SRecord

Reference Manual

Scott Finneran <scottfinneran @yahoo.com.au>
Peter Miller <pmiller @opensource.org.au>

not, see <http://www.gnu.org/licenses/>.

NAME
SRecord — manipulate EPROM load files

DESCRIPTION
The SRecord package is a collection of powerful tools for manipulating EPROM load files.

I wrote SRecord because when I was looking for programs to manipulate EPROM load files, I could not

This dotudent desoribbs SRetwotd sasiGndlodly did a few of the things I needed. SRecord is written in C++

and wa @ﬁ%ﬂ@@%ﬁttﬁ%a@@@% the file format flexibility and arbitrary filter chaining. Adding more
file formats and filters is relatively simple.

The File Formats
The SRecord package understands a number of file formats:
Ascii-Hex
The ascii-hex format is understood for both reading and writing. (Also known as the ascii-space-

fi .
This document descri Eéthe SRecord program, and the SRecord program itself, are

ASME ¢ Rpsulle Sonon P ooty i RS &6aiitn i R IR Sapfinps the data. This can

d h . This*t t t b d.
oy B N S P A s o o anot be rea
Atmel Generic

This program i%v l}i]is%%) S0 vlvsaPé?d%%d O ALRShaERifsR Pé%r'nll6é%f§“‘i‘ R h RO Asline fhd
GNU General Public License as published by the Free Software Foundation; either version 3 of

the Licésﬁ%g}%r é%ﬁ&ﬁi?gf‘%ﬁféﬁﬂﬁ?& ‘t/% Pg%l ce a serices of DATA statements containing the data. This

ng data into BASIC programs. This format cannot be read.

This pré3am isRiPaBite ahbail bosadAad W be useful, but WITHOUT ANY WARRANTY;
withoutBeRegethe implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICU-
LAR PURPOSE1%5dg freesNePaesibal posiven Goen foratin deietd and written.

C It is also possible to write a C array declaration which contains the data. This can be useful when

You should have$deRidd dESH¥OMRAIGNUNGn eras PIbliE s Euma st Reittidhis program. If

COE The Xilinx Coefficient File Format (.coe) is understood for output only.
Cosmac The RCA Cosmac Elf format is understood for both reading and writing.

Read MeTBRERbry Read Me(SRecord)
The DEC Binary (XXDP) format is understood for both reading and writing.

Elektor Monitor (EMONS52)
The EMONS?2 format is understood for both reading and writing.

Fairchild Fairbug
The Fairchild Fairbug format is understood for both reading and writing.

Formatted Binary
The Formatted Binary format is understood for both reading and writing.

Four Packed Code (FPC)
The FPC format is understood for both reading and writing.

Hexdump
It is possible to get a simple hexdump as output.

HP64000 Absolute
The HP64000 Absolute is understood for reading only.

IDT/sim The IDT/sim binary file format is understood for both reading and writing.

Intel The Intel hexadecimal format is understood for both reading and writing. (Also known as the
Intel MCS-86 Object format.)

Reference Manual SRecord 0

Table of Contents(SRecord)

srec_cat(1)
srec_cmp(1)
srec_examples(1)
srec_info(1)
srec_input(1)
srec_license(1)
srecord_license(3)
srec_aomf(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_binary(5)
srec_brecord(5)
srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)
srec_fairchild(5)
srec_fastload(5)
srec_formatted_binary(5)
srec_forth(5)
srec_fpc(5)
srec_hp64k(5)
srec_idt(5)
srec_intel(5)
srec_intel16(5)
srec_logisim(5)
srec_mem(5)
srec_mif(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)
srec_msbin(5)
srec_needham(5)
srec_o0s65v(5)
srec_ppb(5)
srec_ppx(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_stewie(5)
srec_tektronix(5)
srec_tektronix_extended(5)
srec_ti_tagged(5)
srec_ti_tagged_16(5)
srec_ti_txt(5)
srec_trs80(5)
srec_vmem(5)
srec_wilson(5)

Reference Manual

Table of Contents(SRecord)

The README file

Release Notes .

How to build SRecord .

How to add a new file format .

How to add a new filter .

Manipulate EPROM load files .
Compare two EPROM load files for equalrty
Examples of how to use SRecord .
Information about EPROM load files

Input file specifications

GNU General Public License . .

GNU Lesser General Public License

Intel Absolute Object Module Format .
Ascii-Hex file format

Atmel Generic file format .

Binary file format

Freescale MC68EZ328 Dragonball bootstrap record format
Xilinx Coefficient File Format

RCA Cosmac Elf file format .

DEC Binary (XXDP) file format .

Elektor Monitor (EMONS?2) file format

Fairchild Fairbug file format .

LSI Logic Fast Load file format .

Formatted Binary file format .

FORTH file format . .

Four Packed Code (FPC) file format

HP64000 Absolute Data Format .

IDT/sim binary file format .

Intel Hexadecimal object file format specrﬁcatron
Intel Hexadecimal 16-bit file format specification
format Logisim EPROM load files

Lattice Memory Initialization format

Memory Initialization File (MIF) format
MIPS-Flash file format .

MOS Technology file format . .
Motorola S-Record hexadecimal file format
Windows CE Binary Image Data Format .
Needham EMP-series programmer ASCII file format
0S65V Loader file format . .

Stag Prom Programmer binary format .

Stag Prom Programmer hexadecimal format .
Signetics file format .

SPASM file format .

Spectrum file format

Stewie’s binary file format .

Tektronix hexadecimal file format .o
Tektronix Extended hexadecimal file format .
Texas Instruments Tagged (SDSMAC) file format
Texas Instruments Tagged (SDSMAC 320) file format .
Texas Instruments ti-txt (MSP430) file format
Radio Shack TRS-80 object file format specification
VMEM file format e

Wilson file format

SRecord

15
19
23
26
34
37
50
53
67
77
80
82
83
84
86
87
88
89
90
92
93
94
95
96
99
101
102
108
112
113
115
118
120
122
124
126
127
128
129
130
132
133
134
136
138
139
141
143
144
146
148

1001

Table of Contents(SRecord)

srec_info(1)
srec_hp64k(5)
srec_aomf(5)
srec_aomf(5)
srec_needham(5)

srec_ascii_hex(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_atmel_generic(5)
srec_binary(5)
srec_dec_binary(5)
srec_formatted_binary(5)
srec_binary(5)
srec_formatted_binary(5)
srec_idt(5)
srec_stewie(5)
srec_ppb(5)
srec_msbin(5)
srec_dec_binary(5)
srec_intel16(5)
srec_brecord(5)

srec_brecord(5)

srec_cat(1)
srec_msbin(5)
srec_cmp(1)

srec_fpc(5)
srec_coe(5)
srec_coe(5)
srec_cmp(1)
srec_cosmac(5)
srec_cosmac(5)
srec_hp64k(5)
srec_msbin(5)
srec_dec_binary(5)

srec_dec_binary(5)
srec_brecord(5)
srec_emon52(5)
srec_cosmac(5)
srec_emon52(5)

srec_emon52(5)
srec_needham(5)
srec_cat(1)
srec_info(1)
srec_logisim(5)
srecord(3)
srec_cmp(1)

Reference Manual

50
99
80
80
126

82
82
83
83
84
89
94
84
94
101
134
128
124
89
108
86

86

26
124
34

96
87
87
34
88
88
99
124
89

89
86
90
88
90

90
126
26
50
112

34

srec info - information

srec hp64k - HP64000

srec aomf - Intel

srec

srec needham - Needham EMP-series
programmer

srec

srec ascii hex -

srec

srec atmel generic -

srec

srec dec

srec formatted

srec binary -

srec formatted binary - Formatted
srec idt - IDT/sim

srec stewie - Stewie’s

srec ppb - Stag Prom Programmer
srec msbin - Windows CE

srec dec binary - DEC

srec intel16 - Intel Hexadecimal 16-
srec brecord - Freescale MC68EZ328
Dragonball

srec

srec
srec msbin - Windows

Srec

srec fpc - four packed

srec
srec coe - Xilinx
srec cmp -

srec

srec cosmac - RCA

srec hp64k - HP64000 Absolute

srec msbin - Windows CE Binary Image
srec

srec dec binary -

srec brecord - Freescale MC68EZ328
srec emon5?2 -

srec cosmac - RCA Cosmac

srec

srec emon52 - Elektor Monitor (
srec needham - Needham

srec cat - manipulate

srec info - information about
srec logisim - format Logisim
srecord - library to manipulate
srec cmp - compare two

SRecord

Table of Contents(SRecord)

about EPROM load files

Absolute Data Format

Absolute Object Module Format

aomf - Intel Absolute Object Module Form
ASCII file format

ascii hex - Ascii-Hex file format
Ascii-Hex file format

atmel generic - Atmel Generic file format
Atmel Generic file format

binary - binary file format

binary - DEC Binary (XXDP) file format
binary - Formatted Binary file format
binary file format

Binary file format

binary file format

binary file format

binary format

Binary Image Data Format

Binary (XXDP) file format

bit file format specification

bootstrap record format

brecord - Freescale MC68EZ328 Dragonba
bootstrap record format

cat - manipulate EPROM load files

CE Binary Image Data Format

cmp - compare two EPROM load files for
equality

code file format

coe - Xilinx Coefficient File Format
Coefficient File Format

compare two EPROM load files for equalit;
cosmac - RCA Cosmac Elf file format
Cosmac Elf file format

Data Format

Data Format

dec binary - DEC Binary (XXDP) file
format

DEC Binary (XXDP) file format
Dragonball bootstrap record format
Elektor Monitor (EMONS52) file format
Elf file format

emon5?2 - Elektor Monitor (EMONS52) file
format

EMONS52) file format

EMP-series programmer ASCII file format
EPROM load files

EPROM load files

EPROM load files

EPROM load files

EPROM load files for equality

1002

Table of Contents(SRecord)

srec_cmp(1)

srec_examples(1)
srec_examples(1)
srec_tektronix_extended(5)

srec_tektronix_extended(5)
srec_brecord(5)
srec_fairchild(5)
srec_fairchild(5)
srec_fairchild(5)
srec_fastload(5)
srec_fastload(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_binary(5)
srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)
srec_fairchild(5)
srec_fastload(5)
srec_formatted_binary(5)
srec_forth(5)
srec_fpc(5)
srec_idt(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)

srec_needham(5)

srec_o0s65v(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_stewie(5)
srec_tektronix(5)
srec_tektronix_extended(5)

srec_ti_tagged(5)
srec_ti_tagged_16(5)
srec_ti_txt(5)

srec_vmem(5)
srec_wilson(5)
srec_intel(5)
srec_intel16(5)
srec_trs80(5)
srec_mif(5)
srec_input(1)

Reference Manual

34

37
37
138

138
86
92
92
92
93
93
82
83
84
87
88
89
90
92
93
94
95
96

101

118

120

122

126

127
130
132
133
134
136
138

139

141

143

146
148
102
108
144
115

53

srec cmp - compare two EPROM load files
for

srec

srec examples -

srec tektronix

srec tektronix extended - Tektronix

srec brecord - Freescale MC68

srec fairchild - Fairchild

srec

srec fairchild -

srec fastload - LSI Logic

srec

srec ascii hex - Ascii-Hex

srec atmel generic - Atmel Generic
srec binary - binary

srec coe - Xilinx Coefficient

srec cosmac - RCA Cosmac EIf

srec dec binary - DEC Binary (XXDP)
srec emonS52 - Elektor Monitor (EMONS52)
srec fairchild - Fairchild Fairbug

srec fastload - LSI Logic Fast Load
srec formatted binary - Formatted Binary
srec forth - FORTH

srec fpc - four packed code

srec idt - IDT/sim binary

srec mips flash - MIPS-Flash

srec mos tech - MOS Technology

srec motorola - Motorola S-Record
hexadecimal

srec needham - Needham EMP-series
programmer ASCII

srec 0s65v - OS65V Loader

srec signetics - Signetics

srec spasm - SPASM

srec spectrum - Spectrum

srec stewie - Stewie’s binary

srec tektronix - Tektronix hexadecimal
srec tektronix extended - Tektronix
Extended hexadecimal

srec ti tagged - Texas Instruments Tagged
(SDSMAC)

srec ti tagged 16 - Texas Instruments Tagged
(SDSMAC 320)

srec ti txt - Texas Instruments ti-txt
(MSP430)

srec vmem - vimem

srec wilson - wilson

srec intel - Intel Hexadecimal object
srec intel16 - Intel Hexadecimal 16-bit
srec trs80 - Radio Shack TRS-80 object
srec mif - Memory Initialization
SRecord - input

SRecord

Table of Contents(SRecord)

equality

examples - examples of how to use SRecor
examples of how to use SRecord

extended - Tektronix Extended hexadecima
file format

Extended hexadecimal file format

EZ328 Dragonball bootstrap record format
Fairbug file format

fairchild - Fairchild Fairbug file format
Fairchild Fairbug file format

Fast Load file format

fastload - LSI Logic Fast Load file format
file format

file format

file format

File Format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format

file format
file format
file format
file format
file format
file format
file format

file format
file format
file format

file format

file format

file format specification
file format specification
file format specification
File (MIF) format

file specifications

1003

Table of Contents(SRecord)

srec_cat(1)
srec_info(1)
srec_logisim(5)
srecord(3)
srec_cmp(1)
srec_mips_flash(5)
srec_mips_flash(5)
srec_cmp(1)
srec_aomf(5)
srec_ascii_hex(5)
srec_atmel_generic(5)
srec_binary(5)
srec_brecord(5)

srec_coe(5)
srec_cosmac(5)
srec_dec_binary(5)
srec_emon52(5)

srec_fairchild(5)
srec_fastload(5)
srec_formatted_binary(5)

srec_forth(5)
srec_fpc(5)
srec_hp64k(5)
srec_idt(5)
srec_mem(5)
srec_mif(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)

srec_msbin(5)
srec_needham(5)
srec_o0s65v(5)
srec_ppb(5)
srec_ppx(5)
srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_stewie(5)
srec_tektronix(5)
srec_tektronix_extended(5)

srec_ti_tagged(5)

srec_ti_tagged_16(5)

Reference Manual

26
50
112

34
118
118

34

80

82

83

84

86

87
88
89
90

92
93
94

95
96
99
101
113
115
118
120
122

124

126

127
128
129

130
132
133
134
136
138

139

141

srec cat - manipulate EPROM load

srec info - information about EPROM load
srec logisim - format Logisim EPROM load
srecord - library to manipulate EPROM load
srec cmp - compare two EPROM load

srec mips

srec mips flash - MIPS-

srec cmp - compare two EPROM load files
srec aomf - Intel Absolute Object Module
srec ascii hex - Ascii-Hex file

srec atmel generic - Atmel Generic file
srec binary - binary file

srec brecord - Freescale MC68EZ328
Dragonball bootstrap record

srec coe - Xilinx Coefficient File

srec cosmac - RCA Cosmac EIf file

srec dec binary - DEC Binary (XXDP) file
srec emon52 - Elektor Monitor (EMONS52)
file

srec fairchild - Fairchild Fairbug file

srec fastload - LSI Logic Fast Load file
srec formatted binary - Formatted Binary
file

srec forth - FORTH file

srec fpc - four packed code file

srec hp64k - HP64000 Absolute Data

srec idt - IDT/sim binary file

srec mem - Lattice Memory Initialization
srec mif - Memory Initialization File (MIF)
srec mips flash - MIPS-Flash file

srec mos tech - MOS Technology file

srec motorola - Motorola S-Record
hexadecimal file

srec msbin - Windows CE Binary Image
Data

srec needham - Needham EMP-series
programmer ASCII file

srec 0s65v - OS65V Loader file

srec ppb - Stag Prom Programmer binary
srec ppx - Stag Prom Programmer
hexadecimal

srec signetics - Signetics file

srec spasm - SPASM file

srec spectrum - Spectrum file

srec stewie - Stewie’s binary file

srec tektronix - Tektronix hexadecimal file
srec tektronix extended - Tektronix
Extended hexadecimal file

srec ti tagged - Texas Instruments Tagged
(SDSMAC) file

srec ti tagged 16 - Texas Instruments Tagged
(SDSMAC 320) file

SRecord

Table of Contents(SRecord)

files

files

files

files

files for equality
flash - MIPS-Flash file format
Flash file format
for equality
Format

format

format

format

format

Format
format
format
format

format
format
format

format
format
Format
format
format
format
format
format
format

Format
format
format
format
format
format
format
format
format
format
format

format

format

1004

Table of Contents(SRecord)

srec_ti_txt(5)

srec_vmem(5)
srec_wilson(5)
srec_logisim(5)
srec_intel(5)
srec_intel16(5)
srec_trs80(5)
srec_formatted_binary(5)

srec_formatted_binary(5)
srec_forth(5)
srec_forth(5)

srec_fpc(5)

srec_fpc(5)
srec_brecord(5)

srecord_license(3)
srec_atmel_generic(5)
srec_atmel_generic(5)
srecord_license(3)
srec_ascii_hex(5)
srec_ascii_hex(5)
srec_intel16(5)
srec_motorola(5)
srec_tektronix(5)
srec_tektronix_extended(5)

srec_ppx(5)
srec_intel(5)
srec_examples(1)
srec_hp64k(5)
srec_hp64k(5)
srec_idt(5)
srec_idt(5)
srec_msbin(5)
srec_info(1)
srec_info(1)
srec_mif(5)
srec_mem(5)
srec_input(1)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_ti_txt(5)

srec_intel(5)

srec_aomf(5)
srec_intel16(5)

srec_intel(5)

Reference Manual

143

146
148
112
102
108
144

94

94
95
95
96
96
86

77
83
83
77
82
82
108
122
136
138

129
102
37
99
99
101
101
124
50
50
115
113
53
141

139
143
102

80
108

102

srec ti txt - Texas Instruments ti-txt
(MSP430) file

srec vmem - vmem file

srec wilson - wilson file

srec logisim -

srec intel - Intel Hexadecimal object file
srec intel16 - Intel Hexadecimal 16-bit file
srec trs80 - Radio Shack TRS-80 object file
srec

srec formatted binary -
srec

srec forth -

srec fpc -

srec

srec brecord -

LGPG - GNU Lesser

srec atmel

srec atmel generic - Atmel

LGPG -

srec ascii

srec ascii hex - Ascii-

srec intel16 - Intel

srec motorola - Motorola S-Record
srec tektronix - Tektronix

srec tektronix extended - Tektronix
Extended

srec ppx - Stag Prom Programmer
srec intel - Intel

srec examples - examples of

srec hp64k -

srec

srec

srec idt -

srec msbin - Windows CE Binary
srec

srec info -

srec mif - Memory

srec mem - Lattice Memory
SRecord -

srec ti tagged 16 - Texas

srec ti tagged - Texas
srec ti txt - Texas

Srec

srec aomf -
srec intel16 -

srec intel -

SRecord

Table of Contents(SRecord)

format

format

format

format Logisim EPROM load files
format specification

format specification

format specification

formatted binary - Formatted Binary file
format

Formatted Binary file format

forth - FORTH file format

FORTH file format

four packed code file format

fpc - four packed code file format
Freescale MC68EZ328 Dragonball
bootstrap record format

General Public License

generic - Atmel Generic file format
Generic file format

GNU Lesser General Public License
hex - Ascii-Hex file format

Hex file format

Hexadecimal 16-bit file format specificatio:
hexadecimal file format
hexadecimal file format
hexadecimal file format

hexadecimal format

Hexadecimal object file format specificatio
how to use SRecord

HP64000 Absolute Data Format

hp64k - HP64000 Absolute Data Format
idt - IDT/sim binary file format

IDT/sim binary file format

Image Data Format

info - information about EPROM load files
information about EPROM load files
Initialization File (MIF) format
Initialization format

input file specifications

Instruments Tagged (SDSMAC 320) file
format

Instruments Tagged (SDSMAC) file format
Instruments ti-txt (MSP430) file format
intel - Intel Hexadecimal object file format
specification

Intel Absolute Object Module Format
Intel Hexadecimal 16-bit file format
specification

Intel Hexadecimal object file format
specification

1005

Table of Contents(SRecord)

srec_intel16(5)

srec_hp64k(5)
srec_mem(5)
srecord_license(3)
srecord_license(3)

srecord(3)
srecord_license(3)
srec_fastload(5)
srec_cat(1)
srec_info(1)
srec_logisim(5)
srecord(3)
srec_cmp(1)
srec_o0s65v(5)
srec_fastload(5)
srec_logisim(5)
srec_logisim(5)
srec_fastload(5)
srec_cat(1)
srecord(3)
srec_brecord(5)

srec_mem(5)
srec_mif(5)
srec_mem(5)
srec_mif(5)

srec_mif(5)
srec_mips_flash(5)
srec_mips_flash(5)
srec_aomf(5)
srec_emon52(5)
srec_mos_tech(5)
srec_mos_tech(5)
srec_motorola(5)

srec_motorola(5)
srec_msbin(5)

srec_ti_txt(5)
srec_needham(5)

srec_needham(5)

srec_intel(5)
srec_trs80(5)
srec_aomf(5)
srec_o0s65v(5)
srec_o0s65v(5)
srec_fpc(5)
srec_ppb(5)

Reference Manual

108

99
113
77
77

77
93
26
50
112

34
127
93
112
112
93
26

86

113
115
113
115

115
118
118

80

90
120
120
122

122
124

143
126

126

102
144

80
127
127

96
128

Srec

srec hp64
srec mem -
LGPG - GNU

srecord -

LGPG - GNU Lesser General Public
srec fastload - LSI Logic Fast

srec cat - manipulate EPROM

srec info - information about EPROM
srec logisim - format Logisim EPROM
srecord - library to manipulate EPROM
srec cmp - compare two EPROM

srec 0s65v - OS65V

srec fastload - LSI

srec

srec logisim - format

srec fastload -

srec cat -

srecord - library to

srec brecord - Freescale

srec
srec mif -

srec mem - Lattice
srec

srec mif - Memory Initialization File (
srec

srec mips flash -

srec aomf - Intel Absolute Object

srec emon5?2 - Elektor

srec

srec mos tech -

srec

srec motorola -
srec

srec ti txt - Texas Instruments ti-txt (
srec

srec needham -

srec intel - Intel Hexadecimal
srec trs80 - Radio Shack TRS-80
srec aomf - Intel Absolute

srec

srec 0865V -

srec fpc - four

srec

SRecord

Table of Contents(SRecord)

intel16 - Intel Hexadecimal 16-bit file
format specification

k - HP64000 Absolute Data Format
Lattice Memory Initialization format
Lesser General Public License

