OCC Main Page | ModelingAlgorithms | Toolkits | Packages | Class Hierarchy | Data Structures | File List | Data Fields | Globals

ModelingAlgorithms
TKGeomAlgo
GccAna


GccAna_Circ2dTanOnRad Class Reference

This class implements the algorithms used to
create a 2d circle tangent to a 2d entity,
centered on a curv and with a given radius.
The arguments of all construction methods are :
- The qualified element for the tangency constrains
(QualifiedCirc, QualifiedLin, Points).
- The Center element (circle, line).
- A real Tolerance.
Tolerance is only used in the limits cases.
For example :
We want to create a circle tangent to an OutsideCirc C1
centered on a line OnLine with a radius Radius and with
a tolerance Tolerance.
If we did not use Tolerance it is impossible to
find a solution in the the following case : OnLine is
outside C1. There is no intersection point between C1
and OnLine. The distance between the line and the
circle is greater than Radius.
With Tolerance we will give a solution if the
distance between C1 and OnLine is lower than or
equal Tolerance.
.

#include <GccAna_Circ2dTanOnRad.hxx>


Public Member Functions

void * operator new (size_t, void *anAddress)
void * operator new (size_t size)
void operator delete (void *anAddress)
Standard_EXPORT GccAna_Circ2dTanOnRad (const GccEnt_QualifiedCirc &Qualified1, const gp_Lin2d &OnLine, const Standard_Real Radius, const Standard_Real Tolerance)
 This methods implements the algorithms used to create
2d Circles tangent to a circle and centered on a 2d Line
with a given radius.
Tolerance is used to find solution in every limit cases.
For example Tolerance is used in the case of EnclosedCirc when
Radius-R1+dist is greater Tolerance (dist is the distance
between the line and the location of the circ, R1 is the
radius of the circ) because there is no solution.
//! raises NegativeValue in case of NegativeRadius.
.
Standard_EXPORT GccAna_Circ2dTanOnRad (const GccEnt_QualifiedLin &Qualified1, const gp_Lin2d &OnLine, const Standard_Real Radius, const Standard_Real Tolerance)
 This methods implements the algorithms used to create
2d Circles tangent to a 2d Line and centered on a 2d Line
with a given radius.
Tolerance is used to find solution in every limit cases.
//! raises NegativeValue in case of NegativeRadius.
.
Standard_EXPORT GccAna_Circ2dTanOnRad (const gp_Pnt2d &Point1, const gp_Lin2d &OnLine, const Standard_Real Radius, const Standard_Real Tolerance)
 This methods implements the algorithms used to create
2d Circles passing through a 2d Point and centered on a
2d Line with a given radius.
Tolerance is used to find solution in every limit cases.
.
Standard_EXPORT GccAna_Circ2dTanOnRad (const GccEnt_QualifiedCirc &Qualified1, const gp_Circ2d &OnCirc, const Standard_Real Radius, const Standard_Real Tolerance)
 This methods implements the algorithms used to create
2d Circles tangent to a circle and centered on a 2d Circle
with a given radius.
Tolerance is used to find solution in every limit cases.
//! raises NegativeValue in case of NegativeRadius.
.
Standard_EXPORT GccAna_Circ2dTanOnRad (const GccEnt_QualifiedLin &Qualified1, const gp_Circ2d &OnCirc, const Standard_Real Radius, const Standard_Real Tolerance)
 This methods implements the algorithms used to create
2d Circles tangent to a 2d Line and centered on a 2d Line
with a given radius.
Tolerance is used to find solution in every limit cases.
//! raises NegativeValue in case of NegativeRadius.
.
Standard_EXPORT GccAna_Circ2dTanOnRad (const gp_Pnt2d &Point1, const gp_Circ2d &OnCirc, const Standard_Real Radius, const Standard_Real Tolerance)
 This methods implements the algorithms used to create
2d Circles passing through a 2d Point and centered on a
