Coerce x into self.
EXAMPLES:
sage: s = SFASchur(QQ)
sage: s(2)
2*s[]
sage: s([2,1])
s[2, 1]
TESTS:
sage: from sage.combinat.sf.classical import SymmetricFunctionAlgebra_classical
sage: s = SFASchur(QQ)
sage: isinstance(s, SymmetricFunctionAlgebra_classical)
True
Text representation of this symmetric function algebra.
EXAMPLES:
sage: SFASchur(QQ).__repr__()
'Symmetric Function Algebra over Rational Field, Schur symmetric functions as basis'
Return True if this symmetric function algebra is commutative.
EXAMPLES:
sage: s = SFASchur(QQ)
sage: s.is_commutative()
True
EXAMPLES:
sage: s = SFASchur(QQ)
sage: s.is_field()
False
Set up the conversion functions between the classical bases.
EXAMPLES:
sage: from sage.combinat.sf.classical import init
sage: sage.combinat.sf.classical.conversion_functions = {}
sage: init()
sage: sage.combinat.sf.classical.conversion_functions[('schur', 'power')]
<built-in function t_SCHUR_POWSYM_symmetrica>