LGPG - GNU Lesser General Public
License

library to manipulate EPROM load files
License

Load file format

load files

load files

load files

load files

load files for equality

Loader file format

Logic Fast Load file format

logisim - format Logisim EPROM load file
Logisim EPROM load files

LSI Logic Fast Load file format
manipulate EPROM load files

manipulate EPROM load files
MC68EZ328 Dragonball bootstrap record
format

mem - Lattice Memory Initialization forma
Memory Initialization File (MIF) format
Memory Initialization format

mif - Memory Initialization File (MIF)
format

MIF) format

mips flash - MIPS-Flash file format
MIPS-Flash file format

Module Format

Monitor (EMONS52) file format

mos tech - MOS Technology file format
MOS Technology file format

motorola - Motorola S-Record hexadecima!
file format

Motorola S-Record hexadecimal file forma
msbin - Windows CE Binary Image Data
Format

MSP430) file format

needham - Needham EMP-series
programmer ASCII file format

Needham EMP-series programmer ASCII
file format

object file format specification

object file format specification

Object Module Format

0s65v - OS65V Loader file format
0S65V Loader file format

packed code file format

ppb - Stag Prom Programmer binary forma

1006

Table of Contents(SRecord)

srec_ppx(5)

srec_needham(5)
srec_ppb(5)
srec_ppx(5)
srec_ppb(5)
srec_ppx(5)
srecord_license(3)
srec_trs80(5)

srec_cosmac(5)
srec_brecord(5)

srec_motorola(5)
srec_stewie(5)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_needham(5)
srec_trs80(5)

srec_signetics(5)
srec_signetics(5)
srec_idt(5)
srec_spasm(5)
srec_spasm(5)
srec_intel(5)

srec_intel16(5)
srec_trs80(5)
srec_input(1)
srec_spectrum(5)
srec_spectrum(5)

srec_aomf(5)

srec_ascii_hex(5)
srec_atmel_generic(5)

srec_binary(5)
srec_brecord(5)

srec_cat(1)
srec_cmp(1)

srec_coe(5)
srec_cosmac(5)

srec_dec_binary(5)

srec_emon52(5)

Reference Manual

129

126
128
129
128
129

77
144

88
86

122
134
141

139
126
144

130
130
101
132
132
102

108
144
53
133
133
80

82
83

84
86

26
34

87
88
89

90

Srec

srec needham - Needham EMP-series
srec ppb - Stag Prom

srec ppx - Stag Prom

srec ppb - Stag

srec ppx - Stag

LGPG - GNU Lesser General

srec trs80 -

srec cosmac -
srec brecord - Freescale MC68EZ328
Dragonball bootstrap

srec motorola - Motorola S-

srec stewie - Stewie’

srec ti tagged 16 - Texas Instruments Tagged
(

srec ti tagged - Texas Instruments Tagged (
srec needham - Needham EMP-

srec trs80 - Radio

srec
srec signetics -

srec idt - IDT/

srec

srec spasm -

srec intel - Intel Hexadecimal object file
format

srec intel16 - Intel Hexadecimal 16-bit file
format

srec trs80 - Radio Shack TRS-80 object file
format

SRecord - input file

srec

srec spectrum -

SRecord

Table of Contents(SRecord)

ppx - Stag Prom Programmer hexadecimal
format

programmer ASCII file format
Programmer binary format
Programmer hexadecimal format

Prom Programmer binary format

Prom Programmer hexadecimal format
Public License

Radio Shack TRS-80 object file format
specification

RCA Cosmac EIf file format

record format

Record hexadecimal file format
s binary file format
SDSMAC 320) file format

SDSMAC) file format

series programmer ASCII file format
Shack TRS-80 object file format
specification

signetics - Signetics file format
Signetics file format

sim binary file format

spasm - SPASM file format

SPASM file format

specification

specification
specification

specifications

spectrum - Spectrum file format

Spectrum file format

srec aomf - Intel Absolute Object Module
Format

srec ascii hex - Ascii-Hex file format

srec atmel generic - Atmel Generic file
format

srec binary - binary file format

srec brecord - Freescale MC68EZ328
Dragonball bootstrap record format

srec cat - manipulate EPROM load files
srec cmp - compare two EPROM load files
for equality

srec coe - Xilinx Coefficient File Format
srec cosmac - RCA Cosmac EIf file format
srec dec binary - DEC Binary (XXDP) file
format

srec emon5?2 - Elektor Monitor (EMONS52)
file format

1007

Table of Contents(SRecord)

srec_examples(1)

srec_fairchild(5)
srec_fastload(5)

srec_formatted_binary(5)

srec_forth(5)
srec_fpc(5)
srec_hp64k(5)

srec_idt(5)
srec_info(1)

srec_intel(5)
srec_intel16(5)
srec_logisim(5)
srec_mem(5)
srec_mif(5)
srec_mips_flash(5)
srec_mos_tech(5)
srec_motorola(5)
srec_msbin(5)

srec_needham(5)

srec_o0s65v(5)
srec_ppb(5)

srec_ppx(5)

srec_signetics(5)
srec_spasm(5)
srec_spectrum(5)
srec_stewie(5)
srec_tektronix(5)

srec_tektronix_extended(5)

srec_ti_tagged(5)

srec_ti_tagged_16(5)

srec_ti_txt(5)

srec_trs80(5)

Reference Manual

37

92
93

95
96
99

101
50

102

108

112

113

115

118

120

122

124

126

127
128

129
130
132
133
134
136
138
139
141
143

144

SRecord

Table of Contents(SRecord)

srec examples - examples of how to use
SRecord

srec fairchild - Fairchild Fairbug file forma
srec fastload - LSI Logic Fast Load file
format

srec formatted binary - Formatted Binary
file format

srec forth - FORTH file format

srec fpc - four packed code file format

srec hp64k - HP64000 Absolute Data
Format

srec idt - IDT/sim binary file format

srec info - information about EPROM load
files

srec intel - Intel Hexadecimal object file
format specification

srec intel16 - Intel Hexadecimal 16-bit file
format specification

srec logisim - format Logisim EPROM loac
files

srec mem - Lattice Memory Initialization
format

srec mif - Memory Initialization File (MIF)
format

srec mips flash - MIPS-Flash file format
srec mos tech - MOS Technology file form:
srec motorola - Motorola S-Record
hexadecimal file format

srec msbin - Windows CE Binary Image
Data Format

srec needham - Needham EMP-series
programmer ASCII file format

srec 0s65v - OS65V Loader file format
srec ppb - Stag Prom Programmer binary
format

srec ppx - Stag Prom Programmer
hexadecimal format

srec signetics - Signetics file format

srec spasm - SPASM file format

srec spectrum - Spectrum file format

srec stewie - Stewie’s binary file format
srec tektronix - Tektronix hexadecimal file
format

srec tektronix extended - Tektronix
Extended hexadecimal file format

srec ti tagged - Texas Instruments Tagged
(SDSMAC) file format

srec ti tagged 16 - Texas Instruments Tagge
(SDSMAC 320) file format

srec ti txt - Texas Instruments ti-txt
(MSP430) file format

srec trs80 - Radio Shack TRS-80 object file
format specification

1008

Table of Contents(SRecord)

srec_vmem(5)
srec_wilson(5)
srec_examples(1)
srec_input(1)
srecord(3)

srec_motorola(5)
srec_ppb(5)
srec_ppx(5)
srec_stewie(5)
srec_stewie(5)
srec_ti_tagged(5)

srec_ti_tagged_16(5)

srec_ti_tagged_16(5)
srec_ti_tagged(5)
srec_mos_tech(5)
srec_mos_tech(5)
srec_tektronix(5)

srec_tektronix_extended(5)

srec_tektronix_extended(5)

srec_tektronix(5)
srec_ti_tagged_16(5)

srec_ti_tagged(5)
srec_ti_txt(5)
srec_ti_tagged(5)
srec_ti_tagged_16(5)
srec_ti_txt(5)

srec_ti_txt(5)
srec_trs80(5)

srec_trs80(5)
srec_cmp(1)
srec_ti_txt(5)

srec_ti_txt(5)
srec_examples(1)
srec_o0s65v(5)
srec_o0s65v(5)
srec_vmem(5)
srec_vmem(5)
srec_wilson(5)
srec_wilson(5)
srec_msbin(5)

Reference Manual

146
148
37
53

122
128
129
134
134
139

141

141
139
120
120
136

138

138
136
141

139

143

139

141

143

143
144

144
34
143

143

37
127
127
146
146
148
148
124

srec examples - examples of how to use

srec motorola - Motorola
srec ppb -

Srec ppx -

srec

srec stewie -

srec ti

srec ti

srec ti tagged 16 - Texas Instruments
srec ti tagged - Texas Instruments
srec mos

srec mos tech - MOS

srec

Srec

srec tektronix extended -
srec tektronix -
srec ti tagged 16 -

srec ti tagged -
srec ti txt -
srec

srec

srec

srec ti txt - Texas Instruments
srec

srec trs80 - Radio Shack
srec cmp - compare
srec ti

srec ti txt - Texas Instruments ti-
srec examples - examples of how to
srec 0865

srec 0s65v - OS65

srec

srec vmem -

srec

srec wilson -

srec msbin -

SRecord

Table of Contents(SRecord)

srec vmem - vimem file format

srec wilson - wilson file format

SRecord

SRecord - input file specifications

srecord - library to manipulate EPROM loa
files

S-Record hexadecimal file format

Stag Prom Programmer binary format
Stag Prom Programmer hexadecimal forma
stewie - Stewie’s binary file format
Stewie’s binary file format

tagged - Texas Instruments Tagged
(SDSMAC) file format

tagged 16 - Texas Instruments Tagged
(SDSMAC 320) file format

Tagged (SDSMAC 320) file format
Tagged (SDSMAC) file format

tech - MOS Technology file format
Technology file format

tektronix - Tektronix hexadecimal file
format

tektronix extended - Tektronix Extended
hexadecimal file format

Tektronix Extended hexadecimal file forma
Tektronix hexadecimal file format

Texas Instruments Tagged (SDSMAC 320)
file format

Texas Instruments Tagged (SDSMAC) file
format

Texas Instruments ti-txt (MSP430) file
format

ti tagged - Texas Instruments Tagged
(SDSMAQC) file format

ti tagged 16 - Texas Instruments Tagged
(SDSMAC 320) file format

ti txt - Texas Instruments ti-txt (MSP430)
file format

ti-txt (MSP430) file format

trs80 - Radio Shack TRS-80 object file
format specification

TRS-80 object file format specification
two EPROM load files for equality

txt - Texas Instruments ti-txt (MSP430) file
format

txt (MSP430) file format

use SRecord

v - OS65V Loader file format

V Loader file format

vmem - vimem file format

vmem file format

wilson - wilson file format

wilson file format

Windows CE Binary Image Data Format

1009

Table of Contents(SRecord) Table of Contents(SRecord)

srec_coe(5) 87 srec coe - Xilinx Coefficient File Format
srec_dec_binary(5) 89 srec dec binary - DEC Binary (XXDP) file format

Reference Manual SRecord 1010

Read Me(SRecord) Read Me(SRecord)

Inte]l AOMF
The Intel Absolute Object Module Format (AOMF) is understood for both reading and writing.

Intel 16 The Intel hexadecimal 16 format is understood for both reading and writing. (Also known as the
INHX16 file format.)

LSI Logic Fast Load
The LSI Logic Fast Load format is understood for both reading and writing. Logisim The
Logisim format is understood for both reading and writing. See srec_logisim(5) for more
information.

Memory Initialization Format
The Memory Initialization Format (.mem) by Lattice Semiconductor is understood for writing
only.

MIF The Memory Initialization File format by Altera is supported for both reading and writing.

MOS Technology
The MOS Technology hexadecimal format is understood for both reading and writing.

MIPS-Flash
The MIPS Flash file format is supported for both reading and writing.

Motorola S-Record
The Motorola hexadecimal S-Record format is understood for both reading and writing. (Also
known as the Exorciser, Exormacs or Exormax format.)

MsBin The Windows CE Binary Image Data Format is supported both for reading and writing.

Needham
The Needham Electronics ASCII file format is understood for both reading and writing.

0S65V The Ohio Scientific hexadecimal format is understood for both reading and writing.

PPB The Stag Prom Programmer binary format is understood for both reading and writing.
PPX The Stag Prom Programmer hexadecimal format is understood for both reading and writing.
Signetics

The Signetics format is understood for both reading and writing.

SPASM The SPASM format is used by a variety of PIC programmers; it is understood for both reading
and writing.

Spectrum
The Spectrum format is understood for both reading and writing.

Tektronix (Extended)
The Tektronix hexadecimal format and the Tektronix Extended hexadecimal format are both
understood for both reading and writing.

Texas Instruments Tagged
The Texas Instruments Tagged format is understood for both reading and writing (both 8 and 16
bit). Also known as the TI-tagged or TI-SDSMAC format.

Texas Instruments ti-txt
The TI-TXT format is understood for reading and writing. This format is used with the bootstrap
loader of the Texas Instruments MSP430 family of processors.

TRS-80 The Radio Shack TRS-80 object file format is understood for reading and writing.
VHDL It is possible to write VHDL file. This is only supported for output.

Verilog VMEM
It is possible to write a Verilog VMEM file suitable for loading with $readmemh (). This
format is supported for reading and writing.

Reference Manual SRecord 1

Read Me(SRecord) Read Me(SRecord)

Wilson The Wilson format is understood for both reading and writing. This mystery format was added
for a mysterious type of EPROM writer.

The Tools
The primary tools of the package are srec_cat and srec_cmp. All of the tools understand all of the file
formats, and all of the filters.

srec_cat The srec_cat program may be used to catenate (join) EPROM load files, or portions of EPROM
load files, together. Because it understands all of the input and output formats, it can also be used
to convert files from one format to another.

srec_cmp
The srec_cmp program may be use to compare EPROM load files, or portions of EPROM load
files, for equality.

srec_info
The srec_info program may be used to print summary information about EPROM load files.

The Filters
The SRecord package is made more powerful by the concept of input filters. Wherever an input file may be
specified, filters may also be applied to that input file. The following filters are available:

bit reverse
The bit-reverse filter may be used to reverse the order of bits in each data byte.

byte swap
The byte swap filter may be used to swap pairs of add and even bytes.

CRC The various crc filters may be used to insert a CRC into the data.

checksum
The checksum filters may be used to insert a checksum into the data. Positive, negative and bit-
not checksums are available, as well as big-endian and little-endian byte orders.

crop The crop filter may be used to isolate an input address range, or ranges, and discard the rest.
exclude The exclude filter may be used to exclude an input address range, or ranges, and keep the rest.
fill The fill filter may be used to fill any holes in the data with a nominated value.

length The length filter may be used to insert the data length into the data.

maximum
The maximum filter may be used to insert the maximum data address into the data.

minimum
The minimum filter may be used to insert the minimum data address into the data.

offset The offset filter may be used to offset the address of data records, both forwards and backwards.

random fill
The random fill filter may be used to fill holes in the data with random byte values.

split The split filter may be used to split EPROM images for wide data buses or other memory striping
schemes.

unfill The unfill filter may be used to make holes in the data at bytes with a nominated value.
unsplit The unsplit filter may be reverse the effects of the split filter.

More than one filter may be applied to each input file. Different filters may be applied to each input file.
All filters may be applied to all file formats.

Reference Manual SRecord 2

Read Me(SRecord) Read Me(SRecord)

ARCHIVE SITE
The latest version of SRecord is available on the Web from:
URL: http://srecord.sourceforge.net/

File: index.html # the SRecord page

File: srecord—1.65.README # Description, from the tar file

File: srecord—1.65.1sm # Description, LSM format

File: srecord—1.65.spec # RedHat package specification

File: srecord—1.65.tar.gz # the complete source

File: srecord—1.65.pdf # Reference Manual
BUILDING SRECORD

Full instructions for building SRecord may be found in the BUILDING file included in this distribution.

It is also possible to build SRecord on Windows using the Cygwin (www.cygwin.com) or DJGPP
(www.delorie.com/djgpp) environments. Instructions are in the BUILDING file, including how to get
native Windows binaries.

COPYRIGHT
srecord version 1.65
Copyright © Scott Finneran <scottfinneran @yahoo.com.au>
Copyright © 1998... Peter Miller <pmiller@opensource.org.au>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

It should be in the LICENSE file included with this distribution.

AUTHOR
Peter Miller ~ E-Mail: pmiller@opensource.org.au
IN/N* WWW: http://miller.emu.id.au/pmiller/

Reference Manual SRecord 3

Read Me(SRecord) Read Me(SRecord)

RELEASE NOTES
This section details the various features and bug fixes of the various releases. For excruciating and
complete detail, and also credits for those of you who have generously sent me suggestions and bug reports,
see the /doc/etc/CHANGES. * files.

Version 1.65 (2022-Oct-09)
* HP64000 absolute file format contributed by fenugrec. Supports file input, tests and documentation.

* Patch by dglyfe as pulled from github via marcows. Updated man page for srec_ppb. Updated PPB output
to match checksum range for output. Updated tests for PPB write and read including files containing holes.
Tweaked patch to handle multi-line and arbirtary ascii before SOH. Added test for prolog stripping.

¢ Added NSIS installer build for Windows

* Verbose srec_info as suggested by Thomas. Display basic info on the proportion of input files which
data/holes.

* Bug fix from xiretza for COE generation falsly detecting holes in input.

* Remove dependencies on boost moving to std shared_ptr and static_assert. Remove doc references to
boost.

* Full Windows build, test and packaging supported under MSYS2. Build documentation updated to cover
Windows and windows web page deprecated.

* Fixed buffer overflow in four packed code output generator.

» Marksu Heidelberg <markus.heidelberg@web.de> contributed a patch to fix a bug that he also found with
the -generator which resulted in an endless loop.

* Completely new build and config system to replace Aegis, Cook and autoconf with cmake & git.
Integration with cpack to generate linux and windows packages. Integration with ctest to sustain the
regression test suite.

Version 1.64 (2014-Jun-22)
* Cleaned up a few references to the maintainer’s name.

* Fixed some warnings in test 38

* Fixed bugs discovered by Mike <russiane39@gmail.com> regarding the formatting of some of the
examples where lines were wrapping the wrong way.

* Added the ability to compile without libgcrypt if the user specifies the option --without-gcrypt to
configure. If gcrypt is missing, the user is prompted to either install it or explicitly compile with it disabled.

* Cleaned up a few recent compiler and doxygen warnings.

* Added Sourceforge Patch #4 contributed by Stas Sergeev <stsp@sourceforge.net> which contributed
get_upper_bound() and makes it and the lower equivalent public (for use from libsrecord). Also fixed a bug
in srec_memory::find_next_chunk() where it would fail to reset the find_next_chunk_index once it became
equal to nchunks. After that, find_next_chunk() would always fail.

* Added prefix and postfix strings to the C Array format which are applied at each end of the data array
declaration. This allows the user to add various compiler directives such as location flags or non-standard
load address specifiers.

* when converting from AOMF Fixed Sourceforge bug 11 raised by patryks. In the analysis, it was
discovered that a start address (of zero) was being generated when converting from AOMF. AOMF does not
support the concept of an execution start address.

» The Windows build instructions have been updated by Jens Heilig <jens @familie-heilig.net>.

* Fixed the length field description in extended tektronix documentation. The implementation was already
correct.

Reference Manual SRecord 4

Read Me(SRecord) Read Me(SRecord)

* Added a regression test for calculated address for CRC (Sourceforge bug 19).

Version 1.63 (2014-Apr-07)
* The srec_tools now understand how to read and write Logisim formt.

* Daniel Anselmi <danselmi@gmzx.ch> fixed a bug with generating Lattice Memory init files.

* This change set generalises the code that handles redundant byte settings and contradictory byte settings.
The defcon_t type describes what to do: ignore, warn or error. The ——multiple option is no more.

* Daniel Anselmi <danselmi@gmx.ch> discovered that the "mem" output format was malformed. The lines
now break every "width" bits.

» Hanspeter Niederstrasser disoverd some false negatives in the test suite, when used on OSX. Thank you
for the bug report. This has been fixed.

» Simplification of selection code to choose which CRC16 implmentation is used.

« Juliano MourAA£o Vieira <juliano@utfpr.edu.br> discovered a problem with the srec_mif.5 description.
This mistake is not present in the code.

* Liju Prasanth Nivas (RBEI/ECA1) <Liju.PrasanthNivas @in.bosch.com> suggsted another use case for the
examples. In the case of "joining" files that are meant to be “stacked in layers”. Contributions for the
examples are always appreciated. Thank you.

¢ Added more comments to the code, so that the use of URL_deode for the command line is better
explained. And comment to explain why not to do turl_encode when building header records.

* Added URL quoting to the command line. There are times you need to be able to insert unprintable
characters on the command line. The immediate use case prompting this was a user wanting to put a NUL
in the header string. So now you can, as "%00". The other choice was quoted printable encoding, but that
was a bit obscure.

* Fixed new warnings when building with g++ 4.8.1
* Added more links to the windows files on SourceForge, maybe it will boost download numbers.

Version 1.62 (2013-Jun-05)

* Luc Steynen <LucSteynen@edna.be> discovered that the —hecksum-big-endian opion was a counter-
intuitive alias for the the —checksum-bitnot-big-endian option. The —checksum-big-endian option is now
deprecated, in favor of the —checksum-bitnot-big-endian option; the code will warn uers of the old option
they will need to change. Ditto little-endian variants

» Alin Pilkington <apilkington@moog.com> found that the Tektronics Extended format was calculating
the record length incorrectory. Thanks you for the bug report. This has been fixed for both reading and
writing.

* Dr. Benedikt Schmitt <Benedikt.Schmitt@safeintrain.de> suggested being able to inject arbitrary data
into the file header (such as NUL termination characters). This change set adds URL-style escapes (e.g.
%?25) to the string on he command line. For example: —header or —generate —string

Version 1.61 (2013-Jan-04)
» Izzet Ozcelik <izzetozcelik@cscope.co.uk> discovered a bug in the Tektronix-Extenden format line
checksum calculations. The comparison should have been in 8 bits, not int.

* Daniel Anselmi <danselmi@gmx.ch> contributed a Memory Initialization Format by Lattice
Semiconductor, for output only.

Reference Manual SRecord 5

Read Me(SRecord) Read Me(SRecord)

Daniel Anselmi <danselmi@gmx.ch> contributed a Xilinx Coefficient File Format (.coe) output class.

Version 1.60 (2012-May-19)
* There are now several additional CRC-16 polynomials, plus the ability to select a polynomial by name,
rather than by value. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for a table of names and
values.

Version 1.59 (2012-Feb-10)

A number of additional CRC-16 polynomials have been added, as well as the ability to select a
polynomial by name, rather than by value. See srec_input(1) for more information.

