Chaco Documentation
Release 3.0.1

Enthought

December 12, 2008

CONTENTS

Quickstart 3
1.1 Installation OVErview ot e e e e e e e e e e e e e e e e e 3
1.2 Running Some Examples e 3
1.3 CreatingaPlot e e e e e e e 8
1.4 Further Reading e e e e 9
Installing and Building Chaco 11
2.1 Imstalling via EPD L e e e e e e e e 11
2.2 ceasy_install L e e e e e e e e 11
2.3 Building from Source L e 11
Tutorials 13
3.1 Imteractive Plotting with Chaco e 13
3.2 Modeling Van der Waal’s Equation With Chaco and Traits 38
3.3 Creating an interactive Hyetograph with Chaco and Traits 44
34 WX-based Tutorial e e e e e e e e e e e 52
3.5 Exploring Chaco with IPython e 52
Architecture Overview 55
4.1 Coreldeas i e e e e e e e e 55
4.2 The Relationship Between Chaco, Enable,and Kiva 55
Commonly Used Modules and Classes 59
5.1 Base Classes v v vt i i e e e e e 59
5.2 DataObjectS o v v e e e e e e e e e e e e e e e e 59
5.3 ContaiNers v v v v it e e e e e e e e e e e e e e e e e e 60
54 Renderers e e e e e e e e 61
5.5 T0o0IS . . . e e e e e e e e 61
56 Overlays e e 62
5.7 Miscellaneous e e e e e 62
How Do I...? 63
6.1 BasiCS e e e e e e e e e e e 63
6.2 Layoutand Rendering i i e e e e e 64
6.3 Writing COMPONENLS . . .« v v v v v e et e 65
6.4 Advanced L L e 65
Frequently Asked Questions 67
7.1 Where does the name “Chaco” come from? 67
7.2 Why was Chaco named “Chaco2” forawhile? 67

7.3 What are the pros and cons of Chaco vs. matplotlib? 67

Programmer’s Reference 71
8.1 Data SOUICES . . . v v v vt i e 72
82 DataRanges e e e e e e e e 72
8.3 MAPPEIS . . v e e e e e e e e e e e e e e 72
84 Containers o v v i e e e e e e e e e e e e e e e 72
Annotated Examples 73
0.1 DAr_PLOL . DY v v o v e e e e e e e e e e e e e e e 73
0.2 DIigdata.Py « v v v v e 74
9.3 cursor_tool _demMO.PV « « v v v vt e e e e e e e e e e e e e e e e 75
0.4 data_labelS.PV « v v v vt e e e e e e 76
0.5 data_VIeW.DY v v v o it e e e e e e e e e e e e 77
9.6 edit_lin€.PV v v v v v it e e e e e 78
9.7 financial_ _pPlot.PY . . v i i i i e e e e e e e e e 79
9.8 financial_ plot_dates.py . . . o v v i i v i i e e e e e e e 80
9.9 mMuUltiaxis.PY .« ¢ v i i e e e 81
9.10 multiaxis_UsSing_Plot.Py . . v v v v i i it e e e e e e e e 82
9.11 noninteraCtivVe.PY .« . v v v i v it e e e e e e e e e e e e e 83
9.12 range_selection_demO.PV . .« v v v v v v v i i e e e e e e e e e e e e e e 84
9.13 SCales_LeSL . PV « v v v o e e e e e e e e e e e e e e e e 85
9.14 SimpPle_liNe.PV « v v v v v i it e e e e e e e e e e e e e e 86
0.15 tornado.PV « ¢ v v v o e e e e e e e e e e 87
0.16 tWO_PLOLS . DY v v v o e e e e e e e e e e e e 88
9.17 vertical PloL.DPY .« v v v it e e e e e e e e e e e e e e 89
9.18 data_CUbE.DY v v v v v i e e e e e e e e e e e e e e e e e 90
0.19 data_stream.DV « . v v v v v i i e e e e e e e e e e e e e e e 91
9.20 scalar_image_function_inspector.py . . « v v v v v v i i i e e 92
0.21 SPECLTUM.DY + v v v o e e e e e e e e e e e e e s 93
0.22 cmap_image_Plot . PV « v v v v o e e e e e e e e e e e e e e e e e 94
90.23 cmap_image_SeleCh .V « v v v v v v e e e e e e e e e e e e e e e e e e e 95
0.24 cmap_SCatter. PV . v v v v i i e e e e e e e e e e e e e e e e e e 96
9.25 contoUur_Cmap_PLloL .PV « ¢ v v v v v e e e e e e e e e e e e e e e 97
0.26 contoUr_PLloL.PY « v v i it e e e e e e e e e e e 98
0.27 grid_container.PV . . v v i v it e e e e e e e e e e e e e 99
9.28 grid_container_aspect_ratio i e e 100
9.29 dimage_from_file.py v i i i it e e e e e e e 101
930 ImMage_insSPeCLOT DY v v v v v v vt e e e e e e e e e e e e e e e e e e 102
931 dimage_Plot.Py . o v i v i e e e e e 103
0.32 Inset_Plot. Py v v v v v i e e e e e e e e e e 104
9.33 1ine_drawiNg.PV .« « v v v v v v et e e e e e e e e e e e e e e e 105
934 1ine_Plotl.PV v v v v v i e e e e e e e e e e e e e e e e e 106
9.35 1ine_plot_hold.DY « v v v v it it e e e e e e e e e e 107
036 109 PLOL DY + v o i e e e e e e 108
9.37 Nans_Plot.PY v v v i i e e e e e e e 108
9.38 pPOlygon_Plot . PV v v v v v ot e e e e e e e e e e e e e e 109
9.39 POLYGON_MOVE .Y v v v v v e 110
940 regreSSioNn.PV . v v v v i v i e e e e e e e e e e e e 111
041 SCALLET . DY v v v o v e e e e e e e e e e e e e e e 112
042 scatter INSPEeCLOr.PY « ¢ v v v v v ot e e e e e e e e e e e 113
043 scatter_seleCht.PY v . v i v i i i e e e 114
944 SCTrOllbhaAr.PV v v v o e e e e e e e e e e e e e e e e 115
945 tabbed PloLS.PY v v v v v i e 116

