to denote location of error.
This is the return type for ValidateTopology.

Description

A composite type that consists of an error message and two integers. The ValidateTopology function returns a set of these to
denote validation errors and the id1 and id2 to denote the ids of the topology objects involved in the error.

1. error is varchar: Denotes type of error.

Current error descriptors are: coincident nodes, edge crosses node, edge not simple, edge end node geometry mis-match,
edge start node geometry mismatch, face overlaps face,face within face,

2. id1 is an integer: Denotes identifier of edge / face / nodes in error.

PostGIS 3.1.8 Manual 90/ 847

3. 1d2 is an integer: For errors that involve 2 objects denotes the secondary edge / or node

See Also

ValidateTopology

4.6.2 Topology Domains
4.6.2.1 TopoElement

TopoElement — An array of 2 integers generally used to identify a TopoGeometry component.

Description

An array of 2 integers used to represent one component of a simple or hierarchical TopoGeometry.

In the case of a simple TopoGeometry the first element of the array represents the identifier of a topological primitive and the
second element represents its type (1:node, 2:edge, 3:face). In the case of a hierarchical TopoGeometry the first element of the
array represents the identifier of a child TopoGeometry and the second element represents its layer identifier.

N:ﬂ"! Note

For any given hierarchical TopoGeometry all child TopoGeometry elements will come from the same child layer, as
specified in the topology.layer record for the layer of the TopoGeometry being defined.

Examples

SELECT te[l] AS id, te[2] AS type FROM
(SELECT ARRAY[1,2]::topology.topoelement AS te) f;
id | type
____+ ______
1 2

SELECT ARRAY[1l,2]::topology.topoelement;
te

—-—Example of what happens when you try to case a 3 element array to topoelement

—— NOTE: topoement has to be a 2 element array so fails dimension check

SELECT ARRAY[1,2,3]::topology.topoelement;

ERROR: value for domain topology.topoelement violates check constraint "dimensions"

See Also

GetTopoGeomElements, TopoElementArray, TopoGeometry, TopoGeom_addElement, TopoGeom_remElement

4.6.2.2 TopoElementArray

TopoElementArray — An array of TopoElement objects.

PostGIS 3.1.8 Manual 91/847

Description

An array of 1 or more TopoElement objects, generally used to pass around components of TopoGeometry objects.

Examples

SELECT '{{1,2},{4,3}}'::topology.topoelementarray As tea;
tea

{{1,2},{4,3}}

—-— more verbose equivalent —-—
SELECT ARRAY[ARRAY[1,2], ARRAY[4,3]]::topology.topoelementarray As tea;

{{1,2},{4,3}}

—-—-using the array agg function packaged with topology —-—

SELECT topology.TopoElementArray Agg (ARRAY[e,t]) As tea
FROM generate_series(l,4) As e CROSS JOIN generate_series(l,3) As t;
tea

{({1,1}y,{1,2},{1,3},{2,1},{2,2},{2,3},{3,1},{3,2},{3,3},{4,1}, {4,2}, {4,3}}

SELECT '{{1,2,4},{3,4,5}}'"'::topology.topoelementarray As tea;
ERROR: value for domain topology.topoelementarray violates check constraint "dimensions"

See Also

TopoElement, GetTopoGeomElementArray, TopoElementArray_Agg

4.6.3 Topology and TopoGeometry Management

4.6.3.1 AddTopoGeometryColumn

AddTopoGeometryColumn — Adds a topogeometry column to an existing table, registers this new column as a layer in topol-
ogy.layer and returns the new layer_id.

Synopsis

integer AddTopoGeometryColumn(varchar topology_name, varchar schema_name, varchar table_name, varchar column_name,
varchar feature_type);

integer AddTopoGeometryColumn(varchar topology_name, varchar schema_name, varchar table_name, varchar column_name,
varchar feature_type, integer child_layer);

Description

Each TopoGeometry object belongs to a specific Layer of a specific Topology. Before creating a TopoGeometry object you need
to create its TopologyLayer. A Topology Layer is an association of a feature-table with the topology. It also contain type and
hierarchy information. We create a layer using the AddTopoGeometryColumn() function:

This function will both add the requested column to the table and add a record to the topology.layer table with all the given info.

PostGIS 3.1.8 Manual 92 /847

If you don’t specify [child_layer] (or set it to NULL) this layer would contain Basic TopoGeometries (composed by primitive
topology elements). Otherwise this layer will contain hierarchical TopoGeometries (composed by TopoGeometries from the
child_layer).

Once the layer is created (its id is returned by the AddTopoGeometryColumn function) you’re ready to construct TopoGeometry
objects in it

Valid feature_types are: POINT, LINE, POLYGON, COLLECTION
Availability: 1.7

Examples

—— Note for this example we created our new table in the ma_topo schema

—— though we could have created it in a different schema -- in which case topology_name and <
schema_name would be different

CREATE SCHEMA ma;

CREATE TABLE ma.parcels(gid serial, parcel_id varchar (20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn ('ma_topo', 'ma', 'parcels', 'topo', 'POLYGON') ;

CREATE SCHEMA ri;
CREATE TABLE ri.roads(gid serial PRIMARY KEY, road_name text);
SELECT topology.AddTopoGeometryColumn ('ri_topo', 'ri', 'roads', 'topo', 'LINE');

See Also

DropTopoGeometryColumn, toTopoGeom, CreateTopology, CreateTopoGeom

4.6.3.2 DropTopology

DropTopology — Use with caution: Drops a topology schema and deletes its reference from topology.topology table and refer-
ences to tables in that schema from the geometry_columns table.
Synopsis

integer DropTopology(varchar topology_schema_name);

Description

Drops a topology schema and deletes its reference from topology.topology table and references to tables in that schema from
the geometry_columns table. This function should be USED WITH CAUTION, as it could destroy data you care about. If the
schema does not exist, it just removes reference entries the named schema.

Auvailability: 1.7

Examples

Cascade drops the ma_topo schema and removes all references to it in topology.topology and geometry_columns.

SELECT topology.DropTopology ('ma_topo');

See Also

DropTopoGeometryColumn

PostGIS 3.1.8 Manual 93 /847

4.6.3.3 DropTopoGeometryColumn

DropTopoGeometryColumn — Drops the topogeometry column from the table named table_name in schema schema_name
and unregisters the columns from topology.layer table.
Synopsis

text DropTopoGeometryColumn(varchar schema_name, varchar table_name, varchar column_name);

Description

Drops the topogeometry column from the table named table_name in schema schema_name and unregisters the columns
from topology.layer table. Returns summary of drop status. NOTE: it first sets all values to NULL before dropping to bypass
referential integrity checks.

Availability: 1.7

Examples

SELECT topology.DropTopoGeometryColumn ('ma_topo', 'parcel_ topo', 'topo');

See Also

AddTopoGeometryColumn

4.6.3.4 Populate_Topology Layer

Populate_Topology_Layer — Adds missing entries to topology.layer table by reading metadata from topo tables.

Synopsis

setof record Populate_Topology_Layer();

Description

Adds missing entries to the topology.layer table by inspecting topology constraints on tables. This function is useful for
fixing up entries in topology catalog after restores of schemas with topo data.

It returns the list of entries created. Returned columns are schema_name, table_name, feature_column.

Auvailability: 2.3.0

Examples

SELECT CreateTopology ('strk_topo');
CREATE SCHEMA strk;
CREATE TABLE strk.parcels(gid serial, parcel_id varchar (20) PRIMARY KEY, address text);
SELECT topology.AddTopoGeometryColumn ('strk_topo', 'strk', 'parcels', 'topo', 'POLYGON');
—— this will return no records because this feature is already registered
SELECT *

FROM topology.Populate_Topology_Layer();

—-— let's rebuild
TRUNCATE TABLE topology.layer;

PostGIS 3.1.8 Manual

94 /847

SELECT =
FROM topology.Populate_Topology_Layer();

SELECT topology_id, layer_id, schema_name As sn, table_name As tn, feature_column As fc

FROM topology.layer;

schema_name | table_name | feature_column
_____________ +____________+________________

strk | parcels | topo

(1 row)

topology_id | layer_id | sn | tn | fc
7777777777777 s e

2 2 | strk | parcels | topo

(1 row)
See Also

AddTopoGeometryColumn

4.6.3.5 TopologySummary

TopologySummary — Takes a topology name and provides summary totals of types of objects in topology.

Synopsis

text TopologySummary(varchar topology_schema_name);

Description

Takes a topology name and provides summary totals of types of objects in topology.

Auvailability: 2.0.0

Examples

SELECT topology.topologysummary ('city_data');
topologysummary
Topology city_data (329), SRID 4326, precision: O
22 nodes, 24 edges, 10 faces, 29 topogeoms in 5 layers
Layer 1, type Polygonal (3), 9 topogeoms
Deploy: features.land_parcels.feature
Layer 2, type Puntal (1), 8 topogeoms
Deploy: features.traffic_signs.feature
Layer 3, type Lineal (2), 8 topogeoms
Deploy: features.city_streets.feature
Layer 4, type Polygonal (3), 3 topogeoms
Hierarchy level 1, child layer 1
Deploy: features.big_parcels.feature
Layer 5, type Puntal (1), 1 topogeoms
Hierarchy level 1, child layer 2
Deploy: features.big_signs.feature

PostGIS 3.1.8 Manual 95 /847

See Also

Topology_Load_Tiger

4.6.3.6 ValidateTopology

ValidateTopology — Returns a set of validatetopology_returntype objects detailing issues with topology.

Synopsis

setof validatetopology_returntype ValidateTopology(varchar topology_schema_name);

Description

Returns a set of validatetopology_returntype objects detailing issues with topology. List of possible errors and what the returned
ids represent are displayed below:

Error id1 id2
edge crosses node edge_id node_id
invalid edge edge_id null
edge not simple edge_id null
edge crosses edge edge_id edge_id
edge start node geometry mis-match edge_id node_id
edge end node geometry mis-match edge_id node_id
face without edges face_id null
face has no rings face_id null
face overlaps face face_id face_id
face within face inner face_id outer face id

Auwailability: 1.0.0
Enhanced: 2.0.0 more efficient edge crossing detection and fixes for false positives that were existent in prior versions.

Changed: 2.2.0 values for id1 and id2 were swapped for edge crosses node’ to be consistent with error description.

Examples

SELECT x= FROM topology.ValidateTopology ('ma_topo');

error | 1d1l | 1d2
___________________ +_____+_____
face without edges | 0 |
See Also

validatetopology_returntype, Topology_Load_Tiger

4.6.4 Topology Statistics Management

Adding elements to a topology triggers many database queries for finding existing edges that will be split, adding nodes and
updating edges that will node with the new linework. For this reason it is useful that statistics about the data in the topology
tables are up-to-date.

PostGIS Topology population and editing functions do not automatically update the statistics because a updating stats after each
and every change in a topology would be overkill, so it is the caller’s duty to take care of that.

PostGIS 3.1.8 Manual 96 / 847

otet Note
N That the statistics updated by autovacuum will NOT be visible to transactions which started before autovacuum process
completed, so long-running transactions will need to run ANALYZE themeselves, to use updated statistics.

4.6.5 Topology Constructors

4.6.5.1 CreateTopology

CreateTopology — Creates a new topology schema and registers this new schema in the topology.topology table.

Synopsis

integer CreateTopology(varchar topology_schema_name);

integer CreateTopology(varchar topology_schema_name, integer srid);

integer CreateTopology(varchar topology_schema_name, integer srid, double precision prec);

integer CreateTopology(varchar topology_schema_name, integer srid, double precision prec, boolean hasz);

Description

Creates a new schema with name topology_name consisting of tables (edge_data,face,node, relation and registers
this new topology in the topology.topology table. It returns the id of the topology in the topology table. The srid is the spatial
reference identified as defined in spatial_ref_sys table for that topology. Topologies must be uniquely named. The tolerance is
measured in the units of the spatial reference system. If the tolerance (prec) is not specified defaults to 0.

This is similar to the SQL/MM ST_InitTopoGeo but a bit more functional. hasz defaults to false if not specified.
Auvailability: 1.?

Examples

This example creates a new schema called ma_topo that will store edges, faces, and relations in Massachusetts State Plane meters.
The tolerance represents 1/2 meter since the spatial reference system is a meter based spatial reference system

SELECT topology.CreateTopology ('ma_topo',26986, 0.5);

Create Rhode Island topology in State Plane ft

SELECT topology.CreateTopology ('ri_topo',3438) As topoid;
topoid

See Also

Section 4.1.3.1, ST_InitTopoGeo, Topology_Load_Tiger

4.6.5.2 CopyTopology

CopyTopology — Makes a copy of a topology structure (nodes, edges, faces, layers and TopoGeometries).

Synopsis

integer CopyTopology(varchar existing_topology_name, varchar new_name);

PostGIS 3.1.8 Manual 97 /847

Description

Creates a new topology with name new_topology_name and SRID and precision taken from existing_topology_name,
copies all nodes, edges and faces in there, copies layers and their TopoGeometries too.

) Note
Note!
The new rows in topology.layer will contain synthesized values for schema_name, table_name and feature_column.
This is because the TopoGeometry will only exist as a definition but won’t be available in any user-level table yet.

Availability: 2.0.0

Examples

This example makes a backup of a topology called ma_topo

SELECT topology.CopyTopology ('ma_topo', 'ma_topo_bakup');

See Also

Section 4.1.3.1, CreateTopology

4.6.5.3 ST_InitTopoGeo

ST_InitTopoGeo — Creates a new topology schema and registers this new schema in the topology.topology table and details
summary of process.
Synopsis

text ST_InitTopoGeo(varchar topology_schema_name);

Description

This is an SQL-MM equivalent of CreateTopology but lacks the spatial reference and tolerance options of CreateTopology and
outputs a text description of creation instead of topology id.

Auvailability: 1.?

This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.17

Examples

SELECT topology.ST_InitTopoGeo ('topo_schema_to_create') AS topocreation;
astopocreation

Topology—-Geometry 'topo_schema_to_create' (id:7) created.

See Also

CreateTopology

PostGIS 3.1.8 Manual 98 /847

4.6.5.4 ST_CreateTopoGeo

ST_CreateTopoGeo — Adds a collection of geometries to a given empty topology and returns a message detailing success.

Synopsis

text ST_CreateTopoGeo(varchar atopology, geometry acollection);

Description

Adds a collection of geometries to a given empty topology and returns a message detailing success.
Useful for populating an empty topology.
Awailability: 2.0

ﬂ This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details -- X.3.18

Examples

—-— Populate topology —-—
SELECT topology.ST_CreateTopoGeo ('ri_topo',
ST_GeomFromText ('MULTILINESTRING ((384744 236928,384750 236923,384769 236911,384799
236895,384811 236890,384833 236884,

<

384844

385167
385260
385225
385159
385237
385174
385200
385249

236882,384866
236938,385203
236979,385268
237125,385210
237227,385162
237383,385238
237451,385170
237533,385206
237544,385260

236881,384879
236941,385224
236999,385273
237144,385192
237241,385166
237399,385236
237455,385169
237538,385213
237555,385270

237596,385284 237630))"',3438)

)i

st_

createtopogeo

Topology ri_topo populated

236883,384954
236946,385233
237018,385273
237161,385167
237256,385196
237407,385227
237460,385171
237541,385221
237570,385289

—-— create tables and topo geometries —-—

CREATE TABLE ri.roads(gid serial PRIMARY KEY,

SELECT topology.AddTopoGeometryColumn ('ri_topo',

See Also

road_

Vsl 0,

236898,385087
236950, 385241
237037,385271
237192,385162
237324,385209
237419,385213
237475,385181
237542,385235
237584,385292

name text);

'roads',

'topo',

236932,385117
236956,385254
237047,385267
237202,385159
237345,385234
237430,385193
237503,385190
237540, 385242
237589,385291

236938,
236971,
237057,
237214,
237375,
237439,
237521,
237541,
<_'>

"LINE');

AddTopoGeometryColumn, CreateTopology, DropTopology

4.6.5.5 TopoGeo_AddPoint

TopoGeo_AddPoint — Adds a point to an existing topology using a tolerance and possibly splitting an existing edge.

Synopsis

integer TopoGeo_AddPoint(varchar atopology, geometry apoint, float8 tolerance);

PostGIS 3.1.8 Manual 99 /847

Description

Adds a point to an existing topology and returns its identifier. The given point will snap to existing nodes or edges within given
tolerance. An existing edge may be split by the snapped point.

Availability: 2.0.0

See Also

TopoGeo_AddLineString, TopoGeo_AddPolygon, AddNode, CreateTopology

4.6.5.6 TopoGeo_AddLineString

TopoGeo_AddLineString — Adds a linestring to an existing topology using a tolerance and possibly splitting existing edges/-
faces. Returns edge identifiers.