Version 1.58 (2011-Dec-18)

The —guess command line option, for guessing the file format, now also tells you the command line
option you could have used instead of —guess for the exact format.

The Intergated Device Technology (IDT) system integration manager (IDT/sim) binary format is now
understood for both reading and writing.

The Stag Prom Programmer binary format is now supported for both reading and writing.
The Stag Prom Programer hexadecimal format is now understood for both reading and writing.
The MIPS-Flash fiel format is now supported for both reading and writing.

Bernhard Weirich <Bernhard.Weirich@riedel.net> discovered that a backward compatible
option had been omitted when the —INtel_16 option was renamed —INtel_HeX_16 to more closely
match the usual abbreviation (INHX16) for this format. The backwards compatible option name has
been reintroduced.

The windows build instructions have been greatly imptoved, based on the experiences of Jens Heilig
<jens@familie-heilig.net> which he has generously shared.

The documentation in the manual about sequence warnings has been improved. The —disable-sequence-
warnings option must come before the input file on the command line. My thanks to Emil Gracic
<emil_kruki@yahoo.com> for reporting this problem.

Version 1.57 (2011-Jun-09)

The byte order of the fletcher16 output has been reversed.

The meaning of the —address-length option has been change for the Intel output format. Previously, 2
meant using il6hex 20-bit segmented addressing, and >2 meant using i32hex extended addressing. This
has been changed: a value of 2 requests i8hex 16-bit addressing, a value of 3 requests i16hex 20-bit
segment addressing, and a value >=4 requests i32hex 32-bit addressing. My thanks to Stephen R.
Phillips <srp@CSECorporation.com> for reporting the absence of i8hex support.

The —generate —repeat-string option is now able to take a string that looks like a number as the text to
be repeated. My thanks to Stephen R. Phillips <srp@CSECorporation.com> for reporting this
problem.

Luca Giancristofaro <luca.giancristofaro@prosa.com> discovered a WinAVR linker that is a
sandwich short of a picnic: it generated non-conforming Intel hex end-of-file records. This is no longer
an error, but only a warning.

There were some problems with the RPM spec file, these have been improved. My thanks to Galen Seitz
<galens@seitzassoc.com> for reporting this problem.

Version 1.56 (2010-Sep-15)

A bug has been fixed in the MsBin output, it now concatenates records correctly, and calaulate
checksums appropriately.

It is now possible to ask the Fletcher 16 filter to give you a specific answer, and adjusting the checksum
to achieve that result. It is also possible to specify different seed values for the sums.

Reference Manual SRecord 6

Read Me(SRecord) Read Me(SRecord)

» There is a new srec_cat —enable=optional-address option to cause output formats capable of omitting
addresses, to omit a leading zero address, as those formats usually default the address to zero, if no
address information is seen before the first data record. Defaults to false (disabled).

* There is a new srec_cat(1) —output-block-packing option, that may be used to pack output records even
when they cross internal SRecord boundaries.

* There is a new srec_cat(1) —output-block-size so that you can specify the block size exactly, rather than
implying it with the line length option.
Version 1.55 (2010-Feb-10)
» The Makefile.in has been improved, it now copes with non-standard ——prefix options.

» The rpm.spec file has been improved, it now separates the commands, shared libraries and development
files.

Version 1.54 (2010-Jan-29)
» There is now a shared library installed, including the necessary header files so that you can use all of the
file formats and filters in your own projects.

» The license on the shared library code is GNU Lesser General Public License, version 3.0 or later.
* The code can cope with older versions of GNU Libgcrypt. In the case of very old versions, by ignoring
it.
* A number of build problems have been fixed.
Version 1.53 (2009-Nov-10)

* There is a new MsBin (Windows CE Binary Image Data) file format, supported for both reading and
writing.

* The lintian(1) warning about hyphen in the manual pages has been silenced, by careful use of —, - and —
as appropriate. Sure makes some of the sources ugly, tho. The lintian(1) warning about the undefined
.XX macro has been silenced, by making it conditional.

* The code will build without libgcrypt.

Version 1.52 (2009-Sep-17)
» There is a new srec_cat —generator —l-e-constant data generator (and also —b-e-const) that may be used
to insert multi-byte constants into your data. See srec_input(1) for more information.

Version 1.51 (2009-Sep-13)
* A number of gcc 4.4 build problems have been fixed.

* A bugs has been fixed in the Intel output format. When using the segemented format (address-length=2)
records that span the end of segment boundary are tricky. The code now carefully splits such output
records, to ensure the two parts are explicitly placed into separate segments.

Version 1.50 (2009-Jul-09)
» The CRCI16 code has been enhanced to provide low-to-high bit order, in addition to the previous high-to-
low bit order. It is also possible to specify the polynomial, with the default the CCITT standard
polynomial, as was in the previous code. See srec_input(1) for more information.

* The MDS5, RipeMD-160, SHA1, SHA224, SHA256, SHA384, SHA 512 and Whirlpool message digests
are now supported. See srec_input(1) for more information.

» There is a new srec_cat —bit-reverse filter, that may be used to reverse the bits in each data byte. See
srec_input(1) for more information.

Version 1.49 (2009-May-17)
* A typo in the srec_input(1) man page has been fixed.

Version 1.48 (2009-Apr-19)
* There are new Fletcher Checksum filters, both 32-bits and 16-bits, both little-endian and big-endian.

Reference Manual SRecord 7

Read Me(SRecord) Read Me(SRecord)

* There are new Adler Checksum filters, both 32-bits and 16-bits, both little-endian and big-endian.

Version 1.47 (2009-Feb-19)
* Memory Initialzation File (MIF) format by Altera is now supported for reading and writing.

Version 1.46 (2009-Jan-13)
* There is a new option for the ——x-e-length filters, they can now accept a width, and this is divided into
the byte lenght, so that you can insert the length in units of words (2) or longs (4).

¢ Some small corrections have been made to the documentation.

* The —minimum and —maximum options have been renamed —minimum-address and —maximum-address,
to avoid a command line grammar syntax problem.

Version 1.45 (2008-Sep-30)
* A bug has been fixed in the srec_cat(1) command. You are now able to specify several inputs within
parentheses, instead of just one. This allows filters to be applied to the concatenation of several inputs.

* The srec_cat(1) command is now able to write FORTH output.

Version 1.44 (2008-Aug-29)
* Some compilers issue a warning when const appears before extern. "warning: storage class is not first".
The C output has been updated to conform to this expectation.

» The manual page for srec_cat(1) has been enhanced to describe the in-memory data model, and the
resulting output data order.

* The —motorola optional width argument now produces a better error message when it is out of range.

» The fill filter now checks the size, and fails for absurdly large fills, with a —big override if they really
want >1GB fills.

* A bug in the .spec file for rpmbuild has been fixed, it now takes notice of $SRPM_BUILD_ROOT

* There is a new —line-termination option, which may be used to select the desired line termination of
output text files.

Version 1.43 (2008-Jul-06)
» The srec-cat —data-only option has been broken down into four separate controls. It is now possible to

—enable and —disable individual features, such as “header”, “data-count”, “execution-start-address” and
“footer”. See srec_cat(1) for more information.

» The srec_cat —start-address option has been renamed —execution-start-address to remove any
confusion with the —offset filter. The documentation now explicitly explains the difference between the
two.

» Examples of converting to and from binary files have been added to the srec_examples(1) man page.

* A bug has been fixed in the MOS Tech format, it now emits an end record even when there is no
execution start address passed in.

Version 1.42 (2008-Jun-01)
* The MOS Technology format was not reading and writing end records correctly, this has been fixed. The
name of the company has been corrected.

* Some examples of how to insert constant or scripted data into your EPROM load files have been added to
the srec_examples(1) man page.

Version 1.41 (2008-May-12)
» False negative being reported by tests on Cygwin have been fixed.

* There are six new filters (—be-exclusive-length, —le-exclusive-length, —be-exclusive-maximum, —le-
exclusive-maximum, —be-exclusive-minimum and —le-exclusive-minimum) which are very similar to
their non-exclusive equivalents, except that they do not include the adress range covered by their output
in their output.

Reference Manual SRecord 8

Read Me(SRecord) Read Me(SRecord)

* A bug has been fixed in the C word-array output. It was getting offsets and lengths wrong in some cases.
* A bug has been fixed in the generated C array header file, it no longer omits the section descriptor arrays.

* A problem with building RPM packages with the names of the executables in the .spec file has been
fixed, and the BuildRequires has been updated.

Version 1.40 (2008-Mar-13)
* An RPM build problem has been fixed.

» The dependency on the Boost library is now documented in the BUILDING file.
* Some build problems with g++ 4.3 have been fixed

* A bug has been fixed in the calculation of ranges on the command line, it no longer goes into an infinite
loop for "—fill OxFF —over { foo.hex —exclude —within foo.hex }" construct, which should have been
calculating an empty fill set, but was instead calculating a 4GB fill set.

» The CRC32 filters now take an —xmodem option, to use an xmodem-like (all bit zero) initial state, rather
than the default CCITT (all bits on) initial state.

Version 1.39 (2008-Feb-04)
* A bug has been fixed in the use of parentheses to group filters and override the default precedences.

Version 1.38 (2008-Jan-14)
» The CRCI16 filters now support a —Broken option, to perform a common-but-broken CRC16 calculation,
in addition to the CCITT and XMODEM calculations.

* A link has been added to the CRCI6 man page section to the
www.joegeluso.com/software/articles/ccitt.htm web page, to explain the difficulties in seeding CRC16
calculations.

* A buglet has been fixed in the srec_motorola(5) man page, it now includes S6 in the list of things that
can appear in the type field.

» The ability to negate expressions is now mentioned in the srec_examples(1) man page.

Version 1.37 (2007-Oct-29)
* It is now possible to have negative expressions on the command line, to facilitate “——offset — —minimum
foo” usages.

* The srec_cat(1) command now has a simple hexadecimal dump output format.
* The use of uudecode(1) in the tests has been removed, so sharutils is no longer a build dependency.

Version 1.36 (2007-Aug-07)
* A bug has been fixed in the CRC-16 CCITT calculation; the algorithm was correct but the start value was
incorrect, leading to incorrect results.

* The CRCI16 filters have a new ——no-augment option, to omit the 16 zero bits augmenting the message.
This is not CCITT standard conforming, but some implementations do this.

* A problem has been fixed in the generated Makefile.in file found in the tarball.
» The license has been changed to GNU GPL version 3.

Version 1.35 (2007-Jun-23)
* A major build problem with the generated makefile has been fixed.

Version 1.34 (2007-Jun-22)
* The C and ASM output formats have been improved in the word mode.

» Several build problems have been fixed.

Version 1.33 (2007-May-18)
* More examples have been added to the documentation.

Reference Manual SRecord 9

Read Me(SRecord) Read Me(SRecord)

* It is now possible to perform set intersection and set difference on address ranges on the command line.

» There is a new category of data source: generators. You can generate constant data, random data and
repeating data.

» The assembler and C-Array outputs now support additional options to facilitate MSP430 systems. They
can also optionally write shorts rather than bytes.

* You can now round address ranges on the command line to be whole multiples of a number of bytes.

Version 1.32 (2007-Apr-24)
* The TI-TXT format output has been improved; it is less spec conforming but more reality conforming. It
now allows odd alignment without padding. It also ends with a g instead of a Q.

* The warning for odd input addresses has been dropped. The spec didn’t like them, but the MSP430
handles them without a hiccup.

Version 1.31 (2007-Apr-03)
» The Verilog format now suppresses comments when you specify the ——data-only option.

» The Texas Instruments ti-txt (MSP430) format is now understood for reading and writing.

Version 1.30 (2007-Mar-21)
» The ascii-hex output format has been improved.

* The ti-tagged 16-bit format is now understood for reading and writing.
* The Intel format no longer warns about missing optional records.
* A bug in the ti-tagged format has been fixed, it now understands the *0’ tag.

Version 1.29 (2007-Mar-13)
» A serious bug has been fixed in the generated Makefile.

Version 1.28 (2007-Mar-08)
* It is now possible to read and write files in the Freescale MC68EZ328 Dragonball bootstrap b-record
format

Version 1.27 (2006-Dec-21)
* [SourceForge Feature Request 1597637] There is a new warning issued when input data records are not
in strictly ascending address order. There is a new command line option to silence the warning.

* [SourceForge Feature Request 1592348] The command line processing of all srecord commands now
understands @file command line options, filled with additional space separated strings witch will be
treated as of they were command line options. This gets around absurdly short command line length
limits in some operating systems.

Version 1.26 (2006-May-26)
* It is now possible to place parentheses on the command line in more places to clarify your intent.

 This change prepares SRecord for the next public release.

Version 1.25 (2006-May-18)
» The assembler output has been enhanced to produce ORG directives, if necessary, to change the data
address.

* The srec_cat(1) command now only writes an execution start address into the output if there was an
execution start address present in the input.

Version 1.24 (2006-Mar-08)
* Additional information has been added to the Iseek error when they try to seek to addresses >= 2**31

» The CRC 16 filters have been enhanced to accept an argument to specify whether CCITT or XMODEM
calculations are to be performed.

Version 1.23 (2005-Sep-23)

Reference Manual SRecord 10

Read Me(SRecord) Read Me(SRecord)

» A segfault has been fixed on x86_64 when running the regression test suite.
* A compile problem with the lib/srec/output/file/c.cc file has been fixed.

Version 1.22 (2005-Aug-12)
* The —byte-swap filter now has an optional width argument, to specify the address width to swap. The
default is two bytes.

» The motorola file format now accepts an additional *width’ command line argument, so you can have
16-bit and 32-bit address multiples.

* A bug has been fixed in the VMEM output format. It was failing to correctly set the next address in some
cases. This fixes SourceForge bug 1119786.

* The —C-Array output format now uses the const keyword by default, you can turn it off with the —no-
const option. The —C-Array output format can now generate an additional include file if you use the
—INClude option. This answers SourceForge feature request 942132.

* A fix for the "undefined symbols" problem when using g++ 3.x on Cygwin and MacOsX has been added
to the ./configure script.

* There is a new —ignore-checksum command line option. The —ignore-checksums option may be used to
disable checksum validation of input files, for those formats which have checksums at all. Note that the
checksum values are still read in and parsed (so it is still an error if they are missing) but their values are
not checked.

Version 1.21 (2005-Feb-07)
* More Doxygen comments have been added to the class header files.

» There is a new srec_cat ——crlf option, which may be used for force CRLF output on operating systems
which don’t use that style of line termination.

* A number of problems with GCC, particularly with the early 3.x series.

* There is a new "Stewie" format, an undocumented format loosely based on the Motorola S-Record
format, apparently used in mobile phones. More information would be most welcome.

* A number of build problems have been fixed.

Version 1.20 (2004-Feb-08)
» The AOMF format now accepts (and ignores) more record types.

Version 1.19 (2004-Jan-03)
* It is now possible to set the execution start address in the output using the srec_cat
—Execution_Start_Address command line option.

* The Intel Absolute Object Module Format (AOMF) is now supported for reading and writing.

* There is a new srec_cat —Random_Fill filter, like the srec_cat —Fill filter except that it uses random
values.

Version 1.18 (2004-Jan-01)
* The VMEM format is now able to output data for 64 and 128 bits wide memories.

* A bug in the SRecord reference manuals has been fixed; the CRCxx had a copy-and-paste glitch and
always said big-endian where little endian was intended half the time.

Version 1.17 (2003-Oct-12)
* There is now support for Intel Extended Segment addressing output, via the ——address-length=2 option.

* There is now support for output of Verilog VMEM format. See srec_vmem(5) for more information.

* There is now support for reading and writing the INHX16 format, used in various PIC programmers. It
looks just like the Intel Hex format, except that the bytes counts and the addresses refer to words (hi,lo)
rather than bytes. See srec_intell16(5) for more information.

Reference Manual SRecord 11

Read Me(SRecord) Read Me(SRecord)

Version 1.16 (2003-Jul-28)
* Some updates have been made to cope with GCC 3.2

Version 1.15 (2003-Jun-16)
* The ASCII-Hex implementation is now slightly more complete. I still haven’t found a definitive
description.

* The Fairchild Fairbug format has been added for reading and writing. See srec_fairchild(5) for more
information.

* The Spectrum format has been added for reading and writing. See srec_spectrum(5) for more
information.

* The Formatted Binary format has been added for reading and writing. See srec_formatted_binary(5) for
more information.

* The RCA Cosmac EIf format has been added for reading and writing. See srec_cosmac(5) for more
information.

* The Needham EMP programmer format has been added for reading and writing. See srec_needham(5)
for more information.

Version 1.14 (2003-Mar-11)
* Numerous fixes have been made to header handling. It is now possible to specify an empty header with
the ~header command line option.

* Some more GCC 3.2 build problems have been fixed.

Version 1.13 (2003-Feb-05)
* Bugs have been fixed in the Texas Instruments Tagged and VHDL formats, which produced inconsistent
output.

* A couple of build problems have been fixed.
* There are two new output formats for ASM and BASIC.

Version 1.12 (2002-Dec-06)

* It is now possible to put —minimum input.spec (also —-maximum and —length) almost anywhere on the
command line that you can put a number. It allows, for example, the —offset value to be calculated from
the maximum of the previous file. The values calculated by —-Minimum, —-Maximum and —Length may
also be rounded to arbitrary boundaries, using —Round_Down, —Round_Nearest and —Round_Up.

* The malformed Motorola S5 records output by the Green Hills tool chain are now understood.

Version 1.11 (2002-Oct-21)
* The Ohio Scientific OS65V audio tape format has been added for reading and writing. See
srec_os65v(5) for more information.

* Some build problems have been fixed.

Version 1.10 (2002-Jun-14)
¢ The Intel format now emits the redundant extended linear address record at the start of the file; some
loaders couldn’t cope without it.

* The Binary format now copes with writing to pipes.
* The Motorola format now understands the S6 (24-bit data record count) records for reading and writing.
» The DEC Binary format now works correctly on Windows machines.

» The LSI Logic Fast Load format is now understood for both reading and writing. See srec_fastload(5)
for more information.

Version 1.9 (2001-Nov-27)
* The DEC Binary (XXDP) format is now understood for both reading and writing. See
srec_dec_binary(5) for more information.

Reference Manual SRecord 12

Read Me(SRecord) Read Me(SRecord)

* The Elektor Monitor (EMONS2) format is now understood for both reading and writing. See
srec_emon52(5) for more information.

» The Signetics format is now understood for both reading and writing. See srec_signetics(5) for more
information.

* The Four Packed Code (FPC) format is now understood for both reading and writing. See srec_fpc(5)
for more information.

* Wherever possible, header data is now passed through by srec_cat(1). There is also a new srec_cat
—header option, so that you can set the header comment from the command line.

* The Atmel Generic format for Atmel AVR programmers is now understood for both reading and writing.
See srec_atmel_generic(5) for more information.

* The handling of termination records has been improved. It caused problems for a number of filters,
including the —fill filter.

* A bug has been fixed in the checksum calculations for the Tektronix format.

* There is a new SPASM format for PIC programmers. See srec_spasm(5) for more information.

Version 1.8 (2001-Apr-20)
* There is a new “unfill” filter, which may be used to perform the reverse effect of the “fill” filter.

* There is a new bit-wise NOT filter, which may be used to invert the data.
* A couple of bugs have been fixed in the CRC filters.

Version 1.7 (2001-Mar-19)
* The documentation is now in PDF format. This was in order to make it more accessible to a wider range
of people.

» There is a new srec_cat ——address-length option, so that you can set the length of the address fields in
the output file. For example, if you always want S3 data records in a Motorola hex file, use the
——address-length=4 option. This helps when talking to brain-dead EPROM programmers which
do not fully implement the format specification.

* There is a new ——multiple option to the commands, which permits an input file to contain multiple
(contradictory) values for some memory locations. The last value in the file will be used.

» A problem has been fixed which stopped SRecord from building under Cygwin.

* A bug has been fixed in the C array output. It used to generate invalid output when the input had holes in
the data.

Version 1.6 (2000-Dec-03)
* A bug has been fixed in the C array output. (Holes in the input caused an invalid C file to be produced.)

* There is are new CRC input filters, both 16-bit and 32-bit, both big and little endian. See srec_cat(1) for
more information.

* There is a new VHDL output format.

* There are new checksum filters: in addition to the existing one’s complement (bit not) checksum filter,
there are now negative and positive checksum filters. See srec_cat(1) for more information.

* The checksum filters are now able to sum over 16-bit and 32-bit values, in addition to the existing byte
sums.

» The srec_cmp program now has a —verbose option, which gives more information about how the two
inputs differ. See srec_cmp(1) for more information.

Version 1.5 (2000-Mar-06)
* There is now a command line option to guess the input file format; all of the tools understand this option.

Reference Manual SRecord 13

Read Me(SRecord) Read Me(SRecord)

The “MOS Technologies” file format is now understood for reading and writing. See srec_mos_tech(5)
for more information.

The “Tektronix Extended” file format is now understood for reading and writing. See
srec_tektronix_extended(5) for more information.

The “Texas Instruments Tagged” file format is now understood for reading and writing. (Also known as
the TI-Tagged or SDSMAC format.) See srec_ti_tagged(5) for more information.

The “ascii-hex” file format is now understood for reading and writing. (Also known as the ascii-space-
hex format.) See srec_ascii_hex(5) for more information.

There is a new byte swap input filter, allowing pairs of odd and even input bytes to be swapped. See
srec_cat(1) for more information.

The “wilson” file format is now understood for reading and writing. This mystery format was added for
a mysterious type of EPROM writer. See srec_wilson(5) for more information.

The srec_cat program now has a —data-only option, which suppresses all output except for the data
records. This helps when talking to brain-dead EPROM programmers which barf at anything but data.
See srec_cat(1) for more information.

There is a new —Line-Length option for the srec_cat program, allowing you to specify the maximum
width of output lines. See srec_cat(1) for more information.

Version 1.4 (2000-Jan-13)

SRecord can now cope with CRLF sequences in Unix files. This was unfortunately common where the
file was generated on a PC, but SRecord was being used on Unix.

Version 1.3 (1999-May-12)

A bug has been fixed which would cause the crop and exclude filters to dump core sometimes.

A bug has been fixed where binary files were handled incorrectly on Windows NT (actually, any system
in which text files aren’t the same as binary files).

There are three new data filters. The ——OR filter, which may be used to bit-wise OR a value to each data
byte; the ——AND filter, which may be used to bit-wise AND a value to each data byte; and the
——eXclusive-OR filter, which may be used to bit-wise XOR a value to each data byte. See srec_cat(1)
for more information.

