
LATEX-ed on June 2, 2009.

HepMC 2

a C++ Event Record for Monte Carlo Generators

http://savannah.cern.ch/projects/hepmc/

User Manual Version 2.05
June 2, 2009

Matt Dobbs
University of Victoria, Canada

Jørgen Beck Hansen
CERN

Lynn Garren
Fermi National Accelerator Laboratory

Lars Sonnenschein
RWTH Aachen

Abstract

The HepMC package is an object oriented event record written in C++ for High Energy
Physics Monte Carlo Generators. Many extensions from HEPEVT, the Fortran HEP standard,
are supported: the number of entries is unlimited, spin density matrices can be stored with each
vertex, flow patterns (such as color) can be stored and traced, integers representing random
number generator states can be stored, and an arbitrary number of event weights can be included.
Particles and vertices are kept separate in a graph structure, physically similar to a physics event.
The added information supports the modularisation of event generators. The package has been
kept as simple as possible with minimal internal/external dependencies. Event information is
accessed by means of iterators supplied with the package.

HepMC 2 is an extension to the original HepMC written by Matt Dobbs.

Contents

1 Introduction 2
1.1 Features of the HepMC Event Record . 3

2 HepMC 2 3
2.1 Overview of Changes Since HepMC 1.26 . 4

3 Package Structure 4
3.1 Dependencies . 7
3.2 Namespace . 7
3.3 Performance . 7

4 Overview of Core Classes 8
4.1 HepMC::GenEvent . 8

4.1.1 HepMC::PdfInfo . 9
4.1.2 HepMC::HeavyIon . 10
4.1.3 HepMC::GenCrossSection . 10
4.1.4 HepMC::Units . 10

4.2 HepMC::GenVertex . 11
4.3 HepMC::WeightContainer . 11
4.4 HepMC::GenParticle . 11

4.4.1 HepMC::Flow . 13
4.4.2 HepMC::Polarization . 13
4.4.3 HepMC::FourVector . 13

4.5 HepMC::IO BaseClass . 14

5 Overview of Iterators 14
5.1 HepMC::GenEvent::vertex iterator . 14
5.2 HepMC::GenEvent::vertex const iterator . 15
5.3 HepMC::GenEvent::particle iterator . 15
5.4 HepMC::GenEvent::particle const iterator . 15
5.5 HepMC::GenVertex::vertex iterator . 15
5.6 HepMC::GenVertex::particle iterator . 16

6 Ascii Output 16
6.1 Basic IO GenEvent Structure . 16
6.2 General Event Information . 19
6.3 Vertices and Particles . 20

7 Building HepMC 20

8 Examples 21

9 Deprecated Classes 24
9.1 HepMC::ParticleData (deprecated since HepMC 2.02.00) 24
9.2 HepMC::ParticleDataTable (deprecated since HepMC 2.02.00) 24

1

10 Acknowlegements 25

List of Figures

1 Modularised event generation . 2
2 Event visualization . 3
3 HepMC class diagrams . 6
4 Example of ascii format . 17
5 Example of ascii format . 17
6 Example of ascii format . 18
7 IO GenEvent example . 21
8 Streaming input example . 22
9 IO HEPEVT and IO GenEvent example . 22
10 IO HEPEVT and streaming output example . 23

List of Tables

1 Performance . 7

2

1 Introduction

This user manual is intended as a companion to the online documentation1, and together with the
examples should provide a friendly introduction to the HepMC event record. A general overview
is available in Ref. [1].

The HEP community has moved towards Object-Oriented computing tools (usually C++): most
upcoming experiments are choosing OO software architecture, and Pythia 8 [2] and Herwig++ [3],
written in C++, are available. A standard event record must be simple for the end user to access
information, while maintaining the power and flexibility offered by OO design. The HepMC event
record has been developed to satisfy these criteria.