Synopsis

SETOF integer TopoGeo_AddLineString(varchar atopology, geometry aline, float8 tolerance);

Description

Adds a linestring to an existing topology and returns a set of edge identifiers forming it up. The given line will snap to existing
nodes or edges within given tolerance. Existing edges and faces may be split by the line.

N;‘R’! Note

Updating statistics about topologies being loaded via this function is up to caller, see maintaining statistics during
topology editing and population.

Availability: 2.0.0

See Also

TopoGeo_AddPoint, TopoGeo_AddPolygon, AddEdge, CreateTopology

4.6.5.7 TopoGeo_AddPolygon

TopoGeo_AddPolygon — Adds a polygon to an existing topology using a tolerance and possibly splitting existing edges/faces.
Returns face identifiers.

Synopsis

SETOF integer TopoGeo_AddPolygon(varchar atopology, geometry apoly, float8 tolerance);

PostGIS 3.1.8 Manual 100/ 847

Description

Adds a polygon to an existing topology and returns a set of face identifiers forming it up. The boundary of the given polygon
will snap to existing nodes or edges within given tolerance. Existing edges and faces may be split by the boundary of the new

polygon.

Nz‘l"! Note

Updating statistics about topologies being loaded via this function is up to caller, see maintaining statistics during
topology editing and population.

Availability: 2.0.0

See Also

TopoGeo_AddPoint, TopoGeo_AddLineString, AddFace, CreateTopology

4.6.6 Topology Editors
4.6.6.1 ST_AddisoNode

ST_AddIsoNode — Adds an isolated node to a face in a topology and returns the nodeid of the new node. If face is null, the
node is still created.

Synopsis

integer ST_AddIsoNode(varchar atopology, integer aface, geometry apoint);

Description

Adds an isolated node with point location apoint to an existing face with faceid aface to a topology at opology and returns
the nodeid of the new node.

If the spatial reference system (srid) of the point geometry is not the same as the topology, the apoint is not a point geometry,
the point is null, or the point intersects an existing edge (even at the boundaries) then an exception is thrown. If the point already
exists as a node, an exception is thrown.

If aface is not null and the apoint is not within the face, then an exception is thrown.

Auvailability: 1.?

o

%" This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X+1.3.1

Examples
See Also

AddNode, CreateTopology, DropTopology, ST_Intersects

4.6.6.2 ST_AddlsoEdge

ST_AddIsoEdge — Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated
nodes anode and anothernode and returns the edge id of the new edge.

PostGIS 3.1.8 Manual 101 /847

Synopsis

integer ST_AddIsoEdge(varchar atopology, integer anode, integer anothernode, geometry alinestring);

Description

Adds an isolated edge defined by geometry alinestring to a topology connecting two existing isolated nodes anode and
anothernode and returns the edge id of the new edge.

If the spatial reference system (srid) of the al inestring geometry is not the same as the topology, any of the input arguments
are null, or the nodes are contained in more than one face, or the nodes are start or end nodes of an existing edge, then an
exception is thrown.

If the alinestring is not within the face of the face the anode and anothernode belong to, then an exception is thrown.
If the anode and anothernode are not the start and end points of the al inestring then an exception is thrown.

Availability: 1.7

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.4

Examples
See Also

ST_AddIsoNode, ST_IsSimple, ST_Within

4.6.6.3 ST_AddEdgeNewFaces

ST_AddEdgeNewFaces — Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new
faces.

Synopsis

integer ST_AddEdgeNewFaces(varchar atopology, integer anode, integer anothernode, geometry acurve);

Description

Add a new edge and, if in doing so it splits a face, delete the original face and replace it with two new faces. Returns the id of
the newly added edge.

Updates all existing joined edges and relationships accordingly.

If any arguments are null, the given nodes are unknown (must already exist in the node table of the topology schema) , the
acurve is not a LINESTRING, the anode and anothernode are not the start and endpoints of acurve then an error is
thrown.

If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.12

Examples
See Also

ST_RemEdgeNewFace
ST_AddEdgeModFace

PostGIS 3.1.8 Manual 102/ 847

4.6.6.4 ST_AddEdgeModFace

ST_AddEdgeModFace — Add a new edge and, if in doing so it splits a face, modify the original face and add a new face.

Synopsis

integer ST_AddEdgeModFace(varchar atopology, integer anode, integer anothernode, geometry acurve);

Description

Add a new edge and, if doing so splits a face, modify the original face and add a new one.

) Note
Note!
If possible, the new face will be created on left side of the new edge. This will not be possible if the face on the left side
will need to be the Universe face (unbounded).

Returns the id of the newly added edge.
Updates all existing joined edges and relationships accordingly.

If any arguments are null, the given nodes are unknown (must already exist in the node table of the topology schema) , the
acurve is not a LINESTRING, the anode and anothernode are not the start and endpoints of acurve then an error is
thrown.

If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.

Awailability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.13

Examples
See Also

ST_RemEdgeModFace
ST_AddEdgeNewFaces
4.6.6.5 ST_RemEdgeNewFace

ST_RemEdgeNewFace — Removes an edge and, if the removed edge separated two faces, delete the original faces and replace
them with a new face.

Synopsis

integer ST_RemEdgeNewFace(varchar atopology, integer anedge);

PostGIS 3.1.8 Manual 103/ 847

Description

Removes an edge and, if the removed edge separated two faces, delete the original faces and replace them with a new face.

Returns the id of a newly created face or NULL, if no new face is created. No new face is created when the removed edge is
dangling or isolated or confined with the universe face (possibly making the universe flood into the face on the other side).

Updates all existing joined edges and relationships accordingly.

Refuses to remove an edge participating in the definition of an existing TopoGeometry. Refuses to heal two faces if any TopoGe-
ometry is defined by only one of them (and not the other).

If any arguments are null, the given edge is unknown (must already exist in the edge table of the topology schema), the topology
name is invalid then an error is thrown.

Awailability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.14

Examples
See Also

ST_RemEdgeModFace
ST_AddEdgeNewFaces

4.6.6.6 ST_RemEdgeModFace

ST_RemEdgeModFace — Removes an edge and, if the removed edge separated two faces, delete one of the them and modify
the other to take the space of both.

Synopsis

integer ST_RemEdgeModFace(varchar atopology, integer anedge);

Description

Removes an edge and, if the removed edge separated two faces, delete one of the them and modify the other to take the space of
both. Preferentially keeps the face on the right, to be symmetric with ST_AddEdgeModFace also keeping it. Returns the id of
the face remaining in place of the removed edge.

Updates all existing joined edges and relationships accordingly.

Refuses to remove an edge partecipating in the definition of an existing TopoGeometry. Refuses to heal two faces if any Topo-
Geometry is defined by only one of them (and not the other).

If any arguments are null, the given edge is unknown (must already exist in the edge table of the topology schema), the topology
name is invalid then an error is thrown.

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.15

Examples
See Also

ST_AddEdgeModFace
ST_RemEdgeNewFace

PostGIS 3.1.8 Manual 104 / 847

4.6.6.7 ST_ChangeEdgeGeom

ST_ChangeEdgeGeom — Changes the shape of an edge without affecting the topology structure.

Synopsis

integer ST_ChangeEdgeGeom(varchar atopology, integer anedge, geometry acurve);

Description

Changes the shape of an edge without affecting the topology structure.

If any arguments are null, the given edge does not exist in the edge table of the topology schema, the acurve is not a
LINESTRING, the anode and anothernode are not the start and endpoints of acurve or the modification would change
the underlying topology then an error is thrown.

If the spatial reference system (srid) of the acurve geometry is not the same as the topology an exception is thrown.
If the new acurve is not simple, then an error is thrown.

If moving the edge from old to new position would hit an obstacle then an error is thrown.

Availability: 1.1.0

Enhanced: 2.0.0 adds topological consistency enforcement

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details X.3.6

Examples
SELECT topology.ST_ChangeEdgeGeom('ma_topo', 1,

ST_GeomFromText ('LINESTRING (227591.9 893900.4,227622.6 893844.3,227641.6 893816.6, <
227704.5 893778.5)"', 26986));

Edge 1 changed

See Also

ST_AddEdgeModFace
ST_RemEdgeModFace
ST_ModEdgeSplit

4.6.6.8 ST_ModEdgeSplit

ST_ModEdgeSplit — Split an edge by creating a new node along an existing edge, modifying the original edge and adding a
new edge.

Synopsis

integer ST_ModEdgeSplit(varchar atopology, integer anedge, geometry apoint);

PostGIS 3.1.8 Manual 105/ 847

Description

Split an edge by creating a new node along an existing edge, modifying the original edge and adding a new edge. Updates all
existing joined edges and relationships accordingly. Returns the identifier of the newly added node.

Availability: 1.7
Changed: 2.0 - In prior versions, this was misnamed ST_ModEdgesSplit

ﬂ This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

Examples
—-— Add an edge —-
SELECT topology.AddEdge ('ma_topo', ST_GeomFromText ('LINESTRING (227592 893910, 227600 <>
893910) ', 26986)) As edgeid;
—-— edgeid-
3

—-— Split the edge -—-
SELECT topology.ST_ModEdgeSplit ('ma_topo', 3, ST_SetSRID(ST_Point (227594,893910),26986))
As node_id;
node_1id

See Also

ST_NewEdgesSplit, ST_ModEdgeHeal, ST _NewEdgeHeal, AddEdge

4.6.6.9 ST_ModEdgeHeal

ST_ModEdgeHeal — Heals two edges by deleting the node connecting them, modifying the first edge and deleting the second
edge. Returns the id of the deleted node.
Synopsis

int ST_ModEdgeHeal(varchar atopology, integer anedge, integer anotheredge);

Description

Heals two edges by deleting the node connecting them, modifying the first edge and deleting the second edge. Returns the id of
the deleted node. Updates all existing joined edges and relationships accordingly.

Availability: 2.0

ﬂ This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

See Also

ST_ModEdgeSplit ST_NewEdgesSplit

PostGIS 3.1.8 Manual 106/ 847

4.6.6.10 ST_NewEdgeHeal

ST_NewEdgeHeal — Heals two edges by deleting the node connecting them, deleting both edges, and replacing them with an
edge whose direction is the same as the first edge provided.

Synopsis

int ST_NewEdgeHeal(varchar atopology, integer anedge, integer anotheredge);

Description

Heals two edges by deleting the node connecting them, deleting both edges, and replacing them with an edge whose direction is
the same as the first edge provided. Returns the id of the new edge replacing the healed ones. Updates all existing joined edges
and relationships accordingly.

Availability: 2.0

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X.3.9

See Also

ST_ModEdgeHeal ST_ModEdgeSplit ST_NewEdgesSplit

4.6.6.11 ST_MovelsoNode

ST_MovelsoNode — Moves an isolated node in a topology from one point to another. If new apoint geometry exists as a node
an error is thrown. Returns description of move.

Synopsis

text ST_MovelsoNode(varchar atopology, integer anedge, geometry apoint);

Description

Moves an isolated node in a topology from one point to another. If new apoint geometry exists as a node an error is thrown.

If any arguments are null, the apoint is not a point, the existing node is not isolated (is a start or end point of an existing edge),
new node location intersects an existing edge (even at the end points) then an exception is thrown.

If the spatial reference system (srid) of the point geometry is not the same as the topology an exception is thrown.
Availability: 1.7

This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.2

Examples

—-— Add an isolated node with no face —-—

SELECT topology.ST_AddIsoNode ('ma_topo', NULL, ST_GeomFromText ('POINT (227579 893916)"', <+
26986)) As nodeid;

nodeid

—— Move the new node —-—
SELECT topology.ST_MovelIsoNode ('ma_topo', 7, ST_GeomFromText ('POINT (227579.5 893916.5) ', —
26986)) As descrip;
descrip

Isolated Node 7 moved to location 227579.5,893916.5

PostGIS 3.1.8 Manual 107 / 847

See Also

ST AddIsoNode

4.6.6.12 ST_NewEdgesSplit

ST_NewEdgesSplit — Split an edge by creating a new node along an existing edge, deleting the original edge and replacing it
with two new edges. Returns the id of the new node created that joins the new edges.

Synopsis

integer ST_NewEdgesSplit(varchar atopology, integer anedge, geometry apoint);

Description

Split an edge with edge id anedge by creating a new node with point location apoint along current edge, deleting the original
edge and replacing it with two new edges. Returns the id of the new node created that joins the new edges. Updates all existing
joined edges and relationships accordingly.

If the spatial reference system (srid) of the point geometry is not the same as the topology, the apoint is not a point geometry,
the point is null, the point already exists as a node, the edge does not correspond to an existing edge or the point is not within the
edge then an exception is thrown.

Availability: 1.7

This method implements the SQL/MM specification. SQL-MM: Topo-Net Routines: X.3.8

Examples

-— Add an edge —-—

SELECT topology.AddEdge ('ma_topo', ST_GeomFromText ('LINESTRING (227575 893917,227592 893900) <>
', 26986)) As edgeid;

—-— result-

edgeid

—— Split the new edge --

SELECT topology.ST_NewEdgesSplit ('ma_topo', 2, ST_GeomFromText ('POINT (227578.5 893913.5)"', <«
26986)) As newnodeid;

newnodeid

See Also

ST_ModEdgeSplit ST_ModEdgeHeal ST_NewEdgeHeal AddEdge

4.6.6.13 ST_RemovelsoNode

ST_RemovelsoNode — Removes an isolated node and returns description of action. If the node is not isolated (is start or end of
an edge), then an exception is thrown.

Synopsis

text ST_RemovelsoNode(varchar atopology, integer anode);

PostGIS 3.1.8 Manual 108 /847

Description

Removes an isolated node and returns description of action. If the node is not isolated (is start or end of an edge), then an
exception is thrown.

Availability: 1.7

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3

Examples
—-— Remove an isolated node with no face -—-—

SELECT topology.ST_RemovelsoNode ('ma_topo', 7) As result;
result

Isolated node 7 removed

See Also

ST_AddIsoNode

4.6.6.14 ST_RemovelsoEdge

ST_RemovelsoEdge — Removes an isolated edge and returns description of action. If the edge is not isolated, then an exception
is thrown.

Synopsis

text ST_RemovelsoEdge(varchar atopology, integer anedge);

Description
Removes an isolated edge and returns description of action. If the edge is not isolated, then an exception is thrown.

Availability: 1.7

This method implements the SQL/MM specification. SQL-MM: Topo-Geo and Topo-Net 3: Routine Details: X+1.3.3

Examples
—-— Remove an isolated node with no face -—-—

SELECT topology.ST_RemoveIsoNode ('ma_topo', 7) As result;
result

Isolated node 7 removed

See Also

ST AddIsoNode

4.6.7 Topology Accessors
4.6.7.1 GetEdgeByPoint

GetEdgeByPoint — Finds the edge-id of an edge that intersects a given point.

PostGIS 3.1.8 Manual 109/ 847

Synopsis

integer GetEdgeByPoint(varchar atopology, geometry apoint, float8 toll);

Description

Retrieves the id of an edge that intersects a Point.

The function returns an integer (id-edge) given a topology, a POINT and a tolerance. If tolerance = O then the point has to
intersect the edge.

If apoint doesn’t intersect an edge, returns O (zero).

If use tolerance > 0 and there is more than one edge near the point then an exception is thrown.

N:ﬂ"! Note

If tolerance = 0, the function uses ST_Intersects otherwise uses ST_DWithin.

Performed by the GEOS module.
Availability: 2.0.0

Examples

These examples use edges we created in AddEdge

SELECT topology.GetEdgeByPoint ('ma_topo',geom, 1) As withlmtol, topology.GetEdgeByPoint (' <=
ma_topo',geom,0) As withnotol
FROM ST_GeomFromEWKT ('SRID=26986;POINT (227622.6 893843)') As geom;
withlmtol | withnotol
___________ e
2 | 0

SELECT topology.GetEdgeByPoint ('ma_topo',geom, 1) As nearnode
FROM ST_GeomFromEWKT ('SRID=26986;POINT (227591.9 893900.4)"') As geom;

—-— get error —-
ERROR: Two or more edges found

See Also

AddEdge, GetNodeByPoint, GetFaceByPoint

4.6.7.2 GetFaceByPoint

GetFaceByPoint — Finds the face-id of a face that intersects a given point.

Synopsis

integer GetFaceByPoint(varchar atopology, geometry apoint, float8 toll);

PostGIS 3.1.8 Manual 110/ 847

Description

Retrieves the id of a face that intersects a Point.