Version 1.2 (1998-Nov-04)

This release includes file format man pages. The web page also includes a PostScript reference manual,
containing all of the man pages.

The Intel hex format now has full 32-bit support. See srec_intel(5) for more information.

The Tektronix hex format is now supported (only the 16-bit version, Extended Tektronix hex is not yet
supported). See srec_tektronix(5) for more information.

There is a new split filter, useful for wide data buses and memory striping, and a complementary unsplit
filter to reverse it. See srec_cat(1) for more information.

Version 1.1 (1998-Mar-22)
First public release.

Reference Manual SRecord 14

Build(SRecord) Build(SRecord)

NAME
How to build SRecord

SPACE REQUIREMENTS
You will need about 3MB to unpack and build the SRecord package. Your milage may vary.

BEFORE YOU START
There are a few pieces of software you may want to fetch and install before you proceed with your installa-
tion of SRecord.

Libgcrypt Library
You will need the GNU Crypt library. If you are using a package based system, you will need the
libgcrypt-devel package, or one named something very similar.
http://directory.fsf.org/project/libgcrypt/

GNU Libtool
You will need the GNU Libtool software, used to build shared libraries on a variety of systems.
http://www.gnu.org/software/libtool/

CMake You will need CMake to build, test install SRecord from source. depend on a build tool. CMake
version 3.22 or later is required
http://cmake.org

GNU Groff
The documentation for the SRecord package was prepared using the GNU Groff package (ver-
sion 1.14 or later). This distribution includes full documentation, which may be processed into
PostScript or DVI files at install time — if GNU Groff has been installed.

GCC You may also want to consider fetching and installing the GNU C Compiler if you have not done
so already. This is not essential. SRecord was developed using the GNU C++ compiler, and the
GNU C++ libraries.

The GNU FTP archives may be found at ftp.gnu.org, and are mirrored around the world.
BUILD ENVIRONMENT SETUP - LINUX

On systems using .deb packages such as Ubuntu or Debian, the following will install the necessary depen-
dencies. Something similar will setup other distributions.
% sudo apt update
% sudo apt install build-essential g++ doxygen psutils libgcrypt20-dev
ghostscript groff cmake rpm
...lots of output...
%

BUILD ENVIRONMENT SETUP - WINDOWS
Windows builds are based on the MSYS2 environment. While based on Cygwin, MSYS2’s is geared to-
ward building native applications. This will allow you to compile SRecord, build its documentation and run
its test on Windows 7 and later.

Download and run the installer as described on the MSYS2 homepage http://www.msys2.org. Us-
ing the default installation locations is highly recommended.

Run the MINGW64 environment (giving a BASH prompt) and accept any updates. The first run will update
the package database itself. Running it a second time will install updates flagged in the updated database.:

% pacman —-Syu

...lots of output...

% pacman —-Syu

...lots of output...

% pacman —S mingw-w64-x86_64—-gcc groff \
mingw-w64-x86_64—-1libgcrypt mingw-w64-x86_64—-cmake \
mingw-w64-x86_64—graphviz mingw-w64-x86_64-ninja \
mingw-w64-x86_64-doxygen mingw-w64-i686—-ghostscript \

...lots of output...

Reference Manual SRecord 15

Build(SRecord) Build(SRecord)

%o
SITE CONFIGURATION

The SRecord package is configured using the cmake program.

cmake attempts to guess correct values for various system-dependent variables used during compilation,
and creates the Makefile and lib/config.h files. It also creates a shell script config.status that you can run in
the future to recreate the current configuration.

Normally, from the top-leve directory of the source package, you just create and run cmake from a build di-
rectory

% mkdir build

% cd build

% cmake

...lots of output...

%

By default, on Linux systems, cmake will arrange to install the SRecord package’s files in /usr/local/bin,
and /usr/local/man. There are variables which allow you to control the placement of these files as well as
many other options.

Here are the cmake variables that you might want to override with environment variables when running
configure.

Variable: CXX
C++ compiler programm. The default is determined by cmake according to the opeerating system
and environment variables. /usr/local.

Variable: CMAKE_INSTALL_PREFIX
The common root of the installation tree for the files The default is /usr/local.

If you need to do unusual things to compile the package, the author encourages you to figure out how
cmake could check whether to do them, and mail diffs or instructions to the author so that they can be in-
cluded in the next release.

BUILDING SRECORD
All you should need to is ensure you are in the build directory and use the
% cmake --build .
...lots of output...
%
command and wait. When this finishes you should see directories called srec_cat, srec_cmp and srec_info
containing executables by the same name.

srec_cat The srec_cat program is used to manipulate and convert EPROM load files. For more informa-
tion, see srec_cat(1).

srec_cmp
The srec_cmp program is used to compare EPROM load files. For more information, see
srec_cmp(1).

srec_info
The srec_info program is used to print information about EPROM load files. For more informa-
tion, see srec_info(1).

Reference Manual SRecord 16

Build(SRecord) Build(SRecord)

If you have GNU Groff installed, the build will also create a doc/REFERENCE.pdf file. This contains the
README file, this BUILDING file, and all of the man pages.

The build directory can be deleted at any time.

TESTING SRECORD

The SRecord package comes with a test suite. To run this test suite, use the command
% ctest
...lots of output...
%

The tests take a few seconds each, with a few very fast, and a couple very slow, but it varies greatly depend-
ing on your CPU.

If all went well, the message
100% tests passed
should appear at the end.

INSTALLING SRECORD

As explained in the SITE CONFIGURATION section, above, on Linux systems the SRecord package is in-
stalled under the /us#/local tree by default. Use the ——prefix=PATH option to configure if you want
some other path. More specific installation locations are assignable, use the ——help option to configure
for details.

All that is required to install the SRecord package is to use the
% cmake -—-install
...lots of output...
%

command.

PACKAGING SRECORD

Installation packages can be created. On Linux platforms .deb, .rpm and .tar.gz are supported and tested.
Packages are created with the following command:

% cpack -G DEB

...lots of output...

%
or to build multiple packages:

% cpack -G "DEB;RPM; TGZ"

...lots of output...

%

On Windows, ZIP archive is supported and is created similarly:
% cpack -G ZIP
...lots of output...
%

GETTING HELP

If you need assistance with the SRecord package, please post to the srecord-users mailing list
srecord-users@lists.sourceforge.net
For information obout the srecord-users mailing list. http://srecord.sourceforge.net/mailing-list.html

When reporting problems, please include the version number given by the
% srec_cat -version
srecord version [.65.0
...warranty disclaimer...
%
command. Please do not send this example; run the program for the exact version number.

Reference Manual SRecord 17

Build(SRecord) Build(SRecord)

COPYRIGHT
srecord version 1.65
Copyright © 1998... Peter Miller
Copyright © 1998... Scott Finneran

The SRecord package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

It should be in the LICENSE file included with this distribution.

AUTHOR
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 18

New Format(SRecord) New Format(SRecord)

NAME

How to add a new file format

DESCRIPTION
This section describes how to add a new file format. It’s mostly a set of reminders for the maintainer. If
you want a format added to the distribution, use this method and e-mail the maintainer a patch (generated
with diff -Nur, usually) and it can be added to the sources if appropriate.

New Files
The directory hierarchy is an echo of the class hierarchy, making it easy to guess the filename of a class,
and to work out the appropriate file name of a new class. You get used to it. It is suggested that you simply
work in the root of the source tree (exploiting tab-completion in your shell and your editor) rather than con-
tinually changing directories up and down the source tree. All of the file names below assume this.

The following files need to be creates for a new format.

srecord/output/file/name.cc
This file is how to write the new format. Take a look at the other files in the same directory for
examples. Also check out srecord/output/file.h and srecord/output.h for various helper methods.

srecord/output/file/name.h
This is the class declaration for the above file.

srecord/input/file/name.cc
This file is how to read the new format. Take a look at the other files in the same directory for ex-
amples. Also check out srecord/input/file.h and srecord/input.h for various helper methods.

srecord/input/file/name.h
This is the class declaration for the above file.

man/man5/srec_name.5
This file describes the format. Take a look at the other files in the same directory for examples.

If you need to describe something as “stupid”, as is all too often the case, use thesaurus.com
to find a synonym. Use the following command
find man/. -type f | xargs grep -—i synonym

to make sure it hasn’t been used yet.

test/nn/tnnmma.sh
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the
patch for your new format accepted rapidly if it comes with at least one test for its output class,
and at least one test for its input class.

If your filter has endian-ness, add tests for each endian.

Modified Files
The following files need to be updated to mention the new format.

srecord/srecord.h
Add the new include file to the list. This file controls what files are installed into the /usr/in—
clude directory. Not all of them, just the public interface.

etc/README.man
Mention the new format in the section of this file which describes the supported file formats.

etc/index.html
Mention the new format in the section of this file which describes the supported file formats.

srecord/arglex/tool.h
Add the new format to the command line argument type enum.

If your filter has endian-ness, add one for each endian, using “_be” and “_le” suffixes.

Reference Manual SRecord 19

New Format(SRecord) New Format(SRecord)

srecord/arglex/tool.cc
Add the new format to the array of command line arguments types.

If your filter has endian-ness, add one for each endian, using “_Big_Endian” and “_Little_En-
dian” suffixes.

srecord/arglex/tool/input.cc
Add the new format to the code which parses input formats.

srecord/arglex/tool/output.cc
Add the new format to the code which parses output formats.

srecord/input/file/guess.cc
Add the new format to the list of formats which are tested.

man/manl/srec_input.1
Mention the new format in the section of this file which describes the supported input file for-
mats.

man/manl/srec_cat.1
Mention the new format in the section of this file which describes the supported output file for-
mats.

Makefile
Actually, the system the maintainer uses automatically generates this file, but if you aren’t using
Aegis you will need to edit this file for your own use.

Tests
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the patch for your
new format accepted rapidly if it comes with at least one test for its output class, and at least one test for its
input class.

If your filter has endian-ness, add tests for each endian.

IMPLEMENTATION ISSUES
In implementing a new file format, there are a couple of philosophical issues which affect technical deci-
sions:

Be liberal in what you accept
Where ever possible, consume the widest possible interpretation of valid data. This includes
treating mandatory input fields as optional (e.g. file headers and execution start addresses), and
coping with input definitions to their logical extremes (e.g. 255 byte data records in Motorola for-
mat). Checksums should always be checked on input, only ignore them if the —ignore-checksums
command line option has been given. Absurd line lengths must be tolerated.

Be conservative in what you produce
Even when the input is questionable, the output produced by srec_cat must always be strictly
conforming with the format definition (except as mandated by command line options, see below).
Checksums, if the format has them, must always be correct on output. Line lengths should de-
fault to something reasonable (about 80 characters or less).

Eat Your Own Dog Food
You input class must always be able to consume what your output class produces, no matter what
combination of command line options (see below) has been selected.

Round Trip
In general, what went in is what comes out.

e The data may be re-arranged in order, the line lengths may change, but the same data should
go out as came in. (The data should be unchanged even if the format changed, assuming
equally capable formats.) The srec_cmp(1) command may be used to verify this.

Reference Manual SRecord 20

New Format(SRecord) New Format(SRecord)

e If the input has no header record, the output should not have one either (if at all possible).
This means not automatically inserting a header record if the output file code sees data as the
first method call. (The —disable=header option affects this, too.)

e If the input has no execution start address record, the output should not have one either (if at
all possible). This means not automatically inserting an execution start address record if the
output file code does not see one by the time the destructor is called. (The —disable=exec-
start-addr flag affects this, too.)

e Write at least one test that does a “round trip” of data through the new format and back again,
exercising any interesting boundary conditions along the way (e.g. data records spanning seg-
ment boundaries).

Holes Do not to fill in holes in the data. That said, sometimes you have to fill holes in the data. This
happens, for example, when a 16-bit format is faced with an 8-bit byte of data for one or other
half of a 16-bit word. If there is no other way around it, call the fatal_alignment_error method,
which will suggest a suitable input filter.

OPTIONS

There are also some command line arguments you will need to take into account:

—address-length
This options is used to specify the minimum address length, if your new format has a choice
about how many bytes of address it produces.

—data-only
This option implies all of the —disable=header, —disable=data-count —disable=exec-start-addr
and —disable=footer options. Only the essential data records are produced.

—disable=header
If this option is used, no header records are to be produced (or minimal header records). This is
available as the enable_header_flag class variable in the methods of your derived class.

—disable=data-count
If this option is used, no data record count records are to be produced. This is available as the
enable_data_count_flag class variable in the methods of your derived class.

—disable=exec-start-addr
If this option is used, no execution start address records are to be produced. This is available as
the enable_goto_addr_flag class variable in the methods of your derived class.

—disable=footer
If this option is used, no end-of-file records are to be produced. This is available as the en—
able_footer_flag class variable in the methods of your derived class.

—enable=optional-address
If this option is used, in combination with a format that does not have an address on every line,
the the first zero address many be omitted. All subsequent addresses are not optional, just the
first zero address. Defaults to disabled.

—ignore-checksums
If this flag is set, your file input methods must parse but not check checksums, if the format has
checksums. You can tell if you need to use checksums by calling the use_checksums ()
method within the implementation of your derived class. This only applies to input; output must
always produce correct checksums.

—line-length
Where your output format is text, and there exists the possibility of putting more or less text on
each line (e.g. the Motorola format allows a variable number of data bytes per record) then this
should be controllable. This manifests in the address_length_set and pre-
ferred_block_size_get methods you must implement in your derived class.

Reference Manual SRecord 21

New Format(SRecord) New Format(SRecord)

CODING STYLE
Please following the coding style of the existing code. It makes your patches and contributions more likely
to be accepted if they don’t have to be extensively reformatted.

Indent increments are four characters. Do not use tab characters at all, nobody can agree how wide they are
supposed to be. Line length is 80 characters or fewer, no exceptions.

Please follow the existing convention of always using Doxygen comments on all your instance variables
and methods, even for private methods. Always document all arguments of all methods, even private meth-
ods, using @param tags; see existing style. Always use whole sentences in your Doxygen documentation,
see existing code for examples.

Do not use upper case letters in file names. Do not use white space or shell special characters in file names.

When sending a patch please use “diff —Nur”, as this will include your new files in the patch, and you will
not need additional attachments in your email. Patches are preferred over tarballs.

Include tests. It makes your patches and contributions more likely to be accepted if the maintainer doesn’t
have to write your tests for you. See sources for examples of existing tests.

CONTRACT RATES
It is possible to have the maintainer write your new file format or new filter for you. However, if you want
it done for nothing, you will be put at the end of a (very) long queue of other gratis open source work the
maintainer has yet to do. You can jump the queue if you want to pay the maintainer to do the work for you.

The maintainer’s rates are AU$100 per hour.

A well document new format typically takes six hours to write and test, this includes both reading and writ-
ing the new format. A well documented new filter typically takes three hours to write and test.

Examples make these tasks easier. Poor documentation makes these tasks take longer. A mystery format
that requires reverse engineering may take much longer; ask again once you have figured it out.

All code written for you will be included in the project source tarball in its next release. All formats and
filters written for you will be copyright Scott Finneran;E-Mail:;scottfinneran @yahoo.com.au, and they will
be GNU GPL licensed. If you need a format or filter written, it has value to you; the issue of freeloaders is
irrelevant.

Conversely, integrating complete open source contributions and patches is done gratis, and usually done as
promptly as time permits.

AUTHOR
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 22

New Filter(SRecord) New Filter(SRecord)

NAME

How to add a new filter

DESCRIPTION
This section describes how to add a new filter. It’s mostly a set of reminders for the maintainer. If you
want a filter added to the distribution, use this method and e-mail the maintainer a patch (generated with
diff -Nur, usually) and it can be added to the sources if appropriate.

New Files
The directory hierarchy is an echo of the class hierarchy, making it easy to guess the filename of a class,
and to work out the appropriate file name of a new class. You get used to it. It is suggested that you simply
work in the root of the source tree (exploiting tab-completion in your shell and your editor) rather than con-
tinually changing directories up and down the source tree. All of the file names below assume this.

The following files need to be created for a new filter.

srecord/input/filter/name.cc
This file is how to process the new filter. Take a look at the other files in the same directory for
examples. Also read srecord/input.h and srecord/input/filter.h for various helper methods.

srecord/input/filter/name.h
This is the class declaration for the above file.

srecord/input/filter/message/name.cc
If your filter needs all of the data to be known before it can proceed, or it needs all of the data to
appear in ascending address order, derive from the srec_input_filter_message class, in-
stead. This takes care of all data handling, you only have to write the method that computes the
result from the data. Take a look at the other files in the same directory for examples.

srecord/input/filter/message/name.h
This is the class declaration for the above file.

test/nn/tnnmma.sh
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the
patch for your new filter accepted rapidly if it comes with at least one test.

Modified Files
The following files need to be updated to mention the new filter.

srecord/srecord.h
Add the new include file to the list. This file controls what files are installed into the /usr/in—
clude directory. Not all of them, just the public interface.

etc/README.man
Mention the new filter in the section of this file which describes the supported filters.

etc/index.html
Mention the new filter in the section of this file which describes the supported filters.

srecord/arglex/tool.h
Add the new filter to the command line argument type enum.

If your filter has endian-ness, add one for each endian, using “_be” and “_le” suffixes.

srecord/arglex/tool.cc
Add the new filter to the array of command line arguments types.

If your filter has endian-ness, add one for each endian, using “_Big_Endian” and “_Little_En-
dian” suffixes.

srecord/arglex/tool/input.cc
Add the new filter to the code which parses input filters.

If your filter has endian-ness, add your command line tokens to the switch in the srecord::ar-
glex_tool::get_endian_by_token method.

Reference Manual SRecord 23

New Filter(SRecord) New Filter(SRecord)

man/manl/o_input.so
Mention the new filter in the section of this file which describes the supported input filters.

Makefile
Actually, the system the maintainer has Aegis automatically generate this file, but if you aren’t
using Aegis you will need to edit this file for your own use.

Tests
You may have noticed that SRecord comes with a lot of tests. You are more likely to get the patch for your
new filter accepted rapidly if it comes with at least one test.

If your filter has endian-ness, add tests for each endian.

IMPLEMENTATION ISSUES

In implementing a new filter, there are a couple of philosophical issues which affect technical decissions:

* Be liberal in what you accept. Where ever possible, consume the widest possible interpretation of
“valid” data. You especially need to cope with data with holes, and data records out of order, and data
records not nicely aligned.

If your filter has endian-ness, add tests for each endian.

* Be conservative in what you produce. Even when the input is weird, the output produced by the filter
must be conforming. E.g. the byte-swap filter still works when it has only one of the two bytes, and the
other is a hole; it swaps the byte and the hole.

» If the input has no header record, the output should not have one either.
» If the input has no execution start address record, the output should not have one either.

* Do not to fill in holes in the data, unless you are a writing a “fill” filter. See the srecord/in-
put/filter/message. cc file for an example of issuing a warning in the presence of holes.

» If the new filter is supposed to be its own inverse (e.g. byte-swap), or a pair of filters are supposed to be
inverses (e.g. split and unsplit) be sure to write a test to confirm this. The tests should exersize all of the
boundary conditions (e.g. around the edges of holes, extremes of data ranges).

CODING STYLE
Please following the coding style of the existing code. It makes your patches and contributions more likely
to be accepted if they don’t have to be extensively reformatted.

Indent increments are four characters. Do not use tab characters at all, nobody can agree how wide they are
supposed to be. Line length is 80 characters or fewer, no exceptions.

Please follow the existing convention of always using Doxygen comments on all your instance variables
and methods, even for private methods. Always document all arguments of all methods, even private meth-
ods, using @param tags; see existing style. Always use whole sentences in your Doxygen documentation,
see existing code for examples.

Do not use upper case letters in file names. Do not use white space or shell special characters in file names.

When sending a patch please use “diff —Nur”, as this will include your new files in the patch, and you will
not need additional attachments in your email. Patches are preferred over tarballs.

Include tests. It makes your patches and contributions more likely to be accepted if the maintainer doesn’t
have to write your tests for you. See sources for examples of existing tests.

CONTRACT RATES
It is possible to have the maintainer write your new file format or new filter for you. However, if you want
it done for nothing, you will be put at the end of a (very) long queue of other gratis open source work the
maintainer has yet to do. You can jump the queue if you want to pay the maintainer to do the work for you.

The maintainer’s rates are AU$100 per hour.

A well document new format typically takes six hours to write and test, this includes both reading and writ-
ing the new format. A well documented new filter typically takes three hours to write and test.

Reference Manual SRecord 24

New Filter(SRecord) New Filter(SRecord)

Examples make these tasks easier. Poor documentation makes these tasks take longer. A mystery format
that requires reverse engineering may take much longer; ask again once you have figured it out.

All code written for you will be included in the project source tarball in its next release. All formats and
filters written for you will be copyright Scott Finneran;E-Mail:;scottfinneran @yahoo.com.au, and they will
be GNU GPL licensed. If you need a format or filter written, it has value to you; the issue of freeloaders is
irrelevant.

Conversely, integrating complete open source contributions and patches is done gratis, and usually done as
promptly as time permits.

AUTHOR
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 25

srec_cat(1) General Commands Manual srec_cat(1)

NAME

srec_cat — manipulate EPROM load files

SYNOPSIS

srec_cat [option...] filename...
srec_cat —Help
srec_cat —VERSion

DESCRIPTION

The srec_cat program is used to assemble the given input files into a single output file. The use of filters
(see below) allows significant manipulations to be performed by this command.

Data Order

The data from the input files is not immediately written to the output, but is stored in memory until the
complete EPROM image has been assembled. Data is then written to the output file in ascending address
order. The original ordering of the data (in those formats capable of random record ordering) is not pre-
served.

Data Comparison

Because input record order is not preserved, textual comparison of input and output (such as the diff(1) or
tkdiff(1) commands) can be misleading. Not only can lines appear in different address orders, but line
lengths and line termination can differ as well. Use the srec_cmp(1) program to compare two EPROM load
files. If a text comparison is essential, run both files through the srec_cat(1) program to ensure both files to
be compared have identical record ordering and line lengths.

Data Conflicts

The storing of data in memory enables the detection of data conflicts, typically caused by linker sections
unintentionally overlapping.

* A warning will be issued for each address which is redundantly set to the same value.

* A fatal error will be issued if any address is set with contradictory values. To avoid this error use an —ex-
clude —within filter (see srec_input(1)) or, to make it a warning, use the —contradictory-bytes option
(see below).

* A warning will be issued for input files where the data records are not in strictly ascending address order.
To suppress this warning, use the —disable-sequence-warning option (see below).

These features are designed to detect problems which are difficult to debug, and detects them before the
data is written to an EPROM and run in your embedded system.

