#include <PLib.hxx>
Public Member Functions | |
void * | operator new (size_t, void *anAddress) |
void * | operator new (size_t size) |
void | operator delete (void *anAddress) |
Static Public Member Functions | |
static TColStd_Array1OfReal & | NoWeights () |
Used as argument for a non rational functions . | |
static TColStd_Array2OfReal & | NoWeights2 () |
Used as argument for a non rational functions . | |
static Standard_EXPORT void | SetPoles (const TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal &FP) |
Copy in FP the coordinates of the poles. . | |
static Standard_EXPORT void | SetPoles (const TColgp_Array1OfPnt &Poles, const TColStd_Array1OfReal &Weights, TColStd_Array1OfReal &FP) |
Copy in FP the coordinates of the poles. . | |
static Standard_EXPORT void | GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt &Poles) |
Get from FP the coordinates of the poles. . | |
static Standard_EXPORT void | GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal &Weights) |
Get from FP the coordinates of the poles. . | |
static Standard_EXPORT void | SetPoles (const TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal &FP) |
Copy in FP the coordinates of the poles. . | |
static Standard_EXPORT void | SetPoles (const TColgp_Array1OfPnt2d &Poles, const TColStd_Array1OfReal &Weights, TColStd_Array1OfReal &FP) |
Copy in FP the coordinates of the poles. . | |
static Standard_EXPORT void | GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt2d &Poles) |
Get from FP the coordinates of the poles. . | |
static Standard_EXPORT void | GetPoles (const TColStd_Array1OfReal &FP, TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal &Weights) |
Get from FP the coordinates of the poles. . | |
static Standard_Real | Bin (const Standard_Integer N, const Standard_Integer P) |
Returns the Binomial Cnp , without testing anything. . | |
static void | Binomial (const Standard_Integer N) |
test on N > maxbinom and build the PASCAL triangle on size N if necessary. | |
static Standard_EXPORT void | InternalBinomial (const Standard_Integer N, Standard_Integer &maxbinom, Standard_Address &binom) |
only called by Binomial(N,P) | |
static Standard_EXPORT void | RationalDerivative (const Standard_Integer Degree, const Standard_Integer N, const Standard_Integer Dimension, Standard_Real &Ders, Standard_Real &RDers, const Standard_Boolean All=Standard_True) |
Computes the derivatives of a ratio at order <n> in dimension <dimension>. <ders> is an array containing the values of the input derivatives from 0 to Min(<N>,<Degree>). For orders higher than <degree> the inputcd /s2d1/BMDL/ derivatives are assumed to be 0. Content of <ders> : x(1),x(2),...,x(Dimension),w x'(1),x'(2),...,x'(Dimension),w' x''(1),x''(2),...,x''(Dimension),w'' If <all> is false, only the derivative at order <n> is computed. <rders> is an array of length Dimension which will contain the result : x(1)/w , x(2)/w , ... derivated <n> times If <all> is true all the derivatives up to order <n> are computed. <rders> is an array of length Dimension * (N+1) which will contains : x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated <1> times x(1)/w , x(2)/w , ... derivated <2> times ... x(1)/w , x(2)/w , ... derivated <n> times Warning: <rders> must be dimensionned properly. . | |
static Standard_EXPORT void | RationalDerivatives (const Standard_Integer DerivativesRequest, const Standard_Integer Dimension, Standard_Real &PolesDerivatives, Standard_Real &WeightsDerivatives, Standard_Real &RationalDerivates) |