The function returns an integer (id-face) given a topology, a POINT and a tolerance. If tolerance = 0 then the point has to intersect

the face.
If apoint doesn’t intersect a face, returns O (zero).

If use tolerance > 0 and there is more than one face near the point then an exception is thrown.

N:"l"! Note

If tolerance = 0, the function uses ST_Intersects otherwise uses ST_DWithin.

Performed by the GEOS module.
Awailability: 2.0.0

Examples

These examples use edges faces created in AddFace

SELECT topology.GetFaceByPoint ('ma_topo',geom, 10) As withlmtol, topology.GetFaceByPoint ('
ma_topo',geom,0) As withnotol
FROM ST_GeomFromEWKT ('POINT (234604.6 899382.0) ') As geom;

withlmtol | withnotol

SELECT topology.GetFaceByPoint ('ma_topo',geom, 1) As nearnode
FROM ST_GeomFromEWKT ('POINT (227591.9 893900.4)"') As geom;

—-— get error —-—
ERROR: Two or more faces found

See Also

AddFace, GetNodeByPoint, GetEdgeByPoint

4.6.7.3 GetNodeByPoint

GetNodeByPoint — Finds the node-id of a node at a point location.

Synopsis

integer GetNodeByPoint(varchar atopology, geometry apoint, float8 tol1);

P

PostGIS 3.1.8 Manual 111 /847

Description

Retrieves the id of a node at a point location.

The function returns an integer (id-node) given a topology, a POINT and a tolerance. If tolerance = 0 means exact intersection,
otherwise retrieves the node from an interval.

If apoint doesn’t intersect a node, returns 0 (zero).

If use tolerance > 0 and there is more than one node near the point then an exception is thrown.

N;"l"! Note

If tolerance = 0, the function uses ST_Intersects otherwise uses ST_DWithin.

Performed by the GEOS module.
Awailability: 2.0.0

Examples

These examples use edges we created in AddEdge

SELECT topology.GetNodeByPoint ('ma_topo',geom, 1) As nearnode
FROM ST_GeomFromEWKT ('SRID=26986;POINT (227591.9 893900.4)"') As geom;
nearnode

SELECT topology.GetNodeByPoint ('ma_topo',geom, 1000) As too_much_tolerance
FROM ST_GeomFromEWKT ('SRID=26986;POINT (227591.9 893900.4)"') As geom;

—-———get error—--
ERROR: Two or more nodes found

See Also

AddEdge, GetEdgeByPoint, GetFaceByPoint

4.6.7.4 GetTopologylD

GetTopologyID — Returns the id of a topology in the topology.topology table given the name of the topology.

Synopsis

integer GetTopologyID(varchar toponame);

Description

Returns the id of a topology in the topology.topology table given the name of the topology.
Auvailability: 1.?

PostGIS 3.1.8 Manual 112/ 847

Examples

SELECT topology.GetTopologyID('ma_topo') As topo_id;
topo_id

See Also

CreateTopology, DropTopology, GetTopologyName, GetTopologySRID

4.6.7.5 GetTopologySRID

GetTopologySRID — Returns the SRID of a topology in the topology.topology table given the name of the topology.

Synopsis

integer GetTopologyID(varchar toponame);

Description

Returns the spatial reference id of a topology in the topology.topology table given the name of the topology.
Availability: 2.0.0

Examples

SELECT topology.GetTopologySRID ('ma_topo') As SRID;
SRID

See Also

CreateTopology, DropTopology, GetTopologyName, GetTopologyID

4.6.7.6 GetTopologyName

GetTopologyName — Returns the name of a topology (schema) given the id of the topology.

Synopsis

varchar GetTopologyName(integer topology_id);

Description

Returns the topology name (schema) of a topology from the topology.topology table given the topology id of the topology.
Auvailability: 1.?

PostGIS 3.1.8 Manual 113/ 847

Examples

SELECT topology.GetTopologyName (1) As topo_name;
topo_name

See Also

CreateTopology, DropTopology, GetTopologyID, GetTopologySRID

4.6.7.7 ST_GetFaceEdges

ST_GetFaceEdges — Returns a set of ordered edges that bound aface.

Synopsis

getfaceedges_returntype ST_GetFaceEdges(varchar atopology, integer aface);

Description

Returns a set of ordered edges that bound aface. Each output consists of a sequence and edgeid. Sequence numbers start with
value 1.

Enumeration of each ring edges start from the edge with smallest identifier. Order of edges follows a left-hand-rule (bound face
is on the left of each directed edge).

Availability: 2.0

ﬁ This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.5

Examples

—-— Returns the edges bounding face 1
SELECT (topology.ST_GetFaceEdges('tt', 1)) .x*;

-— result —-
sequence | edge
,,,,,,,,,, I

1 -4
2 | 5
3 | 7
4 -6
5 | 1
6 | 2
7] 3
(7 rows)

—-— Returns the sequence, edge id
—-— and geometry of the edges that bound face 1
—-— If you just need geom and seq, can use ST_GetFaceGeometry
SELECT t.seq, t.edge, geom
FROM topology.ST_GetFaceEdges ('tt',1l) As t (seqg,edge)
INNER JOIN tt.edge AS e ON abs(t.edge) = e.edge_id;

PostGIS 3.1.8 Manual 114 /847

See Also

GetRingEdges, AddFace, ST_GetFaceGeometry

4.6.7.8 ST_GetFaceGeometry

ST_GetFaceGeometry — Returns the polygon in the given topology with the specified face id.

Synopsis

geometry ST_GetFaceGeometry(varchar atopology, integer aface);

Description
Returns the polygon in the given topology with the specified face id. Builds the polygon from the edges making up the face.

Auvailability: 1.7

This method implements the SQL/MM specification. SQL-MM 3 Topo-Geo and Topo-Net 3: Routine Details: X.3.16

Examples

—-— Returns the wkt of the polygon added with AddFace
SELECT ST_AsText (topology.ST_GetFaceGeometry ('ma_topo', 1)) As facegeomwkt;
-— result —-

facegeomwkt

POLYGON ((234776.9 899563.7,234896.5 899456.7,234914 899436.4,234946.6 899356.9,
234872.5 899328.7,234891 899285.4,234992.5 899145,234890.6 899069,
234755.2 899255.4,234612.7 899379.4,234776.9 899563.7))

See Also

AddFace

4.6.7.9 GetRingEdges

GetRingEdges — Returns the ordered set of signed edge identifiers met by walking on an a given edge side.

Synopsis

getfaceedges_returntype GetRingEdges(varchar atopology, integer aring, integer max_edges=null);

Description

Returns the ordered set of signed edge identifiers met by walking on an a given edge side. Each output consists of a sequence
and a signed edge id. Sequence numbers start with value 1.

If you pass a positive edge id, the walk starts on the left side of the corresponding edge and follows the edge direction. If you
pass a negative edge id, the walk starts on the right side of it and goes backward.

If max_edges is not null no more than those records are returned by that function. This is meant to be a safety parameter when
dealing with possibly invalid topologies.

PostGIS 3.1.8 Manual 115/ 847

N;"""! Note

This function uses edge ring linking metadata.

Availability: 2.0.0

See Also

ST_GetFaceEdges, GetNodeEdges

4.6.7.10 GetNodeEdges

GetNodeEdges — Returns an ordered set of edges incident to the given node.

Synopsis

getfaceedges_returntype GetNodeEdges(varchar atopology, integer anode);

Description

Returns an ordered set of edges incident to the given node. Each output consists of a sequence and a signed edge id. Sequence
numbers start with value 1. A positive edge starts at the given node. A negative edge ends into the given node. Closed edges will
appear twice (with both signs). Order is clockwise starting from northbound.

N;ﬂ"! Note

This function computes ordering rather than deriving from metadata and is thus usable to build edge ring linking.

Availability: 2.0

See Also

GetRingEdges, ST_Azimuth

4.6.8 Topology Processing
4.6.8.1 Polygonize

Polygonize — Finds and registers all faces defined by topology edges.

Synopsis

text Polygonize(varchar toponame);

PostGIS 3.1.8 Manual 116/ 847

Description

Registers all faces that can be built out a topology edge primitives.

The target topology is assumed to contain no self-intersecting edges.

Not? Note

Already known faces are recognized, so it is safe to call Polygonize multiple times on the same topology.

=

Not? Note

This function does not use nor set the next_left_edge and next_right_edge fields of the edge table.

Auvailability: 2.0.0

See Also

AddFace, ST_Polygonize

4.6.8.2 AddNode

AddNode — Adds a point node to the node table in the specified topology schema and returns the nodeid of new node. If point
already exists as node, the existing nodeid is returned.

Synopsis

integer AddNode(varchar toponame, geometry apoint, boolean allowEdgeSplitting=false, boolean computeContainingFace=false);

Description
Adds a point node to the node table in the specified topology schema. The AddEdge function automatically adds start and end
points of an edge when called so not necessary to explicitly add nodes of an edge.

If any edge crossing the node is found either an exception is raised or the edge is split, depending on the allowEdgeSplitting
parameter value.

If computeContainingFace is true a newly added node would get the correct containing face computed.

N_ﬁﬂ’! Note

If the apoint geometry already exists as a node, the node is not added but the existing nodeid is returned.

Auvailability: 2.0.0

Examples

SELECT topology.AddNode ('ma_topo', ST_GeomFromText ('POINT (227641.6 893816.5)', 26986)) As <
nodeid;

-— result —-

nodeid

PostGIS 3.1.8 Manual 117 / 847

See Also

AddEdge, CreateTopology

4.6.8.3 AddEdge

AddEdge — Adds a linestring edge to the edge table and associated start and end points to the point nodes table of the specified
topology schema using the specified linestring geometry and returns the edgeid of the new (or existing) edge.

Synopsis

integer AddEdge(varchar toponame, geometry aline);

Description

Adds an edge to the edge table and associated nodes to the nodes table of the specified t oponame schema using the specified
linestring geometry and returns the edgeid of the new or existing record. The newly added edge has "universe" face on both sides
and links to itself.

N:rld Note

If the a1 ine geometry crosses, overlaps, contains or is contained by an existing linestring edge, then an error is thrown
and the edge is not added.

Ncrld Note

The geometry of aline must have the same srid as defined for the topology otherwise an invalid spatial reference
sys error will be thrown.

Performed by the GEOS module.
Availability: 2.0.0

Examples

SELECT topology.AddEdge ('ma_topo', ST_GeomFromText ('LINESTRING (227575.8 893917.2,227591.9 <
893900.4)"', 26986)) As edgeid;

—-— result-

edgeid

SELECT topology.AddEdge ('ma_topo', ST_GeomFromText ('LINESTRING (227591.9 893900.4,227622.6 <>
893844.2,227641.6 893816.5,

227704.5 893778.5)"', 26986)) As edgeid;

—— result —-—

edgeid

SELECT topology.AddEdge ('ma_topo', ST_GeomFromText ('LINESTRING (227591.2 893900, 227591.9 <
893900.4,
227704.5 893778.5)"', 26986)) As edgeid;
—-— gives error —-—
ERROR: Edge intersects (not on endpoints) with existing edge 1

PostGIS 3.1.8 Manual 118/ 847

See Also

TopoGeo_AddLineString, CreateTopology, Section 4.1.3.1

4.6.8.4 AddFace

AddFace — Registers a face primitive to a topology and gets its identifier.

Synopsis

integer AddFace(varchar toponame, geometry apolygon, boolean force_new=false);

Description

Registers a face primitive to a topology and gets its identifier.

For a newly added face, the edges forming its boundaries and the ones contained in the face will be updated to have correct values
in the left_face and right_face fields. Isolated nodes contained in the face will also be updated to have a correct containing_face
field value.

N;"H’! Note

This function does not use nor set the next_left_edge and next_right_edge fields of the edge table.

The target topology is assumed to be valid (containing no self-intersecting edges). An exception is raised if: The polygon
boundary is not fully defined by existing edges or the polygon overlaps an existing face.

If the apolygon geometry already exists as a face, then: if force_new is false (the default) the face id of the existing face is
returned; if force_new is true a new id will be assigned to the newly registered face.

s Note
Nﬂ‘l"! When a new registration of an existing face is performed (force_new=true), no action will be taken to resolve dangling
references to the existing face in the edge, node an relation tables, nor will the MBR field of the existing face record be
updated. It is up to the caller to deal with that.

No'ld Note

The apolygon geometry must have the same srid as defined for the topology otherwise an invalid spatial reference
sys error will be thrown.

Availability: 2.0.0

Examples

—-— first add the edges we use generate_series as an iterator (the below
—— will only work for polygons with < 10000 points because of our max in gs)

SELECT topology.AddEdge ('ma_topo', ST_MakeLine (ST_PointN(geom,i), ST_PointN(geom, i + 1))) ¢
As edgeid
FROM (SELECT ST_NPoints (geom) AS npt, geom
FROM

(SELECT ST_Boundary (ST_GeomFromText ('POLYGON ((234896.5 899456.7,234914 <
899436.4,234946.6 899356.9,234872.5 899328.7,

PostGIS 3.1.8 Manual 119/ 847

234891 899285.4,234992.5 899145, 234890.6 899069,234755.2 899255.4,
234612.7 899379.4,234776.9 899563.7,234896.5 899456.7))"', 26986)) As geom
) As geoms) As facen CROSS JOIN generate_series(1,10000) As i
WHERE 1 < npt;
-— result —-
edgeid

12
(10 rows)
—— then add the face -

SELECT topology.AddFace ('ma_topo',
ST_GeomFromText ('POLYGON ((234896.5 899456.7,234914 899436.4,234946.6 899356.9,234872.5 <+
899328.7,
234891 899285.4,234992.5 899145, 234890.6 899069,234755.2 899255.4,
234612.7 899379.4,234776.9 899563.7,234896.5 899456.7)) "', 26986)) As faceid;

-— result —-
faceid

See Also

AddEdge, CreateTopology, Section 4.1.3.1

4.6.8.5 ST Simplify

ST_Simplify — Returns a "simplified" geometry version of the given TopoGeometry using the Douglas-Peucker algorithm.

Synopsis

geometry ST_Simplify(TopoGeometry tg, float8 tolerance);

Description

Returns a "simplified" geometry version of the given TopoGeometry using the Douglas-Peucker algorithm on each component
edge.

N:ﬂ"’! Note

The returned geometry may be non-simple or non-valid.
Splitting component edges may help retaining simplicity/validity.

Performed by the GEOS module.
Auvailability: 2.1.0

PostGIS 3.1.8 Manual 120/ 847

See Also

Geometry ST_Simplify, ST_IsSimple, ST_IsValid, ST_ModEdgeSplit

4.6.9 TopoGeometry Constructors

4.6.9.1 CreateTopoGeom

CreateTopoGeom — Creates a new topo geometry object from topo element array - tg_type: 1:[multi]point, 2:[multi]line,
3:[multi]poly, 4:collection

Synopsis

topogeometry CreateTopoGeom(varchar toponame, integer tg_type, integer layer_id, topoelementarray tg_objs);
topogeometry CreateTopoGeom(varchar toponame, integer tg_type, integer layer_id);

Description

Creates a topogeometry object for layer denoted by layer_id and registers it in the relations table in the t oponame schema.

tg_type is an integer: 1:[multi]point (punctal), 2:[multi]line (lineal), 3:[multiJpoly (areal), 4:collection. layer_id is the
layer id in the topology.layer table.

punctal layers are formed from set of nodes, lineal layers are formed from a set of edges, areal layers are formed from a set of
faces, and collections can be formed from a mixture of nodes, edges, and faces.

Omitting the array of components generates an empty TopoGeometry object.