INPUT FILE SPECIFICATIONS

Input may be qualified in two ways: you may specify a data file or a data generator. format and you may
specify filters to apply to them. An input file specification looks like this:

data-file [filter ...]

data-generator | filter ...]

Data Files

Input from data files is specified by file name and format name. An input file specification looks like this:
filename [format][—ignore-checksums]
The default format is Motorola S-Record format, but many others are also understood.

Data Generators

It is also possible to generate data, rather than read it from a file. You may use a generator anywhere you
could use a file. An input generator specification looks like this:

—GENerate address-range —data-source
Generators include random data and various forms of constant data.

Common Manual Page

See srec_input(1) for complete details of input specifiers. This description is in a separate manual page be-
cause it is common to more than one SRecord command.

Reference Manual SRecord 26

srec_cat(1)

OPTIONS

General Commands Manual srec_cat(1)

The following options are understood:
@filename

The named text file is read for additional command line arguments. Arguments are separated by
white space (space, tab, newline, efc). There is no wildcard mechanism. There is no quoting
mechanism. Comments, which start with '# and extend to the end of the line, are ignored.
Blank lines are ignored.

—Output filename [format |

Reference Manual

This option may be used to specify the output file to be used. The special file name “—[rq] is un-
derstood to mean the standard output. Output defaults to the standard output if this option is not
used.

The format may be specified as:

—Absolute_Object_Module_Format
An Intel Absolute Object Module Format file will be written. (See srec_aomf (5) for a
description of this file format.)

—Ascii_Hex
An Ascii-Hex file will be written. (See srec_ascii_hex(5) for a description of this file
format.)

—ASM [prefix][—option... |
A series of assembler DB statements will be written.

The optional prefix may be specified to change the names of the symbols generated.
The defaults to "eprom" if not set.

Several options are available to modify the style of output:

—Dot_STyle
Use "dot" style pseudo-ops instead of words. For example .byte instead of
the DB default.

—HEXadecimal_STyle
Use hexadecimal numbers in the output, rather than the default decimal num-
bers.

—Section_STyle
By default the generated assemble of placed at the correct address using ORG
pseudo-ops. Section style output emits tables of section addresses and
lengths, so the data may be related at runtime.

—A430 Generate output which is compliant to the a430 . exe compiler as it is used,
e.g. in AR Embedded Workbench. This is short-hand for —section-style
—hex-style

—CL430 Generate output which is Code Composer Essentials compliant, i.e. the com-
piler of it. This is short-hand for —section-style —hex-style —dot-style

—Output_Word

Generate output which is in two-byte words rather than bytes. This assumes
little-endian words; you will need to use the —Byte-Swap filter if your target
is big-endian. No attempt is made to align the words onto even address
boundaries; use and input filter such as

input-file —fill OXFF —within input-file

—range-pad 2
to pad the data to whole words first.

SRecord 27

srec_cat(1)

Reference Manual

General Commands Manual srec_cat(1)

—Atmel_Generic
An Atmel Generic file will be written. (See srec_atmel_generic(5) for a description of
this file format.)

—BASic A series of BASIC DATA statements will be written.

—B-Record
A Freescale MC68EZ328 Dragonball bootstrap b-record format file will be written.
(See srec_brecord(5) for a description of this file format.)

—Binary
A raw binary file will be written. If you get unexpected results please see the srec_bi-
nary(5) manual for more information.

—C-Array [identifier][—option...]
A C array defintion will be written.

The optional identifier is the name of the variable to be defined, or bugus if not speci-
fied.

—INClude
This option asks for an include file to be generated as well.

—No-CONST
This options asks for the variables to not use the const keyword (they are de-
clared constant be default, so that they are placed into the read-only segment
in embedded systems).

—C_COMpressed
These options ask for an compressed c-array whose memory gaps will not be
filled.

—Output_Word
This option asks for an output which is in words not in bytes. This is little
endian, so you may need to

—PREfix string
This option allows a string to be prepended to the array definition. This is
commonly used for non-standard options common to cross compilers.

—-POSTfix string
This option allows a string to be appended to the array definition. This is
commonly used for non-standard options common to cross compilers.

—COE This option says to use the Xilinx Coefficient File Format (.coe) for output. (See
srec_coe(5) for a description of this file format.)

—COsmac
An RCA Cosmac Elf format file will be written. (See srec_cosmac(5) for a description
of this file format.)

—Dec_Binary
A DEC Binary (XXDP) format file will be written. (See srec_dec_binary(5) for a de-
scription of this file format.)

—Elektor_Monitor52
This option says to use the EMONS52 format file when writing the file. (See
srec_emon52(5) for a description of this file format.)

—FAIrchild
This option says to use the Fairchild Fairbug format file when writing the file. (See
srec_fairchild(5) for a description of this file format.)

SRecord 28

srec_cat(1)

Reference Manual

General Commands Manual srec_cat(1)

—Fast_Load
This option says to use the LSI Logic Fast Load format file when writing the file. (See
srec_fastload(5) for a description of this file format.)

—Formatted_Binary
A Formatted Binary format file will be written. (See srec_formatted_binary(5) for a
description of this file format.)

—-FORTH [—option]
A FORTH input file will be written. Each line of output includes a byte value, an ad-
dress, and a command.
—RAM The store command is C! This is the default.

-EEPROM
The store command is EEC!

—Four_Packed_Code
This option says to use the PFC format file when writing the file. (See srec_fpd(5) for
a description of this file format.)

—-HEX_Dump
A human readable hexadecimal dump (including ASCII) will be printed.

—-IDT An IDT System Integration Manager (IDT/sim) binary file will be written. (See
srec_idt(5) for a description of this file format.)

—Intel An Intel hex format file will be written. (See srec_intel(5) for a description of this file
format.) The default is to emit “i32hex” 32-bit linear addressing; if you want “i16hex”
20-bit extended segment addressing use the —address-length=3 option, if you want
“i8hex” 16-bit addressing use the —address-length=2 option.

—Intel_HeX_16
An Intel-16 hex format (INHX16) file will be written. (See srec_intell6(5) for a de-
scription of this file format.)

—Lattice_Memory_Initialization_Format [width]
The Memory Initialization Format (.mem) by Lattice Semiconductor is understood for
writing only. (A.k.a. -MEM) (See srec_mem(5) for a description of this file format.)
-LOGisim
LOginsim logic simuator uses the format See —srec_logisim(5) form more information.
—Memory_Initialization_File [width]
Memory Initialization File (MIF) by Altera format will be written. The width defaults
to 8 bits. (See srec_mif(5) for a description of this file format.)

—Mips_Flash_Big_Endian

—Mips_Flash_Little_Endian
MIPS Flash file format will be written. (See srec_mips_flash(5) for a description of
this file format.)

—MOS_Technologies
An Mos Technologies format file will be written. (See srec_mos_tech(5) for a descrip-
tion of this file format.)

—Motorola [width |
A Motorola S-Record file will be written. (See srec_motorola(5) for a description of
this file format.) This is the default output format. By default, the smallest possible ad-
dress length is emitted, this will be S19 for data in the first 64KB; if you wish to force
S28 use the —address-length=3 option; if you wish to force S37 use the —address-
length=4 option

The optional width argument describes the number of bytes which form each address

SRecord 29

srec_cat(1)

Reference Manual

General Commands Manual srec_cat(1)

multiple. For normal uses the default of one (1) byte is appropriate. Some systems
with 16-bit or 32-bit targets mutilate the addresses in the file; this option will imitate
that behavior. Unlike most other parameters, this one cannot be guessed.

—MsBin This option says to use the Windows CE Binary Image Data Format to write the file.
See srec_msbin(5) for a description of this file format.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to write the file.
See srec_needham(5) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific hexadecimal format. See srec_os65v(5) for
a description of this format.

—PPB This option says to use the Stag Prom Programmer binary format. See srec_ppb(5) for
a description of this format.

—PPX This option says to use the Stag Prom Programmer hexadecimal format. See
srec_ppx(5) for a description of this format.

—SIGnetics
This option says to use the Signetics hex format. See srec_signetics(5) for a description
of this format.

—SPAsm
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). See srec_spasm(S) for a description of this format.

—SPAsm_Little_Endian
This option says to use the SPASM assembler output format (commonly used by PIC
programmers). But with the data the other way around.

—STewie
A Stewie binary format file will be written. (See srec_stewie(5) for a description of
this file format.)

—Tektronix
A Tektronix hex format file will be written. (See srec_tektronix(5) for a description of
this file format.)

—Tektronix_Extended
A Tektronix extended hex format file will be written. (See srec_tektronix_extended(5)
for a description of this file format.)

—Texas_Instruments_Tagged
A TI-Tagged format file will be written. (See srec_ti_tagged(5) for a description of
this file format.)

—Texas_Instruments_Tagged_16
A Texas Instruments SDSMAC 320 format file will be written. (See
srec_ti_tagged_16(5) for a description of this file format.)

—Texas_Instruments_TeXT
This option says to use the Texas Instruments TXT (MSP430) format to write the file.
See srec_ti_txt(5) for a description of this file format.

—TRS80
This option says to use the Radio Shack TRS-80 object file format to write the file. See
srec_trs80(5) for a description of this file format.

—-VHdI [bytes-per-word [name 1]
A VHDL format file will be written. The bytes-per-word defaults to one, the name de-
faults to eprom. The etc/x_defs_pack.vhd file in the source distribution contains an

SRecord 30

srec_cat(1) General Commands Manual srec_cat(1)

example ROM definitions pack for the type-independent output. You may need to use
the —byte-swap filter to get the byte order you want.

—VMem [memory-width |
A Verilog VMEM format file will be written. The memory-width may be 8, 16, 32, 64
or 128 bits; defaults to 32 if unspecified. (See srec_vmem(S) for a description of this
file format.) You may need to use the —byte-swap filter to get the byte order you want.

—WILson
A wilson format file will be written. (See srec_wilson(5) for a description of this file
format.)

—Address_Length number
This option many be used to specify the minimum number of bytes to be used in the output to
represent an address (padding with leading zeros if necessary). This helps when talking to imbe-
cilic EPROM programmer devices which do not fully implement the format specification.

—CRLF This option is short-hand for the -line-termination=crlf option. For use with hare-brained
EPROM programmer devices which assume all the world uses Evil Bill’s operating system’s line
termination.

—Data_Only
This option implies the —disable=header, —disable=data-count, —disable=exec-start-address
and —disable=footer options.

—DISable feature-name
This option is used to disable the output of a named feature. See the —enable option for a de-
scription of the available features.

—ENable feature-name
This option is used to enable the output of a named feature.

Header This feature controls the presence of header records, records which appear before the
data itself. Headers often, but not always, include descriptive text.

Execution_Start_Address
This feature controls the presence of execution start address records, which is where the
monitor will jump to and start executing code once the hex file has finished loading.

Data_Count
This feature controls the presence of data record count records, which appear aftre the
data, and state how many data records preceeded them. Usually a data integrity mecha-
nism.

Footer This feature controls the presence of a file termination record, one that does not double
as an execution start address record.

Optional_Address
In formats that have the address and the data separated or partially separated (as op-
posed to having a complete address in every record) it is possible to disable emitting the
first address where that address would be zero, as these format often default the address
to zero if no address is seen beofre the first data record. This is disabled by default, the
zero address is always emitted.

Not all formats have all of the above features. Not all formats are able to optionally omit any or
all the above features. Feature names may be abbreviated like command line option names.

—Execution_Start_Address number
This option may be used to set the execution start address, in those formats which support it. The
execution start address is where the monitor will jump to and start executing code once the hex
file has finished loading, think of it as a “goto” address. Usually ignored by EPROM program-
mer devices. This option implies the —enable=exec-start-addr option.

Reference Manual SRecord 31

srec_cat(1) General Commands Manual srec_cat(1)

Please note: the execution start address is a different concept than the first address in memory of
your data. If you want to change where your data starts in memory, use the —offset filter.

—HEAder string
This option may be used to set the header comment, in those formats which support it. This op-
tion implies the —enable=header option.

If you need to inject binary data into the header, use the URL encoding that uses % followed by
two hexadeimal characters. For example a backspace would be encoded as “%08”.

—IGnore_Checksums
The —IGnore-Checksums option may be used to disable checksum validation of input files, for
those formats which have checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if they are missing) but their values are not checked. Used after an
input file name, the option affects that file alone; used anywhere else on the command line, it ap-
plies to all following files.

—Line_Termination style-name
This option may be used to specify line termination style for text output. The default is to use the
host operating system’s default line termination style (but Cygwin behaves as if it’s Unix). Use
this option with caution, because it will also introduce extra (i.e. wrong) CR bytes into binary for-
mats.

Carriage_Return_Line_Feed
Use the CRLF line termination style, typical of DOS and M$ Windows.

NewLine
Use the NL line termination style, typical of Unix and Linux.

Carriage_Return
Use the CR line termination style, typical of Apple Macintosh.

All other line termination style names will produce a fatal error. Style names may be abbreviated
like command line option names.

—Line_Length number
This option may be used to limit the length of the output lines to at most number characters. (Not
meaningful for binary file format.) Defaults to something less than 80 characters, depending on
the format. If you need to control the maximum number of bytes in each output record, use the
——Ouput_Block_Size option.

—Output_Block_Size number
This option may be used to specify the exact number of data bytes to appear in each output
record. There are format-specific limitations on this value, you will get an error if the value isn’t
valid. If you need to control the maximum number of characters on a line of text output, use the
——Line_Length option.

—Output_Block_Packing
From time to time, with large files, you may notice that your data records are spit unexpectedly
on output. This usually happens where record lengths are not a power of 2. If this bothers you
(or your comparison tools) this option may be used to repack the output so that SRecord’s inter-
nal block boundaries are not visable in the output.

—Output_Block_Alignment
This option is similar to the —Output_Block_Packing option, except that short records are used
after holes to cause subsequent records to be placed on a block size boundary.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address order. Only one warning is issued per input file. This is the default.

Note: the output of srec_cat(1) is always in this order.

Reference Manual SRecord 32

srec_cat(1) General Commands Manual srec_cat(1)

Note: This option must be used before the input file. This is because if there are several files on
the command line, each may need different settings. The setting remains in force until the next
—Disable_Sequence_Warnings option.

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
strictly ascending address order.

Note: This option must be used before the offending input file. This is because if there are sev-
eral files on the command line, each may need different settings. The setting remains in force un-
til the next —Ensable_Sequence_Warnings option.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—help”, “~HEL” and “—h” are all interpreted to mean the —Help option. The
argument “—hlp” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_cat are long, this means ig-
noring the extra leading “~”. The “——option=value” convention is also understood.

EXIT STATUS
The srec_cat command will exit with a status of 1 on any error. The srec_cat command will only exit with
a status of O if there are no errors.

COPYRIGHT
srec_cat version 1.65
Copyright © 1998... Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the *srec_cat —VER-
Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 33

srec_cmp(1) General Commands Manual srec_cmp(1)

NAME
srec_cmp — compare two EPROM load files for equality

SYNOPSIS
srec_cmp [option... | filename...
srec_cmp —Help
srec_cmp —VERSion

DESCRIPTION
The srec_cmp program is used to compare two EPROM load files for equality. This comparison is per-
formed irrespective of the load order of the data in each of the files.

INPUT FILE SPECIFICATIONS
Input may be qualified in two ways: you may specify a data file or a data generator. format and you may
specify filters to apply to them. An input file specification looks like this:
data-file [filter ...]
data-generator | filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looks like this:
filename [format][—ignore-checksums]
The default format is Motorola S-Record format, but many others are also understood.

Data Generators
It is also possible to generate data, rather than read it from a file. You may use a generator anywhere you
could use a file. An input generator specification looks like this:
—GENerate address-range —data-source
Generators include random data and various forms of constant data.

Common Manual Page
See srec_input(1) for complete details of input specifiers. This description is in a separate manual page be-
cause it is common to more than one SRecord command.

OPTIONS

The following options are understood:

@filename
The named text file is read for additional command line arguments. Arguments are separated by
white space (space, tab, newline, efc). There is no wildcard mechanism. There is no quoting
mechanism. Comments, which start with '# and extend to the end of the line, are ignored.
Blank lines are ignored.

—Help

Provide some help with using the srec_cmp program.

—IGnore_Checksums
The —IGnore-Checksums option may be used to disable checksum validation of input files, for
those formats which have checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if they are missing) but their values are not checked. Used after an
input file name, the option affects that file alone; used anywhere else on the command line, it ap-
plies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address order. Only one warning is issued per input file. This is the default.

Note: the output of srec_cat(1) is always in this order.

Note: This option must be used before the input file. This is because if there are several files on
the command line, each may need different settings. The setting remains in force until the next
—Disable_Sequence_Warnings option.

Reference Manual SRecord 34

srec_cmp(1) General Commands Manual srec_cmp(1)

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
strictly ascending address order.

Note: This option must be used before the offending input file. This is because if there are sev-
eral files on the command line, each may need different settings. The setting remains in force un-
til the next —Ensable_Sequence_Warnings option.

—redundant-bytes=value
Use this option to permit a file to contain redundant values for some memory locations. The de-
fault is for this condition to be a warning.

ignore
No warning or error is issued whena redundant settings are detected.

warning
A warning is issued when a redundant settings are observed, the warning includes the prob-
lematic address.

error
A fatal error is issued when a redundant settings are observed, the fatal error message in-
cludes the problematic address and byte value.

—contradictory-bytes=value
Use this option to permit a file to contain contradictory values for some memory locations. The
last value in the input(s) will be used. The default is for this condition to be a fatal error.

ignore
No warning or error is issued when contradictory setting is detected.

warning
A warning is issued when a vontradictory settings are observed, the warning includes the
problematic address, and values.

error
A fatal error is issued when contradictory settings are observed, the fatal error message in-
cludes the problematic address and byte values.

-VERSion
Print the version of the srec_cmp program being executed.

—Verbose
This option may be used to obtain more information about how and where the two files differ.
Please note that this takes longer, and the output can be voluminous.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—help”, “~HEL” and “—h” are all interpreted to mean the —Help option. The
argument “—hlp” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_cmp are long, this means ig-
noring the extra leading “~”. The “——option=value” convention is also understood.

Reference Manual SRecord 35

srec_cmp(1) General Commands Manual srec_cmp(1)

EXIT STATUS
The srec_cmp command will exit with a status of 1 on any error. The srec_cmp command will only exit
with a status of O if there are no errors.

EXAMPLE
A common use for the srec_cmp command is to verify that a particular signature is present in the code. In
this example, the signature is in a file called “signature[rq], and the EPROM image is in a file called “im-
age[rq]. We assume they are both Motorola S-Record format, although this will work for all formats:

srec_cmp signature image -crop -within signature
The signature need not be at the start of memory, nor need it be one single contiguous piece of memory. In

the above example, the portions of the image which have the same address range as the signature are com-
pared with the signature.

COPYRIGHT
srec_cmp version 1.65
Copyright © 1998... Peter Miller

The srec_cmp program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_cmp
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the *srec_cmp —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 36

srec_examples(1) i srec_examples(1)

NAME

srec_examples — examples of how to use SRecord

DESCRIPTION
The srec_cat command is very powerful, due to the ability to combine the the input filters in almost unlim-
ited ways. This manual page describes a few of them.

This manual page describes how to use the various input files, input filters and input generators. But these
are only examples, for more complete details, see the srec_input(1) manual page.

The Commands Lines Are Too Long
If you are marooned on an operating system with absurdly short command line length limits, some of the
commands which follow may be too long. You can get around this handicap by placing your command line
in a file, say fred.txt, and then tell srec_cat(1) to read this file for the rest of its command line, like this

srec_cat Qfred.txt

This also has the advantage of allowing comments, allowing you to write your command line options over
several lines, and even indenting to make the command more clear. Comments start at a “#” and extend to
the end of the line. Blank lines are ignored.

Of course, you could always upgrade to Linux, which has been sucking less for over 31 years now.

Your Examples Wanted
If you have a clever way of using SRecord, or have solved a difficult problem with SRecord, you could con-
tribute to this manual page, making it more useful for everyone. Send your example in an email to the
email address at the end of this manual page.

CONVERTING FILE FORMATS
The simplest of the things srec_cat#(1) can do is convert from one EPROM file format to another. Please
keep in mind, as you read this section, that you can do many of these things simultaneously in one com-
mand. They are only broken out separately to make them easier to understand.

Intel to Motorola
One of the simplest examples is converting files from Intel hex format to Motorola S-Record format:

srec_cat intel-file —intel -o srec-file

Note that the format specifier immediately follows the name of the file it is describing. Pick any two for-
mats that SRecord understands, and it can convert between all of them. (Except the assembler, BASIC, C
and FPGA outputs which are write only.)

Motorola to Intel
Converting the other way is just as simple:

srec_cat srec-file —o intel-file —intel
The default format is Motorola S-Record format, so it does not need to be specified after the file name.

Different Shapes of the Same Format
It is regrettably common that some addle-pated EPROM programmers only implement a portion of the
specification used to represent their hex files. For example, some compilers produce “s19” Motorola data
(that is, S1 data records with S9 start records, 16 bit address fields) which would be OK except that some
blockhead EPROM programmers insist on “s37” Motorola data (that is, S3 data records with S7 start
records, 32 bit address fields).

It is possible to convert from one Motorola shape to another using the —Address-Length option:
srec_cat short.srec -o long.srec —-address-length=4
This command says to use four byte (32-bit) addresses on output.

This section also applies to Intel hex files, as they, too, have the ability to select from a variety of address
widths. To convert from one Intel shape to another using the same —Address-Length option:

Reference Manual SRecord 37

srec_examples(1) i srec_examples(1)

srec_cat i32.hex -o il6.hex -address-length=3

This command says to use “i16hex” 20-bit segmented addresses on output. An address length of 4 is the
default (“i32hex” 32-bit linear addressing), and an address length of 2 would request “i8hex” 16-bit ad-
dressing.

Line Lengths
From time to time you will come across a feeble-minded EPROM programmer that can’t cope with long
text lines, they assume that there will only ever be 46 characters per line and barf when they see the default
line lengths that srec_cat(1) writes (or worse, get a stack scribble and crash).

The Motorola S-record format definition permits up to 255 bytes of payload, or lines of 574 characters, plus
the line termination. All EPROM programmers should have sufficiently large line buffers to cope with
records this big. Few do.

The —line-length option may be used to specify the maximum line length (not including the newline) to be
used on output. For example, 16 byte payloads for Motorola hex

srec_cat long.srec -o short.sl9 -line-length=46

The line length option interacts with the address length option, so some tinkering to optimize for your par-
ticular situation many be necessary.