9.46 traits_editor.py

9.47 zoomable_COlOoTrDar.PV . . v v v v v et e e e e e e e e e e e e e e e

9.48 zoomed_plot

10 Tech Notes

10.1 About the Chaco Scales package i i e e

Chaco Documentation, Release 3.0.1

Chaco is a Python toolkit for building interactive 2-D visualizations. It includes renderers for many popular plot types,
built-in implementations of common interactions with those plots, and a framework for extending and customizing
plots and interactions. Chaco can also render graphics in a non-interactive fashion to images, in either raster or vector
formats, and it has a subpackage for doing command-line plotting or simple scripting.

Chaco is built on three other Enthought packages:

e Traits, as an event notification framework
* Kiva, for rendering 2-D graphics to a variety of backends across platforms

* Enable, as a framework for writing interactive visual components, and for abstracting away GUI-toolkit-specific
details of mouse and keyboard handling

Currently, Chaco requires either wxPython or PyQt to display interactive plots, but a cross-platform OpenGL backend
(using Pyglet) is in the works, and it will not require WX or Qt.

CONTENTS 1

http://code.enthought.com/projects/traits

Chaco Documentation, Release 3.0.1

2 CONTENTS

CHAPTER
ONE

QUICKSTART

This section is meant to help users on well-supported platforms and common Python environments get started using
Chaco as quickly as possible. If your platform is not listed here, or your Python installation has some quirks, then
some of the following instructions might not work for you. If you encounter any problems in the steps below, please
refer to the Installing and Building Chaco section for more detailed instructions.

1.1

Installation Overview

There are several different ways to get Chaco:

Install the Enthought Python Distribution. Chaco and the rest of the Enthought Tool Suite are bundled with it.
Go to the main Enthought Python Distribution (EPD) web site and download the appropriate version for your
platform. After running the installer, you will have a working version of Chaco.

Available platforms:
— Windows 32-bit
— Mac OS X 10.4 and 10.5
— RedHat Enterprise Linux 3 (32-bit and 64-bit)

Note: Enthought Python Distribution is free for academic and personal use, and fee-based for commercial and
government use.

(Windows, Mac) Install from PyPI using easy_install (part of setuptools) from the command line:

easy_install Chaco

(Linux) Install distribution-specific eggs from Enthought’s repository. See the ETS wiki for instructions for
installing pre-built binary eggs for your specific distribution of Linux.

(Linux) Install via the distribution’s packaging mechanism. We provide .debs for Debian and Ubuntu and .rpms
for Redhat. (TODO)

Download source as tarballs or from Subversion and build. See the /nstalling and Building Chaco section.

Chaco requires Python version 2.5.

1.2

Running Some Examples

Depending on how you installed Chaco, you may or may not have the examples already.

If you installed Chaco as part of EPD, the location of the examples depends on your platform:

http://www.enthought.com/epd
https://svn.enthought.com/enthought/wiki/Install#UsingEnthoughtsEggRepo

Chaco Documentation, Release 3.0.1

* On Windows, they are in the Examples\ subdirectory of your installation location. This is typically
C:\Python25\Examples.

* On Linux, they are in the Examples/ subdirectory of your installation location.

* On Mac OS X, they are in the /Applications/<EPD Version>/Examples/ directory.

If you downloaded and installed Chaco from source (via the PyPI tar.gz file, or from an SVN checkout), the exam-
ples are located in the examples/ subdirectory inside the root of the Chaco source tree, next to docs/ and the
enthought / directories.

If you installed Chaco as a binary egg from PyPI for your platform, or if you happen to be on a machine with Chaco
installed, but you don’t know the exact installation mechanism, then you will need to download the examples separately
using Subversion:

¢ ETS 3.0 or Chaco 3.0:
svn co https://svn.enthought.com/svn/enthought/Chaco/tags/3.0.0/examples

* ETS 2.8 or Chaco 2.0.x:
svn co https://svn.enthought.com/svn/enthought/Chaco/tags/enthought.chaco2_2.0.5/examples

Almost all of the Chaco examples are stand-alone files that can be run individually, from any location.