HepMC is an object oriented event record written in C++ for Monte Carlo Generators in High
Energy Physics. It has been developed independent of a particular experiment or event generator.
It is intended to serve as both a “container class” for storing events after generation and also
as a “framework” in which events can be built up inside a set of generators. This allows for
the modularisation of event generators—wherein different event generators could be employed for
different steps or components of the event generation process (illustrated in Figure 1). 2'

&

$

%

Specific NLO Generator
︷ ︸︸ ︷

Hard Process Generator
Event Record

→→

ARIADNE
︷ ︸︸ ︷

Cascade Package

Event Record
→→

Herwig
︷ ︸︸ ︷

Hadronization Package

Event Record
→→

EvtGen
︷ ︸︸ ︷

Decay Package

Event Record
→→

ATLfast
︷ ︸︸ ︷

Detector Simulation

Figure 1: HepMC supports the concept of modularised event generation (illustrated above) by
containing sufficient information within the event record to act as a messenger between two modular
steps in the event generation process.

Physics events are generally visualised using diagrams with a graph structure (Figure 2, left)
which HepMC imitates by separating out particles from vertices and representing them as the edges
and nodes respectively of a graph 3 (Figure 2, right). Each vertex maintains a listing of its incoming
and outgoing particles, while each particle points back to its production vertex and decay vertex.
The extension to multiple collisions is natural - the super-position of graphs from several different
initial processes - and so the event may contain an unlimited number of (possibly interconnected)
graphs. The number of vertices/particles in each event is also open-ended. A subset of the event
(such as one connected graph or a single vertex and its descendants) may be examined or modified

1http://lcgapp.cern.ch/project/simu/HepMC/
2At the Physics at TeV Colliders Workshop 2001 in Les Houches, France, a group of Monte Carlo authors and

experimentalists produced a document [4] which outlines the information content necessary for two event generators
to communicate information about a hard process to the subsequent stages of event generation. This was implemented
in a set of Fortran common blocks, and many ideas from HepMC were used, such as the scheme for handling color
flow information. Version 1.1 of HepMC supports the full event information content of Ref. [4] (run information—
pertaining to a collection of events—is also specified in that document and is not addressed in HepMC).

3Ref. [5] uses a similar structure.

3

without having to interpret complex parent/child relationship codes or re-shuffle the rest of the
event record.

f(x,Q2) f(x,Q2)
Parton
Distributions

Hard
SubProcess

Parton
Cascade

Hadronization

Decay

+ Minimum Bias
Collisions

HepMC
→ + Minimum Bias

Collisions

Figure 2: Events in HepMC are stored in a graph structure (right), similar to a physicist’s visuali-
sation of a collision event (left).

1.1 Features of the HepMC Event Record

• simple - easy access to information provided by iterators

• minimum dependencies

• information is stored in a graph structure, physically similar to a collision event

• allows specification of momentum and length units

• allows for the inclusion of spin density matrices

• allows for the tracing of an arbitrary number of flow patterns

• ability to store the state of random number generators (as integers)

• ability to store an arbitrary number of event weights

• ability to store parton distribution function information

• ability to store heavy ion information

• ability to store generated cross section information on an event by event basis

• strategies for conversion to/from HEPEVT (Ref. [4]) which are easily extendible to support
other event records

• strategies for input/output to/from Ascii files which are easily extendible to support other
forms of persistency

• support for standard streaming I/O

2 HepMC 2

Since January 2006, HepMC has been supported as an LCG external package. The official web site
is now http://savannah.cern.ch/projects/hepmc/, and compiled libraries for supported platforms
are available at /afs/cern.ch/sw/lcg/external/HepMC.

4

Historically, HepMC has used CLHEP (Ref. [6]) Lorentz vectors. Some users wished to use
a more modern Lorentz vector package. At the same time, there was concern about allowing
dependencies on any external package. Therefore, the decision was made to replace the CLHEP
Lorentz vectors with a minimal vector representation within HepMC.

Because this is a major change, the versioning was changed from 1.xx.yy to 2.xx.yy. Normally,
a version number change in xx represents a change to the code and a version number change in yy
represents a bug fix.

There have also been continuing requests for other features. Changes to HepMC must be
approved by the LCG simulation project (Ref. [7]).

2.1 Overview of Changes Since HepMC 1.26

See the HepMC ChangeLog [8] for a complete listing.
GenEvent now contains pointers to a heavy ion class, a PDF information class, and a generated

cross section class. The pointers are null by default. In addition, GenEvent now has the capability
to declare which momentum and position units are used.