Availability: 1.7

Examples: Form from existing edges

Create a topogeom in ri_topo schema for layer 2 (our ri_roads), of type (2) LINE, for the first edge (we loaded in ST_CreateTopoGeo)

INSERT INTO ri.ri_roads (road_name, topo) VALUES ('Unknown', topology.CreateTopoGeom('ri_topo <
',2,2,"{{1,2}}'::topology.topoelementarray);

Examples: Convert an areal geometry to best guess topogeometry

Lets say we have geometries that should be formed from a collection of faces. We have for example blockgroups table and want
to know the topo geometry of each block group. If our data was perfectly aligned, we could do this:

—-— create our topo geometry column —--

SELECT topology.AddTopoGeometryColumn (
'topo_boston',
'boston', 'blockgroups', 'topo', 'POLYGON');

—-— addtopgeometrycolumn —-
1

—-— update our column assuming
—-— everything is perfectly aligned with our edges
UPDATE boston.blockgroups AS bg
SET topo = topology.CreateTopoGeom('topo_boston'
73y L
, foo.bfaces)
FROM (SELECT b.gid, topology.TopoElementArray_Agg (ARRAY[f.face_id,3]) As bfaces
FROM boston.blockgroups As b

PostGIS 3.1.8 Manual 121 /847

INNER JOIN topo_boston.face As £ ON b.geom && f.mbr
WHERE ST_Covers (b.geom, topology.ST_GetFaceGeometry ('topo_boston', f.face_id))
GROUP BY b.gid) As foo
WHERE foo.gid = bg.gid;

—-—the world is rarely perfect allow for some error
——count the face if 50% of it falls
—-— within what we think is our blockgroup boundary
UPDATE boston.blockgroups AS bg
SET topo = topology.CreateTopoGeom('topo_boston'
73y
, foo.bfaces)
FROM (SELECT b.gid, topology.TopoElementArray_Agg (ARRAY[f.face_id,3]) As bfaces
FROM boston.blockgroups As b
INNER JOIN topo_boston.face As £ ON b.geom && f.mbr
WHERE ST_Covers (b.geom, topology.ST_GetFaceGeometry ('topo_boston', f.face_id))
OR
(ST_Intersects(b.geom, topology.ST_GetFaceGeometry ('topo_boston', f.face_id))
AND ST_Area (ST_Intersection (b.geom, topology.ST_GetFaceGeometry ('topo_boston', <~
f.face_id))) >
ST_Area (topology.ST_GetFaceGeometry ('topo_boston', f.face_id))=0.5
)
GROUP BY b.gid) As foo
WHERE foo.gid = bg.gid;

-— and if we wanted to convert our topogeometry back

—-— to a denormalized geometry aligned with our faces and edges
—— cast the topo to a geometry

—— The really cool thing is my new geometries

—-— are now aligned with my tiger street centerlines

UPDATE boston.blockgroups SET new_geom = topo::geometry;

See Also

AddTopoGeometryColumn, toTopoGeom ST_CreateTopoGeo, ST_GetFaceGeometry, TopoElementArray, TopoElementArray_Agg

4.6.9.2 toTopoGeom

toTopoGeom — Converts a simple Geometry into a topo geometry.

Synopsis

topogeometry toTopoGeom(geometry geom, varchar toponame, integer layer_id, float8 tolerance);
topogeometry toTopoGeom(geometry geom, topogeometry topogeom, float8 tolerance);

Description

Converts a simple Geometry into a TopoGeometry.

Topological primitives required to represent the input geometry will be added to the underlying topology, possibly splitting
existing ones, and they will be associated with the output TopoGeometry in the relation table.

Existing TopoGeometry objects (with the possible exception of t opogeom, if given) will retain their shapes.
When tolerance is given it will be used to snap the input geometry to existing primitives.

In the first form a new TopoGeometry will be created for the given layer (layer_id) of the given topology (t oponame).

PostGIS 3.1.8 Manual

122/ 847

In the second form the primitives resulting from the conversion will be added to the pre-existing TopoGeometry (t opogeom),

possibly adding space to its final shape. To have the new shape completely replace the old one see clearTopoGeom.

Availability: 2.0

Enhanced: 2.1.0 adds the version taking an existing TopoGeometry.

Examples

This is a full self-contained workflow

—— do this if you don't have a topology setup already
—— creates topology not allowing any tolerance
SELECT topology.CreateTopology ('topo_boston_test', 2249);
—-— create a new table
CREATE TABLE nei_topo(gid serial primary key, nei wvarchar (30));
—-—add a topogeometry column to it

SELECT topology.AddTopoGeometryColumn ('topo_boston_test', 'public', 'nei_topo', 'topo',

MULTIPOLYGON') As new_layer_id;
new_layer_id

—-—-use new layer id in populating the new topogeometry column
—-— we add the topogeoms to the new layer with 0 tolerance
INSERT INTO nei_topo(nei, topo)

SELECT nei, topology.toTopoGeom(geom, 'topo_boston_test', 1)
FROM neighborhoods

WHERE gid BETWEEN 1 and 15;

--use to verify what has happened --
SELECT * FROM
topology.TopologySummary ('topo_boston_test');

—— summary-—-—

Topology topo_boston_test (5), SRID 2249, precision 0O
61 nodes, 87 edges, 35 faces, 15 topogeoms in 1 layers
Layer 1, type Polygonal (3), 15 topogeoms

Deploy: public.nei_topo.topo

—— Shrink all TopoGeometry polygons by 10 meters
UPDATE nei_topo SET topo = ST_Buffer (clearTopoGeom (topo), -10);

—— Get the no-one-lands left by the above operation
—— I think GRASS calls this "polygonO layer"
SELECT ST_GetFaceGeometry ('topo_boston_test', f.face_id)
FROM topo_boston_test.face £
WHERE f.face_id > 0 —— don't consider the universe face
AND NOT EXISTS (—— check that no TopoGeometry references the face
SELECT x FROM topo_boston_test.relation
WHERE layer_id = 1 AND element_id = f.face_id
) i

See Also

CreateTopology, AddTopoGeometryColumn, CreateTopoGeom, TopologySummary, clearTopoGeom

4.6.9.3 TopoElementArray_Agg

TopoElementArray_Agg — Returns a topoelementarray for a set of element_id, type arrays (topoelements).

'

PostGIS 3.1.8 Manual 123/ 847

Synopsis

topoelementarray TopoElementArray_Agg(topoelement set tefield);

Description

Used to create a TopoElementArray from a set of TopoElement.

Availability: 2.0.0

Examples
SELECT topology.TopoElementArray_ Agg (ARRAY[e,t]) As tea

FROM generate_series(1l,3) As e CROSS JOIN generate_series(1l,4) As t;
tea

{({1,1},{1,2},{1,3},{1,4},{2,1},{2,2},{2,3},{2,4},{3,1},{3,2},{3,3},{3,4}}

See Also

TopoElement, TopoElementArray

4.6.10 TopoGeometry Editors

4.6.10.1 clearTopoGeom

clearTopoGeom — Clears the content of a topo geometry.

Synopsis

topogeometry clearTopoGeom(topogeometry topogeom);

Description

Clears the content a TopoGeometry turning it into an empty one. Mostly useful in conjunction with toTopoGeom to replace the
shape of existing objects and any dependent object in higher hierarchical levels.

Availability: 2.1

Examples

—— Shrink all TopoGeometry polygons by 10 meters
UPDATE nei_topo SET topo = ST_Buffer (clearTopoGeom (topo), -10);

See Also

toTopoGeom

4.6.10.2 TopoGeom_addElement

TopoGeom_addElement — Adds an element to the definition of a TopoGeometry.

PostGIS 3.1.8 Manual 124 / 847

Synopsis

topogeometry TopoGeom_addElement(topogeometry tg, topoelement el);

Description
Adds a TopoElement to the definition of a TopoGeometry object. Does not error out if the element is already part of the definition.

Availability: 2.3

Examples

—— Add edge 5 to TopoGeometry tg
UPDATE mylayer SET tg = TopoGeom_addElement (tg, '{5,2}");

See Also

TopoGeom_remElement, CreateTopoGeom

4.6.10.3 TopoGeom_remElement

TopoGeom_remElement — Removes an element from the definition of a TopoGeometry.

Synopsis

topogeometry TopoGeom_remElement(topogeometry tg, topoelement el);

Description
Removes a TopoElement from the definition of a TopoGeometry object.

Availability: 2.3

Examples

—-— Remove face 43 from TopoGeometry tg
UPDATE mylayer SET tg = TopoGeom_remElement (tg, '{43,3}');

See Also

TopoGeom_addElement, CreateTopoGeom

4.6.10.4 toTopoGeom

toTopoGeom — Adds a geometry shape to an existing topo geometry.

Description

Refer to toTopoGeom.

PostGIS 3.1.8 Manual 125/ 847

4.6.11 TopoGeometry Accessors

4.6.11.1 GetTopoGeomElementArray

GetTopoGeomElementArray — Returns a topoelementarray (an array of topoelements) containing the topological ele-
ments and type of the given TopoGeometry (primitive elements).
Synopsis

topoelementarray GetTopoGeomElementArray(varchar toponame, integer layer_id, integer tg_id);

topoelementarray topoelement GetTopoGeomElementArray(topogeometry tg);

Description

Returns a TopoElementArray containing the topological elements and type of the given TopoGeometry (primitive elements).
This is similar to GetTopoGeomElements except it returns the elements as an array rather than as a dataset.

tg_id is the topogeometry id of the topogeometry object in the topology in the layer denoted by 1ayer_id in the topology.layer
table.

Availability: 1.?

Examples
See Also

GetTopoGeomElements, TopoElementArray

4.6.11.2 GetTopoGeomElements

GetTopoGeomElements — Returns a set of topoelement objects containing the topological element_id,element_type of the
given TopoGeometry (primitive elements).
Synopsis

setof topoelement GetTopoGeomElements(varchar toponame, integer layer_id, integer tg_id);

setof topoelement GetTopoGeomElements(topogeometry tg);

Description

Returns a set of element_id,element_type (topoelements) for a given topogeometry object in t oponame schema.

tg_id is the topogeometry id of the topogeometry object in the topology in the layer denoted by layer_id in the topology.layer
table.

Auvailability: 2.0.0

Examples
See Also

GetTopoGeomElementArray, TopoElement, TopoGeom_addElement, TopoGeom_remElement

PostGIS 3.1.8 Manual 126 / 847

4.6.12 TopoGeometry Outputs

4.6.12.1 AsGML

AsGML — Returns the GML representation of a topogeometry.

Synopsis

text AsGML(topogeometry tg);

text AsSGML (topogeometry tg, text nsprefix_in);

text AsGML(topogeometry tg, regclass visitedTable);

text AsSGML(topogeometry tg, regclass visitedTable, text nsprefix);

text AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options);

text AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options, regclass visitedTable);

text AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options, regclass visitedTable, text idprefix);

text AsGML(topogeometry tg, text nsprefix_in, integer precision, integer options, regclass visitedTable, text idprefix, int gm-
Iversion);

Description

Returns the GML representation of a topogeometry in version GML3 format. If no nsprefix_in is specified then gml is
used. Pass in an empty string for nsprefix to get a non-qualified name space. The precision (default: 15) and options (default 1)
parameters, if given, are passed untouched to the underlying call to ST_AsGML.

The visitedTable parameter, if given, is used for keeping track of the visited Node and Edge elements so to use cross-
references (xlink:xref) rather than duplicating definitions. The table is expected to have (at least) two integer fields: ’ele-
ment_type’ and ’element_id’. The calling user must have both read and write privileges on the given table. For best performance,
an index should be defined on element_type and element_id, in that order. Such index would be created automatically
by adding a unique constraint to the fields. Example:

CREATE TABLE visited (
element_type integer, element_id integer,
unique (element_type, element_id)

)i

The idprefix parameter, if given, will be prepended to Edge and Node tag identifiers.
The gmlver parameter, if given, will be passed to the underlying ST_AsGML. Defaults to 3.
Availability: 2.0.0

Examples

This uses the topo geometry we created in CreateTopoGeom

SELECT topology.AsGML (topo) As rdgml
FROM ri.roads
WHERE road_name = 'Unknown';

—-— rdgml--—
<gml:TopoCurve>
<gml:directedEdge>
<gml:Edge gml:id="E1">
<gml:directedNode orientation="-">
<gml:Node gml:id="N1"/>
</gml:directedNode>
<gml:directedNode></gml:directedNode>
<gml:curveProperty>
<gml:Curve srsName="urn:ogc:def:crs:EPSG::3438">

PostGIS 3.1.8 Manual 127 / 847

<gml:segments>
<gml:LineStringSegment>

<gml:posList srsDimension="2">384744 236928 384750 236923 <+
384769 236911 384799 236895 384811 236890

384833 236884 384844 236882 384866 236881 384879 236883 384954 <+
236898 385087 236932 385117 236938

385167 236938 385203 236941 385224 236946 385233 236950 385241 <+
236956 385254 236971

385260 236979 385268 236999 385273 237018 385273 237037 385271 <+
237047 385267 237057 385225 237125

385210 237144 385192 237161 385167 237192 385162 237202 385159 +
237214 385159 237227 385162 237241

385166 237256 385196 237324 385209 237345 385234 237375 385237 <+
237383 385238 237399 385236 237407

385227 237419 385213 237430 385193 237439 385174 237451 385170 <=
237455 385169 237460 385171 237475

385181 237503 385190 237521 385200 237533 385206 237538 385213 <>
237541 385221 237542 385235 237540 385242 237541

385249 237544 385260 237555 385270 237570 385289 237584 385292 <+
237589 385291 237596 385284 237630</gml:posList>

</gml:LineStringSegment>
</gml:segments>
</gml:Curve>
</gml:curveProperty>
</gml:Edge>
</gml:directedEdge>
</gml:TopoCurve>

Same exercise as previous without namespace

SELECT topology.AsGML (topo,'') As rdgml
FROM ri.roads
WHERE road_name = 'Unknown';

—-— rdgml--
<TopoCurve>
<directedEdge>
<Edge id="E1">
<directedNode orientation="-">
<Node id="N1"/>
</directedNode>
<directedNode></directedNode>
<curveProperty>
<Curve srsName="urn:ogc:def:crs:EPSG::3438">
<segments>
<LineStringSegment>
<posList srsDimension="2">384744 236928 384750 236923 384769 <>
236911 384799 236895 384811 236890
384833 236884 384844 236882 384866 236881 384879 236883 384954 <«
236898 385087 236932 385117 236938
385167 236938 385203 236941 385224 236946 385233 236950 385241 <
236956 385254 236971
385260 236979 385268 236999 385273 237018 385273 237037 385271 <+
237047 385267 237057 385225 237125
385210 237144 385192 237161 385167 237192 385162 237202 385159 <«
237214 385159 237227 385162 237241
385166 237256 385196 237324 385209 237345 385234 237375 385237 <
237383 385238 237399 385236 237407
385227 237419 385213 237430 385193 237439 385174 237451 385170 <+
237455 385169 237460 385171 237475
385181 237503 385190 237521 385200 237533 385206 237538 385213 <«
237541 385221 237542 385235 237540 385242 237541

PostGIS 3.1.8 Manual 128 / 847

385249 237544 385260 237555 385270 237570 385289 237584 385292 <
237589 385291 237596 385284 237630</posList>
</LineStringSegment>
</segments>
</Curve>
</curveProperty>
</Edge>
</directedEdge>
</TopoCurve>

See Also

CreateTopoGeom, ST_CreateTopoGeo

4.6.12.2 AsTopoJSON

AsTopoJSON — Returns the TopoJSON representation of a topogeometry.

Synopsis

text AsTopoJSON(topogeometry tg, regclass edgeMapTable);

Description

Returns the TopoJSON representation of a topogeometry. If edgeMapTable is not null, it will be used as a lookup/storage
mapping of edge identifiers to arc indices. This is to be able to allow for a compact "arcs" array in the final document.

The table, if given, is expected to have an "arc_id" field of type "serial" and an "edge_id" of type integer; the code will query the
table for "edge_id" so it is recommended to add an index on that field.

Not Note
Arc indices in the TopoJSON output are 0-based but they are 1-based in the "edgeMapTable" table.

A full TopoJSON document will be need to contain, in addition to the snippets returned by this function, the actual arcs plus
some headers. See the TopoJSON specification.

Auvailability: 2.1.0
Enhanced: 2.2.1 added support for puntal inputs

See Also

ST _AsGeoJSON

Examples

CREATE TEMP TABLE edgemap (arc_id serial, edge_id int unique);

—— header

SELECT '{ "type": "Topology", "transform": { "scale": [1l,1], "translate": [0,0] }, "objects <

". {v

—-— objects

http://github.com/mbostock/topojson-specification/blob/master/README.md

PostGIS 3.1.8 Manual 129/ 847

UNION ALL SELECT '"' || feature_name || '"": ' || AsTopoJSON (feature, 'edgemap')
FROM features.big_parcels WHERE feature_name = 'P3P4';
—-— arcs

WITH edges AS (
SELECT m.arc_id, e.geom FROM edgemap m, city_data.edge e
WHERE e.edge_id = m.edge_id
), points AS (
SELECT arc_id, (st_dumppoints (geom)) . FROM edges
), compare AS (
SELECT p2.arc_id,
CASE WHEN pl.path IS NULL THEN p2.geom
ELSE ST_Translate(p2.geom, —-ST_X(pl.geom), —-ST_Y (pl.geom))
END AS geom
FROM points p2 LEFT OUTER JOIN points pl
ON (pl.arc_id = p2.arc_id AND p2.path[l] = pl.path[1]+1)
ORDER BY arc_id, p2.path
), arcsdump AS (
SELECT arc_id, (regexp_matches(ST_AsGeoJSON(geom), '\[.*\]'"'))I[1l] as t
FROM compare
), arcs AS (
SELECT arc_id, '[' || array_to_string(array_agg(t), ',') || ']' as a FROM arcsdump
GROUP BY arc_id
ORDER BY arc_id
)
SELECT '}, "arcs": [' UNION ALL
SELECT array_to_string(array_agg(a), E',\n') from arcs

—-— footer
UNION ALL SELECT ']}'::text as t;

—— Result:

{ "type": "Topology", "transform": { "scale": [1,1], "translate": [0,0] }, "objects": {
"P3P4": { "type": "MultiPolygon", "arcs": [[[-111,[[6,5,-5,-4,-3,1111}

} "arcs": [

[r25,301, 16,01, 0,101, [-14,0],[0,-10],[8,01]1,
[[35,61,[0,811,

[[35,6],[12,011,

(r47,61, 00,811,

((47,1471,1(00,811,

[[35,22],1[12,011,

[[35,14],([0,8]]

1}

4.6.13 Topology Spatial Relationships

4.6.13.1 Equals

Equals — Returns true if two topogeometries are composed of the same topology primitives.