All of the following instructions that involve the command line assume that you are in the same directory as the
examples.

1.2.1 Command line

Run the simple_1line example:
python simple_line.py

This opens a plot of several Bessel functions and a legend.

4 Chapter 1. Quickstart

Chaco Documentation, Release 3.0.1

800 Simple line plot
Bessel functions
14+ O Bessel] 0
ﬁ = Begsel] 1
o 0O O Besselj 2
0.75 4 o g — Bessel | 3
o 0O B Besselj 4
o5 - o — Hessel] 5
’ O O O Bessel] 6
Bessel | 7
0.25 T O Besselj &
3 — Bessel j 9
01 [m]
O O
O] (]
-0.25 o
0.5
-0.75 T | ; ; : :
T T T T T
10 5] 5 10 15 20
A

You can interact with the plot in several ways:

¢ To pan the plot, hold down the left mouse button inside the plot area (but not on the legend) and drag the mouse.

* To zoom the plot:

Mouse wheel: scroll up to zoom in, and scroll down to zoom out.

[T

Zoom box: Press “z”, and then draw a box region to zoom in on. (There is no box-based zoom out.) Press
Ctrl-Left and Ctrl-Right to go back and forward in your zoom box history.

Drag: hold down the right mouse button and drag the mouse up or down. Up zooms in, and down zooms
out.

For any of the above, press Escape to resets the zoom to the original view.

* To move the legend, hold down the right mouse button inside the legend and drag it around. Note that you can
move the legend outside of the plot area.

¢ To exit the plot, click the “close window” button on the window frame (Windows, Linux) or choose the Quit
option on the Python menu (on Mac). Alternatively, can you press Ctrl-C in the terminal.

You can run most of the examples in the top-level examples directory, the examples/basic/ directory, and the
examples/shell/ directory. The examples/advanced/ directory has some examples that may or may not
work on your system:

1.2. Running Some Examples 5

Chaco Documentation, Release 3.0.1

* spectrum.py requires that you have PyAudio installed and a working microphone.

* data_cube.py needs to download about 7.3mb of data from the Internet the first time it is executed, so you
must have a working Internet connection. Once the data is downloaded, you can save it so you can run the
example offline in the future.

For detailed information about each built-in example, see the Annotated Examples section.

1.2.2 IPython

While all of the Chaco examples can be launched from the command line using the standard Python interpreter, if you
have IPython installed, you can poke around them in a more interactive fashion.

Chaco provides a subpackage, currently named the “Chaco Shell”, for doing command-line plotting like Matlab
or Matplotlib. The examples in the examples/shell/ directory use this subpackage, and they are particularly
amenable to exploration with IPython.

The first example we’ll look at is the 1ines . py example. First, we’ll run it using the standard Python interpreter:
python lines.py

This shows two overlapping line plots.

1.0

0,75

0.5

0.25

0.0

-0.25

-0.5

Q.75

6 Chapter 1. Quickstart

Chaco Documentation, Release 3.0.1

You can interact with the plot in the following ways:

* To pan the plot, hold down the left mouse button inside the plot area and dragging the mouse.
* To zoom the plot:

— Mouse wheel: scroll up zooms in, and scroll down zooms out.

— Zoom box: hold down the right mouse button, and then draw a box region to zoom in on. (There is no
box-based zoom out.) Press Ctrl-Left and Ctrl-Right to go back and forward in your zoom box history.

— For either of the above, press Escape to reset the zoom to the original view.
Now exit the plot, and start [Python with the -wthread option:
ipython -wthread

This tells IPython to start a wxPython mainloop in a background thread. Now run the previous example again:

In [1]: run lines.py

This displays the plot window, but gives you another IPython prompt. You can now use various commands from the
chaco.shell package to interact with the plot.

* Import the shell commands:

In [2]: from enthought.chaco.shell import =

¢ Set the X-axis title:

In [3]: xtitle ("X data")

* Toggle the legend:

In [4]: legend()

After running these commands, your plot looks like this:

1.2. Running Some Examples 7

Chaco Documentation, Release 3.0.1

0.75

0.5 7

0.25

0.0

=0.25

-0.5

-0.75

The chaco_commands () function display a list of commands with brief descriptions.

You can explore the Chaco object hierarchy, as well. The chaco.shell commands are just convenience functions
that wrap a rich object hierarchy that comprise the actual plot. See the Exploring Chaco with IPython section for
information on more complex and interesting things you can do with Chaco from within IPython.

1.2.3 Start Menu (MS Windows)

If you installed the Enthought Python Distribution (EPD), you have shortcuts installed in your Start Menu for many of
the Chaco examples. You can run them by just clicking the shortcut. (This just invokes python.exe on the example file
itself.)