GenParticle momentum and GenVertex position are represented by a simple FourVector class
instead of the CLHEP Lorentz vectors. The SimpleVector.h header contains the FourVector and
ThreeVector classes. GenVertex will return the ThreeVector portion of the position. Polarization
will accept or return a ThreeVector representation of the polarization.

Both FourVector and ThreeVector have templated constructors. These constructors allow you
to use the GenParticle and GenVertex constructors with any Lorentz vector, as long as the Lorentz
vector has x(), y(), z(), and t() methods.

The generated mass, which has always been part of the HEPEVT common block, is now stored
in GenParticle. When a particle has large momentum and small mass, calculating the mass from
the momentum is unreliable. Also, different machine representations and roundoff errors mean that
a calculated mass is not always consistent. If no generated mass is set, then the mass is calculated
from the momementum and stored in GenParticle.

The IO AsciiParticles class provides output in the Pythia style. This output is intended for
ease of reading event output, not for persistency.

The IO Ascii output class has been replaced with of IO GenEvent, described in Section 6.
IO GenEvent persists all information in the updated GenEvent object and uses iostreams for greater
flexibility. IO GenEvent also has a constructor taking a file name and mode type for backwards
compatibility. Output remains in Ascii format.

Streaming I/O of GenEvent objects may also be done without using IO GenEvent.
The new HepMCDefs.h header allows users to query which features are enabled.

3 Package Structure

Entries within the event record are separated into particles and vertices. Each particle is composed
of momentum, flow, and polarization classes as well as id and status information. The vertices are
the connection nodes between particles and are a container class for particles: thus each particle
within an event belongs to at least one vertex. In addition the vertex is composed of position,
id, and (spin density matrix) weight information. Particles and vertices are uniquely identified by
an integer—referred to as a “barcode”—which is meant to be a persistent label for a particular
particle instance. The event is the container class for all (possibly inter-connected) vertices in the

5

event and contains process id, event number, unit information, weight, and random number state
information.

Iterators are provided as methods of the vertex and event classes which allow easy directed
access to information in the C++ Standard Template Library (STL) style.

6

+end_vertex production_vertex

+particles_in particles_out

HepMC::GenEvent
signal_process_id : int
event_number : int
weights : Container<double>
random_states : Container<long>
vertex_iterator()
partilce_iterator()

HepMC::GenVertex
position : FourVector
id : int
weights : Container<double>
particle_iterator(IteratorRange :)
vertex_iterator(IteratorRange :)

HepMC::GenParticle
momentum : FourVector
generated_mass : double
pdg_id : int
status : int
flow : Container<Flow type, Flow index>
polarization : ThreeVector

HepMC::IO_BaseClass

read_next_event()
write_event()
operator >>()
operator <<()

HepMC::IO_HEPEVT

HepMC::IO_GenEvent

Figure 3: Class diagrams for the event record classes (GenEvent, GenVertex, and GenParticle) and
the IO strategies are shown in the UML notation.

7

The event record class relationships are shown in Figure 3.
Several input/output strategies are provided. The interface for these strategies is defined by an

abstract base class, IO BaseClass. These strategies are capable of input/output of events and as
such they depend directly on the event record class.

The package consists of about 5500 lines of code including ≈1500 comments. There are 7 core
classes (GenEvent, GenVertex, GenParticle, Flow, Polarization, WeightContainer, IO BaseClass)
and several utility classes (i.e. IO HEPEVT, IO GenEvent, HEPEVT Wrapper, PythiaWrapper,
. . .).

3.1 Dependencies

The HepMC 2 package depends only on the C++ Standard Template Library [9] (STL).
The HepMC 1 package dependencies were limited to STL and the vector classes from the Class

Library for High Energy Physics [6] (CLHEP).
Simple wrappers for the Fortran versions of Pythia [10] and Herwig [11] are supplied with the

package to allow the inclusion of event generation examples.

3.2 Namespace

The HepMC package is written within the HepMC:: namespace. Outside of this namespace all
class names will need to be prefixed by HepMC::.

The units methods and enums are in the HepMC::Units:: namespace.

3.3 Performance

The CPU time performance of the HepMC event record has been quantified by generating 1000
LHC Wγ production events using Pythia 5.7 and transferring the event record to HepMC using the
IO HEPEVT strategy. Results are summarised in Table 1. Generation of events in Pythia required
29 seconds of CPU time. Generating the same events and transferring them into HepMC required
34 seconds.