Synopsis

boolean Equals(topogeometry tgl, topogeometry tg2);

Description

Returns true if two topogeometries are composed of the same topology primitives: faces, edges, nodes.

PostGIS 3.1.8 Manual 130/ 847

otet Note
N This function not supported for topogeometries that are geometry collections. It also can not compare topogeometries
from different topologies.

Auvailability: 1.1.0

This function supports 3d and will not drop the z-index.

Examples

See Also

GetTopoGeomElements, ST_Equals

4.6.13.2 Intersects

Intersects — Returns true if any pair of primitives from the two topogeometries intersect.

Synopsis

boolean Intersects(topogeometry tgl, topogeometry tg2);

Description

Returns true if any pair of primitives from the two topogeometries intersect.

. Note
Nﬁ'l"’! This function not supported for topogeometries that are geometry collections. It also can not compare topogeometries
from different topologies. Also not currently supported for hierarchichal topogeometries (topogeometries composed of
other topogeometries).

Availability: 1.1.0

This function supports 3d and will not drop the z-index.

Examples

See Also

ST Intersects

PostGIS 3.1.8 Manual 131 /847

4.7 Address Standardizer

This is a fork of the PAGC standardizer (original code for this portion was PAGC PostgreSQL Address Standardizer).

The address standardizer is a single line address parser that takes an input address and normalizes it based on a set of rules stored
in a table and helper lex and gaz tables.

The code is built into a single postgresql extension library called address_standardizer which can be installed with
CREATE EXTENSION address_standardizer;. In addition to the address_standardizer extension, a sample data ex-
tension called address_standardizer_data_us extensions is built, which contains gaz, lex, and rules tables for US data.
This extensions can be installed via: CREATE EXTENSION address_standardizer_data_us;

The code for this extension can be found in the PostGIS extensions/address_standardizer and is currently self-
contained.

For installation instructions refer to: Section 2.3.

4,71 How the Parser Works

The parser works from right to left looking first at the macro elements for postcode, state/province, city, and then looks micro
elements to determine if we are dealing with a house number street or intersection or landmark. It currently does not look for a
country code or name, but that could be introduced in the future.

Country code Assumed to be US or CA based on: postcode as US or Canada state/province as US or Canada else US

Postcode/zipcode These are recognized using Perl compatible regular expressions. These regexs are currently in the parseaddress-
api.c and are relatively simple to make changes to if needed.

State/province These are recognized using Perl compatible regular expressions. These regexs are currently in the parseaddress-
api.c but could get moved into includes in the future for easier maintenance.

4.7.2 Address Standardizer Types

4.7.2.1 stdaddr

stdaddr — A composite type that consists of the elements of an address. This is the return type for standardize_address
function.

Description

A composite type that consists of elements of an address. This is the return type for standardize_address function. Some
descriptions for elements are borrowed from PAGC Postal Attributes.

The token numbers denote the output reference number in the rules table.
This method needs address_standardizer extension.

building is text (token number 0): Refers to building number or name. Unparsed building identifiers and types. Generally blank
for most addresses.

house_num is a text (token number 1): This is the street number on a street. Example 75in 75 State Street.
predir is text (token number 2): STREET NAME PRE-DIRECTIONAL such as North, South, East, West etc.

qual is text (token number 3): STREET NAME PRE-MODIFIER Example OLD in 3715 OLD HIGHWAY 99.
pretype is text (token number 4): STREET PREFIX TYPE

name is text (token number 5): STREET NAME

http://www.pagcgeo.org/docs/html/pagc-11.html
http://sourceforge.net/p/pagc/code/360/tree/branches/sew-refactor/postgresql
http://www.pagcgeo.org/docs/html/pagc-12.html#ss12.1

PostGIS 3.1.8 Manual 132/ 847

suftype is text (token number 6): STREET POST TYPE e.g. St, Ave, Cir. A street type following the root street name. Example
STREET in 75 State Street.

sufdir is text (token number 7): STREET POST-DIRECTIONAL A directional modifier that follows the street name.. Example
WEST in 3715 TENTH AVENUE WEST.

ruralroute is text (token number 8): RURAL ROUTE . Example 7 in RR 7.

extra is text: Extra information like Floor number.

city is text (token number 10): Example Boston.

state is text (token number 11): Example MASSACHUSETTS

country is text (token number 12): Example USA

postcode is text POSTAL CODE (ZIP CODE) (token number 13): Example 02109
box is text POSTAL BOX NUMBER (token number 14 and 15): Example 02109

unit is text Apartment number or Suite Number (token number 17): Example 3B in APT 3B.

4.7.3 Address Standardizer Tables

4.7.3.1 rules table

rules table — The rules table contains a set of rules that maps address input sequence tokens to standardized output sequence. A
rule is defined as a set of input tokens followed by -1 (terminator) followed by set of output tokens followed by -1 followed by
number denoting kind of rule followed by ranking of rule.

Description

A rules table must have at least the following columns, though you are allowed to add more for your own uses.

id Primary key of table

rule text field denoting the rule. Details at PAGC Address Standardizer Rule records.

A rule consists of a set of non-negative integers representing input tokens, terminated by a -1, followed by an equal number
of non-negative integers representing postal attributes, terminated by a -1, followed by an integer representing a rule type,
followed by an integer representing the rank of the rule. The rules are ranked from 0 (lowest) to 17 (highest).

So for example therule 2 0 2 22 3 -1 5 5 6 7 3 -1 2 6 maps to sequence of output tokens TYPE NUMBER
TYPE DIRECT QUALIF to the output sequence STREET STREET SUFTYP SUFDIR QUALIF. The rule is an ARC_C rule
of rank 6.

Numbers for corresponding output tokens are listed in stdaddr.

Input Tokens

Each rule starts with a set of input tokens followed by a terminator —1. Valid input tokens excerpted from PAGC Input Tokens
are as follows:

Form-Based Input Tokens
AMPERS (13). The ampersand (&) is frequently used to abbreviate the word "and".
DASH (9). A punctuation character.

DOUBLE (21). A sequence of two letters. Often used as identifiers.

FRACT (25). Fractions are sometimes used in civic numbers or unit numbers.

http://www.pagcgeo.org/docs/html/pagc-12.html#--r-rec--
http://www.pagcgeo.org/docs/html/pagc-12.html#ss12.2

PostGIS 3.1.8 Manual 133/ 847

MIXED (23). An alphanumeric string that contains both letters and digits. Used for identifiers.
NUMBER (0). A string of digits.

ORD (15). Representations such as First or 1st. Often used in street names.

ORD (18). A single letter.

WORD (1). A word is a string of letters of arbitrary length. A single letter can be both a SINGLE and a WORD.
Function-based Input Tokens

BOXH (14). Words used to denote post office boxes. For example Box or PO Box.
BUILDH (19). Words used to denote buildings or building complexes, usually as a prefix. For example: Tower in Tower 7A.

BUILDT (24). Words and abbreviations used to denote buildings or building complexes, usually as a suffix. For example:
Shopping Centre.

DIRECT (22). Words used to denote directions, for example North.

MILE (20). Words used to denote milepost addresses.

ROAD (6). Words and abbreviations used to denote highways and roads. For example: the Interstate in Interstate 5
RR (8). Words and abbreviations used to denote rural routes. RR.

TYPE (2). Words and abbreviation used to denote street typess. For example: ST or AVE.

UNITH (16). Words and abbreviation used to denote internal subaddresses. For example, APT or UNIT.
Postal Type Input Tokens

QUINT (28). A 5 digit number. Identifies a Zip Code
QUAD (29). A 4 digit number. Identifies ZIP4.
PCH (27). A 3 character sequence of letter number letter. Identifies an FSA, the first 3 characters of a Canadian postal code.

PCT (26). A 3 character sequence of number letter number. Identifies an LDU, the last 3 characters of a Canadian postal code.

Stopwords

STOPWORDS combine with WORDS. In rules a string of multiple WORDs and STOPWORDs will be represented by a single
WORD token.

STOPWORD (7). A word with low lexical significance, that can be omitted in parsing. For example: THE.

Output Tokens

After the first -1 (terminator), follows the output tokens and their order, followed by a terminator —1. Numbers for corresponding
output tokens are listed in stdaddr. What are allowed is dependent on kind of rule. Output tokens valid for each rule type are
listed in the section called “Rule Types and Rank”.

PostGIS 3.1.8 Manual 134 / 847

Rule Types and Rank

The final part of the rule is the rule type which is denoted by one of the following, followed by a rule rank. The rules are ranked
from O (lowest) to 17 (highest).

MACRO_C

(token number = "0"). The class of rules for parsing MACRO clauses such as PLACE STATE ZIP
MACRO_C output tokens (excerpted from http://www.pagcgeo.org/docs/html/page-12.html#--r-typ--.
CITY (token number "10"). Example "Albany"

STATE (token number "11"). Example "NY"

NATION (token number "12"). This attribute is not used in most reference files. Example "USA"

POSTAL (token number "13"). (SADS elements "ZIP CODE" , "PLUS 4"). This attribute is used for both the US Zip and the
Canadian Postal Codes.

MICRO_C

(token number = "1"). The class of rules for parsing full MICRO clauses (such as House, street, sufdir, predir, pretyp, suftype,
qualif) (ie ARC_C plus CIVIC_C). These rules are not used in the build phase.

MICRO_C output tokens (excerpted from http://www.pagcgeo.org/docs/html/page-12.html#--r-typ--.

HOUSE is a text (token number 1): This is the street number on a street. Example 75in 75 State Street.
predir is text (token number 2): STREET NAME PRE-DIRECTIONAL such as North, South, East, West etc.
qual is text (token number 3): STREET NAME PRE-MODIFIER Example OLD in 3715 OLD HIGHWAY 99.
pretype is text (token number 4): STREET PREFIX TYPE

street is text (token number 5): STREET NAME

suftype is text (token number 6): STREET POST TYPE e.g. St, Ave, Cir. A street type following the root street name. Example
STREET in 75 State Street.

sufdir is text (token number 7): STREET POST-DIRECTIONAL A directional modifier that follows the street name.. Example
WEST in 3715 TENTH AVENUE WEST.

ARC_C

(token number = "2"). The class of rules for parsing MICRO clauses, excluding the HOUSE attribute. As such uses same set of
output tokens as MICRO_C minus the HOUSE token.

CIVIC_C
(token number = "3"). The class of rules for parsing the HOUSE attribute.
EXTRA_C

(token number = "4"). The class of rules for parsing EXTRA attributes - attributes excluded from geocoding. These rules are not
used in the build phase.

EXTRA_C output tokens (excerpted from http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--.
BLDNG (token number 0): Unparsed building identifiers and types.

BOXH (token number 14): The BOX in BOX 3B

BOXT (token number 15): The 3B in BOX 3B

RR (token number 8): The RRin RR 7

UNITH (token number 16): The APT in APT 3B

UNITT (token number 17): The 3B in APT 3B

UNKNWN (token number 9): An otherwise unclassified output.

http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--
http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--
http://www.pagcgeo.org/docs/html/pagc-12.html#--r-typ--

PostGIS 3.1.8 Manual 135/ 847

4.7.3.2 lex table

lex table — A lex table is used to classify alphanumeric input and associate that input with (a) input tokens (See the section
called “Input Tokens”) and (b) standardized representations.

Description

A lex (short for lexicon) table is used to classify alphanumeric input and associate that input with the section called “Input
Tokens” and (b) standardized representations. Things you will find in these tables are ONE mapped to stdword: 1.

A lex has at least the following columns in the table. You may add

id Primary key of table

seq integer: definition number?

word text: the input word

stdword text: the standardized replacement word

token integer: the kind of word it is. Only if it is used in this context will it be replaced. Refer to PAGC Tokens.

4.7.3.3 gaz table

gaz table — A gaz table is used to standardize place names and associate that input with (a) input tokens (See the section called
“Input Tokens”) and (b) standardized representations.
Description

A gaz (short for gazeteer) table is used to standardize place names and associate that input with the section called “Input Tokens”
and (b) standardized representations. For example if you are in US, you may load these with State Names and associated
abbreviations.

A gaz table has at least the following columns in the table. You may add more columns if you wish for your own purposes.

id Primary key of table

seq integer: definition number? - identifer used for that instance of the word
word text: the input word

stdword text: the standardized replacement word

token integer: the kind of word it is. Only if it is used in this context will it be replaced. Refer to PAGC Tokens.

4.7.4 Address Standardizer Functions

4.7.41 parse_address

parse_address — Takes a 1 line address and breaks into parts

Synopsis

record parse_address(text address);

http://www.pagcgeo.org/docs/html/pagc-12.html#--i-tok--
http://www.pagcgeo.org/docs/html/pagc-12.html#--i-tok--

PostGIS 3.1.8 Manual

136 /847

Description

Returns takes an address as input, and returns a record output consisting of fields num, street, street2, addressl, city, state, zip,

zipplus, country.
Availability: 2.2.0

i

F

""" This method needs address_standardizer extension.

Examples

Single Addresss

SELECT num, street, city, zip, zipplus
FROM parse_address ('l Devonshire Place, Boston, MA 02109-1234') AS a;

num | street | city | zip | zipplus
————— et et Tt

1 | Devonshire Place | Boston | 02109 | 1234
Table of addresses

—-— basic table
CREATE TABLE places (addid serial PRIMARY KEY, address text);

INSERT INTO places (address)
VALUES ('529 Main Street, Boston MA, 02129'),
('77 Massachusetts Avenue, Cambridge, MA 02139'),
('25 Wizard of 0z, Walaford, KS 99912323'"),
('26 Capen Street, Medford, MA'),
('124 Mount Auburn St, Cambridge, Massachusetts 02138'"),
('"950 Main Street, Worcester, MA 01610'");

—— parse the addresses

-— if you want all fields you can use (a).x

SELECT addid, (a).num, (a).street, (a).city, (a).state, (a).zip, (a).zipplus
FROM (SELECT addid, parse_address (address) As a

FROM places) AS p;

addid | num | street | city | state | zip | zipplus
7777777 e
1 | 529 | Main Street | Boston | MA | 02129
2 1 77 | Massachusetts Avenue | Cambridge | MA | 02139 |
3 | 25 | Wizard of Oz | Walaford | KS | 99912 | 323
4 | 26 | Capen Street | Medford | MA | |
5 | 124 | Mount Auburn St | Cambridge | MA | 02138 |
6 | 950 | Main Street | Worcester | MA | 01610 |
(6 rows)
See Also

4.7.4.2 standardize_address

standardize_address — Returns an stdaddr form of an input address utilizing lex, gaz, and rule tables.

Synopsis

stdaddr standardize_address(text lextab, text gaztab, text rultab, text address);
stdaddr standardize_address(text lextab, text gaztab, text rultab, text micro, text macro);

PostGIS 3.1.8 Manual 137 / 847

Description

Returns an stdaddr form of an input address utilizing lex table table name, gaz table, and rules table table names and an address.
Variant 1: Takes an address as a single line.

Variant 2: Takes an address as 2 parts. A micro consisting of standard first line of postal address e.g. house_num street,
and a macro consisting of standard postal second line of an address e.g city, state postal_code country.

Availability: 2.2.0

ﬂ This method needs address_standardizer extension.

Examples

Using address_standardizer_data_us extension

CREATE EXTENSION address_standardizer_data_us; —-- only needs to be done once

Variant 1: Single line address. This doesn’t work well with non-US addresses

SELECT house_num, name, suftype, city, country, state, unit FROM standardize_address (' <«
us_lex',
'us_gaz', 'us_rules', 'One Devonshire Place, PH 301, Boston, MA 02109'");

house_num | name | suftype | city | country | state | unit
7777777777 B e L e e ittt LR SR
1 | DEVONSHIRE | PLACE | BOSTON | USA | MASSACHUSETTS | # PENTHOUSE 301

Using tables packaged with tiger geocoder. This example only works if you installed postgis_tiger_geocoder.