2d Line with a given radius.
Tolerance is used to find solution in every limit cases.
//! raises NegativeValue in case of NegativeRadius.
.
Standard_EXPORT Standard_Boolean IsDone () const
 Returns true if the construction algorithm does not fail
(even if it finds no solution).
Note: IsDone protects against a failure arising from a
more internal intersection algorithm, which has
reached its numeric limits.
.
Standard_EXPORT Standard_Integer NbSolutions () const
 This method returns the number of circles, representing solutions.
Raises NotDone if the construction algorithm didn't succeed.
.
Standard_EXPORT gp_Circ2d ThisSolution (const Standard_Integer Index) const
 Returns the solution number Index and raises OutOfRange
exception if Index is greater than the number of solutions.
Be careful: the Index is only a way to get all the
solutions, but is not associated to theses outside the
context of the algorithm-object.
Raises NotDone if the construction algorithm didn't succeed.
It raises OutOfRange if Index is greater than the
number of solutions
.
Standard_EXPORT void WhichQualifier (const Standard_Integer Index, GccEnt_Position &Qualif1) const
 Returns the qualifier Qualif1 of the tangency argument
for the solution of index Index computed by this algorithm.
The returned qualifier is:
- that specified at the start of construction when the
solutions are defined as enclosed, enclosing or
outside with respect to the argument, or
- that computed during construction (i.e. enclosed,
enclosing or outside) when the solutions are defined
as unqualified with respect to the argument, or
- GccEnt_noqualifier if the tangency argument is a point.
Exceptions
Standard_OutOfRange if Index is less than zero or
greater than the number of solutions computed by this algorithm.
StdFail_NotDone if the construction fails.
.
Standard_EXPORT void Tangency1 (const Standard_Integer Index, Standard_Real &ParSol, Standard_Real &ParArg, gp_Pnt2d &PntSol) const
 Returns informations about the tangency point between the
result number Index and the first argument.
ParSol is the intrinsic parameter of the point on the
solution curv.
ParArg is the intrinsic parameter of the point on the
argument curv.
PntSol is the tangency point on the solution curv.
PntArg is the tangency point on the argument curv.
Raises NotDone if the construction algorithm didn't succeed.
It raises OutOfRange if Index is greater than the
number of solutions.
.
Standard_EXPORT void CenterOn3 (const Standard_Integer Index, Standard_Real &ParArg, gp_Pnt2d &PntSol) const
 Returns informations about the center (on the curv)
of the result.
ParArg is the intrinsic parameter of the point on
the argument curv.
PntSol is the center point of the solution curv.
Raises NotDone if the construction algorithm didn't succeed.
It raises OutOfRange if Index is greater than the
number of solutions.
.
Standard_EXPORT Standard_Boolean IsTheSame1 (const Standard_Integer Index) const
 Returns True if the solution number Index is equal to
the first argument and False in the other cases.
Raises NotDone if the construction algorithm didn't succeed.
It raises OutOfRange if Index is greater than the
number of solutions.
.

Private Attributes

Standard_Boolean WellDone
Standard_Integer NbrSol
TColgp_Array1OfCirc2d cirsol
GccEnt_Array1OfPosition qualifier1
TColStd_Array1OfInteger TheSame1
TColgp_Array1OfPnt2d pnttg1sol
TColgp_Array1OfPnt2d pntcen3
TColStd_Array1OfReal par1sol
TColStd_Array1OfReal pararg1
TColStd_Array1OfReal parcen3


Constructor & Destructor Documentation

Standard_EXPORT GccAna_Circ2dTanOnRad::GccAna_Circ2dTanOnRad const GccEnt_QualifiedCirc Qualified1,
const gp_Lin2d &  OnLine,
const Standard_Real  Radius,
const Standard_Real  Tolerance
 