CPU Time File Size

Pythia 29 sec
+ HepMC 34 sec

+ HepMC + IO Ascii 64 sec 60.5 Mbytes
+ LCWRITE 92 sec 106 Mbytes

HEPEVT raw size 1K events, 500K particles 48.2 Mbytes

Table 1: CPU time performance and file size using a dedicated 450 MHz Pentium III.

The time to write HepMC events as Ascii files using the IO Ascii strategy was compared to
LCWRITE, a simple Fortran routine used in NLC studies to write the HEPEVT common block in
formatted Ascii to file. Generating the events with Pythia, transferring them to HepMC, and
writing them to file took 64 seconds and produced a 60.5 Mbyte file. Generating the events with
Pythia and writing them to file using the LCWRITE subroutine took 92 seconds and produced a
106 Mbyte file. Compression algorithms (such as gzip) can reduce the file sizes by a factor 3
or more. The raw size of the HEPEVT common block for these 1000 events (which in this case

8

produced about 500K particles) is 48.2 Mbytes. In both cases most CPU time is spent writing to
file. HepMC benefits from added logic when interpreting the record and from position information
which is stored once for each vertex, rather than with every particle.

CPU time savings will be realized when HepMC is used inside event generators - since it is
possible to target and modify one area of the particle/vertex graph without re-shuffling the rest of
the event record.

4 Overview of Core Classes

NOTE ABOUT UNITS: HepMC does not define which units are used for the information
stored in the event record. The HEPEVT standard uses GeV/mm, and so the output from most
Fortran generators will normally be in these units. CLHEP and Geant4 use MeV/mm, and some
collaborations such as ATLAS have adopted these units for their simulation. We also note that
Fluka uses cm.

As of HepMC 2.04.00, GenEvent contains member data to store information about units used.
Default units are declared with configure switches –with-momentum and –with-length. These
configure switches are required.

HepMC users should refer to the code that fills the event record to determine which units are
being used.

4.1 HepMC::GenEvent

Important Public Methods

• GenEvent(Units::MomentumUnit, Units::LengthUnit,...): As of HepMC 2.04.00, additional
constructors are available to enable unit specification - see also use units below.

• add vertex: adopts the specified vertex to the event and assumes responsibility for deleting the vertex
• remove vertex: removes the specified vertex from the event, the vertex is not deleted - thus use of

this method is normally followed directly by a delete vertex operation
• vertex iterator: iterates over all vertices in the event - described in the iterator section
• particle iterator: iterates over all particles in the event - described in the iterator section
• vertex const iterator: constant version of the vertex iterator
• particle const iterator: constant version of the particle iterator
• print: gives a formatted printout of the event to the specified output stream
• barcode to particle: returns a pointer to the particle associated with the integer barcode argument
• barcode to vertex: returns a pointer to the vertex associated with the integer barcode argument
• use units: set both momentum and position units, and scale FourVectors if necessary
• read: read ascii input directly from an istream
• write: write ascii output directly to an ostream

Relevant Data Members

• signal process id: an integer ID uniquely specifying the signal process (i.e. MSUB in Pythia).
• event number: integer
• event scale: (optional) the scale of this event. (-1 denotes unspecifed)
• alphaQCD: (optional) the value of the strong coupling constant αQCD used for this event. (-1 denotes

unspecifed)
• alphaQED: (optional) the value of the electroweak coupling constant αQED (e.g. 1

128
) used for this

event. (-1 denotes unspecifed)
• signal process vertex: (optional) pointer to the vertex defined as the signal process - allows fast

navigation to the core of the event
• beam particle 1: (optional) pointer to the first incoming beam particle
• beam particle 2: (optional) pointer to the second incoming beam particle
• weights: a container of an arbitrary number of 8 byte floating point event weights

9

• random states: a container of an arbitrary number of 4 byte integers which define the random number
generator state just before the event generation

• heavy ion: (optional) a pointer to a HeavyIon object (zero by default)
• pdf info: (optional) a pointer to a PdfInfo object (zero by default)
• cross section: (optional) a pointer to a GenCrossSection object (zero by default)
• momentum unit: momentum units (MEV or GEV)
• length unit: position units (MM or CM)

Important Free Functions

• operator >>: read ascii input directly from an istream
• operator <<: write ascii output directly to an ostream

Notes and Conventions

• if hit and miss Monte Carlo integration is to be performed with a single event weight, the first weight
will be used by default

• Memory allocation: vertex and particle objects will normally be created by the user with the NEW
operator. Once a vertex (particle) is added to a event (vertex), it is ”adopted” and becomes the
responsibility of the event (vertex) to delete that vertex (particle).