SELECT x FROM standardize_address ('tiger.pagc_lex',
'tiger.pagc_gaz', 'tiger.pagc_rules', 'One Devonshire Place, PH 301, Boston, MA <>
02109-1234");

Make easier to read we’ll dump output using hstore extension CREATE EXTENSION hstore; you need to install

SELECT (each (hstore(p))) .*
FROM standardize_address ('tiger.pagc_lex', 'tiger.pagc_gaz',
'tiger.pagc_rules', 'One Devonshire Place, PH 301, Boston, MA 02109') As p;

key | value

____________ o
box |

city | BOSTON

name | DEVONSHIRE

qual |

unit | # PENTHOUSE 301
extra |

state | MA

predir |

sufdir |

country | USA

pretype |

suftype | PL

building

postcode | 02109
house_num | 1

ruralroute |

(16 rows)

PostGIS 3.1.8 Manual 138 /847

Variant 2: As a two part Address

SELECT (each (hstore(p))) .*
FROM standardize_address ('tiger.pagc_lex', 'tiger.pagc_gaz',
'tiger.pagc_rules', 'One Devonshire Place, PH 301', 'Boston, MA 02109, US') As p;

name DEVONSHIRE
qual
unit # PENTHOUSE 301
extra
state
predir
sufdir
country
pretype
suftype
building
postcode
house_num

MA

\
+
\
city | BOSTON
\
\
\
\
\
\
\
| USA
\
| PL
\
| 02109
\
\

ruralroute
(16 rows)

See Also

stdaddr, rules table, lex table, gaz table, Pagc_Normalize_Address

4.8 PostGIS Exiras

This chapter documents features found in the extras folder of the PostGIS source tarballs and source repository. These are not
always packaged with PostGIS binary releases, but are usually plpgsql based or standard shell scripts that can be run as is.

4.8.1 Tiger Geocoder

There are a couple other open source geocoders for PostGIS, that unlike tiger geocoder have the advantage of multi-country
geocoding support

* Nominatim uses OpenStreetMap gazeteer formatted data. It requires osm2pgsql for loading the data, PostgreSQL 8.4+ and
PostGIS 1.5+ to function. It is packaged as a webservice interface and seems designed to be called as a webservice. Just like
the tiger geocoder, it has both a geocoder and a reverse geocoder component. From the documentation, it is unclear if it has a
pure SQL interface like the tiger geocoder, or if a good deal of the logic is implemented in the web interface.

* GIS Graphy also utilizes PostGIS and like Nominatim works with OpenStreetMap (OSM) data. It comes with a loader to load
OSM data and similar to Nominatim is capable of geocoding not just US. Much like Nominatim, it runs as a webservice and
relies on Java 1.5, Servlet apps, Solr. GisGraphy is cross-platform and also has a reverse geocoder among some other neat
features.

4.8.1.1 Drop_Indexes_Generate_Script

Drop_Indexes_Generate_Script — Generates a script that drops all non-primary key and non-unique indexes on tiger schema
and user specified schema. Defaults schema to t iger_data if no schema is specified.

http://wiki.openstreetmap.org/wiki/Nominatim
http://www.gisgraphy.com/

PostGIS 3.1.8 Manual 139/ 847

Synopsis

text Drop_Indexes_Generate_Script(text param_schema=tiger_data);

Description

Generates a script that drops all non-primary key and non-unique indexes on tiger schema and user specified schema. Defaults
schema to tiger_data if no schema is specified.

This is useful for minimizing index bloat that may confuse the query planner or take up unnecessary space. Use in combination
with Install_Missing_Indexes to add just the indexes used by the geocoder.

Auwailability: 2.0.0

Examples

SELECT drop_indexes_generate_script () As actionsqgl;
actionsqgl

DROP INDEX tiger.idx_tiger_countysub_lookup_lower_name;
DROP INDEX tiger.idx_tiger_edges_countyfp;

DROP INDEX tiger.idx_tiger_faces_countyfp;

DROP INDEX tiger.tiger_place_the_geom_gist;

DROP INDEX tiger.tiger_edges_the_geom_gist;

DROP INDEX tiger.tiger_state_the_geom_gist;

DROP INDEX tiger.idx_tiger_addr_least_address;

DROP INDEX tiger.idx_tiger_addr_tlid;

DROP INDEX tiger.idx_tiger_addr_zip;

DROP INDEX tiger.idx_tiger_county_countyfp;

DROP INDEX tiger.idx_tiger_county_lookup_lower_name;

DROP INDEX tiger.idx_tiger_county_lookup_snd_name;

DROP INDEX tiger.idx_tiger_county_lower_name;

DROP INDEX tiger.idx_tiger_county_snd_name;

DROP INDEX tiger.idx_tiger_county_the_geom_gist;

DROP INDEX tiger.idx_tiger_countysub_lookup_snd_name;

DROP INDEX tiger.idx_tiger_cousub_countyfp;

DROP INDEX tiger.idx_tiger_cousub_cousubfp;

DROP INDEX tiger.idx_tiger_cousub_lower_name;

DROP INDEX tiger.idx_tiger_cousub_snd_name;

DROP INDEX tiger.idx_tiger_cousub_the_geom_gist;

DROP INDEX tiger_data.idx_tiger_data_ma_addr_least_address;
DROP INDEX tiger_data.idx_tiger_data_ma_addr_tlid;

DROP INDEX tiger_data.idx_tiger_data_ma_addr_zip;

DROP INDEX tiger_data.idx_tiger_data_ma_county_countyfp;
DROP INDEX tiger_data.idx_tiger_data_ma_county_lookup_lower_name;
DROP INDEX tiger_data.idx_tiger_data_ma_county_lookup_snd_name;
DROP INDEX tiger_data.idx_tiger_data_ma_county_lower_name;
DROP INDEX tiger_data.idx_tiger_data_ma_county_snd_name;

See Also

Install_Missing_Indexes, Missing_Indexes_Generate_Script

4.8.1.2 Drop_Nation_Tables_Generate_Script

Drop_Nation_Tables_Generate_Script — Generates a script that drops all tables in the specified schema that start with county_all,
state_all or state code followed by county or state.

PostGIS 3.1.8 Manual 140/ 847

Synopsis

text Drop_Nation_Tables_Generate_Script(text param_schema=tiger_data);

Description

Generates a script that drops all tables in the specified schema that start with county_all, state_all or stae code followed
by county or state. This is needed if you are upgrading from tiger_2010 to tiger_2011 data.

Availability: 2.1.0

Examples

SELECT drop_nation_tables_generate_script();
DROP TABLE tiger_data.county_all;

DROP TABLE tiger_data.county_all_lookup;
DROP TABLE tiger_data.state_all;

DROP TABLE tiger_data.ma_county;

DROP TABLE tiger_data.ma_state;

See Also

Loader_Generate_Nation_Script

4.8.1.3 Drop_State Tables_Generate_Script

Drop_State_Tables_Generate_Script — Generates a script that drops all tables in the specified schema that are prefixed with the
state abbreviation. Defaults schema to t iger_data if no schema is specified.

Synopsis

text Drop_State_Tables_Generate_Script(text param_state, text param_schema=tiger_data);

Description

Generates a script that drops all tables in the specified schema that are prefixed with the state abbreviation. Defaults schema to
tiger_data if no schema is specified. This function is useful for dropping tables of a state just before you reload a state in
case something went wrong during your previous load.

Availability: 2.0.0

Examples

SELECT drop_state_tables_generate_script ('PA'");
DROP TABLE tiger_data.pa_addr;

DROP TABLE tiger_data.pa_county;

DROP TABLE tiger_data.pa_county_lookup;
DROP TABLE tiger_data.pa_cousub;

DROP TABLE tiger_data.pa_edges;

DROP TABLE tiger_data.pa_faces;

DROP TABLE tiger_data.pa_featnames;

DROP TABLE tiger_data.pa_place;

DROP TABLE tiger_data.pa_state;

DROP TABLE tiger_data.pa_zip_lookup_base;
DROP TABLE tiger_data.pa_zip_state;

DROP TABLE tiger_data.pa_zip_state_loc;

PostGIS 3.1.8 Manual 141 /847

See Also

Loader_Generate_Script

4.8.1.4 Geocode

Geocode — Takes in an address as a string (or other normalized address) and outputs a set of possible locations which include a
point geometry in NAD 83 long lat, a normalized address for each, and the rating. The lower the rating the more likely the match.
Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults to 10, and restrict_region (defaults to
NULL)

Synopsis

setof record geocode(varchar address, integer max_results=10, geometry restrict_region=NULL, norm_addy OUT addy, geom-
etry OUT geomout, integer OUT rating);

setof record geocode(norm_addy in_addy, integer max_results=10, geometry restrict_region=NULL, norm_addy OUT addy,
geometry OUT geomout, integer OUT rating);

Description

Takes in an address as a string (or already normalized address) and outputs a set of possible locations which include a point
geometry in NAD 83 long lat, a normalized_address (addy) for each, and the rating. The lower the rating the more
likely the match. Results are sorted by lowest rating first. Uses Tiger data (edges,faces,addr), PostgreSQL fuzzy string matching
(soundex,levenshtein) and PostGIS line interpolation functions to interpolate address along the Tiger edges. The higher the rating
the less likely the geocode is right. The geocoded point is defaulted to offset 10 meters from center-line off to side (L/R) of street
address is located on.

Enhanced: 2.0.0 to support Tiger 2010 structured data and revised some logic to improve speed, accuracy of geocoding, and
to offset point from centerline to side of street address is located on. The new parameter max_results useful for specifying
number of best results or just returning the best result.

Examples: Basic

The below examples timings are on a 3.0 GHZ single processor Windows 7 machine with 2GB ram running PostgreSQL
9.1rc1/PostGIS 2.0 loaded with all of MA,MN,CA, RI state Tiger data loaded.

Exact matches are faster to compute (61ms)

SELECT g.rating, ST_X(g.geomout) As lon, ST_Y(g.geomout) As lat,
(addy) .address As stno, (addy) .streetname As street,
(addy) .streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st, (<

addy) .zip
FROM geocode ('75 State Street, Boston MA 02109', 1) As g;
rating | lon | lat | stno | street | styp | city | st | zip
———————— et e e e B e
0 | -71.0557505845646 | 42.35897920691 | 75 | State | St | Boston | MA | 02109

Even if zip is not passed in the geocoder can guess (took about 122-150 ms)

SELECT g.rating, ST_AsText (ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
(addy) .address As stno, (addy).streetname As street,
(addy) .streettypeabbrev As styp, (addy).location As city, (addy) .stateabbrev As st, (
addy) .zip
FROM geocode ('226 Hanover Street, Boston, MA',1l) As g;
rating | wktlonlat | stno | street | styp | city | st | zip
———————— B e A s s A
1 | POINT(-71.05528 42.36316) | 226 | Hanover | St | Boston | MA | 02113

PostGIS 3.1.8 Manual 142 / 847

Can handle misspellings and provides more than one possible solution with ratings and takes longer (500ms).

SELECT g.rating, ST_AsText (ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
(addy) .address As stno, (addy).streetname As street,
(addy) .streettypeabbrev As styp, (addy).location As city, (addy).stateabbrev As st, («

addy) .zip
FROM geocode ('31 - 37 Stewart Street, Boston, MA 02116',1) As g;
rating | wktlonlat | stno | street | styp | city | st | zip
———————— Bt A s A
70 | POINT (-71.06466 42.35114) | 31 | Stuart | St | Boston | MA | 02116

Using to do a batch geocode of addresses. Easiest is to set max_results=1. Only process those not yet geocoded (have no
rating).

CREATE TABLE addresses_to_geocode (addid serial PRIMARY KEY, address text,
lon numeric, lat numeric, new_address text, rating integer);

INSERT INTO addresses_to_geocode (address)
VALUES ('529 Main Street, Boston MA, 02129'),
('77 Massachusetts Avenue, Cambridge, MA 02139'),
('25 Wizard of 0z, Walaford, KS 99912323"),
('26 Capen Street, Medford, MA'),
('124 Mount Auburn St, Cambridge, Massachusetts 02138'),
('950 Main Street, Worcester, MA 01610'");
—— only update the first 3 addresses (323-704 ms - there are caching and shared memory <+
effects so first geocode you do is always slower) —-—
—-— for large numbers of addresses you don't want to update all at once
—— since the whole geocode must commit at once
—-— For this example we rejoin with LEFT JOIN
—-— and set to rating to -1 rating if no match
—-— to ensure we don't regeocode a bad address
UPDATE addresses_to_geocode
SET (rating, new_address, lon, lat)
= (COALESCE (g.rating,-1), pprint_addy(g.addy),
ST_X (g.geomout) : :numeric(8,5), ST_Y(g.geomout) ::numeric(8,5))
FROM (SELECT addid, address
FROM addresses_to_geocode
WHERE rating IS NULL ORDER BY addid LIMIT 3) As a
LEFT JOIN LATERAL geocode (a.address,1l) As g ON true
WHERE a.addid = addresses_to_geocode.addid;

Query returned successfully: 3 rows affected, 480 ms execution time.

SELECT x FROM addresses_to_geocode WHERE rating is not null;

addid | address | lon | lat | —
new_address | rating
——————— et s S
1 | 529 Main Street, Boston MA, 02129 | =71.07177 | 42.38357 | 529 Main St,
Boston, MA 02129 | 0
2 | 77 Massachusetts Avenue, Cambridge, MA 02139 | -71.09396 | 42.35961 | 77 <>
Massachusetts Ave, Cambridge, MA 02139 | 0
3 | 25 Wizard of Oz, Walaford, KS 99912323 | =97.92913 | 38.12717 | Willowbrook, <
KS 67502 | 108
(3 rows)

Examples: Using Geometry filter

PostGIS 3.1.8 Manual 143 / 847

SELECT g.rating, ST_AsText (ST_SnapToGrid(g.geomout,0.00001)) As wktlonlat,
(addy) .address As stno, (addy).streetname As street,
(addy) .streettypeabbrev As styp,
(addy) .location As city, (addy).stateabbrev As st, (addy) .zip
FROM geocode ('100 Federal Street, MA',

3,
(SELECT ST_Union (the_geom)
FROM place WHERE statefp = '25' AND name = 'Lynn') ::geometry
) As g;
rating | wktlonlat | stno | street | styp | city st | zip
77777777 -
7 | POINT (-70.96796 42.4659) | 100 | Federal | St | Lynn | MA | 01905
16 | POINT(-70.96786 42.46853) | NULL | Federal | St | Lynn | MA | 01905
(2 rows)

Time: 622.939 ms

See Also

Normalize_Address, Pprint_Addy, ST_AsText, ST_SnapToGrid, ST_X, ST_Y

4.8.1.5 Geocode_Intersection

Geocode_Intersection — Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first
cross street that is at the intersection, also includes a geomout as the point location in NAD 83 long lat,anormalized_address
(addy) for each location, and the rating. The lower the rating the more likely the match. Results are sorted by lowest rating first.
Can optionally pass in maximum results, defaults to 10. Uses Tiger data (edges, faces, addr), PostgreSQL fuzzy string matching
(soundex, levenshtein).

Synopsis

setof record geocode_intersection(text roadway1, text roadway?2, text in_state, text in_city, text in_zip, integer max_results=10,
norm_addy OUT addy, geometry OUT geomout, integer OUT rating);

Description

Takes in 2 streets that intersect and a state, city, zip, and outputs a set of possible locations on the first cross street that is at the
intersection, also includes a point geometry in NAD 83 long lat, a normalized address for each location, and the rating. The lower
the rating the more likely the match. Results are sorted by lowest rating first. Can optionally pass in maximum results, defaults
to 10. Returns normalized_address (addy) for each, geomout as the point location in nad 83 long lat, and the rating.
The lower the rating the more likely the match. Results are sorted by lowest rating first. Uses Tiger data (edges,faces,addr),
PostgreSQL fuzzy string matching (soundex,levenshtein)

Availability: 2.0.0

Examples: Basic

The below examples timings are on a 3.0 GHZ single processor Windows 7 machine with 2GB ram running PostgreSQL 9.0/Post-
GIS 1.5 loaded with all of MA state Tiger data loaded. Currently a bit slow (3000 ms)

Testing on Windows 2003 64-bit 8GB on PostGIS 2.0 PostgreSQL 64-bit Tiger 2011 data loaded -- (41ms)

PostGIS 3.1.8 Manual 144/ 847

SELECT pprint_addy (addy), st_astext (geomout),rating
FROM geocode_intersection('Haverford St', 'Germania St', 'MA', 'Boston', <

'02130',1);
pprint_addy | st_astext | rating
__________________________________ O W
98 Haverford St, Boston, MA 02130 | POINT(-71.101375 42.31376) | 0

Even if zip is not passed in the geocoder can guess (took about 3500 ms on the windows 7 box), on the windows 2003 64-bit 741
ms

SELECT pprint_addy (addy), st_astext (geomout),rating

FROM geocode_intersection('Weld', 'School', 'MA', 'Boston');
pprint_addy | st_astext | rating
_______________________________ ey
98 Weld Ave, Boston, MA 02119 | POINT(-71.099 42.314234) | 3
99 Weld Ave, Boston, MA 02119 | POINT(-71.099 42.314234) | 3

See Also

Geocode, Pprint_Addy, ST_AsText

4.8.1.6 Get_Geocode_Setting

Get_Geocode_Setting — Returns value of specific setting stored in tiger.geocode_settings table.