Output Block Size
Every once in a while you will come across an ancient daft EPROM programmer that can’t cope with long
data records, they assume that there will only ever be at most 16 bytes of data per record, and barf when
they see the default 32 byte payloads that srec_cat(1) writes (or worse, the buffer over-run causes a tall
grass walk that scribbles on your EPROM).

The Intel hex format definition permits up to 255 bytes of payload data per record. All EPROM program-
mers should have sufficiently large data buffers to cope with records this big. Good luck with that.

The —Output-Block-Size option may be used to specify the record data size to be used on output. For ex-
ample, Intel hex with 16 byte payloads:

srec_cat long.srec -o short.hex —-intel -obs=16
Be careful not to put the —obs option between the output file name and the format specifier.

Just the Data, Please
There are some bonehead EPROM programmers which can only cope with data records, and are unable to
cope with header records or execution start address records. If you have this problem, the —data-only op-
tion can be used to suppress just about everything except the data. The actual effect depends on the format,
of course, because some don’t have these features anyway.

The —data-only option is short hand. There are four properties which may be —disabled or —enabled sepa-
rately. See the srec_cat(1) man page for a description of the —disabled and —enabled options.

For example, your neanderthal EPROM programmer requires Motorola hex with header records (S0), but
without data count (S5) records. Not using the —data-only option has it barf on the data count record, but
using the —data-only option has it barf on the missing header record. Using the —disable=data-count op-
tion would leave the header record intact while suppressing the data count record.

Data Headers
The srec_cat(1) command always tries to pass through header records unchanged, whenever they are
present. It even tries preserve them across file format changes, to the limit the file formats are capable of.

If there is no file header record and you would like to add one, or you wish to override an existing file
header record, use the —header=string option. You will need to quote the string (to insulate it from the
shell) if it contains spaces or shell meta-characters.

Execution Start Addresses
The srec_cat(1) command always tries to pass through execution start addresses (typically occurring at the
end of the file), whenever they are present. They are adjusted along with the data records by the —offset fil-
ter. It even tries preserve them across file format changes, to the limit the file formats are capable of.

Reference Manual SRecord 38

srec_examples(1) i srec_examples(1)

If there is no execution start address record and you would like to add one, or you wish to override an exist-
ing execution start address record, use the —execution-start-address=number option.

Please note: the execution start address is a different concept than the first address in memory of your data.
Think of it as a “goto” address to be jumped to by the monitor when the hex load is complete. If you want
to change where your data starts in memory, use the —offset filter.

Fixing Checksums
Some embedded firmware developers are saddled with featherbrained tools which produce incorrect check-
sums, which the more vigilant models of EPROM programmer will not accept.

To fix the checksums on a file, use the —ignore-checksums option. For example:
srec_cat broken.srec -ignore-checksums -o fixed.srec

The checksums in broken.srec are parsed (it is still and error if they are absent) but are not checked. The
resulting fixed.srec file has correct checksums. The —ignore-checksums option only applies to input.

This option may be used on any file format which has checksums, including Intel hex.

Discovering Mystery Formats
See the What Format Is This? section, below, for how to discover and convert mystery EPROM load file
formats.

BINARY FILES
It is possible to convert to and from binary files. You can even mix binary files and other formats together
in the same srec_cat(1) command.

Writing Binary Files
The simplest way of reading a hex file and converting it to a binary file looks like this:

srec_cat fred.hex -o fred.bin -binary
This reads the Motorola hex file fred.srec and writes it out to the fred.bin as raw binary.

Note that the data is placed into the binary file at the byte offset specified by the addresses in the hex file.
If there are holes in the data they are filled with zero. This is, of course, common with linker output where
the code is placed starting at a particular place in memory. For example, when you have an image that
starts at 0x100000, the first IMB of the output binary file will be zero.

You can automatically cancel this offset using a command like
srec_cat fred.hex -offset — —minimum-addr fred.hex -o fred.bin

The above command works by offsetting the fred.hex file lower in memory by the least address in the
fred.hex file’s data.

See also the srec_binary(5) man page for additional detail.

Reading Binary Files
The simplest way of reading a binary file and converting it looks like this

srec_cat fred.bin -binary -o fred.srec
This reads the binary file fred.bin and writes all of its data back out again as a Motorola S-Record file.

Often, this binary isn’t exactly where you want it in the address space, because it is assumed to reside at ad-
dress zero. If you need to move it around use the —offset filter.

srec_cat fred.bin -binary -offset 0x10000 -o fred.srec

You also need to avoid file “holes” which are filled with zero. You can use the —crop filter, of you could
use the —unfill filter if you don’t know exactly where the data is.

srec_cat fred.bin -binary -unfill 0x00 512 -o fred.srec

The above command removes runs of zero bytes that are 512 bytes long or longer. If your file contains
1GB of leading zero bytes, this is going to be slow, it may be better to use the dd(1) command to slice and
dice first.

Reference Manual SRecord 39

srec_examples(1) i srec_examples(1)

JOINING FILES TOGETHER
The srec_cat command takes its name from the UNIX cat(1) command, which is short for “catenate” or “to
join”. The srec_cat command joins EPROM load files together.

All In One
Joining EPROM load files together into a single file is simple, just name as many files on the command line
as you need:

srec_cat infilel infile2 —o outfile

This example is all Motorola S-Record files, because that’s the default format. You can have multiple for-
mats in the one command, and srec_cat(1) will still work. You don’t even have to output the same format:

srec_cat infilel —spectrum infile2 -needham \
—o outfile —signetics

These are all ancient formats, however it isn’t uncommon to have to mix and match Intel and Motorola for-
mats in the one project.

Overlaying two data files
It is common to want to “join” two hex files together, without any changes of address. on the assumption
neither file intersects with the other. This is a simple “layers”, it is quite common for linkers to output the
main code, and then a whole bunch of relocation and jump destination, by writing a two layered files.
srec_cat one.he two.hex -o three.hex
Almost always you see an error

srec_cat: two.srec: 49282: contradictory 0x00000000 value (previous = 0x00, this one = 0x80)

This means that the files actually intersect, they try to set the same location. You can turn the error into a
warning, using the —contradictory-bytes=warning command line option. But this will probably generate
a bazillion warnings.

The necessary step is to crop the first file, to avoid the regions the second file is going o be overwriting.

srec_cat \
one.srec —exclude —-within two.srec \
two.srec —-exclude -within one.srec \
-0 three.hex

Depending on your linker this will have no errors (but if it wants another layer, more jiggery-pokery is re-
quired).

Filtering After Joining
There are times when you want to join two sets of data together, and then apply a filter to the joined result.
To do this you use parentheses.

srec_cat \
/(/ \
infile —exclude OxFFF0 0x10000 \
—generate OxFFFO0 OxFFF8 -repeat-string ’'Bananas ’ \

)’ \
-length-b-e OxFFF8 4 \
—checksum—-neg-b—-e OxXFFFC 4 4 \

—-o outfile

The above example command catenate an input file (with the generated data area excluded) with a constant
string. This catenated input is then filtered to add a 4-byte length, and a 4-byte checksum.

Joining End-to-End
All too often the address ranges in the EPROM load files will overlap. You will get an error if they do. If
both files start from address zero, because each goes into a separate EPROM, you may need to use the off-
set filter:

srec_cat infilel \

Reference Manual SRecord 40

srec_examples(1) i srec_examples(1)

infile2 —offset 0x80000 \
—-o outfile

Sometimes you want the two files to follow each other exactly, but you don’t know the offset in advance:

srec_cat infilel \
infile2 —offset -maximum-addr infilel \
—-o outfile

Notice that where the was a number (0x80000) before, there is now a calculation (—maximum-addr infilel).
This is possible most places a number may be used (also —minimum-addr and —range).

CROPPING THE DATA
It is possible to copy an EPROM load file, selecting addresses to keep and addresses to discard.

What To Keep
A common activity is to crop your data to match your EPROM location. Your linker may add other junk
that you are not interested in, e.g. at the RAM location. In this example, there is a IMB EPROM at the
2MB boundary:

srec_cat infile —crop 0x200000 0x300000 \
—-o outfile

The lower bound for all address ranges is inclusive, the upper bound is exclusive. If you subtract them, you
get the number of bytes.

Address Offset
Just possibly, you have a moronic EPROM programmer, and it barfs if the EPROM image doesn’t start at
zero. To find out just where is does start in memory, use the srec_info(1) command:

$ srec_info example.srec

Format: Motorola S-Record

Header: extra-whizz tool chain linker
Execution Start Address: 0x00200000
Data: 0x200000 - 0x32AAEF

$

Rather than butcher the linker command file, just offset the addresses:

srec_cat infile —crop 0x200000 0x300000 -offset —-0x200000 \
—-o outfile

Note that the offset given is negative, it has the effect of subtracting that value from all addresses in the in-
put records, to form the output record addresses. In this case, shifting the image back to zero.

This example also demonstrates how the input filters may be chained together: first the crop and then the
offset, all in one command, without the need for temporary files.

If all you want to do is offset the data to start from address zero, this can be automated, so you don’t have to
know the minimum address in advance, by using srec_cat’s ability to calculate some things on the com-
mand line:

srec_cat infile —offset — -minimum-addr infile \
—-o outfile

Note the spaces either side of the minus sign, they are mandatory.

What To Throw Away
There are times when you need to exclude an small address range from an EPROM load file, rather than
wanting to keep a small address range. The —exclude filter may be used for this purpose.

For example, if you wish to exclude the address range where the serial number of an embedded device is
kept, say 0x20 bytes at 0x100, you would use a command like this:

srec_cat input.srec -—-exclude 0x100 0x120 -o output.srec

Reference Manual SRecord 41

srec_examples(1) i srec_examples(1)

The output.srec file will have a hole in the data at the necessary locations.

Note that you can have both —crop and —exclude on the same command line, whichever works more natu-
rally for your situation.

Discontinuous Address Ranges
Address ranges don’t have to be a single range, you can build up an address range using more than a single
pair.

srec_cat infile —crop 0x100 0x200 0x1000 0x1200 \
—-o outfile

This filter results in data from 0x100..0x1FF and data from 0x1000..0x1200 to pass through, the rest is
dropped. This is is more efficient than chaining a —crop and an —exclude filter together.

MOVING THINGS AROUND
It is also possible to change the address of data records, both forwards and backwards. It is also possible
rearrange where data records are placed in memory.

Offset Filter
The —offset=number filter operates on the addresses of records. If the number is positive the addresses
move that many bytes higher in memory, negative values move lower.

srec_cat infile —crop 0x200000 0x300000 -offset —-0x200000 \
—-o outfile

The above example moves the 1MB block of data at 0x200000 down to zero (the offset is negative) and dis-
cards the rest of the data.

Byte Swapping
There are times when the bytes in the data need to be swapped, converting between big-endian and little-
endian data usually.

srec_cat infile ~byte-swap 4 -o outfile

This reverses bytes in 32 bit values (4 bytes). The default, if you don’t supply a width, is to reverse bytes in
16 bit values (2 bytes). You can actually use any weird value you like, it doesn’t even have to be a power of
2. Perhaps 64 bits (8 bytes) may be useful one day.

Binary Output
You need to watch out for binary files on output, because the holes are filled with zeros. Your 100kB pro-
gram at the top of 32-bit addressed memory will make a 4GB file. See srec_binary(5) for how understand
and avoid this problem, usually with the —offset filter.

Splitting an Image
If you have a 16-bit data bus, but you are using two 8-bit EPROMs to hold your firmware, you can generate
the even and odd images by using the —SPlit filter. Assuming your firmware is in the firmware.hex file, use
the following:

srec_cat firmware.hex -split 2 0 -o firmware.even.hex
srec_cat firmware.hex -split 2 1 -o firmware.odd.hex

This will result in the two necessary EPROM images. Note that the output addresses are divided by the
split multiple, so if your EPROM images are at a particular offset (say 0x10000, in the following example),
you need to remove the offset, and then replace it...

srec_cat firmware.hex \
-offset —-0x10000 -split 2 0 \
-offset 0x10000 -o firmware.even.hex
srec_cat firmware.hex \
-offset —-0x10000 -split 2 1 \
-offset 0x10000 -o firmware.odd.hex

Note how the ability to apply multiple filters simplifies what would otherwise be a much longer script.

Reference Manual SRecord 42

srec_examples(1) i srec_examples(1)

Striping
A second use for the —SPlit filter is memory striping.

You don’t have to split into byte-wide parts, you can choose other sizes. It is common to want to convert
32-bit wide data into two set of 16-bit wide data.

srec_cat firmware.hex -split 4 0 2 -o firmware.Ol.hex
srec_cat firmware.hex -split 4 2 2 -o firmware.23.hex

This is relatively simple to understand, but you can use even wider stripes.

In this next example, the hardware requires that 512-byte blocks alternate between 4 EPROMs. Generating
the 4 images would be done as follows:

srec_cat firmware.hex -split 0x800 0x000 0x200 -o firmware.O.hex
srec_cat firmware.hex -split 0x800 0x200 0x200 -o firmware.l.hex
srec_cat firmware.hex -split 0x800 0x400 0x200 -o firmware.2.hex
srec_cat firmware.hex -split 0x800 0x600 0x200 -o firmware.3.hex

Asymmetric Striping
A more peculiar example of striping is the Microchip dsPIC33F microcontroller, that has a weird memory
storage pattern and they are able to store 3 bytes in an address that should only contain 2 bytes. The result
is a hex file that has zero-filled the top byte (little-endian), and all addresses are doubled from what they are
in the chip. Here is an example:

S1130000000102000405060008090A000C0ODOEO098
S1130010101112001415160018191A001C1D1EOOCS8
S51130020202122002425260028292A002C2D2EOOF8
S1130030303132003435360038393A003C3D3E0028

To get rid of the 00 padding bytes, leaving only the 3/4 significant bytes, you also use the split filter, with
its additional width argument, like this:

srec_cat example.srec -split 4 0 3 -o no_dross.srec
This results in a file with the 00 padding bytes removed. It looks like this:

S113000000010204050608090A0C0D0OE1011121451
S1130010151618191A1C1D1E2021222425262829EC
S11300202A2C2D2E30313234353638393A3C3D3E87

Notice how the addresses are 3/4 the size, as well. You can reverse this using the —unsplit and —fill=0 fil-
ters.

Unsplit ING Images
The unsplit filter may be used to reverse the effects of the split filter. Note that the address range is ex-
panded leaving holes between the stripes. By using all the stripes, the complete input is reassembled, with-
out any holes.

srec_cat -o firmware.hex \
firmware.even.hex —-unsplit 2 0 \
firmware.odd.hex -unsplit 2 1

The above example reverses the previous 16-bit data bus example. In general, you unsplit with the same
parameters that you split with.

FILLING THE BLANKS
Often EPROM load files will have “holes” in them, places where the compiler and linker did not put any-
thing. For some purposes this is OK, and for other purposes something has to be done about the holes.

The Fill Filter
It is possible to fill the blanks where your data does not lie. The simplest example of this fills the entire
EPROM:

srec_cat infile —£i11l 0x00 0x200000 0x300000 -o outfile

Reference Manual SRecord 43

srec_examples(1) i srec_examples(1)

This example fills the holes, if any, with zeros. You must specify a range — with a 32-bit address space, fill-
ing everything generates huge load files.

If you only want to fill the gaps in your data, and don’t want to fill the entire EPROM, try:
srec_cat infile —£ill 0x00 -over infile —o outfile

This example demonstrates the fact that wherever an address range may be specified, the —over and
—within options may be used.

Unfilling the Blanks
It is common to need to “unfill” an EPROM image after you read it out of a chip. Usually, it will have had
all the holes filled with OxFF (areas of the EPROM you don’t program show as OxFF when you read them
back).

To get rid of all the OXFF bytes in the data, use this filter:
srec_cat infile —unfill OxFF -o outfile

This will get rid of all the OXFF bytes, including the ones you actually wanted in there. There are two ways
to deal with this. First, you can specify a minimum run length to the un-fill:

srec_cat infile —unfill OxFF 5 -o outfile

This says that runs of 1 to 4 bytes of OxFF are OK, and that a hole should only be created for runs of 5 or
more OxFF bytes in a row. The second method is to re-fill over the intermediate gaps:

srec_cat outfile —£i11 0xFF -over outfile \
—-o outfile2

Which method you choose depends on your needs, and the shape of the data in your EPROM. You may
need to combine both techniques.

Address Range Padding
Some data formats are 16 bits wide, and automatically fill with OXFF bytes if it is necessary to fill out the
other half of a word which is not in the data. If you need to fill with a different value, you can use a com-
mand like this:

srec_cat infile —£i11 0x0A \
-within infile —range—-padding 2 \
—-o outfile

This gives the fill filter an address range calculated from details of the input file. The address range is all
the address ranges covered by data in the infile, extended downwards (if necessary) at the start of each sub-
range to a 2 byte multiple and extended upwards (if necessary) at the end of each sub-range to a 2 byte mul-
tiple. This also works for larger multiples, like 1kB page boundaries of flash chips. This address range
padding works anywhere an address range is required.

Fill with Copyright
It is possible to fill unused portions of your EPROM with a repeating copyright message. Anyone trying to
reverse engineer your EPROM s is going to see the copyright notice in their hex editor.

This is accomplished with two input sources, one from a data file, and one which is generated on-the-fly.

srec_cat infile \
—generate ' (! 0 0x100000 -minus -within infile ')’ \
-repeat—-string ’Copyright (C) 1812 Tchaikovsky. ' \
—-o outfile

Notice the address range for the data generation: it takes the address range of your EPROM, in this case
1MB starting from 0, and subtracts from it the address ranges used by the input file.

If you want to script this with the current year (because 1812 is a bit out of date) use the shell’s output sub-
stitution (back ticks) ability:

srec_cat infile \

Reference Manual SRecord 44

srec_examples(1) i srec_examples(1)

—generate ' (! 0 0x100000 -minus -within infile ')’ \
-repeat-string "Copyright (C) ‘date +%Y' Tchaikovsky. " \
—-o outfile

The string specified is repeated over and over again, until it has filled all the holes.

Obfuscating with Noise
Sometimes you want to fill your EPROM images with noise, to conceal where the real data stops and starts.
You can do this with the —random-fill filter.

srec_cat infile —random—-£fill 0x200000 0x300000 \
—-o outfile

It works just like the —fill filter, but uses random numbers instead of a constant byte value.

Fill With 16-bit Words
When filling the image with a constant byte value doesn’t work, and you need a constant 16-bit word value
instead, use the —repeat-data generator, which takes an arbitrarily long sequence of bytes to use as the fill
pattern:

srec_cat infile \
—generator ' (’ 0x200000 0x300000 -minus -within infile ")’ \
-repeat—-data 0x1B 0x08 \
—-o outfile

Notice how the generator’s address range once again avoids the address ranges occupied by the infile’s data.
You have to get the endian-ness right yourself.

INSERTING CONSTANT DATA
From time to time you will want to insert constant data, or data not produced by your compiler or assem-
bler, into your EPROM load images.

Binary Means Literal
One simple way is to have the desired information in a file. To insert the file’s contents literally, with no
format interpretation, use the binary input format:

srec_cat infile -binary -o outfile

It will probably be necessary to use an offset filter to move the data to where you actually want it within the
image:

srec_cat infile -binary -offset 0x1234 -o outfile

It is also possible to use the standard input as a data source, which lends itself to being scripted. For exam-
ple, to insert the current date and time into an EPROM load file, you could use a pipe:

date | srec_cat - -bin -offset OxFFE3 -o outfile

w9

The special file name means to read from the standard input. The output of the date command is al-
ways 29 characters long, and the offset shown will place it at the top of a 64KB EPROM image.

Repeating Once
The Fill with Copyright section, above, shows how to repeat a string over and over. We can use a single
repeat to insert a string just once.

srec_cat —-generate OxXFFE3 0x10000 -repeat-string " ‘date" \
—-o outfile

Notice how the address range for the data generation exactly matches the length of the date(1) output size.
You can, of course, add your input file to the above srec_cat(1) command to catenate your EPROM image
together with the date and time.

Inserting A Long
Another possibility is to add the Subversion commit number to your EPROM image. In this example, we
are inserting it a a 4-byte little-endian value at address 0x0008. The Subversion commit number is in the
$version shell variable in this example:

Reference Manual SRecord 45

srec_examples(1) i srec_examples(1)

srec_cat —-generate 0x0008 0x000C -constant-l-e $version 4 \
infile —exclude 0x0008 0x000C \
—-o outfile

Note that we use a filter to ensure there is a hole in the input where the version number goes, just in case
the linker put something there.

DATA ABOUT THE DATA
It is possible to add a variety of data about the data to the output.

Checksums
The —checksum-negative-big-endian filter may be used to sum the data, and then insert the negative of the

sum into the data. This has the effect of summing to zero when the checksum itself is summed across, pro-
vided the sum width matches the inserted value width.

srec_cat infile \
—crop 0 OXFFFFFC \
—-random-fill 0 OxXFFFFFC \
—checksum—-neg-b—-e OxXFFFFFC 4 4 \
—-o outfile

In this example, we have an EPROM in the lowest megabyte of memory. The —crop filter ensures we are
only summing the data within the EPROM, and not anywhere else. The —random-fill filter fills any holes
left in the data with random values. Finally, the —checksum-neg-b-e filter inserts a 32 bit (4 byte) check-
sum in big-endian format in the last 4 bytes of the EPROM image. Naturally, there is a little-endian version
of this filter as well.

Your embedded code can check the EPROM using C code similar to the following:

unsigned long *begin = (unsigned long *)O0;
unsigned long *end = (unsigned long *)0x100000;
unsigned long sum = 0;
while (begin < end)
sum += *begin++;
if (sum != 0)
{
Oops
}

The —checksum-bitnot-big-endian filter is similar, except that summing over the checksum should yield a
value of all-one-bits (—1). For example, using shorts rather than longs:

srec_cat infile \
—crop 0 OXFFFFFE \
—-fill 0xCC 0x00000 OxXFFFFFE \
—checksum—-neg-b—-e OXFFFFFE 2 2 \
—-o outfile

Assuming you chose the correct endian-ness filter, your embedded code can check the EPROM using C
code similar to the following:

unsigned short *begin = (unsigned short *)O0;
unsigned short *end = (unsigned short *)0x100000;
unsigned short sum = 0;
while (begin < end)
sum += *begin++;
if (sum != OxXFFFF)
{
Oops
}

There is also a —checksum-positive-b-e filter, and a matching little-endian filter, which inserts the simple

Reference Manual SRecord 46

srec_examples(1) i srec_examples(1)

sum, and which would be checked in C using an equality test.

srec_cat infile \
—crop 0 OXFFFFFF \
—-fill 0x00 0x00000 OxXFFFFFF \
—checksum—-neg-b—-e OxXFFFFFF 1 1 \
—-o outfile

Assuming you chose the correct endian-ness filter, your embedded code can check the EPROM using C
code similar to the following:

unsigned char *begin = (unsigned char *)O0;
unsigned char *end = (unsigned char *)0xFFFFF;
unsigned char sum = 0;
while (begin < end)
sum += *begin++;
if (sum != *end)
{
Oops
}

In the 8-bit case, it doesn’t matter whether you use the big-endian or little-endian filter.

