#include <gp_XYZ.hxx>
Inheritance diagram for gp_XYZ:
Public Member Functions | |
void * | operator new (size_t, void *anAddress) |
void * | operator new (size_t size) |
void | operator delete (void *anAddress) |
gp_XYZ () | |
creates an indefinite XYZ. | |
gp_XYZ (const Standard_Real X, const Standard_Real Y, const Standard_Real Z) | |
modification of the XYZ coordinates | |
void | SetCoord (const Standard_Real X, const Standard_Real Y, const Standard_Real Z) |
For this number triple, assigns the values X, Y and Z to its three coordinates . | |
void | SetCoord (const Standard_Integer Index, const Standard_Real Xi) |
modifies the coordinate of range Index Index = 1 => X is modified Index = 2 => Y is modified Index = 3 => Z is modified Raises OutOfRange if Index != {1, 2, 3}. | |
void | SetX (const Standard_Real X) |
Assigns the given value to the X coordinate of this number triple. . | |
void | SetY (const Standard_Real Y) |
Assigns the given value to the Y coordinate of this number triple. . | |
void | SetZ (const Standard_Real Z) |
Assigns the given value to ther Z coordinate of this number triple. . | |
Standard_Real | Coord (const Standard_Integer Index) const |
returns the coordinate of range Index : Index = 1 => X is returned Index = 2 => Y is returned Index = 3 => Z is returned Raises OutOfRange if Index != {1, 2, 3}. | |
void | Coord (Standard_Real &X, Standard_Real &Y, Standard_Real &Z) const |
Standard_Real | X () const |
Returns the X, Y, or Z coordinate of this number triple. . | |
Standard_Real | Y () const |
Returns the X, Y, or Z coordinate of this number triple. . | |
Standard_Real | Z () const |
Returns the X, Y, or Z coordinate of this number triple. . | |
Standard_Real | Modulus () const |
computes Sqrt (X*X + Y*Y + Z*Z) where X, Y and Z are the three coordinates of this number triple. | |
Standard_Real | SquareModulus () const |
Computes X*X + Y*Y + Z*Z where X, Y and Z are the three coordinates of this number triple. . | |
Standard_EXPORT Standard_Boolean | IsEqual (const gp_XYZ &Other, const Standard_Real Tolerance) const |
Returns True if he coordinates of this number triple are equal to the respective coordinates of the number triple Other, within the specified tolerance Tolerance. I.e.: abs(<me>.X() - Other.X()) <= Tolerance and abs(<me>.Y() - Other.Y()) <= Tolerance and abs(<me>.Z() - Other.Z()) <= Tolerance. . | |
void | Add (const gp_XYZ &Other) |
<me>.X() = <me>.X() + Other.X() <me>.Y() = <me>.Y() + Other.Y() <me>.Z() = <me>.Z() + Other.Z() | |
void | operator+= (const gp_XYZ &Other) |
gp_XYZ | Added (const gp_XYZ &Other) const |
new.X() = <me>.X() + Other.X() new.Y() = <me>.Y() + Other.Y() new.Z() = <me>.Z() + Other.Z() | |
gp_XYZ | operator+ (const gp_XYZ &Other) const |
void | Cross (const gp_XYZ &Right) |
<me>.X() = <me>.Y() * Other.Z() - <me>.Z() * Other.Y() <me>.Y() = <me>.Z() * Other.X() - <me>.X() * Other.Z() <me>.Z() = <me>.X() * Other.Y() - <me>.Y() * Other.X() | |
void | operator^= (const gp_XYZ &Right) |
gp_XYZ | Crossed (const gp_XYZ &Right) const |
new.X() = <me>.Y() * Other.Z() - <me>.Z() * Other.Y() new.Y() = <me>.Z() * Other.X() - <me>.X() * Other.Z() new.Z() = <me>.X() * Other.Y() - <me>.Y() * Other.X() | |
gp_XYZ | operator^ (const gp_XYZ &Right) const |
Standard_Real | CrossMagnitude (const gp_XYZ &Right) const |
Computes the magnitude of the cross product between <me> and Right. Returns || <me> ^ Right || . | |
Standard_Real | CrossSquareMagnitude (const gp_XYZ &Right) const |
Computes the square magnitude of the cross product between <me> and Right. Returns || <me> ^ Right ||**2 . | |
void | CrossCross (const gp_XYZ &Coord1, const gp_XYZ &Coord2) |
Triple vector product Computes <me> = <me>.Cross(Coord1.Cross(Coord2)) . | |
gp_XYZ | CrossCrossed (const gp_XYZ &Coord1, const gp_XYZ &Coord2) const |
Triple vector product computes New = <me>.Cross(Coord1.Cross(Coord2)) . | |
void | Divide (const Standard_Real Scalar) |
divides <me> by a real. | |