Standard_EXPORT GccAna_Circ2dTanOnRad::GccAna_Circ2dTanOnRad const GccEnt_QualifiedLin Qualified1,
const gp_Lin2d &  OnLine,
const Standard_Real  Radius,
const Standard_Real  Tolerance
 

Standard_EXPORT GccAna_Circ2dTanOnRad::GccAna_Circ2dTanOnRad const gp_Pnt2d &  Point1,
const gp_Lin2d &  OnLine,
const Standard_Real  Radius,
const Standard_Real  Tolerance
 

Standard_EXPORT GccAna_Circ2dTanOnRad::GccAna_Circ2dTanOnRad const GccEnt_QualifiedCirc Qualified1,
const gp_Circ2d &  OnCirc,
const Standard_Real  Radius,
const Standard_Real  Tolerance
 

Standard_EXPORT GccAna_Circ2dTanOnRad::GccAna_Circ2dTanOnRad const GccEnt_QualifiedLin Qualified1,
const gp_Circ2d &  OnCirc,
const Standard_Real  Radius,
const Standard_Real  Tolerance
 

Standard_EXPORT GccAna_Circ2dTanOnRad::GccAna_Circ2dTanOnRad const gp_Pnt2d &  Point1,
const gp_Circ2d &  OnCirc,
const Standard_Real  Radius,
const Standard_Real  Tolerance
 


Member Function Documentation

Standard_EXPORT void GccAna_Circ2dTanOnRad::CenterOn3 const Standard_Integer  Index,
Standard_Real &  ParArg,
gp_Pnt2d &  PntSol
const
 

Standard_EXPORT Standard_Boolean GccAna_Circ2dTanOnRad::IsDone  )  const
 

Standard_EXPORT Standard_Boolean GccAna_Circ2dTanOnRad::IsTheSame1 const Standard_Integer  Index  )  const
 

Standard_EXPORT Standard_Integer GccAna_Circ2dTanOnRad::NbSolutions  )  const
 

void GccAna_Circ2dTanOnRad::operator delete void *  anAddress  )  [inline]
 

void* GccAna_Circ2dTanOnRad::operator new size_t  size  )  [inline]
 

void* GccAna_Circ2dTanOnRad::operator new size_t  ,
void *  anAddress
[inline]
 

Standard_EXPORT void GccAna_Circ2dTanOnRad::Tangency1 const Standard_Integer  Index,
Standard_Real &  ParSol,
Standard_Real &  ParArg,
gp_Pnt2d &  PntSol
const
 

Standard_EXPORT gp_Circ2d GccAna_Circ2dTanOnRad::ThisSolution const Standard_Integer  Index  )  const
 

Standard_EXPORT void GccAna_Circ2dTanOnRad::WhichQualifier const Standard_Integer  Index,
GccEnt_Position Qualif1
const
 


Field Documentation

TColgp_Array1OfCirc2d GccAna_Circ2dTanOnRad::cirsol [private]
 

Standard_Integer GccAna_Circ2dTanOnRad::NbrSol [private]
 

TColStd_Array1OfReal GccAna_Circ2dTanOnRad::par1sol [private]
 

TColStd_Array1OfReal GccAna_Circ2dTanOnRad::pararg1 [private]
 

TColStd_Array1OfReal GccAna_Circ2dTanOnRad::parcen3 [private]
 

TColgp_Array1OfPnt2d GccAna_Circ2dTanOnRad::pntcen3 [private]
 

TColgp_Array1OfPnt2d GccAna_Circ2dTanOnRad::pnttg1sol [private]
 

GccEnt_Array1OfPosition GccAna_Circ2dTanOnRad::qualifier1 [private]
 

TColStd_Array1OfInteger GccAna_Circ2dTanOnRad::TheSame1 [private]
 

Standard_Boolean GccAna_Circ2dTanOnRad::WellDone [private]
 


The documentation for this class was generated from the following file:
Generated on Mon Aug 25 13:41:44 2008 for OpenCASCADE by  doxygen 1.4.1