1.3 Creating a Plot

(TODO)

8 Chapter 1. Quickstart

Chaco Documentation, Release 3.0.1

1.4 Further Reading

Once you have Chaco installed, you can either visit the Tuzorials to learn how to use the package, or you can run the
examples (see the Annotated Examples section).

1.4.1 Presentations
There have been several presentations on Chaco at previous PyCon and SciPy conferences. Slides and demos from
these are described below.

Currently, the examples and the scipy 2006 tutorial are the best ways to get going quickly. (See
http://code.enthought.com/projects/files/chaco_scipy06/chaco_talk.html)

Some tutorial examples were recently added into the examples/tutorials/scipy2008/ directory on the trunk. These
examples are numbered and introduce concepts one at a time, going from a simple line plot to building a custom
overlay with its own trait editor and reusing an existing tool from the built-in set of tools. You can browse them on our
SVN server at: https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/tutorials/scipy2008

1.4.2 API Docs

The API docs for Chaco 3.0 (in ETS 3.0) are at: http://code.enthought.com/projects/files/ETS3_API/enthought.chaco.html
The API docs for Chaco2 (in ETS 2.7.1) are at: http://code.enthought.com/projects/files/ets_api/enthought.chaco2.html

1.4. Further Reading 9

http://code.enthought.com/projects/files/chaco_scipy06/chaco_talk.html
https://svn.enthought.com/enthought/browser/Chaco/trunk/examples/tutorials/scipy2008
http://code.enthought.com/projects/files/ETS3_API/enthought.chaco.html
http://code.enthought.com/projects/files/ets_api/enthought.chaco2.html

Chaco Documentation, Release 3.0.1

10 Chapter 1. Quickstart

CHAPTER
TWO

INSTALLING AND BUILDING CHACO

Note: (8/28/08) This section is still incomplete. For the time being, the most up-to-date information can be found on
the ETS Wiki, and, more specifically, the Install pages.

Chaco is one of the packages in the Enthought Tool Suite. It can be installed as part of ETS or as a separate package.
Even when it is installed as a standalone package, it depends on a few other packages.

2.1 Installing via EPD

Chaco and the rest of ETS are installed as part of the Enthought Python Distribution (EPD). If you have installed EPD,
then you already have Chaco!

Note: Enthought Python Distribution is free for academic and personal use, and fee-based for commercial and
government use.

2.2 easy install

Chaco and its dependencies are available as binary eggs for Windows and Mac OS X from the Python Package Index.

Chaco depends on Numpy and either wxPython or Qt. These packages are not installed by the default installation
command. If you do not have these packages installed, use the following command to install Chaco:

easy_install Chaco[nonets]

If you do have Numpy and either wxPython or Qt installed, you can use a simpler command to install Chaco:
easy_install Chaco

Because eggs do not distinguish between various distributions of Linux, Enthought hosts its own egg repository for

Linux eggs. See the ETS wiki page on our egg repo for instructions for installing pre-built binary eggs for your specific
distribution of Linux.

For systems that don’t have binary eggs, it is also possible to build Chaco from source, since PyPI hosts the source
tarballs for all dependencies.

2.3 Building from Source

Chaco itself is not very hard to build from source; there are only a few C extensions and they build with most modern
compilers. Frequently the more difficult to build piece is actually the Enable package on which Chaco depends.

11

http://svn.enthought.com/enthought/
https://svn.enthought.com/enthought/wiki/Install
http://www.enthought.com/epd
http://pypi.python.org/pypi
https://svn.enthought.com/enthought/wiki/Install#UsingEnthoughtsEggRepo

Chaco Documentation, Release 3.0.1

On most platforms, in order to build Enable, you need Swig > 1.3.30 and wxPython > 2.8. If you are on OS X, you
also need a recent Pyrex.

2.3.1 Obtaining the source

You can get Chaco and its dependencies from PyPI as source tarballs, or you can download the source directly from
Enthought’s Subversion server. The URL is:

https://svn.enthought.com/svn/enthought/Chaco/trunk

Note: This build instructions section is currently under construction. Please see the ETS Install From Source wiki
page for more information on building Chaco and the rest of ETS on your platform.

12 Chapter 2. Installing and Building Chaco

https://svn.enthought.com/svn/enthought/Chaco/trunk
https://svn.enthought.com/enthought/wiki/Build

CHAPTER
THREE

TUTORIALS

Note: (8/28/08) This section is currently being updated to unify the information from several past presentations and
tutorials. Until it is complete, here are links to some of those. The HTML versions are built using S5, which uses
Javascript heavily. You can navigate the slide deck by using left and right arrows, as well as a drop-down box in the
lower right-hand corner.

e SciPy 2006 Tutorial (Also available in pdf)
* Pycon 2007 presentation slides

* SciPy 2008 Tutorial slides (pdf): These slides are currently being converted into the Interactive Plotting with
Chaco tutorial.

3.1 Interactive Plotting with Chaco

3.1.1 Overview

This tutorial is an introduction to Chaco. We’re going to build several mini-applications of increasing capability and
complexity. Chaco was designed to be used primarily by scientific programmers, and this tutorial requires only basic
familiarity with Python.