• Although default units are specified with configure, the user is strongly encouraged to explicitly set
units with either the appropriate constructor or a call to set units.

The GenEvent is the container class for vertices. A listing of all vertices is maintained with the
event, giving fast access to vertex information. GenParticles are accessed by means of the vertices.

Extended event features (weights, random states, heavy ion, pdf info, cross section) have been
implemented such that if left empty/unused performance and memory usage will be similar to that
of an event without these features.

Iterators are provided as members of the GenEvent class (described in Section 5). Methods
which fill containers of particles or vertices are not provided, as the STL provides these functionalities
with algorithms such as copy and iterator adaptors such as back_inserter giving a clean generic
approach. Using this functionality it is easy to obtain lists of particles/vertices given some criteria
- such as a list of all final state particles. Classes which provide the criteria (called predicates) are
also not provided, as the number of possibilities is open ended and specific to the application - and
would clutter the HepMC package. Implementing a predicate is simple (about 4 lines of code).
Examples are given in the GenEvent header file and in example_UsingIterators.cc (Section 8).

The signal process id is packaged with each event (rather than being associated with a run class
for example) to handle the possibility of many processes being generated within the same run. A
container of tags specifying the meaning of the weights and random states entries is envisioned as
part of a run class - which is beyond the scope of an event record.

4.1.1 HepMC::PdfInfo

Relevant Data Members

• id1: flavour code of first parton
• id2: flavour code of second parton
• pdf id1: LHAPDF set id of first parton
• pdf id2: LHAPDF set id of second parton
• x1: fraction of beam momentum carried by first parton (”beam side”)
• x2: fraction of beam momentum carried by second parton (”target side”)
• scalePDF: Q-scale used in evaluation of PDF’s (in GeV)
• pdf1: PDF (id1, x1, Q) This should be of the form x*f(x)
• pdf2: PDF (id2, x2, Q) This should be of the form x*f(x)

Notes and Conventions

• The LHAPDF [12] set ids are the entries in the first column of http://projects.hepforge.org/lhapdf/PDFsets.index.

10

• The LHAPDF set ids pdf id1 and pdf id2 are zero by default.
• IMPORTANT: The contents of pdf1 and pdf2 are expected to be x*f(x), which is the quantity returned

by LHAPDF.
• IMPORTANT: Input parton flavour codes id1 and id2 are expected to obey the PDG code conventions,

especially g = 21.

PdfInfo stores additional PDF information for a GenEvent. Creation and use of this information
is optional.

4.1.2 HepMC::HeavyIon

Relevant Data Members

• Ncoll hard: Number of hard scatterings
• Npart proj: Number of projectile participants
• Npart targ: Number of target participants
• Ncoll: Number of NN (nucleon-nucleon) collisions
• N Nwounded collisions: Number of N-Nwounded collisions
• Nwounded N collisions: Number of Nwounded-N collisons
• Nwounded Nwounded collisions: Number of Nwounded-Nwounded collisions
• spectator neutrons: Number of spectators neutrons
• spectator protons: Number of spectators protons
• impact parameter: Impact Parameter(fm) of collision
• event plane angle: Azimuthal angle of event plane
• eccentricity: eccentricity of participating nucleons in the transverse plane (as in phobos nucl-ex/0510031)
• sigma inel NN : nucleon-nucleon inelastic (including diffractive) cross-section

HeavyIon provides additional information storage in GenEvent for Heavy Ion generators. Cre-
ation and use of this information is optional.