Quick Hex-Dump
You can look at the checksum of your data, by using the “hex-dump” output format. This is useful for
looking at calculated values, or for debugging an srec_cat(1) command before immortalizing it in a script.

srec_cat infile \
—crop 0 0x10000 \
-fill OxFF 0x0000 0x10000 \
—checksum—-neg-b—-e 0x10000 4 \
—crop 0x10000 0x10004 \

-0 - —hex-dump

This command reads in the file, checksums the data and places the checksum at 0x10000, crops the result to
contain only the checksum, and then prints the checksum on the standard output in a classical hexadecimal

IR

dump format. The special file name “~" means “the standard output” in this context.

Cyclic Redundancy Checks
The simple additive checksums have a number of theoretical limitations, to do with errors they can and
can’t detect. The CRC methods have fewer problems.

srec_cat infile \
—-crop 0 OXFFFFFC \
-fill 0x00 0x00000 OxXFFFFFC \
—-crc32-b-e OxFFFFFC \
—-o outfile

In the above example, we have an EPROM in the lowest megabyte of memory. The —crop filter ensures we
are only summing the data within the EPROM, and not anywhere else. The —fill filter fills any holes left in
the data. Finally, the —checksum-neg-b-e filter inserts a 32 bit (4 byte) checksum in big-endian format in
the last 4 bytes of the EPROM image. Naturally, there is a little-endian version of this filter as well.

The checksum is calculated using the industry standard 32-bit CRC. Because SRecord is open source, you
can always read the source code to see how it works. There are many non-GPL versions of this code avail-
able on the Internet, and suitable for embedding in proprietary firmware.

There is also a 16-bit CRC available.

srec_cat infile \
—-crop 0 OXFFFFFE \
—-fill 0x00 0x00000 OXFFFFFE \

Reference Manual SRecord 47

srec_examples(1) i srec_examples(1)

—-crcl6-b—e OxXFFFFFE \
—-o outfile

The checksum is calculated using the CCITT formula. Because SRecord is open source, you can always
read the source code to see how it works. There are many non-GPL version of this code available on the
Internet, and suitable for embedding in proprietary firmware.

You can look at the CRC of your data, by using the “hex-dump” output format.

srec_cat infile \
—-crop 0 0x10000 \
-fill OxFF 0x0000 0x10000 \
—crcl6-b-e 0x10000 \
—crop 0x10000 0x10002 \

-0 — —hex-dump

This command reads in the file, calculates the CRC of the data and places the CRC at 0x10000, crops the
result to contain only the CRC, and then prints the checksum on the standard output in a classical hexadeci-
mal dump format.

Where Is My Data?
There are several properties of your EPROM image that you may wish to insert into the data.

srec_cat infile -minimum-b—-e OxXFFFE 2 -o outfile

The above example inserts the minimum address of the data (low water) into the data, as two bytes in big-
endian order at address OXFFFE. This includes the minimum itself. If the data already contains bytes at the
given address, you need to use an exclude filter. The number of bytes defaults to 4.

There is also a —minimum-Il-e filter for inserting little-endian values, and two more filters called —exclu-
sive-minimum-b-e and —exclusive-minimum-I-e that do not include the minimum itself in the calculation
of the minimum data address.

srec_cat infile -maximum-b—e OxXFFFFFC 4 -o outfile

The above example inserts the maximum address of the data (high water + 1, just like address ranges) into
the data, as four bytes in big-endian order at address OXFFFFFC. This includes the maximum itself. If the
data already contains bytes at the given address, you need to use an —exclude filter. The number of bytes
defaults to 4.

There is also a —maximum-l-e filter for inserting little-endian values, and two more filters called —exclu-
sive-maximum-b-e and —exclusive-maximum-I-e that do not include the maximum itself in the calculation
of the maximum data address.

srec_cat infile —length-b-e O0XFFFFFC 4 -o outfile

The above example inserts the length of the data (high water + 1 — low water) into the data, as four bytes in
big-endian order at address OXFFFFFC. This includes the length itself. If the data already contains bytes at
the length location, you need to use an —exclude filter. The number of bytes defaults to 4.

There is also a —length-l-e filter for inserting a little-endian length, and the —exclusive-length-b-e and —ex-
clusive-length-l-e filters that do not include the length itself in the calculation.

What Format Is This?
You can obtain a variety of information about an EPROM load file by using the srec_info(1) command. For
example:

$ srec_info example.srec
Format: Motorola S-Record
Header: "http://srecord.sourceforge.net/"
Execution Start Address: 00000000
Data: 0000 - 0122
0456 — OFFF

Reference Manual SRecord 48

srec_examples(1) i srec_examples(1)

This example shows that the file is a Motorola S-Record. The text in the file header is printed, along with
the execution start address. The final section shows the address ranges containing data (the upper bound of
each subrange is inclusive, rather than the exclusive form used on the command line.

$ srec_info some-weird-file.hex —guess
Format: Signetics
Data: 0000 - 0122
0456 - OFFF
$

The above example guesses the EPROM load file format. It isn’t infallible but it usually gets it right. You
can use —guess anywhere you would give an explicit format, but it tends to be slower and for that reason is
not recommended. Also, for automated build systems, you want hard errors as early as possible; if a file
isn’t in the expected format, you want it to barf.

MANGLING THE DATA

It is possible to change the values of the data bytes in several ways.
srec_cat infile —and O0xFO0 —o outfile

The above example performs a bit-wise AND of the data bytes with the 0xFO mask. The addresses of
records are unchanged. I can’t actually think of a use for this filter.

srec_cat infile —or 0x0F -o outfile

The above example performs a bit-wise OR of the data bytes with the OxOF bits. The addresses of records
are unchanged. I can’t actually think of a use for this filter.

srec_cat infile —xor 0xA5 -o outfile

The above example performs a bit-wise exclusive OR of the data bytes with the 0xAS5 bits. The addresses
of records are unchanged. You could use this to obfuscate the contents of your EPROM.

srec_cat infile —not -o outfile
The above example performs a bit-wise NOT of the data bytes. The addresses of records are unchanged.
Security by obscurity?
COPYRIGHT

srec_cat version 1.65
Copyright © 1998... Peter Miller

The srec_cat program comes with ABSOLUTELY NO WARRANTY; for details use the *srec_cat —VER-
Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’srec_cat —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 49

srec_info(1) General Commands Manual srec_info(1)

NAME

srec_info — information about EPROM load files

SYNOPSIS
srec_info [option...] filename...
srec_info —Help
srec_info —VERSion

DESCRIPTION
The srec_info program is used to obtain input about EPROM load files. It reads the files specified, and then
presents statistics about them. These statistics include: the file header if any, the execution start address if
any, and the address ranges covered by the data if any.

If there is binary data the header, it will be presented using the URL encoding that uses % followed by two
hexadeimal characters. For example a backspace would be encoded as “%08”. (This is symmetric with the
srec_cat --header opion).

INPUT FILE SPECIFICATIONS
Input may be qualified in two ways: you may specify a data file or a data generator. format and you may
specify filters to apply to them. An input file specification looks like this:
data-file [filter ...]
data-generator | filter ...]

Data Files
Input from data files is specified by file name and format name. An input file specification looks like this:
filename [format][—ignore-checksums]
The default format is Motorola S-Record format, but many others are also understood.

Data Generators
It is also possible to generate data, rather than read it from a file. You may use a generator anywhere you
could use a file. An input generator specification looks like this:
—GENerate address-range —data-source
Generators include random data and various forms of constant data.

Common Manual Page
See srec_input(1) for complete details of input specifiers. This description is in a separate manual page be-
cause it is common to more than one SRecord command.

OPTIONS

The following options are understood:

@filename
The named text file is read for additional command line arguments. Arguments are separated by
white space (space, tab, newline, efc). There is no wildcard mechanism. There is no quoting
mechanism. Comments, which start with '# and extend to the end of the line, are ignored.
Blank lines are ignored.

—Help

Provide some help with using the srec_info program.

—IGnore_Checksums
The —IGnore-Checksums option may be used to disable checksum validation of input files, for
those formats which have checksums at all. Note that the checksum values are still read in and
parsed (so it is still an error if they are missing) but their values are not checked. Used after an
input file name, the option affects that file alone; used anywhere else on the command line, it ap-
plies to all following files.

—Enable_Sequence_Warnings
This option may be used to enable warnings about input files where the data records are not in
strictly ascending address order. Only one warning is issued per input file. This is the default.

Reference Manual SRecord 50

srec_info(1) General Commands Manual srec_info(1)

Note: the output of srec_cat(1) is always in this order.

Note: This option must be used before the input file. This is because if there are several files on
the command line, each may need different settings. The setting remains in force until the next
—Disable_Sequence_Warnings option.

—Disable_Sequence_Warnings
This option may be used to disable warnings about input files where the data records are not in
strictly ascending address order.

Note: This option must be used before the offending input file. This is because if there are sev-
eral files on the command line, each may need different settings. The setting remains in force un-
til the next —Ensable_Sequence_Warnings option.

—redundant-bytes=value
Use this option to permit a file to contain redundant values for some memory locations. The de-
fault is for this condition to be a warning.

ignore
No warning or error is issued whena redundant settings are detected.

warning
A warning is issued when a redundant settings are observed, the warning includes the prob-
lematic address.

error
A fatal error is issued when a redundant settings are observed, the fatal error message in-
cludes the problematic address and byte value.

—contradictory-bytes=value
Use this option to permit a file to contain contradictory values for some memory locations. The
last value in the input(s) will be used. The default is for this condition to be a fatal error.

ignore
No warning or error is issued when contradictory setting is detected.

warning
A warning is issued when a vontradictory settings are observed, the warning includes the
problematic address, and values.

error
A fatal error is issued when contradictory settings are observed, the fatal error message in-
cludes the problematic address and byte values.

—Verbose
This option may be used to obtain more information about the input files including size of blocks
and allocation ratio.

-VERSion
Print the version of the srec_info program being executed.

All other options will produce a diagnostic error.

All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—help”, “~HEL” and “—h” are all interpreted to mean the —Help option. The
argument “—hlp” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

Reference Manual SRecord 51

srec_info(1) General Commands Manual srec_info(1)

The GNU long option names are understood. Since all option names for srec_info are long, this means ig-
noring the extra leading “~”. The “——option=value” convention is also understood.

EXIT STATUS
The srec_info command will exit with a status of 1 on any error. The srec_info command will only exit
with a status of O if there are no errors.

COPYRIGHT
srec_info version 1.65
Copyright © 1998... Peter Miller

The srec_info program comes with ABSOLUTELY NO WARRANTY; for details use the "srec_info —VER-
Sion License’ command. This is free software and you are welcome to redistribute it under certain condi-
tions; for details use the ’srec_info —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 52

srec_input(1) General Commands Manual srec_input(1)

NAME
srec_input — input file specifications
SYNOPSIS
srec_%* filename [format]
DESCRIPTION
This manual page describes the input file specifications for the srec_cat(1), srec_cmp(1) and srec_info(1)
commands.

Input files may be qualified in a number of ways: you may specify their format and you may specify filters
to apply to them. An input file specification looks like this:
filename [format][—ignore-checksums][filter ...]

TR

The filename may be specified as a file name, or the special name which is understood to mean the

standard input.

Grouping with Parentheses
There are some cases where operator precedence of the filters can be ambiguous. Input specifications may
also be enclosed by (parentheses) to make grouping explicit. Remember that the parentheses must be sep-
arate words, i.e. surrounded by spaces, and they will need to be quoted to get them past the shell’s interpre-
tation of parentheses.

Those Option Names Sure Are Long
All options may be abbreviated; the abbreviation is documented as the upper case letters, all lower case let-
ters and underscores (_) are optional. You must use consecutive sequences of optional letters.

All options are case insensitive, you may type them in upper case or lower case or a combination of both,
case is not important.

For example: the arguments “—help”, “~HEL” and “—h” are all interpreted to mean the —Help option. The
argument “—hlp” will not be understood, because consecutive optional characters were not supplied.

Options and other command line arguments may be mixed arbitrarily on the command line.

The GNU long option names are understood. Since all option names for srec_input are long, this means ig-
noring the extra leading “~”. The “——option=value” convention is also understood.

File Formats
The format is specified by the argument after the file name. The format defaults to Motorola S-Record if
not specified. The format specifiers are:

—Absolute_Object_Module_Format
This option says to use the Intel Absolute Object Module Format (AOMF) to read the file. (See
srec_aomf(5) for a description of this file format.)

—Ascii_Hex
This option says to use the Ascii-Hex format to read the file. See srec_ascii_hex(5) for a descrip-
tion of this file format.

—Atmel_Generic
This option says to use the Atmel Generic format to read the file. See srec_atmel_genetic(5) for
a description of this file format.

—Binary
This option says the file is a raw binary file, and should be read literally. (This option may also
be written —Raw.) See srec_binary(5) for more information.

—B-Record
This option says to use the Freescale MC68EZ328 Dragonball bootstrap b-record format to read
the file. See srec_brecord(5) for a description of this file format.

Reference Manual SRecord 53

srec_input(1) General Commands Manual srec_input(1)

—COsmac
This option says to use the RCA Cosmac Elf format to read the file. See srec_cosmac(5) for a
description of this file format.

—Dec_Binary
This option says to use the DEC Binary (XXDP) format to read the file. See srec_dec_binary(5)
for a description of this file format.

—Elektor_Monitor52
This option says to use the EMONS52 format to read the file. See srec_emon52(5) for a descrip-
tion of this file format.

—FAIrchild
This option says to use the Fairchild Fairbug format to read the file. See srec_fairchild(5) for a
description of this file format.

—Fast_Load
This option says to use the LSI Logic Fast Load format to read the file. See srec_fastload(5) for
a description of this file format.

—Formatted_Binary
This option says to use the Formatted Binary format to read the file. See srec_formatted_bi-
nary(5) for a description of this file format.

—Four_Packed_Code
This option says to use the FPC format to read the file. See srec_fpc(5) for a description of this
file format.

—Guess This option may be used to ask the command to guess the input format. This is slower than spec-
ifying an explicit format, as it may open and scan and close the file a number of times.

—-HEX_Dump
This option says to try to read a hexadecimal dump file, more or less in the style output by the
same option. This is not an exact reverse mapping, because if there are ASCII equivalents on the
right hand side, these may be confused for data bytes. Also, it doesn’t understand white space
representing holes in the data in the line.

—-IDT This option says to the the IDT/sim binary format to read the file. See srec_id#(5) for a descrip-
tion of this file format.

—Intel This option says to use the Intel hex format to read the file. See srec_intel(5) for a description of
this file format.

—INtel_HeX_16
This option says to use the Intel hex 16 (INHX16) format to read the file. See srec_intel16(5) for
a description of this file format.

-LOGIsim
This format is read and written by the open source Logisim program. See srec_logisim(5) for
more informatuion.

—Memory_Initialization_File
This option says to use the Memory Initialization File (MIF) format by Altera to read the file.
See srec_mif (5) for a description of this file format.

—Mips_Flash_Big_Endian

—Mips_Flash_Little_Endian
These options say to use the MIPS Flash file format to read the file. See srec_mips_flash (5) for a
description of this file format.

—MOS_Technologies
This option says to use the Mos Technologies format to read the file. See srec_mos_tech(5) for a
description of this file format.

Reference Manual SRecord 54

srec_input(1) General Commands Manual srec_input(1)

—Motorola [width]
This option says to use the Motorola S-Record format to read the file. (May be written —S-
Record as well.) See srec_motorola(5) for a description of this file format.

The optional width argument describes the number of bytes which form each address multiple.
For normal uses the default of one (1) byte is appropriate. Some systems with 16-bit or 32-bit
targets mutilate the addresses in the file; this option will correct for that. Unlike most other para-
meters, this one cannot be guessed.

—MsBin This option says to use the Windows CE Binary Image Data Format to read the file. See
srec_msbin(5) for a description of this file format.

—Needham_Hexadecimal
This option says to use the Needham Electronics ASCII file format to read the file. See
srec_needham(5) for a description of this file format.

—Ohio_Scientific
This option says to use the Ohio Scientific format. See srec_os65v(5) for a description of this file
format.

—PPB This option says to use the Stag Prom Programmer binary format. See srec_ppb(5) for a descrip-
tion of this file format.

—PPX This option says to use the Stag Prom Programmer hexadecimal format. See srec_ppx(5) for a
description of this file format.

—SIGnetics
This option says to use the Signetics format. See srec_spasm(5) for a description of this file for-
mat.

—SPAsm
This is a synonym for the —-SPAsm_Big_Endian option.

—SPAsm_Big_Endian
This option says to use the SPASM assembler output format (commonly used by PIC program-
mers). See srec_spasm(5) for a description of this file format.

—SPAsm_Little_Endian
This option says to use the SPASM assembler output format, but with the data the other way
around.

—STewie
This option says to use the Stewie binary format to read the file. See srec_stewie(5) for a descrip-
tion of this file format.

—Tektronix
This option says to use the Tektronix hex format to read the file. See srec_tektronix(5) for a de-
scription of this file format.

—Tektronix_Extended
This option says to use the Tektronix extended hex format to read the file. See srec_tektronix_ex-
tended(5) for a description of this file format.

—Texas_Instruments_Tagged
This option says to use the Texas Instruments Tagged format to read the file. See
srec_ti_tagged(5) for a description of this file format.

—Texas_Instruments_Tagged_16
This option says to use the Texas Instruments SDSMAC 320 format to read the file. See
srec_ti_tagged_16(5) for a description of this file format.

—Texas_Instruments_TeXT
This option says to use the Texas Instruments TXT (MSP430) format to read the file. See
srec_ti_txt(5) for a description of this file format.

Reference Manual SRecord 55

srec_input(1) General Commands Manual srec_input(1)

—TRS80
This option says to use the Radio Shack TRS-80 object file format to read the file. See
srec_trs80(S) for a description of this file format.

-VMem
This option says to use the Verilog VMEM format to read the file. See srec_vmem(S) for a de-
scription of this file format.

-WILson
This option says to use the wilson format to read the file. See srec_wilson(5) for a description of
this file format.

Ignore Checksums
The —IGnore-Checksums option may be used to disable checksum validation of input files, for those for-
mats which have checksums at all. Note that the checksum values are still read in and parsed (so it is still
an error if they are missing) but their values are not checked. Used after an input file name, the option af-
fects that file alone; used anywhere else on the command line, it applies to all following files.

—redundant-bytes=value
Use this option to permit a file to contain redundant values for some memory locations. The de-
fault is for this condition to be a warning.

ignore
No warning or error is issued whena redundant settings are detected.

warning
A warning is issued when a redundant settings are observed, the warning includes the prob-
lematic address.

error
A fatal error is issued when a redundant settings are observed, the fatal error message in-
cludes the problematic address and byte value.

—contradictory-bytes=value
Use this option to permit a file to contain contradictory values for some memory locations. The
last value in the input(s) will be used. The default is for this condition to be a fatal error.

ignore
No warning or error is issued when contradictory setting is detected.

warning
A warning is issued when a vontradictory settings are observed, the warning includes the
problematic address, and values.

error
A fatal error is issued when contradictory settings are observed, the fatal error message in-
cludes the problematic address and byte values.

Generators
It is also possible to generate data, rather than read it from a file. You may use a generator anywhere you
could use a file. An input generator specification looks like this:

—GENerate address-range —data-source
The —data-source may be one of the following:

—CONSTant byte-value
This generator manufactures data with the given byte value of the the given address range. It is
an error if the byte-value is not in the range 0..255.

For example, to fill memory addresses 100..199 with newlines (0x0OA), you could use a command
like

srec_cat —-generate 100 200 —-constant 10 -o newlines.srec

Reference Manual SRecord 56

srec_input(1) General Commands Manual srec_input(1)

This can, of course, be combined with data from files.

—REPeat_Data byte-value...
This generator manufactures data with the given byte values repeating over the the given address
range. Itis an error if any of the the byte-values are not in the range 0..255.

For example, to create a data region with OxDE in the even bytes and OxAD in the odd bytes, use
a generator like this:

srec_cat —generate 0x1000 0x2000 -repeat-data OxDE 0xAD

The repeat boundaries are aligned with the base of the address range, modulo the number of
bytes.

—REPeat_String rext
This generator is almost identical to —repeat-data except that the data to be repeated is the text of
the given string.

For example, to fill the holes in an EPROM image eprom.srec with the text “Copyright (C) 1812
Tchaikovsky”, combine a generator and an —exclude filter, such as the command

If you need to inject binary data into the string (e.g. a terminating NUL character), use the URL
encoding that uses % followed by two hexadeimal characters. For example a backspace would be
encoded as “%08”.

srec_cat eprom.srec \
—-generate 0 0x100000 \
-repeat—-string ’'Copyright (C) 1812 Tchaikovsky. ' \
—exclude -within eprom.srec \
-0 eprom.filled.srec

The thing to note is that we have two data sources: the eprom.srec file, and generated data over an
address range which covers first megabyte of memory but excluding areas covered by the
eprom.srec data.

—CONSTant_Little_Endian value width
This generator manufactures data with the given numeric value, of a given byte width, in little-en-
dian byte order. It is an error if the given value does not fit into the given byte width. It will re-
peat over and over within the address range range.

For example, to insert a subversion commit number into 4 bytes at 0x0008..0x000B you would
use a command like

srec_cat —-generate 8 12 -constant—-l-e SVERSION 4 \
-0 version.srec

This generator is a convenience wrapper around the —REPeat_Data generator. It can, of course,
be combined with data from files.

—CONSTant_Big_Endian value width
As above, but using big-endian byte ordering.

Anything else will result in an error.

Input Filters
You may specify zero or more filters to be applied. Filters are applied in the order the user specifies.