Knowledge of NumPy can be helpful for certain parts of the tutorial. Knowledge of GUI programming concepts such
as widgets, windows, and events are helpful for the last portion of the tutorial, but it is not required.

This tutorial demonstrates using Chaco with Traits UI, so knowledge of the Traits framework is also helpful. We don’t
use very many sophisticated aspects of Traits or Traits U, and it is entirely possible to pick it up as you go through
the tutorial. This tutorial applies to Enthought Tool Suite version 3.x.

It’s also worth pointing out that you don’t have to use Traits Ul in order to use Chaco — you can integrate Chaco
directly with Qt or wxPython — but for this tutorial, we use Traits UI to make things easier.

13

http://meyerweb.com/eric/tools/s5/
http://code.enthought.com/projects/files/chaco_scipy06/chaco_talk.html
http://code.enthought.com/projects/files/Data_Exploration_with_Chaco.pdf
http://code.enthought.com/projects/files/chaco_pycon07/index.html
https://svn.enthought.com/svn/enthought/Chaco/trunk/docs/scipy08_tutorial.pdf

Chaco Documentation, Release 3.0.1

Contents

* Interactive Plotting with Chaco

Overview
— Goals

Introduction

Script-oriented Plotting

Application-oriented Plotting

Understanding the First Plot
Scatter Plots

Image Plot
A Slight Modification

Container Overview

Using a Container
Editing Plot Traits

3.1.2 Goals

By the end of this tutorial, you will have learned how to:

* create Chaco plots of various types

* arrange plots of data items in various layouts

* configure and interact with your plots using Traits Ul
* create a custom plot overlay

e create a custom tool that interacts with the mouse

3.1.3 Introduction

Chaco is a plotting application toolkit. This means that it can build both static plots and dynamic data visualizations
that let you interactively explore your data. Here are four basic examples of Chaco plots:

14 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

var| 1 — war |
varh - —varh
varg - - varg
. art T - wvart
g
=]
g vare T - vare
=
]
vard - — vard
varc - — varc
varb - - varb
vara - - vara
2460000 2480000 2500000 2520000 25340000 2560000

A

This plot shows a static “tornado plot” with a categorical Y axis and continuous X axis. The plot is resizable, but the

user cannot interact or explore the data in any way.

3.1. Interactive Plotting with Chaco

15

Chaco Documentation, Release 3.0.1

00 Simple line plot
Bessel functions

O Bessel] 0

T — Bessel 1

O Besselj 2

m— Bossel | 3

0.75 T+ O Besselj 4

— Bessel | 5

O Bessel] &

0.5 T Bessel | 7

O Bessel| 8

m— Bossel | 9
0.25 +
o+
025

e
0.5 T+
075 T
1 1 l 1 1
T T T T T
10 5] 5 10 15 z0
A

This is an overlaid composition of line and scatter plots with a legend. Unlike the previous plot, the user can pan and
zoom this plot, exploring the relationship between data curves in areas that appear densely overlapping. Furthermore,
the user can move the legend to an arbitrary position on the plot, and as they resize the plot, the legend maintains the
same screen-space separation relative to its closest corner.

16 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

AdaO0n Regression Selection
L}
] o L |
|
| |
|
" .. u n |
8] "= i
-
[| | "
-
-
i u e
] u mE-
06T m Ey m B .
’.r —-
-
. F 'ﬂ
. . . - - e .
] >
u _, -7 [] |
04 | m o g
- " g .
P - 4 | [
(.__ - // .. .
g
) - - -
-~ 'm | o
02 -~ | - '.‘- , u [|
m.- - . H B |
-7 Egm u =
i |
g 0.71x + 0.06 -
= : : -
0.2 04 0.6 0.8
e

This example starts to demonstrate interacting with the dataset in an exploratory way. Whereas interactivity in the
previous example was limited to basic pan and zoom (which are fairly common in most plotting libraries), this is an
example of a more advanced interaction that allows a level of data exploration beyond the standard view manipuations.

With this example, the user can select a region of data space, and a simple line fit is applied to the selected points. The
equation of the line is then displayed in a text label.

The lasso selection tool and regression overlay are both built in to Chaco, but they serve an additional purpose of

demonstrating how one can build complex data-centric interactions and displays on top of the Chaco framework.

3.1. Interactive Plotting with Chaco

17

Chaco Documentation, Release 3.0.1

-0.750.5-0.25 0 0.250.50.75

07s | -

0.5 1

0.25 + Ng-deot .
0T &

025

05+

0.75

-0.5

-0.75

This is a much more complex demonstration of Chaco’s capabilities. The user can view the cross sections of a 2-D
scalar-valued function. The cross sections update in real time as the user moves the mouse, and the “bubble” on each
line plot represents the location of the cursor along that dimension. By using drop-down menus (not show here), the
user can change plot attributes like the colormap and the number of contour levels used in the center plot, as well as
the actual function being plotted.

3.1.4 Script-oriented Plotting

We distinguish between “static” plots and “interactive visualizations” because these different applications of a library
affect the structure of how the library is written, as well as the code you write to use the library.