4.1.3 HepMC::GenCrossSection

Relevant Data Members

• cross section: cross section in pb
• cross section error: error associated with this cross section in pb

GenCrossSection provides additional storage in GenEvent for an event by event snapshot of the
cross section while events are being generated. It is expected that the final cross section will be
stored elsewhere. Creation and use of this information is optional.

4.1.4 HepMC::Units

Important Methods

• enum MomentumUnit: values are MEV or GEV
• enum LengthUnit: values are MM or CM
• std::string name(MomentumUnit): return the unit designation as a string
• std::string name(LengthUnit): return the unit designation as a string

Notes and Conventions

• Refer to a unit enum as, for instance, HepMC::Units::GEV
• Whenever both unit types are passed, MomentumUnit always goes first.

Units is a namespace encapsulating methods used for unit manipulation. Default units are set
at compile time by the configure switches –with-momentum and –with-length.

11

4.2 HepMC::GenVertex

Important Public Methods

• add particle in: adds the specified particle to the container of incoming particles
• add particle out: adds the specified particle to the container of outgoing particles
• remove particle: removes the specified particle from both/either of the incoming/outgoing particle

containers, the particle is not deleted - thus use of this method is normally followed directly by a delete
particle operation

• vertex iterator: iterates over vertices in the graph, given a specified range - described in the iterator
section

• particle iterator: iterates over particles in the graph, given a specified range - described in the iterator
section

Relevant Data Members

• position: ~x, ct stored as FourVector
• id: integer id, may be used to specify a vertex type
• weights: a container of 8 byte floating point numbers of arbitrary length, could be mapped in pairs

into rows and columns to form spin density matrices of complex numbers
• barcode: an integer which uniquely identifies the GenVertex within the event. For vertices the barcodes

are always negative integers.

Notes and Conventions

• no standards are currently defined for the vertex id
• once a particle is added, the vertex becomes its owner and is responsible for deleting the particle

The GenVertex is the container class for particles and forms the nodes which link particles into
a graph structure.

The weights container is included with each vertex with the intention of storing spin density
matrices. It is envisioned that a generator package would assign spin density matrices to particle
production vertices and provide the functional form of the frame definition for the matrix as a
“look-up” method for interpreting the weights. The generator package would also provide a boost
method to go from the frame of the density matrix to the lab frame and back without destroying
correlations. This gives maximum freedom to the sub-generators - allowing for different form
definitions. This implementation is consistent with the EvtGen B-decay package [13] requirements.

4.3 HepMC::WeightContainer

Relevant Data Members

• weights: a vector of 8-byte floating point weights

Notes and Conventions

• methods are coded and names chosen in the spirit of the STL vector class

The WeightContainer is just a storage area for double precision weights used in GenEvent and
GenVertex. It is essentially an interface to the STL vector class, and its member functions are
chosen in that spirit. You might, for instance, use the GenEvent weights to include information
about differential cross sections.

4.4 HepMC::GenParticle

Important Public Methods

• operator FourVector: conversion operator - resolves the particle as a 4-vector according to its
momentum

• generatedMass: generated mass
• momentum().m(): calculates mass from momentum

12

Data Members

• momentum: ~p, cE stored as FourVector
• generated mass: generated mass for this particle
• pdg id: unique integer ID specifying the particle type
• status: integer specifying the particle’s status (i.e. decayed or not)
• flow: allows for the storage of flow patterns (i.e. color flow), refer to Flow class
• polarization: stores the particle’s polarization as (θ, φ), refer to Polarization class
• production vertex: pointer to the vertex where the particle was produced, can only be set by the

vertex
• end vertex: pointer to the vertex where the particle decays, can only be set by the vertex
• barcode: an integer which uniquely identifies the GenParticle within the event. For particles the

barcodes are always positive integers.

Notes and Conventions

• the particle ID should be specified according to the PDG standard [14]
• the status code should be specified according to the clarified HEPEVT status codes

The particle is the basic unit within the event record. The GenParticle class is composed of the
FourVector, Flow, and Polarization classes.

Pointers to the particle’s production and end vertex are included. In order to ensure consistency
between vertices/particles - these pointers can only be set from the vertex. Thus adding a particle
to the particles in container of a vertex will automatically set the end vertex of the particle to point
to that vertex.