void | operator/= (const Standard_Real Scalar) |
gp_XYZ | Divided (const Standard_Real Scalar) const |
divides <me> by a real. | |
gp_XYZ | operator/ (const Standard_Real Scalar) const |
Standard_Real | Dot (const gp_XYZ &Other) const |
computes the scalar product between <me> and Other | |
Standard_Real | operator * (const gp_XYZ &Other) const |
Standard_Real | DotCross (const gp_XYZ &Coord1, const gp_XYZ &Coord2) const |
computes the triple scalar product. | |
void | Multiply (const Standard_Real Scalar) |
<me>.X() = <me>.X() * Scalar; <me>.Y() = <me>.Y() * Scalar; <me>.Z() = <me>.Z() * Scalar; | |
void | operator *= (const Standard_Real Scalar) |
void | Multiply (const gp_XYZ &Other) |
<me>.X() = <me>.X() * Other.X(); <me>.Y() = <me>.Y() * Other.Y(); <me>.Z() = <me>.Z() * Other.Z(); | |
void | operator *= (const gp_XYZ &Other) |
void | Multiply (const gp_Mat &Matrix) |
<me> = Matrix * <me> | |
void | operator *= (const gp_Mat &Matrix) |
gp_XYZ | Multiplied (const Standard_Real Scalar) const |
New.X() = <me>.X() * Scalar; New.Y() = <me>.Y() * Scalar; New.Z() = <me>.Z() * Scalar; . | |
gp_XYZ | operator * (const Standard_Real Scalar) const |
gp_XYZ | Multiplied (const gp_XYZ &Other) const |
new.X() = <me>.X() * Other.X(); new.Y() = <me>.Y() * Other.Y(); new.Z() = <me>.Z() * Other.Z(); | |
gp_XYZ | Multiplied (const gp_Mat &Matrix) const |
New = Matrix * <me> . | |
gp_XYZ | operator * (const gp_Mat &Matrix) const |
void | Normalize () |
<me>.X() = <me>.X()/ <me>.Modulus() <me>.Y() = <me>.Y()/ <me>.Modulus() <me>.Z() = <me>.Z()/ <me>.Modulus() //! Raised if <me>.Modulus() <= Resolution from gp | |
gp_XYZ | Normalized () const |
New.X() = <me>.X()/ <me>.Modulus() New.Y() = <me>.Y()/ <me>.Modulus() New.Z() = <me>.Z()/ <me>.Modulus() //! Raised if <me>.Modulus() <= Resolution from gp . | |
void | Reverse () |
<me>.X() = -<me>.X() <me>.Y() = -<me>.Y() <me>.Z() = -<me>.Z() | |
gp_XYZ | Reversed () const |
New.X() = -<me>.X() New.Y() = -<me>.Y() New.Z() = -<me>.Z() . | |
void | Subtract (const gp_XYZ &Right) |
<me>.X() = <me>.X() - Other.X() <me>.Y() = <me>.Y() - Other.Y() <me>.Z() = <me>.Z() - Other.Z() | |
void | operator-= (const gp_XYZ &Right) |
gp_XYZ | Subtracted (const gp_XYZ &Right) const |
new.X() = <me>.X() - Other.X() new.Y() = <me>.Y() - Other.Y() new.Z() = <me>.Z() - Other.Z() | |
gp_XYZ | operator- (const gp_XYZ &Right) const |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const Standard_Real A2, const gp_XYZ &XYZ2, const Standard_Real A3, const gp_XYZ &XYZ3, const gp_XYZ &XYZ4) |
<me> is setted to the following linear form : A1 * XYZ1 + A2 * XYZ2 + A3 * XYZ3 + XYZ4 | |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const Standard_Real A2, const gp_XYZ &XYZ2, const Standard_Real A3, const gp_XYZ &XYZ3) |
<me> is setted to the following linear form : A1 * XYZ1 + A2 * XYZ2 + A3 * XYZ3 | |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const Standard_Real A2, const gp_XYZ &XYZ2, const gp_XYZ &XYZ3) |
<me> is setted to the following linear form : A1 * XYZ1 + A2 * XYZ2 + XYZ3 | |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const Standard_Real A2, const gp_XYZ &XYZ2) |
<me> is setted to the following linear form : A1 * XYZ1 + A2 * XYZ2 | |
void | SetLinearForm (const Standard_Real A1, const gp_XYZ &XYZ1, const gp_XYZ &XYZ2) |
<me> is setted to the following linear form : A1 * XYZ1 + XYZ2 | |
void | SetLinearForm (const gp_XYZ &XYZ1, const gp_XYZ &XYZ2) |
<me> is setted to the following linear form : XYZ1 + XYZ2 | |
Standard_Real | _CSFDB_Getgp_XYZx () const |
void | _CSFDB_Setgp_XYZx (const Standard_Real p) |
Standard_Real | _CSFDB_Getgp_XYZy () const |
void | _CSFDB_Setgp_XYZy (const Standard_Real p) |
Standard_Real | _CSFDB_Getgp_XYZz () const |
void | _CSFDB_Setgp_XYZz (const Standard_Real p) |
Private Attributes | |
Standard_Real | x |
Standard_Real | y |
Standard_Real | z |
Friends | |
Standard_EXPORT friend Handle_Standard_Type & | gp_XYZ_Type_ () |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|