Here is a simple example of the “script-oriented” approach for creating a static plot. This is probably familiar to

anyone who has used Gnuplot, MATLAB, or Matplotlib:

from numpy import =«
from enthought.chaco.shell import =«

x = linspace(-2+pi, 2xpi, 100)
y = sin (x)

plot(x, y, "r-")

18 Chapter 3. Tutorials

8

9

10

Chaco Documentation, Release 3.0.1

title("First plot")
ytitle("sin(x)")
show ()

First plot

5in(x)

07s T
s T
.25
0o T
025 T
05 T
075 T
| | l
T T | T
2.5 0.0 2.5 5.0

l
|
5.0 =2,

/
- ——

The basic structure of this example is that we generate some data, then we call functions to plot the data and configure
the plot. There is a global concept of “the active plot”, and the functions do high-level manipulations on it. The
generated plot is then usually saved to disk for inclusion in a journal article or presentation slides.

Now, as it so happens, this particular example uses the chaco.shell script plotting package, so when you run this script,
the plot that Chaco opens does have some basic interactivity. You can pan and zoom, and even move forwards and
backwards through your zoom history. But ultimately it’s a pretty static view into the data.

3.1.5 Application-oriented Plotting

The second approach to plotting can be thought of as “application-oriented”, for lack of a better term. There is
definitely a bit more code, and the plot initially doesn’t look much different, but it sets us up to do more interesting
things, as you’ll see later on:

from enthought.traits.api import HasTraits, Instance
from enthought.traits.ui.api import View, Item

3.1. Interactive Plotting with Chaco 19

20
21
22
23

24

Chaco Documentation, Release 3.0.1

from enthought.chaco.api import Plot,

ArrayPlotData

from enthought.enable.component_editor import ComponentEditor

from numpy import linspace, sin
class LinePlot (HasTraits) :
plot = Instance(Plot)
traits_view = View(
Item(’'plot’,editor=ComponentEditor (),
width=500, height=500, resizable=True,

def _ init_ (self):
super (LinePlot,
x = linspace(-14,
y = sin(x) * x**3
plotdata = ArrayPlotData (x=x,
plot = Plot (plotdata)
plot.plot (("x" "y,
plot.title = "sin(x)
self.plot = plot

self).__init__ ()
14, 100)

y=Y)

type="1line",

* x~3"

if name == "_ _main_ ":

LinePlot () .configure_traits()

show_label=False),
title="Chaco Plot")

color="blue™)

This produces a plot similar to the previous script-oriented code snippet:

20

Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

sin(x) * x"3

2000

1000 T

-1000

So, this is our first “real” Chaco plot. We’ll walk through this code and look at what each bit does. This example
serves as the basis for many of the later examples.

3.1.6 Understanding the First Plot

Let’s start with the basics. First, we declare a class to represent our plot, called LinePlot:

class LinePlot (HasTraits):
plot = Instance(Plot)

This class uses the Enthought Traits package, and all of our objects subclass from HasTraits.

Next, we declare a Traits UI View for this class:

3.1. Interactive Plotting with Chaco 21

Chaco Documentation, Release 3.0.1

traits_view = View (
Item(’'plot’,editor=ComponentEditor (), show_label=False),
width=500, height=500, resizable=True, title="Chaco Plot")

Inside this view, we are placing a reference to the plot trait and telling Traits Ul to use the ComponentEditor
(imported from enthought .enable.component_editor) to display it. If the trait were an Int or Str or Float,
Traits could automatically pick an appropriate GUI element to display it. Since Traits UI doesn’t natively know how
to display Chaco components, we explicitly tell it what kind of editor to use.

The other parameters in the View constructor are pretty self-explanatory, and the Traits UI User’s Guide documents
all the various properties you can set here. For our purposes, this Traits View is sort of boilerplate. It gets us a nice
little window that we can resize. We’ll be using something like this View in most of the examples in the rest of the
tutorial.

Now, let’s look at the constructor, where the real work gets done:

def _ init__ (self):

super (LinePlot, self).__init__ ()
x = linspace(-14, 14, 100)
y = sin(x) * x**3

plotdata = ArrayPlotData (x=x, y=y)

The first thing we do here is call the super-class’s __init__ () method, which ensures that all the Traits machinery
is properly set up, even though the __init__ () method is overridden. Then we create some mock data, just like
in the script-oriented approach. But rather than directly calling some sort of plotting function to throw up a plot, we
create this ArrayPlotData object and stick the data in there. The ArrayPlotData object is a simple structure that
associates a name with a NumPy array.

In a script-oriented approach to plotting, whenever you have to update the data or tweak any part of the plot, you
basically re-run the entire script. Chaco’s model is based on having objects representing each of the little pieces of a
plot, and they all use Traits events to notify one another that some attribute has changed. So, the ArrayPlotData is an
object that interfaces your data with the rest of the objects in the plot. In a later example we’ll see how we can use the
ArrayPlotData to quickly swap data items in and out, without affecting the rest of the plot.