The definition of a HepLorentzVector scope resolution operator allows for the use of 4-vector
algebra with particles (i.e. preceding an instance, particle, of the HepMC::GenParticle class by
(HepLorentzVector)particle causes it to behave exactly like its 4-vector momentum, examples
are given in the particle header file).

A second 4-vector for the particle’s momentum at decay time has not been included (as for
example in [5], where the second momentum vector is included to facilitate tracking through mate-
rial). If this is desirable, one can simply add a decay vertex with the same particle type going out.
This is intuitive, since a change in momentum cannot occur without an interaction (vertex).

After some discussion, the authors in MCnet [18] have agreed to a clarification of the HEP-
EVT [15] status codes. The Fortran Monte Carlo generators will not change their behaviour, but
Sherpa, Pythia8, and Herwig++ will go to the newer usage.
These are the accepted status code definitions:

• 0 : an empty entry with no meaningful information and therefore to be skipped unconditionally
• 1 : a final-state particle, i.e. a particle that is not decayed further by the generator (may also include

unstable particles that are to be decayed later, as part of the detector simulation). Such particles must
always be labelled ’1’.

• 2 : decayed Standard Model hadron or tau or mu lepton, excepting virtual intermediate states thereof
(i.e. the particle must undergo a normal decay, not e.g. a shower branching). Such particles must
always be labelled ’2’. No other particles can be labelled ’2’.

• 3 : a documentation entry
• 4 : an incoming beam particle
• 5-10 : undefined, reserved for future standards
• 11-200: an intermediate (decayed/branched/...) particle that does not fulfill the criteria of status code

2, with a generator-dependent classification of its nature.
• 201- : at the disposal of the user, in particular for event tracking in the detector

13

4.4.1 HepMC::Flow

Important Public Methods

• connected partners: returns a container of all particles connected via the specified flow pattern
• dangling connected partners: returns a container of all particles “dangling” from the ends of the

specified flow pattern

Relevant Data Members

• particle owner: points back to the particle to which the flow object belongs
• icode map: container of integer flow codes - each entry has an index and an icode

Notes and Conventions

• code indices 1 and 2 are reserved for color flow

The Flow class is a data member of the GenParticle—its use is optional. It stores flow pattern
information as a series of integer flow codes and indices. This method features the possibility of
storing non-conserved flow patterns (such as baryon number violation in SUSY models). Some
examples of integer flow code representation for several events are provided in Ref. [4].

The Flow class is used to keep track of flow patterns within a graph - each pattern is assigned
a unique integer code, and this code is attached to each particle through which it passes. Different
flow types are assigned different flow indices, i.e. color flow uses index 1 and 2. Methods are
provided to return a particle’s flow partners. An example is given at the top of the Flow header
file.

4.4.2 HepMC::Polarization

Relevant Data Members

• theta: θ angle in radians 0 ≤ θ ≤ π
• phi: φ angle in radians 0 ≤ φ < 2π

Notes and Conventions

• the angles are robust - if you supply an angle outside the range, it is properly translated (i.e. 4π

becomes 0)

Polarization is a data member of GenParticle - its use is optional. It stores the (θ, φ) polarization
information which can be returned as a ThreeVector as well.

4.4.3 HepMC::FourVector

Important Public Methods

• A number of simple vector manipulations are available. Check the reference manual for details.

Relevant Data Members

• x: position x or momentum px
• y: position y or momentum py
• z: position z or momentum pz
• t: time or energy

GenParticle momentum and GenVertex position are stored as FourVectors. FourVector has a
templated constructor that will automatically convert any other vector with x(), y(), z(), and t()
access methods to a FourVector. This feature is used when converting from the HEPEVT common
block.

14

4.5 HepMC::IO BaseClass

Important Public Methods

• write event: writes out the specified event to the output strategy
• read next event: reads the next event from the input strategy into memory
• operator<<,operator>>: overloaded to give the same results as any of the above methods

IO BaseClass is the abstract base class defining the interface and syntax for input and output
strategies of events and particle data tables.

Several IO strategies are supplied:

• IO GenEvent uses iostreams for input and output thereby providing a form of persistency
for the event record. This class handles all information found in a GenEvent object. This
class replaces IO Ascii and reads both formats. Events may be contained within the same
file together with an unlimited number of comments. The examples (Section 8) make use of
this class.