Computes DerivativesRequest derivatives of a ratio at of a BSpline function of degree <degree> dimension <dimension>. <polesderivatives> is an array containing the values of the input derivatives from 0 to <derivativerequest> For orders higher than <degree> the input derivatives are assumed to be 0. Content of <poleasderivatives> : x(1),x(2),...,x(Dimension) x'(1),x'(2),...,x'(Dimension) x''(1),x''(2),...,x''(Dimension) WeightsDerivatives is an array that contains derivatives from 0 to <derivativerequest> After returning from the routine the array RationalDerivatives contains the following x(1)/w , x(2)/w , ... x(1)/w , x(2)/w , ... derivated once x(1)/w , x(2)/w , ... twice x(1)/w , x(2)/w , ... derivated <derivativerequest> times The array RationalDerivatives and PolesDerivatives can be same since the overwrite is non destructive within the algorithm Warning: <rationalderivates> must be dimensionned properly. . | |
static Standard_EXPORT void | EvalPolynomial (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, Standard_Real &Results) |
Performs Horner method with synthethic division for derivatives parameter <u>, with <degree> and <dimension>. PolynomialCoeff are stored in the following fashion c0(1) c0(2) .... c0(Dimension) c1(1) c1(2) .... c1(Dimension) cDegree(1) cDegree(2) .... cDegree(Dimension) where the polynomial is defined as : 2 Degree c0 + c1 X + c2 X + .... cDegree X Results stores the result in the following format f(1) f(2) .... f(Dimension) (1) (1) (1) f (1) f (2) .... f (Dimension) (DerivativeRequest) (DerivativeRequest) f (1) f (Dimension) this just evaluates the point at parameter U Warning: <results> and <polynomialcoeff> must be dimensioned properly . | |
static Standard_EXPORT void | NoDerivativeEvalPolynomial (const Standard_Real U, const Standard_Integer Degree, const Standard_Integer Dimension, const Standard_Integer DegreeDimension, Standard_Real &PolynomialCoeff, Standard_Real &Results) |
Same as above with DerivativeOrder = 0; . | |
static Standard_EXPORT void | EvalPoly2Var (const Standard_Real U, const Standard_Real V, const Standard_Integer UDerivativeOrder, const Standard_Integer VDerivativeOrder, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, Standard_Real &Results) |
Applies EvalPolynomial twice to evaluate the derivative of orders UDerivativeOrder in U, VDerivativeOrder in V at parameters U,V PolynomialCoeff are stored in the following fashion c00(1) .... c00(Dimension) c10(1) .... c10(Dimension) .... cm0(1) .... cm0(Dimension) .... c01(1) .... c01(Dimension) c11(1) .... c11(Dimension) .... cm1(1) .... cm1(Dimension) .... c0n(1) .... c0n(Dimension) c1n(1) .... c1n(Dimension) .... cmn(1) .... cmn(Dimension) where the polynomial is defined as : 2 m c00 + c10 U + c20 U + .... + cm0 U 2 m + c01 V + c11 UV + c21 U V + .... + cm1 U V n m n + .... + c0n V + .... + cmn U V with m = UDegree and n = VDegree Results stores the result in the following format f(1) f(2) .... f(Dimension) Warning: <results> and <polynomialcoeff> must be dimensioned properly . | |
static Standard_EXPORT Standard_Integer | EvalLagrange (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &ValueArray, Standard_Real &ParameterArray, Standard_Real &Results) |
Performs the Lagrange Interpolation of given series of points with given parameters with the requested derivative order Results will store things in the following format with d = DerivativeOrder [0], [Dimension-1] : value [Dimension], [Dimension + Dimension-1] : first derivative [d *Dimension], [d*Dimension + Dimension-1]: dth derivative . | |
static Standard_EXPORT Standard_Integer | EvalCubicHermite (const Standard_Real U, const Standard_Integer DerivativeOrder, const Standard_Integer Dimension, Standard_Real &ValueArray, Standard_Real &DerivativeArray, Standard_Real &ParameterArray, Standard_Real &Results) |
Performs the Cubic Hermite Interpolation of given series of points with given parameters with the requested derivative order. ValueArray stores the value at the first and last parameter. It has the following format : [0], [Dimension-1] : value at first param [Dimension], [Dimension + Dimension-1] : value at last param Derivative array stores the value of the derivatives at the first parameter and at the last parameter in the following format [0], [Dimension-1] : derivative at first param [Dimension], [Dimension + Dimension-1] : derivative at last param ParameterArray stores the first and last parameter in the following format : [0] : first parameter [1] : last parameter Results will store things in the following format with d = DerivativeOrder [0], [Dimension-1] : value [Dimension], [Dimension + Dimension-1] : first derivative [d *Dimension], [d*Dimension + Dimension-1]: dth derivative . | |