The next line creates an actual P 1ot object, and gives it the ArrayPlotData instance we created previously:

plot = Plot (plotdata)

Chaco’s Plot object serves two roles: it is both a container of renderers, which are the objects that do the actual task of
transforming data into lines and markers and colors on the screen, and it is a factory for instantiating renderers. Once
you get more familiar with Chaco, you can choose to not use the Plot object, and instead directly create renderers and
containers manually. Nonetheless, the Plot object does a lot of nice housekeeping that is useful in a large majority of
use cases.

Next, we call the plot () method on the Plot object we just created:
plot.plot (("x", "y"), type="line", color="blue")

[T}

This creates a blue line plot of the data items named “x” and “y”. Note that we are not passing in an actual array here;
we are passing in the names of arrays in the ArrayPlotData we created previously.

This method call creates a new renderer — in this case a line renderer — and adds it to the Plot.

This may seem kind of redundant or roundabout to folks who are used to passing in a pile of NumPy arrays to a plot
function, but consider this: ArrayPlotData objects can be shared between multiple Plots. If you want several different
plots of the same data, you don’t have to externally keep track of which plots are holding on to identical copies of

22 Chapter 3. Tutorials

http://code.enthought.com/projects/traits/docs/html/TUIUG/index.html

20
21
22
23

24

Chaco Documentation, Release 3.0.1

what data, and then remember to shove in new data into every single one of those plots. The ArrayPlotData object acts
almost like a symlink between consumers of data and the actual data itself.

Next, we set a title on the plot:

plot.title = "sin(x) = x"3"

And then we set our plot trait to the new plot:

self.plot = plot

The last thing we do in this script is set up some code to run when the script is executed:

if name == "__main__ ":

LinePlot () .configure_traits()

This one-liner instantiates a LinePlot object and calls its configure_traits () method. This brings up a dialog
with a traits editor for the object, built up according to the View we created earlier. In our case, the editor just displays
our plot attribute using the ComponentEditor.

3.1.7 Scatter Plots

We can use the same pattern to build a scatter plot:

from enthought.traits.api import HasTraits, Instance

from enthought.traits.ui.api import View, Item

from enthought.chaco.api import Plot, ArrayPlotData

from enthought.enable.component_editor import ComponentEditor
from numpy import linspace, sin

class ScatterPlot (HasTraits):
plot = Instance(Plot)
traits_view = View(
Item(’'plot’,editor=ComponentEditor (), show_label=False),
width=500, height=500, resizable=True, title="Chaco Plot")

def _ init_ (self):

super (ScatterPlot, self)._ _init__ ()

x = linspace(-14, 14, 100)

y = sin(x) * x**3

plotdata = ArrayPlotData(x = x, y = Vy)

plot = Plot (plotdata)

plot.plot (("x", "y"), type="scatter", color="blue")

plot.title = "sin(x) % x"3"

self.plot = plot
if _ name_ == "_ _main_ ":
ScatterPlot () .configure_traits()

Note that we have only changed the fype argument to the plot .plot () call and the name of the class from LinePlot
to ScatterPlot. This produces the following:

3.1. Interactive Plotting with Chaco 23

Chaco Documentation, Release 3.0.1

[] .|
m n
2000 T
u m
u u
1000 T
u m
) u
N u
1l m u
0 []
u u
u u
u u
m B H g
-1000 - -
o Ty
f i i i f
=10 =5 1] 5 10
]

3.1.8 Image Plot

Image plots can be created in a similar fashion:

from
from
from
from
from

enthought.
enthought.
enthought.
enthought.

numpy import exp,

traits.api import HasTraits, Instance
traits.ui.api import View, Item

chaco.api import Plot, ArrayPlotData, jet
enable.component_editor import ComponentEditor
linspace, meshgrid

class ImagePlot (HasTraits):

plot
traits_view

Instance (Plot)

View (

24

Chapter 3. Tutorials

20

21

22

23

24

25

Chaco Documentation, Release 3.0.1

Item(’'plot’, editor=ComponentEditor(),

width=500, height=500, resizable=True,
def _ init__ (self):

super (ImagePlot, self).__init__ ()

x = linspace (0, 10, 50)

linspace (0, 5, 50)
meshgrid(x, V)

y =
xgrid, ygrid =
7 =
plotdata =
plot = Plot (plotdata)
plot.img_plot ("imagedata",
self.plot = plot

xbounds=x,

if name == "_ _main_ ":

ImagePlot () .configure_traits()

exp (- (xgridxxgrid+ygrid+ygrid) /100)
ArrayPlotData (imagedata = z)

ybounds=y,

show_label=False),
title="Chaco Plot")

colormap=jet)

There are a few more steps to create the input Z data, and we also call a different method on the Plot object —
img_plot () instead of plot (). The details of the method parameters are not that important right now; this is just
to demonstrate how we can apply the same basic pattern from the “first plot” example above to do other kinds of plots.