Synopsis

text Get_Geocode_Setting(text setting_name);

Description

Returns value of specific setting stored in tiger.geocode_settings table. Settings allow you to toggle debugging of functions. Later
plans will be to control rating with settings. Current list of settings are as follows:

name | setting | unit | category | —
short_desc
———————————————————————————————— B A

debug_geocode_address | false | boolean | debug | outputs debug information <>

in notice log such as queries when geocode_address is called if true
debug_geocode_intersection | false | boolean | debug | outputs debug information <=

in notice log such as queries when geocode_intersection is called if true
debug_normalize_address | false | boolean | debug | outputs debug information ¢«

in notice log such as queries and intermediate expressions when normalize_address is <
called if true

debug_reverse_geocode | false | boolean | debug | if true, outputs debug <
information in notice log such as queries and intermediate expressions when <=
reverse_geocode

reverse_geocode_numbered_roads | 0 | integer | rating | For state and county <

highways, 0 - no preference in name,
1 - prefer the numbered <>

highway name, 2 - <
prefer local state/ <«
county name
use_pagc_address_parser | false | boolean | normalize | If set to true, will try <+
to use the address_standardizer extension (via pagc_normalize_address)

PostGIS 3.1.8 Manual 145/ 847

instead of tiger <
normalize_address built <«
one

Changed: 2.2.0 : default settings are now kept in a table called geocode_settings_default. Use customized settingsa are in
geocode_settings and only contain those that have been set by user.

Auvailability: 2.1.0

Example return debugging setting

SELECT get_geocode_setting ('debug_geocode_address) As result;
result

See Also

Set_Geocode_Setting

4.8.1.7 Get_Tract

Get_Tract — Returns census tract or field from tract table of where the geometry is located. Default to returning short name of
tract.

Synopsis

text get_tract(geometry loc_geom, text output_field=name);

Description

Given a geometry will return the census tract location of that geometry. NAD 83 long lat is assumed if no spatial ref sys is
specified.

Note
This function uses the census t ract whic is not loaded by default. If you have already loaded your state table, you
. can load tract as well as bg, and tabblock using the Loader_Generate_Census_Script script.

Nfﬂ"! If you have not loaded your state data yet and want these additional tables loaded, do the following

UPDATE tiger.loader_lookuptables SET load = true WHERE load = false AND lookup_name <+
IN('tract', 'bg', 'tabblock');

then they will be included by the Loader_Generate_Script.

Availability: 2.0.0

Examples: Basic

SELECT get_tract (ST_Point (-71.101375, 42.31376)) As tract_name;
tract_name

1203.01

PostGIS 3.1.8 Manual 146 / 847

—-—this one returns the tiger geoid
SELECT get_tract (ST_Point (-71.101375, 42.31376), 'tract_id') As tract_id;
tract_id

25025120301

See Also

Geocode>

4.8.1.8 Install_Missing_Indexes

Install_Missing_Indexes — Finds all tables with key columns used in geocoder joins and filter conditions that are missing used
indexes on those columns and will add them.
Synopsis

boolean Install_Missing_Indexes();

Description

Finds all tables in tiger and tiger_data schemas with key columns used in geocoder joins and filters that are missing
indexes on those columns and will output the SQL DDL to define the index for those tables and then execute the generated
script. This is a helper function that adds new indexes needed to make queries faster that may have been missing during the load
process. This function is a companion to Missing_Indexes_Generate_Script that in addition to generating the create index script,
also executes it. It is called as part of the update_geocode. sql upgrade script.

Availability: 2.0.0

Examples

SELECT install_missing_indexes();
install_missing_indexes

See Also

Loader_Generate_Script, Missing_Indexes_Generate_Script

4.8.1.9 Loader_Generate_Census_Script
Loader_Generate_Census_Script — Generates a shell script for the specified platform for the specified states that will download

Tiger census state tract, bg, and tabblocks data tables, stage and load into t iger_data schema. Each state script is returned as
a separate record.

Synopsis

setof text loader_generate_census_script(text[] param_states, text 0s);

PostGIS 3.1.8 Manual 147 / 847

Description

Generates a shell script for the specified platform for the specified states that will download Tiger data census state t ract, block
groups bg, and tabblocks data tables, stage and load into t iger_data schema. Each state script is returned as a separate
record.

It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses Section 4.1.5.2 to load in the data.
Note the smallest unit it does is a whole state. It will only process the files in the staging and temp folders.

It uses the following control tables to control the process and different OS shell syntax variations.

1. loader_variables keeps track of various variables such as census site, year, data and staging schemas

2. loader_platform profiles of various platforms and where the various executables are located. Comes with windows
and linux. More can be added.

3. loader_lookuptables each record defines a kind of table (state, county), whether to process records in it and how
to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each.
Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates tiger_data.ma_faces
which inherits from tiger. faces

Awailability: 2.0.0

st¢} Note
N Loader_Generate_Script includes this logic, but if you installed tiger geocoder prior to PostGIS 2.0.0 alpha5, you'll need
to run this on the states you have already done to get these additional tables.

Examples

Generate script to load up data for select states in Windows shell script format.

SELECT loader_generate_census_script (ARRAY['MA'], 'windows');
—-— result —-

set STATEDIR="\gisdata\www2.census.gov\geo\pvs\tiger2010st\25_Massachusetts"
set TMPDIR=\gisdata\temp\

set UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"

set WGETTOOL="C:\wget\wget.exe"

set PGBIN=C:\projects\pg\pg9lwin\bin\

set PGPORT=5432

set PGHOST=localhost

set PGUSER=postgres

set PGPASSWORD=yourpasswordhere

set PGDATABASE=tiger_postgis20

set PSQL="%PGBIN%psql"

set SHP2PGSQL="%PGBIN%$shp2pgsgl"

cd \gisdata

$WGETTOOL% http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ —--no-parent --
relative —--accept=xbgl0.zip,*tractl0.zip, *tabblockl0.zip --mirror —--reject=html

del $TMPDIR%\x.x /Q

$PSQL% —-c "DROP SCHEMA tiger_staging CASCADE;"

%$PSQL% —-c "CREATE SCHEMA tiger_staging;"

cd $STATEDIRS

for /r $%z in (x.zip) do $UNZIPTOOL% e %%z —-0%TMPDIR%

cd $TMPDIRS%

%$PSQL% —c "CREATE TABLE tiger_data.MA_tract (CONSTRAINT pk_MA_tract PRIMARY KEY (tract_id)) <

INHERITS (tiger.tract); "

$SHP2PGSQL% -c —-s 4269 -g the_geom -W "latinl" t1_2010_25_tractlO0.dbf tiger_staging. <«

ma_tractl0 | %$PSQL%

PostGIS 3.1.8 Manual 148 / 847

$PSQL% —-c "ALTER TABLE tiger_staging.MA_tractlO0 RENAME geoidl0 TO tract_id; SELECT <«
loader_load_staged_data (lower ('MA_tractl0'), lower ('MA_tract')); "

%$PSQL% —-c "CREATE INDEX tiger_data_MA_tract_the_geom_gist ON tiger_data.MA_tract USING gist <>
(the_geom) ;"

$PSQL% —-c "VACUUM ANALYZE tiger_data.MA_tract;"

$PSQL% —-c "ALTER TABLE tiger_data.MA_tract ADD CONSTRAINT chk_statefp CHECK (statefp = <+
125l);"

Generate sh script

STATEDIR="/gisdata/www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts"
TMPDIR="/gisdata/temp/"
UNZIPTOOL=unzip
WGETTOOL="/usr/bin/wget"

export PGBIN=/usr/pgsql-9.0/bin
export PGPORT=5432

export PGHOST=localhost

export PGUSER=postgres

export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder

PSQL=$ {PGBIN} /psql
SHP2PGSQL=${PGBIN}/shp2pgsqgl

cd /gisdata

wget http://www2.census.gov/geo/pvs/tiger2010st/25_Massachusetts/25/ —--no-parent —--relative ¢
——accept=+bgl0.zip, *tractl0.zip, rtabblockl0.zip —--mirror --reject=html

rm —f ${TMPDIR}/*.*

${PSQL} -c "DROP SCHEMA tiger_staging CASCADE;"

${PSQL} -c "CREATE SCHEMA tiger_staging;"

cd S$STATEDIR

for z in x.zip; do SUNZIPTOOL -o -d $TMPDIR $z; done

See Also

Loader_Generate_Script

4.8.1.10 Loader_Generate_Script

Loader_Generate_Script — Generates a shell script for the specified platform for the specified states that will download Tiger
data, stage and load into t iger_data schema. Each state script is returned as a separate record. Latest version supports Tiger
2010 structural changes and also loads census tract, block groups, and blocks tables.

Synopsis

setof text loader_generate_script(text[] param_states, text os);

Description
Generates a shell script for the specified platform for the specified states that will download Tiger data, stage and load into
tiger_data schema. Each state script is returned as a separate record.

It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses Section 4.1.5.2 to load in the data.
Note the smallest unit it does is a whole state, but you can overwrite this by downloading the files yourself. It will only process
the files in the staging and temp folders.

It uses the following control tables to control the process and different OS shell syntax variations.

PostGIS 3.1.8 Manual 149/ 847

1. loader_variables keeps track of various variables such as census site, year, data and staging schemas

2. loader_platform profiles of various platforms and where the various executables are located. Comes with windows
and linux. More can be added.

3. loader_lookuptables each record defines a kind of table (state, county), whether to process records in it and how
to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each.
Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates tiger_data.ma_faces
which inherits from tiger. faces

Awailability: 2.0.0 to support Tiger 2010 structured data and load census tract (tract), block groups (bg), and blocks (tabblocks)
tables .

st¢} Note
N If you are using pgAdmin 3, be warned that by default pgAdmin 3 truncates long text. To fix, change File -> Options ->
Query Tool -> Query Editor - > Max. characters per column to larger than 50000 characters.

Examples

Using psql where gistest is your database and /gisdata/data_load. shis the file to create with the shell commands to run.

psql -U postgres -h localhost -d gistest -A -t \
—c "SELECT Loader_Generate_Script (ARRAY['MA'], 'gistest')" > /gisdata/data_load.sh;

Generate script to load up data for 2 states in Windows shell script format.

SELECT loader_generate_script (ARRAY['MA','RI'], 'windows') AS result;
—-— result —-

set TMPDIR=\gisdata\temp\

set UNZIPTOOL="C:\Program Files\7-Zip\7z.exe"
set WGETTOOL="C:\wget\wget.exe"

set PGBIN=C:\Program Files\PostgreSQL\9.4\bin\
set PGPORT=5432

set PGHOST=localhost

set PGUSER=postgres

set PGPASSWORD=yourpasswordhere

set PGDATABASE=geocoder

set PSQL="%PGBIN%psgl"

set SHP2PGSQL="$PGBIN%$shp2pgsqgl"

cd \gisdata

cd \gisdata

$WGETTOOLS ftp://ftp2.census.gov/geo/tiger/TIGER2015/PLACE/tl_x_25_* —--no-parent —--relative ¢
—-recursive —--level=2 --accept=zip --mirror --reject=html

cd \gisdata/ftp2.census.gov/geo/tiger/TIGER2015/PLACE

Generate sh script

SELECT loader_generate_script (ARRAY['MA','RI'], 'sh') AS result;

== EEsulec ==

TMPDIR="/gisdata/temp/"

UNZIPTOOL=unzip

WGETTOOL="/usr/bin/wget"

export PGBIN=/usr/lib/postgresqgl/9.4/bin

-— variables used by psgl: https://www.postgresqgl.org/docs/current/static/libpg-envars.html
export PGPORT=5432

export PGHOST=localhost

PostGIS 3.1.8 Manual 150/ 847

export PGUSER=postgres

export PGPASSWORD=yourpasswordhere
export PGDATABASE=geocoder
PSQL=${PGBIN} /psqgl

SHP2PGSQL=$ {PGBIN}/shp2pgsql

cd /gisdata

cd /gisdata

wget ftp://ftp2.census.gov/geo/tiger/TIGER2015/PLACE/tl_*_25_* —-no-parent —--relative —-- ¢
recursive --level=2 --accept=zip —--mirror --reject=html

cd /gisdata/ftp2.census.gov/geo/tiger/TIGER2015/PLACE

rm —f ${TMPDIR}/*.x*

See Also

Section 2.4.1, Loader_Generate_Nation_Script, Drop_State_Tables_Generate_Script

4.8.1.11 Loader_Generate_Nation_Script

Loader_Generate_Nation_Script — Generates a shell script for the specified platform that loads in the county and state lookup
tables.

Synopsis

text loader_generate_nation_script(text os);

Description

Generates a shell script for the specified platform that loads in the county_all, county_all_lookup, state_all tables

into t iger_data schema. These inherit respectively from the county, county_lookup, state tablesin t iger schema.

It uses unzip on Linux (7-zip on Windows by default) and wget to do the downloading. It uses Section 4.1.5.2 to load in the data.

It uses the following control tables t iger . loader_platform tiger.loader_variables,andtiger.loader_lookupt

to control the process and different OS shell syntax variations.

1. loader_variables keeps track of various variables such as census site, year, data and staging schemas

2. loader_platform profiles of various platforms and where the various executables are located. Comes with windows
and linux/unix. More can be added.

3. loader_lookuptables each record defines a kind of table (state, county), whether to process records in it and how
to load them in. Defines the steps to import data, stage data, add, removes columns, indexes, and constraints for each.
Each table is prefixed with the state and inherits from a table in the tiger schema. e.g. creates tiger_data.ma_faces
which inherits from tiger. faces

Enhanced: 2.4.1 zip code 5 tabulation area (zcta5) load step was fixed and when enabled, zcta5 data is loaded as a single table
called zcta5_all as part of the nation script load.

Availability: 2.1.0

$ Note

Na-li'! If you want zip code 5 tabulation area (zcta5) to be included in your nation script load, do the following:

UPDATE tiger.loader_lookuptables SET load = true WHERE table_name = 'zcta51l0';

PostGIS 3.1.8 Manual 151 /847

N:’""! Note

If you were running tiger_2010 version and you want to reload as state with newer tiger data, you’ll need to for the
very first load generate and run drop statements Drop_Nation_Tables_Generate_Script before you run this script.

Examples

Generate script script to load nation data Windows.

SELECT loader_generate_nation_script ('windows') ;

Generate script to load up data for Linux/Unix systems.

SELECT loader_generate_nation_script('sh');

See Also

Loader_Generate_Script, Drop_Nation_Tables_Generate_Script

4.8.1.12 Missing_Indexes_Generate_Script

Missing_Indexes_Generate_Script — Finds all tables with key columns used in geocoder joins that are missing indexes on those
columns and will output the SQL DDL to define the index for those tables.

Synopsis

text Missing_Indexes_Generate_Script();

Description

Finds all tables in tiger and tiger_data schemas with key columns used in geocoder joins that are missing indexes on
those columns and will output the SQL DDL to define the index for those tables. This is a helper function that adds new indexes
needed to make queries faster that may have been missing during the load process. As the geocoder is improved, this function
will be updated to accommodate new indexes being used. If this function outputs nothing, it means all your tables have what we
think are the key indexes already in place.