—Adler_16_Big_Endian address
This filter may be used to insert an “Adler” 16-bit checksum of the data into the data. Two bytes,
big-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes are
processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You al-
most always want to use the —fill filter before any of the Adler checksum filters. You will receive

Reference Manual SRecord 57

srec_input(1) General Commands Manual srec_input(1)

a warning if the data presented for Adler checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter, be-
cause it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—Adler_16_Little_Endian address
This filter may be used to insert an Adler 16-bit checksum of the data into the data. Two bytes, in
little-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes
are processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You al-
most always want to use the —fill filter before any of the Adler filters. You will receive a warning
if the data presented for Adler checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter, be-
cause it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—Adler_32_Big_Endian address
This filter may be used to insert a Adler 32-bit checksum of the data into the data. Four bytes,
big-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes are
processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You al-
most always want to use the —fill filter before any of the Adler checksum filters. You will receive
a warning if the data presented for Adler checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter, be-
cause it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—Adler_32_Little_Endian address
This filter may be used to insert a Adler 32-bit checksum of the data into the data. Four bytes, in
little-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes
are processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Adler checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You al-
most always want to use the —fill filter before any of the Adler checksum filters. You will receive
a warning if the data presented for Adler checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter, be-
cause it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Adler-32

—AND value
This filter may be used to bit-wise AND a value to every data byte. This is useful if you need to
clear bits. Only existing data is altered, no holes are filled.

—Bit_Reverse [width]
This filter may be used to reverse the order of the bits in each data byte. By specifying a width
(in bytes) it is possible to reverse the order multi-byte values; this is implemented using the byte-
swap filter.

Reference Manual SRecord 58

srec_input(1) General Commands Manual srec_input(1)

—Byte_Swap [width |
This filter may be used to swap pairs of odd and even bytes. By specifying a width (in bytes) it is
possible to reverse the order of 4 and 8 bytes, the default is 2 bytes. (Widths in excess of 8 are as-
sumed to be number of bits.) It is not possible to swap non-power-of-two addresses. To change
the alignment, use the offset filter before and after.

—Checksum_BitNot_Big_Endian address [nbytes [width]|

This filter may be used to insert the one’s complement checksum of the data into the data, most
significant byte first. The data is literally summed; if there are duplicate bytes, this will produce
an incorrect result, if there are holes, it will be as if they were filled with zeros. If the data al-
ready contains bytes at the checksum location, you need to use an exclude filter, or this will gen-
erate errors. You need to apply and crop or fill filters before this filter. The value will be written
with the most significant byte first. The number of bytes of resulting checksum defaults to 4.
The width (the width in bytes of the values being summed) defaults to 1.

—Checksum_BitNot_Little_Endian address [nbytes [width]|
This filter may be used to insert the one’s complement (bitnot) checksum of the data into the data,
least significant byte first. Otherwise similar to the above.

—Checksum_Negative_Big_Endian address [nbytes [width]]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

—Checksum_Negative_Little_Endian address [nbytes [width]
This filter may be used to insert the two’s complement (negative) checksum of the data into the
data. Otherwise similar to the above.

—Checksum_Positive_Big_Endian address [nbytes [width]]
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—Checksum_Positive_Little_Endian address [nbytes [width]|
This filter may be used to insert the simple checksum of the data into the data. Otherwise similar
to the above.

—CRC16_Big_Endian address [modifier... |
This filter may be used to insert an industry standard 16-bit CRC checksum of the data into the
data. Two bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the in-
put).
The following additional modifiers are understood:
number Set the polynomial to be used to the given number.

—POLYnomial name
This option may be used to set the CRC polynomial to be used, by name. The known
names include:
ibm 0x8005
ansi 0x8005
ccitt 0x1021
t10-dif 0x8bb7
dnp 0x3d65
dect 0x0589

See http://en.wikipedia.org/wiki/Cyclic_redundancy_check for a table of names and
values.

—Most_To_Least
The CRC calculation is performed with the most significant bit in each byte processed
first, and then proceeding towards the least significant bit. This is the default.

Reference Manual SRecord 59

srec_input(1)

General Commands Manual srec_input(1)

—Least_To_Most
The CRC calculation is performed with the least significant bit in each byte processed
first, and then proceeding towards the most significant bit.

-CCITT
The CCITT calculation is performed. The initial seed is OXFFFF. This is the default.

-XMODEM
The alternate XMODEM calculation is performed. The initial seed is 0x0000.

-BROKEN
A common-but-broken calculation is performed (see note 2 below). The initial seed is
0x84CF.

—AUGment
The CRC is augmented by sixteen zero bits at the end of the calculation. This is the de-
fault.

—No-AUGment
The CRC is not augmented at the end of the calculation. This is less standard conform-
ing, but some implementations do this.

Note: If you have holes in your data, you will get a different CRC than if there were no holes.
This is important because the in-memory EPROM image will not have holes. You almost always
want to use the —fill filter before any of the CRC filters. You will receive a warning if the data
presented for CRC has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter, be-
cause it will establish the data across the full EPROM address range.

Note 2: there are a great many CRC16 implementations out there, see http://www.joegeluso.com-
/software/articles/ccitthtm (now gone, reproduced at http://srecord.sourceforge.net-
/crc16—ccitt.html) and “A painless guide to CRC error detection algorithms” http://www.repair-
faq.org/filipg/LINK/F_crc_v3.html for more information. If all else fails, SRecord is open source
software: read the SRecord source code. The CRC16 source code (found in the
srecord/crclé6. cc file of the distribution tarball) has a great many explanatory comments.

Please try all twelve combinations of the above options before reporting a bug in the CRC16 cal-
culation.

—CRCI16_Little_Endian address [modifier...]

The same as the -CRC16_Big_Endian filter, except in little-endian byte order.

—CRC32_Big_Endian address [modifier...]

This filter may be used to insert an industry standard 32-bit CRC checksum of the data into the
data. Four bytes, big-endian order, are inserted at the address given. Holes in the input data are
ignored. Bytes are processed in ascending address order (not in the order they appear in the in-
put). See also the note about holes, above.

The following additional modifiers are understood:

-CCITT
The CCITT calculation is performed. The initial seed is all one bits. This is the de-
fault.

-XMODEM
An alternate XMODEM-style calculation is performed. The initial seed is all zero bits.

—CRC32_Little_Endian address

Reference Manual

The same as the —-CRC32_Big_Endian filter, except in little-endian byte order.

SRecord 60

srec_input(1) General Commands Manual srec_input(1)

—Crop address-range
This filter may be used to isolate a section of data, and discard the rest.

—Exclude address-range
This filter may be used to exclude a section of data, and keep the rest. The is the logical comple-
ment of the —Crop filter.

—Exclusive_Length_Big_Endian address [nbytes [width]
The same as the —Length_Big_Endian filter, except that the result does not include the length it-
self.

—Exclusive_Length_Little_Endian address [nbytes [width]
The same as the —Length_Little_Endian filter, except that the result does not include the length
itself.

—Exclusive_MAXimum_Big_Endian address [nbytes |
The same as the -MAXimum_Big_Endian filter, except that the result does not include the
maximum itself.

—Exclusive_MAXimum_Little_Endian address [nbytes |
The same as the -MAXimum_Little_Endian filter, except that the result does not include the
maximum itself.

—Exclusive_MINimum_Big_Endian address [nbytes]
The same as the -MINimum_Big_Endian filter, except that the result does not include the mini-
mum itself.

—Exclusive_MINimum_Little_Endian address [nbytes |
The same as the -MINimum_Little_Endian filter, except that the result does not include the
minimum itself.

—eXclusive-OR value
This filter may be used to bit-wise XOR a value to every data byte. This is useful if you need to
invert bits. Only existing data is altered, no holes are filled.

—Fill value address-range
This filter may be used to fill any gaps in the data with bytes equal to value. The fill will only oc-
cur in the address range given.

—Fletcher_16_Big_Endian address [suml sum2 [answer]|
This filter may be used to insert an Fletcher 16-bit checksum of the data into the data. Two bytes,
big-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes are
processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You al-
most always want to use the —fill filter before any of the Fletcher checksum filters. You will re-
ceive a warning if the data presented for Fletcher checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter, be-
cause it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

It is possible to select seed values for suml and sum?2 in the algorithm, by adding seed values on
the command line. They each default to OXFF if not explicitly stated. The default values (0)
means that an empty EPROM (all 0x00 or all 0xFF) will sum to zero; by changing the seeds, an
empty EPROM will always fail.

The third optional argument is the desired sum, when the checksum itself is summed. A common
value is 0x0000, placed in the last two bytes of an EPROM, so that the Fletcher 16 checksum of
the EPROM is exactly 0x0000. No manipulation of the final value is performed if this value if

Reference Manual SRecord 61

srec_input(1) General Commands Manual srec_input(1)

not specified.

—Fletcher_16_Little_Endian address
This filter may be used to insert an Fletcher 16-bit checksum of the data into the data. Two bytes,
in little-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes
are processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You al-
most always want to use the —fill filter before any of the Fletcher filters. You will receive a warn-
ing if the data presented for Fletcher checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter, be-
cause it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

—Fletcher_32_Big_Endian address
This filter may be used to insert a Fletcher 32-bit checksum of the data into the data. Four bytes,
big-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes are
processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You al-
most always want to use the —fill filter before any of the Fletcher checksum filters. You will re-
ceive a warning if the data presented for Fletcher checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter, be-
cause it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

—Fletcher_32_Little_Endian address
This filter may be used to insert a Fletcher 32-bit checksum of the data into the data. Four bytes,
in little-endian order, are inserted at the address given. Holes in the input data are ignored. Bytes
are processed in ascending address order (not in the order they appear in the input).

Note: If you have holes in your data, you will get a different Fletcher checksum than if there were
no holes. This is important because the in-memory EPROM image will not have holes. You al-
most always want to use the —fill filter before any of the Fletcher checksum filters. You will re-
ceive a warning if the data presented for Fletcher checksum has holes.

You should also be aware that the lower and upper bounds of your data may not be the same as
the lower and upper bounds of your EPROM. This is another reason to use the —fill filter, be-
cause it will establish the data across the full EPROM address range.

http://en.wikipedia.org/wiki/Fletcher%27s_checksum

—Length_Big_Endian address [nbytes [width]|
This filter may be used to insert the length of the data (high water minus low water) into the data.
This includes the length itself. If the data already contains bytes at the length location, you need
to use an exclude filter, or this will generate errors. The value will be written with the most sig-
nificant byte first. The number of bytes defaults to 4. The width defaults to 1, and is divided into
the actual length, thus you can insert the width in units of words (2) or longs (4).

—Length_Little_Endian address [nbytes [width]]
The same as the —Length_Big_Endian filter, except the value will be written with the least sig-
nificant byte first.

Reference Manual SRecord 62

srec_input(1) General Commands Manual srec_input(1)

—MAXimum_Big_Endian address [nbytes]
This filter may be used to insert the maximum address of the data (high water
+ 1) into the data. This includes the maximum itself. If the data already contains bytes at the
given address, you need to use an exclude filter, or this will generate errors. The value will be
written with the most significant byte first. The number of bytes defaults to 4.

—MAXimum_Little_Endian address [nbytes]
The same as the -MAXimum_Big_Endian filter, except the value will be written with the least
significant byte first.

—Message_Digest_5 address
This filter may be used to insert a 16 byte MDS5 hash into the data, at the address given.

—MINimum_Big_Endian address [nbytes |
This filter may be used to insert the minimum address of the data (low water) into the data. This
includes the minimum itself. If the data already contains bytes at the given address, you need to
use an exclude filter, or this will generate errors. The value will be written with the most signifi-
cant byte first. The number of bytes defaults to 4.

—MINimum_Little_Endian address [nbytes |
The same as the -MINimum_Big_Endian filter, except the value will be written with the least
significant byte first.

—-NOT This filter may be used to bit-wise NOT the value of every data byte. This is useful if you need to
invert the data. Only existing data is altered, no holes are filled.

—OFfset nbytes
This filter may be used to offset the addresses by the given number of bytes. No data is lost, the
addresses will wrap around in 32 bits, if necessary. You may use negative numbers for the offset,
if you wish to move data lower in memory.

Please note: the execution start address is a different concept than the first address in memory of
your data. If you want to change where your monitor will start executing, use the —execution-
start-address option (srec_cat(1) only).

—OR value
This filter may be used to bit-wise OR a value to every data byte. This is useful if you need to set
bits. Only existing data is altered, no holes are filled.

—Random_Fill address-range
This filter may be used to fill any gaps in the data with random bytes. The fill will only occur in
the address range given.

—Ripe_Message_Digest_160 address
This filter may be used to insert an RMD160 hash into the data.

—Secure_Hash_Algorithm_1 address
This filter may be used to insert a 20 byte SHA1 hash into the data, at the address given.

—Secure_Hash_Algorithm_224 address
This filter may be used to insert a 28 byte SHA224 hash into the data, at the address given. See
Change Notice 1 for FIPS 180-2 for the specification.

—Secure_Hash_Algorithm_256 address
This filter may be used to insert a 32 byte SHA256 hash into the data, at the address given. See
FIPS 180-2 for the specification.

—Secure_Hash_Algorithm_384 address
This filter may be used to insert a 48 byte SHA384 hash into the data, at the address given. See
FIPS 180-2 for the specification.

Reference Manual SRecord 63

srec_input(1) General Commands Manual srec_input(1)

—Secure_Hash_Algorithm_512 address
This filter may be used to insert a 64 byte SHAS512 hash into the data, at the address given. See
FIPS 180-2 for the specification.

—SPlit multiple [offset [width]]
This filter may be used to split the input into a subset of the data, and compress the address range
so as to leave no gaps. This useful for wide data buses and memory striping. The multiple is the
bytes multiple to split over, the offset is the byte offset into this range (defaults to 0), the width is
the number of bytes to extract (defaults to 1) within the multiple. In order to leave no gaps, the
output addresses are (width / multiple) times the input addresses.

—STM32 address
This is a synonym for the —-STM32_Little_Endian filter.

—-STM32_Little_Endian address

—-STM32_Big_Endian address
These filters many be use to generate the CRC used by the hardware CRC unit on the STM32 se-
ries of ARM MPUs. The algorithm used by the STM32 hardware unit is just a CRC32 with a dif-
ferent polynomial and word-fed instead of byte-fed.

The address is where to place the 4-byte STM32 CRC.

The CRC used is documented in “RM0041, STM32F100xx reference manual”, page 46, chapter
“CRC Calculation Unit”, which can be found at
http://www.st.com/internet/mcu/product/216844.jsp

=TIGer address
This filter may be used to insert a 24 byte TIGER/192 hash into the data at the address given.

—UnFill value [min-run-length]
This filter may be used to create gaps in the data with bytes equal to value. You can think of it as
reversing the effects of the —Fill filter. The gaps will only be created if the are at least min-run-
length bytes in a row (defaults to 1).

—Un_SPlit multiple [offset [width]]
This filter may be used to reverse the effects of the split filter. The arguments are identical. Note
that the address range is expanded (multiple / width) times, leaving holes between the stripes.

—WHIrlpool address
This filter may be used to insert a 64 byte WHIRLPOOL hash into the data, at the address given.

Address Ranges
There are eight ways to specify an address range:

minimum maximum
If you specify two number on the command line (decimal, octal and hexadecimal are understood,
using the C conventions) this is an explicit address range. The minimum is inclusive, the maxi-
mum is exclusive (one more than the last address). If the maximum is given as zero then the
range extends to the end of the address space.

—Within input-specification
This says to use the specified input file as a mask. The range includes all the places the specified

input has data, and holes where it has holes. The input specification need not be just a file name,
it may be anything any other input specification can be.

See also the —over option for a discussion on operator precedence.

—OVER input-specification
This says to use the specified input file as a mask. The range extends from the minimum to the
maximum address used by the input, without any holes, even if the input has holes. The input
specification need not be just a file name, it may be anything any other input specification can be.

You may need to enclose input-specification in parentheses to make sure it can’t misinterpret

Reference Manual SRecord 64

srec_input(1) General Commands Manual srec_input(1)

which arguments go with which input specification. This is particularly important when a filter is
to follow. For example

filename —fill 0 —over filename2 —swap-bytes
groups as

filename —fill 0 —over °(filename2 —swap-bytes ’)’
when what you actually wanted was

"(filename —fill 0 —over filename2)’ —swap-bytes
The command line expression parsing tends to be “greedy” (or right associative) rather than con-
servative (or left associative).

address-range —RAnge-PADding number
It is also possible to pad ranges to be whole aligned multiples of the given number. For example
input-file —fill OXFF —within input-file —range-pad 512
will fill the input-file so that it consists of whole 512-byte blocks, aligned on 512 byte boundaries.
Any large holes in the data will also be multiples of 512 bytes, though they may have been shrunk
as blocks before and after are padded.

This operator has the same precedence as the explicit union operator.

address-range —-INTERsect address-range
You can intersect two address ranges to produce a smaller address range. The intersection opera-
tor has higher precedence than the implicit union operator (evaluated left to right).

address-range —UNIlon address-range
You can union two address ranges to produce a larger address range. The union operator has
lower precedence than the intersection operator (evaluated left to right).

address-range —DIFference address-range
You can difference two address ranges to produce a smaller address range. The result is the left
hand range with all of the right hand range removed. The difference operator has the same prece-
dence as the implicit union operator (evaluated left to right).

address-range address-range
In addition, all of these methods may be used, and used more than once, and the results will be
combined (implicit union operator, same precedence as explicit union operator).

Calculated Values
Most of the places above where a number is expected, you may supply one of the following:

— value
The value of this expression is the negative of the expression argument. Note the space between
the minus sign and its argument: this space is mandatory.
srec_cat in.srec -offset — —minimum-addr in.srec -o
out.srec
This example shows how to move data to the base of memory.
(value)

You may use parentheses for grouping. When using parentheses, they must each be a separate
command line argument, they can’t be within the text of the preceding or following option, and
you will need to quote them to get them past the shell, suchas ’ (* and ") ’.

—MINimum-Address input-specification
This inserts the minimum address of the specified input file. The input specification need not be
just a file name, it may be anything any other input specification can be.

See also the —over option for a discussion on operator precedence.

—MAXimum-Address input-specification
This inserts the maximum address of the specified input file, plus one. The input specification
need not be just a file name, it may be anything any other input specification can be.

See also the —over option for a discussion on operator precedence.

Reference Manual SRecord 65

srec_input(1) General Commands Manual srec_input(1)

—Length input-specification
This inserts the length of the address range in the specified input file, ignoring any holes. The in-
put specification need not be just a file name, it may be anything any other input specification can
be.

See also the —over option for a discussion on operator precedence.

For example, the —OVER input-specification option can be thought of as short-hand for ’(’ —min file -max
file’)’, except that it is much easier to type, and also more efficient.

In addition, calculated values may optionally be rounded in one of three ways:

value —Round_Down number
The value is rounded down to the the largest integer smaller than or equal to a whole multiple of
the number.

value —Round_Nearest number
The value is rounded to the the nearest whole multiple of the number.

value —Round_Up number
The value is rounded up to the the smallest integer larger than or equal to a whole multiple of the
number.

When using parentheses, they must each be a separate command line argument, they can’t be within the
text of the preceding or following option, and you will need to quote them to get them past the shell, as
’ (/ and ’)’

COPYRIGHT
srec_input version 1.65
Copyright © 1998... Peter Miller

The srec_input program comes with ABSOLUTELY NO WARRANTY; for details use the ’srec_input
—VERSion License’ command. This is free software and you are welcome to redistribute it under certain
conditions; for details use the ’srec_input —VERSion License’ command.

MAINTAINER
Scott Finneran ~ E-Mail: scottfinneran @yahoo.com.au
Peter Miller E-Mail: pmiller@opensource.org.au

Reference Manual SRecord 66

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and dis-
tribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share
and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program — to make sure it remains free software for all its users. We,
the Free Software Foundation, use the GNU General Public License for most of our software; it applies also
to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for them
if you wish), that you receive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender
the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you
modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the
recipients the same freedoms that you received. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software,
and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free
software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting
users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products
for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this
version of the GPL to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed
to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to re-
strict development and use of software on general-purpose computers, but in those that do, we wish to avoid
the special danger that patents applied to a free program could make it effectively proprietary. To prevent
this, the GPL assures that patents cannot be used to render the program non-free.

GPL 67

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as
“you”. “Licensees” and “recipients”” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or
secondarily liable for infringement under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution (with or without modification), mak-
ing available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies.
Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient
and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that
there is no warranty for the work (except to the extent that warranties are provided), that licensees may con-
vey the work under this License, and how to view a copy of this License. If the interface presents a list of
user commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object
code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized stan-
dards body, or, in the case of interfaces specified for a particular programming language, one that is widely
used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is
included in the normal form of packaging a Major Component, but which is not part of that Major Compo-
nent, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard
Interface for which an implementation is available to the public in source code form. A “Major Compo-
nent”, in this context, means a major essential component (kernel, window system, and so on) of the spe-
cific operating system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate,
install, and (for an executable work) run the object code and to modify the work, including scripts to con-
trol those activities. However, it does not include the work’s System Libraries, or general-purpose tools or
generally available free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked subprograms that
the work is specifically designed to require, such as by intimate data communication or control flow be-
tween those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other
parts of the Corresponding Source.

GPL 68

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevoca-
ble provided the stated conditions are met. This License explicitly affirms your unlimited permission to run
the unmodified Program. The output from running a covered work is covered by this License only if the
output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or
other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as
your license otherwise remains in force. You may convey covered works to others for the sole purpose of
having them make modifications exclusively for you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do so exclusively on your
behalf, under your direction and control, on terms that prohibit them from making any copies of your copy-
righted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicens-
ing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law ful-
filling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar
laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or modification of the work as a means
of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of techno-
logical measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact
all notices stating that this License and any non-permissive terms added in accord with section 7 apply to
the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this Li-
cense along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty
protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the
form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions
added under section 7. This requirement modifies the requirement in section 4 to “keep intact all no-
tices”.

¢) You must license the entire work, as a whole, under this License to anyone who comes into possession
of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to
the whole of the work, and all its parts, regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not invalidate such permission if you have
separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if
the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need
not make them do so.

GPL 69

GPL(GNU) Free Software Foundation GPL(GNU)

GNU

A compilation of a covered work with other separate and independent works, which are not by their nature
extensions of the covered work, and which are not combined with it such as to form a larger program, in or
on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its result-
ing copyright are not used to limit the access or legal rights of the compilation’s users beyond what the in-
dividual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to
the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you
also convey the machine-readable Corresponding Source under the terms of this License, in one of these
ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily
used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you of-
fer spare parts or customer support for that product model, to give anyone who possesses the object
code either (1) a copy of the Corresponding Source for all the software in the product that is covered
by this License, on a durable physical medium customarily used for software interchange, for a price
no more than your reasonable cost of physically performing this conveying of source, or (2) access to
copy the Corresponding Source from a network server at no charge.

c¢) Convey individual copies of the object code with a copy of the written offer to provide the Corre-
sponding Source. This alternative is allowed only occasionally and noncommercially, and only if you
received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer
equivalent access to the Corresponding Source in the same way through the same place at no f