3.1. Interactive Plotting with Chaco

25

Chaco Documentation, Release 3.0.1

3.1.9 A Slight Modification

Earlier we said that the Plot object is both a container of renderers and a factory (or generator) of renderers. This
modification of the previous example illustrates this point. We only create a single instance of Plot, but we call its
plot () method twice. Each call creates a new renderer and adds it to the Plot object’s list of renderers. Also notice
that we are reusing the x array from the ArrayPlotData:

from
from
from
from
from

enthought .traits.api import HasTraits, Instance
enthought .traits.ui.api import View, Item
enthought.chaco.api import Plot, ArrayPlotData

enthought .enable.component_editor import ComponentEditor
numpy import cos, linspace, sin

26

Chapter 3. Tutorials

20

21

22

23

Chaco Documentation, Release 3.0.1

class OverlappingPlot (HasTraits):
plot = Instance (Plot)
traits_view = View(

Item(’'plot’,editor=ComponentEditor (), show_label=False),
width=500, height=500, resizable=True, title="Chaco Plot")

def _ init_ (self):

super (OverlappingPlot) .__init__ ()
x = linspace(-14, 14, 100)

y = x/2 % sin(x)

y2 = cos(x)

plotdata = ArrayPlotData (x=x, y=y, y2=y2)
plot = Plot (plotdata)
plot.plot (("x", "y"), type="scatter", color="blue")
plot.plot (("x", "y2"), type="line", color="red")
self.plot = plot
if _ name_ == "_ _main_
OverlappingPlot () .configure_traits/()

LU

3.1. Interactive Plotting with Chaco

27

Chaco Documentation, Release 3.0.1

3.1.10 Container Overview

So far we’ve only seen single plots, but frequently we need to plot data side by side. Chaco uses various subclasses of
Container to do layout. Horizontal containers (HP 1ot Container) place components horizontally:

28 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

More Bessels
T I
s [}
el
2 1
v LY
v
- A
A Y
4 &
A Y
1
Y
ALY
~
.
=
~
Ay
.
A
1 1
: *
r Ay
L Al
#
» A
g \
p
’ 1
r 1
r ’
1 r
’
b ,
ALY
hd ’
E
Al ”
LY
1]
i L]
Il A3
7 A\
Al
’ 3
f A
,
s A
i 1
1 1
" r
\ '
5 ¢
f
3 '
\)
i [}
4

Vertical containers (VP lotContainer) array component vertically:

3.1. Interactive Plotting with Chaco 29

Chaco Documentation, Release 3.0.1

Grid container (GridPlotContainer) lays plots out in a grid:

More Bessels
------ _
- - .
- - -
-h-"'-.. ‘-". ﬂﬂﬂﬂﬂﬂ -
--"-..——"-'
.4-— ‘.‘ -
- R
- T a" - e="T - il
‘_‘-' s‘\ ‘.r Rl T _A__-_
- _,"
"---’
)

30

Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

Overlay containers (OverlayPlotContainer) just overlay plots on top of each other:

3.1. Interactive Plotting with Chaco 31

Chaco Documentation, Release 3.0.1

00 Simple line plot
Bessel functions

O Bessel] 0

T — Bessel 1

O Besselj 2

m— Bossel | 3

0.75 T+ O Besselj 4

— Bessel | 5

O Bessel] &

0.5 T Bessel | 7

O Bessel| 8

m— Bossel | 9
0.25 +
o+
025

e
0.5 T+
075 T
1 1 l 1 1
T T T T T
10 5] 5 10 15 z0
A

You've actually already seen OverlayPlotContainer — the Plot class is actually a special subclass of OverlayPlotCon-
tainer. All of the plots inside this container appear to share the same X- and Y-axis, but this is not a requirement of the
container. For instance, the following plot shows plots sharing only the X-axis:

32 Chapter 3. Tutorials

Chaco Documentation, Release 3.0.1

Multi-Y Plot
1
Bessel |0
= Bessel j_1
08 + Besselj 2 | L 5,
— Bessel | 3
ns—F\
= D2
0.4 T+
T0
0.2 +
- -0.2
0+
02 1 B
0.4 f f f f f f f
5 25] 25 5 7.5 10 125 15

3.1.11 Using a Container

Containers can have any Chaco component added to them. The following code creates a separate Plot instance for the
scatter plot and the line plot, and adds them both to the HPlotContainer object:

from
from
from
from
from

enthought.traits.api import HasTraits,
enthought.traits.ui.api import View,
enthought.chaco.api import HPlotContainer,
enthought .enable.component_editor import ComponentEditor

numpy import linspace,

Item

sin

class ContainerExample (HasTraits) :

plot =
traits_view = View(Item(’'plot’,

Instance (HPlotContainer)

width=1000, height=600,

def _ init_ (self):

super (ContainerExample, self).__init__ ()
x = linspace(-14, 14, 100)

y = sin(x)
plotdata = ArrayPlotData (x=x,
scatter = Plot (plotdata)

* X**x3

y=y)

Instance

ArrayPlotData,

editor=ComponentEditor (),
resizable=True,

Plot

show_label=False),
title="Chaco Plot")

3.1. Interactive Plott