Availability: 2.0.0

Examples

SELECT missing_indexes_generate_script ();

—— output: This was run on a database that was created before many corrections were made to ¢
the loading script —--—-—

CREATE INDEX idx_tiger_county_countyfp ON tiger.county USING btree (countyfp);

CREATE INDEX idx_tiger_cousub_countyfp ON tiger.cousub USING btree (countyfp);

CREATE INDEX idx_tiger_edges_tfidr ON tiger.edges USING btree (tfidr);

CREATE INDEX idx_tiger_edges_tfidl ON tiger.edges USING btree(tfidl);

CREATE INDEX idx_tiger_zip_lookup_all zip ON tiger.zip_lookup_all USING btree(zip);

CREATE INDEX idx_tiger_data_ma_county_countyfp ON tiger_data.ma_county USING btree (countyfp
)

CREATE INDEX idx_tiger_data_ma_cousub_countyfp ON tiger_data.ma_cousub USING btree (countyfp <+
)i

CREATE INDEX idx_tiger_data_ma_edges_countyfp ON tiger_data.ma_edges USING btree (countyfp);

CREATE INDEX idx_tiger_data_ma_faces_countyfp ON tiger_data.ma_faces USING btree (countyfp);

PostGIS 3.1.8 Manual 152 / 847

See Also

Loader_Generate_Script, Install_Missing_Indexes

4.8.1.13 Normalize_Address

Normalize_Address — Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type
standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data packaged with
the tiger_geocoder (no need for tiger census data).

Synopsis

norm_addy normalize_address(varchar in_address);

Description

Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street,
streetname etc. broken into separate fields. This is the first step in the geocoding process to get all addresses into normalized
postal form. No other data is required aside from what is packaged with the geocoder.

This function just uses the various direction/state/suffix lookup tables preloaded with the tiger_geocoder and located in the
tiger schema, so it doesn’t need you to download tiger census data or any other additional data to make use of it. You may find
the need to add more abbreviations or alternative namings to the various lookup tables in the t iger schema.

It uses various control lookup tables located in t i ger schema to normalize the input address.

Fields in the norm_addy type object returned by this function in this order where () indicates a field required by the geocoder,
[]1 indicates an optional field:

(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip] [parsed]
[zip4] [address_alphanumeric]

Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric.

1. address is an integer: The street number

2. predirAbbrev is varchar: Directional prefix of road such as N, S, E, W etc. These are controlled using the direction_look
table.

3. streetName varchar

4. streetTypelAbbrev varchar abbreviated version of street type: e.g. St, Ave, Cir. These are controlled using the
street_type_lookup table.

5. postdirAbbrev varchar abbreviated directional suffice of road N, S, E, W etc. These are controlled using the direction_lo
table.

internal varchar internal address such as an apartment or suite number.
location varchar usually a city or governing province.

stateAbbrev varchar two character US State. e.g MA, NY, MI. These are controlled by the state_lookup table.

© ® =N

z1p varchar 5-digit zipcode. e.g. 021009.

10. parsed boolean - denotes if addess was formed from normalize process. The normalize_address function sets this to true
before returning the address.

11. zip4 last 4 digits of a 9 digit zip code. Availability: PostGIS 2.4.0.

12. address_alphanumeric Full street number even if it has alpha characters like 17R. Parsing of this is better using
Pagc_Normalize_Address function. Availability: PostGIS 2.4.0.

PostGIS 3.1.8 Manual 153/ 847

Examples

Output select fields. Use Pprint_Addy if you want a pretty textual output.

SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev
FROM (SELECT address, normalize_address (address) As na
FROM addresses_to_geocode) As g;

orig | streetname | streettypeabbrev
___ +_______________+__________________
28 Capen Street, Medford, MA | Capen | St
124 Mount Auburn St, Cambridge, Massachusetts 02138 | Mount Auburn | St
950 Main Street, Worcester, MA 01610 | Main | St
529 Main Street, Boston MA, 02129 | Main | St
77 Massachusetts Avenue, Cambridge, MA 02139 | Massachusetts | Ave
\ |

25 Wizard of Oz, Walaford, KS 99912323 Wizard of Oz

See Also

Geocode, Pprint_Addy

4.8.1.14 Pagc_Normalize_Address

Pagc_Normalize_Address — Given a textual street address, returns a composite norm_addy type that has road suffix, prefix
and type standardized, street, streetname etc. broken into separate fields. This function will work with just the lookup data
packaged with the tiger_geocoder (no need for tiger census data). Requires address_standardizer extension.

Synopsis

norm_addy pagc_normalize_address(varchar in_address);

Description

Given a textual street address, returns a composite norm_addy type that has road suffix, prefix and type standardized, street,
streetname etc. broken into separate fields. This is the first step in the geocoding process to get all addresses into normalized
postal form. No other data is required aside from what is packaged with the geocoder.

This function just uses the various pagc_* lookup tables preloaded with the tiger_geocoder and located in the t iger schema,
so it doesn’t need you to download tiger census data or any other additional data to make use of it. You may find the need to add
more abbreviations or alternative namings to the various lookup tables in the t iger schema.

It uses various control lookup tables located in t i ger schema to normalize the input address.

Fields in the norm_addy type object returned by this function in this order where () indicates a field required by the geocoder,
[]1 indicates an optional field:

There are slight variations in casing and formatting over the Normalize_Address.

Availability: 2.1.0

This method needs address_standardizer extension.
(address) [predirAbbrev] (streetName) [streetTypeAbbrev] [postdirAbbrev] [internal] [location] [stateAbbrev] [zip]

The native standardaddr of address_standardizer extension is at this time a bit richer than norm_addy since its designed to support
international addresses (including country). standardaddr equivalent fields are:

house_num,predir, name, suftype, sufdir, unit, city, state, postcode

Enhanced: 2.4.0 norm_addy object includes additional fields zip4 and address_alphanumeric.

PostGIS 3.1.8 Manual 154 / 847

1. address is an integer: The street number

2. predirAbbrev is varchar: Directional prefix of road such as N, S, E, W etc. These are controlled using the direction_look
table.

3. streetName varchar

4. streetTypeAbbrev varchar abbreviated version of street type: e.g. St, Ave, Cir. These are controlled using the
street_type_lookup table.

5. postdirAbbrev varchar abbreviated directional suffice of road N, S, E, W etc. These are controlled using the direction_1lo
table.

internal varchar internal address such as an apartment or suite number.
location varchar usually a city or governing province.

stateAbbrev varchar two character US State. e.g MA, NY, MI. These are controlled by the state_lookup table.

o ® 2o

z1p varchar 5-digit zipcode. e.g. 021009.

10. parsed boolean - denotes if addess was formed from normalize process. The normalize_address function sets this to true
before returning the address.

11. zip4 last 4 digits of a 9 digit zip code. Availability: PostGIS 2.4.0.

12. address_alphanumeric Full street number even if it has alpha characters like 17R. Parsing of this is better using
Pagc_Normalize_Address function. Availability: PostGIS 2.4.0.

Examples

Single call example

SELECT addy.*
FROM pagc_normalize_address ('9000 E ROO ST STE 999, Springfield, CO') AS addy;

address | predirabbrev | streetname | streettypeabbrev | postdirabbrev | internal | —
location | stateabbrev | zip | parsed
————————— e e e At et e
9000 | E | ROO | ST | | SUITE 999 | <«
SPRINGFIELD | CO | | t

Batch call. There are currently speed issues with the way postgis_tiger_geocoder wraps the address_standardizer. These will
hopefully be resolved in later editions. To work around them, if you need speed for batch geocoding to call generate a normaddy
in batch mode, you are encouraged to directly call the address_standardizer standardize_address function as shown below which
is similar exercise to what we did in Normalize_Address that uses data created in Geocode.

WITH g AS (SELECT address, ROW((sa).house_num, (sa).predir, (sa) .name
, (sa).suftype, (sa).sufdir, (sa).unit , (sa).city, (sa).state, (sa).postcode, true):: &
norm_addy As na

FROM (SELECT address, standardize_address('tiger.pagc_lex'
, 'tiger.pagc_gaz'
, 'tiger.pagc_rules', address) As sa
FROM addresses_to_geocode) As Qg)

SELECT address As orig, (g.na).streetname, (g.na).streettypeabbrev

FROM g;

orig | streetname | streettypeabbrev
___ +_______________+__________________
529 Main Street, Boston MA, 02129 | MAIN | ST

77 Massachusetts Avenue, Cambridge, MA 02139 | MASSACHUSETTS | AVE

PostGIS 3.1.8 Manual 155/ 847

25 Wizard of 0Oz, Walaford, KS 99912323 | WIZARD OF |

26 Capen Street, Medford, MA | CAPEN | ST
124 Mount Auburn St, Cambridge, Massachusetts 02138 | MOUNT AUBURN | ST
950 Main Street, Worcester, MA 01610 | MAIN | ST

See Also

Normalize Address, Geocode

4.8.1.15 Pprint_Addy

Pprint_Addy — Given a norm_addy composite type object, returns a pretty print representation of it. Usually used in conjunc-
tion with normalize_address.

Synopsis

varchar pprint_addy(norm_addy in_addy);

Description
Given a norm_addy composite type object, returns a pretty print representation of it. No other data is required aside from what
is packaged with the geocoder.

Usually used in conjunction with Normalize_Address.

Examples

Pretty print a single address

SELECT pprint_addy (normalize_address('202 East Fremont Street, Las Vegas, Nevada 89101')) <
As pretty_address;
pretty_address

202 E Fremont St, Las Vegas, NV 89101

Pretty print address a table of addresses

SELECT address As orig, pprint_addy (normalize_address (address)) As pretty_address
FROM addresses_to_geocode;

orig pretty_address
___ +___
529 Main Street, Boston MA, 02129 | 529 Main St, Boston MA, 02129
77 Massachusetts Avenue, Cambridge, MA 02139 | 77 Massachusetts Ave, Cambridge, MA <+
02139
28 Capen Street, Medford, MA | 28 Capen St, Medford, MA
124 Mount Auburn St, Cambridge, Massachusetts 02138 | 124 Mount Auburn St, Cambridge, MA <>
02138
950 Main Street, Worcester, MA 01610 | 950 Main St, Worcester, MA 01610
See Also

Normalize_Address

—

PostGIS 3.1.8 Manual 156 / 847

4.8.1.16 Reverse_Geocode

Reverse_Geocode — Takes a geometry point in a known spatial ref sys and returns a record containing an array of theoretically
possible addresses and an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets.

Synopsis

record Reverse_Geocode(geometry pt, boolean include_strnum_range=false, geometry[] OUT intpt, norm_addy[] OUT addy,
varchar[] OUT street);

Description

Takes a geometry point in a known spatial ref and returns a record containing an array of theoretically possible addresses and
an array of cross streets. If include_strnum_range = true, includes the street range in the cross streets. include_strnum_range
defaults to false if not passed in. Addresses are sorted according to which road a point is closest to so first address is most likely
the right one.

Why do we say theoretical instead of actual addresses. The Tiger data doesn’t have real addresses, but just street ranges. As such
the theoretical address is an interpolated address based on the street ranges. Like for example interpolating one of my addresses
returns a 26 Court St. and 26 Court Sq., though there is no such place as 26 Court Sq. This is because a point may be at a corner
of 2 streets and thus the logic interpolates along both streets. The logic also assumes addresses are equally spaced along a street,
which of course is wrong since you can have a municipal building taking up a good chunk of the street range and the rest of the
buildings are clustered at the end.

Note: Hmm this function relies on Tiger data. If you have not loaded data covering the region of this point, then hmm you will
get a record filled with NULLS.

Returned elements of the record are as follows:

1. intpt is an array of points: These are the center line points on the street closest to the input point. There are as many
points as there are addresses.

2. addy is an array of norm_addy (normalized addresses): These are an array of possible addresses that fit the input point.
The first one in the array is most likely. Generally there should be only one, except in the case when a point is at the corner
of 2 or 3 streets, or the point is somewhere on the road and not off to the side.

3. street an array of varchar: These are cross streets (or the street) (streets that intersect or are the street the point is
projected to be on).

Enhanced: 2.4.1 if optional zcta5 dataset is loaded, the reverse_geocode function can resolve to state and zip even if the specific
state data is not loaded. Refer to Loader_Generate_Nation_Script for details on loading zcta5 data.

Availability: 2.0.0

Examples

Example of a point at the corner of two streets, but closest to one. This is approximate location of MIT: 77 Massachusetts Ave,
Cambridge, MA 02139 Note that although we don’t have 3 streets, PostgreSQL will just return null for entries above our upper
bound so safe to use. This includes street ranges

SELECT pprint_addy(r.addy[1l]) As stl, pprint_addy(r.addy[2]) As st2, pprint_addy(r.addy[3]) ¢
As st3,
array_to_string(r.street, ',') As cross_streets
FROM reverse_geocode (ST_GeomFromText ('POINT (-71.093902 42.359446)"',4269),true) As r

’

result

stl | st2 | st3 | cross_streets

PostGIS 3.1.8 Manual 157 / 847

——— Rt it e

67 Massachusetts Ave, Cambridge, MA 02139 | | | 67 — 127 Massachusetts Ave, 32 - 88 <
Vassar St

Here we choose not to include the address ranges for the cross streets and picked a location really really close to a corner of 2
streets thus could be known by two different addresses.

SELECT pprint_addy(r.addy[1l]) As stl, pprint_addy(r.addy[2]) As st2,
pprint_addy (r.addy[3]) As st3, array_to_string(r.street, ',') As cross_str
FROM reverse_geocode (ST_GeomFromText ('POINT (-71.06941 42.34225)"',4269)) As r;

result

5 Bradford St, Boston, MA 02118 | 49 Waltham St, Boston, MA 02118 | | Waltham St

For this one we reuse our geocoded example from Geocode and we only want the primary address and at most 2 cross streets.

SELECT actual_addr, lon, lat, pprint_addy((rg).addy[l]) As int_addrl,
(rg) .street[1] As crossl, (rg).street[2] As cross2

FROM (SELECT address As actual_addr, lon, lat,
reverse_geocode (ST_SetSRID(ST_Point (lon,lat),4326)) As rg
FROM addresses_to_geocode WHERE rating > -1) As foo;

actual_addr | lon | lat | —
int_addrl | crossl —
cross2
——— e et i
529 Main Street, Boston MA, 02129 | =71.07181 | 42.38359 | 527 Main St, +—
Boston, MA 02129 | Medford St |
77 Massachusetts Avenue, Cambridge, MA 02139 | =71.09428 | 42.35988 | 77 <«
Massachusetts Ave, Cambridge, MA 02139 | Vassar St |
26 Capen Street, Medford, MA | =71.12377 | 42.41101 | 9 Edison Ave, <
Medford, MA 02155 | Capen St | Tesla Ave
124 Mount Auburn St, Cambridge, Massachusetts 02138 | -71.12304 | 42.37328 | 3 University <+
Rd, Cambridge, MA 02138 | Mount Auburn St |
950 Main Street, Worcester, MA 01610 | =71.82368 | 42.24956 | 3 Maywood St, <
Worcester, MA 01603 | Main St | Maywood P1l

See Also

Pprint_Addy, Geocode, Loader_Generate_Nation_Script

4.8.1.17 Topology Load Tiger

Topology_lLoad_Tiger — Loads a defined region of tiger data into a PostGIS Topology and transforming the tiger data to spatial
reference of the topology and snapping to the precision tolerance of the topology.

Synopsis

text Topology_Load_Tiger(varchar topo_name, varchar region_type, varchar region_id);

PostGIS 3.1.8 Manual 158 / 847

Description

Loads a defined region of tiger data into a PostGIS Topology. The faces, nodes and edges are transformed to the spatial reference
system of the target topology and points are snapped to the tolerance of the target topology. The created faces, nodes, edges
maintain the same ids as the original Tiger data faces, nodes, edges so that datasets can be in the future be more easily reconciled
with tiger data. Returns summary details about the process.

This would be useful for example for redistricting data where you require the newly formed polygons to follow the center lines
of streets and for the resulting polygons not to overlap.

s Note
N"‘l"! This function relies on Tiger data as well as the installation of the PostGIS topology module. For more information, refer
to Section 4.6 and Section 2.2.3. If you have not loaded data covering the region of interest, then no topology records
will be created. This function will also fail if you have not created a topology using the topology functions.

i

Note

Most topology validation errors are a result of tolerance issues where after transformation the edges points don’t quite
line up or overlap. To remedy the situation you may want to increase or lower the precision if you get topology validation
failures.

Note!

Required arguments:

1. topo_name The name of an existing PostGIS topology to load data into.

2. region_type The type of bounding region. Currently only place and county are supported. Plan is to have several
more. This is the table to look into to define the region bounds. e.g tiger.place, tiger.county

3. region_id This is what TIGER calls the geoid. It is the unique identifier of the region in the table. For place it is the
plcidfp columnin tiger.place. For county itis the cntyidfp columnin tiger.county

Availability: 2.0.0

Example: Boston, Massachusetts Topology

Create a topology for Boston, Massachusetts in Ma