static Standard_EXPORT Standard_Boolean | HermiteCoefficients (const Standard_Real FirstParameter, const Standard_Real LastParameter, const Standard_Integer FirstOrder, const Standard_Integer LastOrder, math_Matrix &MatrixCoefs) |
static Standard_EXPORT void | CoefficientsPoles (const TColgp_Array1OfPnt &Coefs, const TColStd_Array1OfReal &WCoefs, TColgp_Array1OfPnt &Poles, TColStd_Array1OfReal &WPoles) |
static Standard_EXPORT void | CoefficientsPoles (const TColgp_Array1OfPnt2d &Coefs, const TColStd_Array1OfReal &WCoefs, TColgp_Array1OfPnt2d &Poles, TColStd_Array1OfReal &WPoles) |
static Standard_EXPORT void | CoefficientsPoles (const TColStd_Array1OfReal &Coefs, const TColStd_Array1OfReal &WCoefs, TColStd_Array1OfReal &Poles, TColStd_Array1OfReal &WPoles) |
static Standard_EXPORT void | CoefficientsPoles (const Standard_Integer dim, const TColStd_Array1OfReal &Coefs, const TColStd_Array1OfReal &WCoefs, TColStd_Array1OfReal &Poles, TColStd_Array1OfReal &WPoles) |
static Standard_EXPORT void | Trimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array1OfPnt &Coeffs, TColStd_Array1OfReal &WCoeffs) |
static Standard_EXPORT void | Trimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array1OfPnt2d &Coeffs, TColStd_Array1OfReal &WCoeffs) |
static Standard_EXPORT void | Trimming (const Standard_Real U1, const Standard_Real U2, TColStd_Array1OfReal &Coeffs, TColStd_Array1OfReal &WCoeffs) |
static Standard_EXPORT void | Trimming (const Standard_Real U1, const Standard_Real U2, const Standard_Integer dim, TColStd_Array1OfReal &Coeffs, TColStd_Array1OfReal &WCoeffs) |
static Standard_EXPORT void | CoefficientsPoles (const TColgp_Array2OfPnt &Coefs, const TColStd_Array2OfReal &WCoefs, TColgp_Array2OfPnt &Poles, TColStd_Array2OfReal &WPoles) |
static Standard_EXPORT void | UTrimming (const Standard_Real U1, const Standard_Real U2, TColgp_Array2OfPnt &Coeffs, TColStd_Array2OfReal &WCoeffs) |
static Standard_EXPORT void | VTrimming (const Standard_Real V1, const Standard_Real V2, TColgp_Array2OfPnt &Coeffs, TColStd_Array2OfReal &WCoeffs) |
static Standard_EXPORT Standard_Boolean | HermiteInterpolate (const Standard_Integer Dimension, const Standard_Real FirstParameter, const Standard_Real LastParameter, const Standard_Integer FirstOrder, const Standard_Integer LastOrder, const TColStd_Array2OfReal &FirstConstr, const TColStd_Array2OfReal &LastConstr, TColStd_Array1OfReal &Coefficients) |
Compute the coefficients in the canonical base of the polynomial satisfying the given constraints at the given parameters The array FirstContr(i,j) i=1,Dimension j=0,FirstOrder contains the values of the constraint at parameter FirstParameter idem for LastConstr . | |
static Standard_EXPORT void | JacobiParameters (const GeomAbs_Shape ConstraintOrder, const Standard_Integer MaxDegree, const Standard_Integer Code, Standard_Integer &NbGaussPoints, Standard_Integer &WorkDegree) |
static Standard_EXPORT Standard_Integer | NivConstr (const GeomAbs_Shape ConstraintOrder) |
static Standard_EXPORT GeomAbs_Shape | ConstraintOrder (const Standard_Integer NivConstr) |
static Standard_EXPORT void | EvalLength (const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, const Standard_Real U1, const Standard_Real U2, Standard_Real &Length) |
static Standard_EXPORT void | EvalLength (const Standard_Integer Degree, const Standard_Integer Dimension, Standard_Real &PolynomialCoeff, const Standard_Real U1, const Standard_Real U2, const Standard_Real Tol, Standard_Real &Length, Standard_Real &Error) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|