• IO AsciiParticles writes events in a format similar to Pythia 6 output. This is intended for
human readability.

• IO HEPEVT reads and writes events to/from the Fortran HEPEVT common block. It re-
lies on a helper class HEPEVT Wrapper which is the interface to the common block (which is
defined in the header file HEPEVT Wrapper.h4). This IO strategy provides the means for in-
terfacing to Fortran event generators. Other strategies which interface directly to the specific
event record of a generator could be easily implemented in this style. An example of using
IO HEPEVT to transfer events from Pythia into HepMC is given in example_MyPythia.cc

(Section 8).

Note that as of HepMC 2.05 it is possible to read and write events directly with streaming I/O
operators instead of using IO GenEvent.

5 Overview of Iterators

Examples of using the particle/vertex iterators are provided in example_UsingIterators.cc (Sec-
tion 8).

5.1 HepMC::GenEvent::vertex iterator

GenEvent::vertex iterator inherits from std::iterator¡std::forward iterator tag,...¿. It walks through
all vertices in the event exactly once. It is robust and fast, and provides the best way to loop over
all vertices in the event. For each event, vertices begin() and vertices end() define the beginning
and one-past-the-end of the particle iterator respectively.

4Different conventions exist for the fortran HEPEVT common block. 4 or 8-byte floating point numbers may be
used, and the number of entries is often taken as 4000 or 10000. To account for all possibilities the precision (float
or double) and number of entries can be set for the wrapper at run time,

i.e. HEPEVT Wrapper::set max number entries(4000);
HEPEVT Wrapper::set sizeof real(8); .

To interface properly to HEPEVT and avoid nonsensical results, it is essential to get these definitions right for your

application. See example MyPythia.cc (Section 8) for an example.

15

5.2 HepMC::GenEvent::vertex const iterator

A constant version of HepMC::GenEvent::vertex iterator, otherwise identical.

5.3 HepMC::GenEvent::particle iterator

GenEvent::particle iterator inherits from std::iterator¡std::forward iterator tag,...¿. It walks through
all particles in the event exactly once. It is robust and fast, and provides the best way to loop over
all particles in the event. For each event, particles begin() and particles end() define the beginning
and one-past-the-end of the particle iterator respectively.

5.4 HepMC::GenEvent::particle const iterator

A constant version of HepMC::GenEvent::particle iterator, otherwise identical.

5.5 HepMC::GenVertex::vertex iterator

Notes and Conventions

• the iterator range must be specified to instantiate - choices are: parents, children, family, ancestors,
descendants, and relatives

• note: iterating over all ancestors and all descendents is not necessarily equivalent to all relatives - this
is consitent with the range definitions

GenVertex::vertex iterator differs from GenEvent::vertex iterator in that it has both a starting
point and a range. The starting point is the vertex - called the root - from which the iterator was
instantiated, and the range is defined relative to this point. The possible ranges are defined by an
enumeration called HepMC::IteratorRange and the possibilities are:

• parents: walks over all vertices connected to the root via incoming particles

• children: walks over all vertices connected to the root via outgoing particles

• family: walks over all vertices connected to the root via incoming or outgoing particles

• ancestors: walks over all vertices connected to the root via any number of incoming particle
edges - i.e. returns the parents, grandparents, great-grandparents, . . .

• descendants: walks over all vertices connected to the root via any number of outgoing particle
edges - i.e. returns the children, grandchildren, great-grandchildren, . . .

• relatives: walks over all vertices belonging to the same particle/vertex graph structure as the
root

The iterator algorithm traverses the graph by converting it to a tree (by “chopping” the edges
at the point where a closed cycle connects to an already visited vertex) and returning the vertices
in post order. The iterator requires more logic than the GenEvent::vertex iterator and thus access
time is slower (the required to return one vertex goes like log n where n is the number of vertices
already returned by the iterator).

GenVertex::vertex iterator allows the user to step into a specific part of a particle/vertex graph
and obtain targetted information about it.

16

5.6 HepMC::GenVertex::particle iterator

Notes and Conventions

• the iterator range must be specified to instantiate - choices are: parents, children, family, ancestors,
descendants, and relatives

GenVertex::particle iterator behaves exactly like GenVertex::vertex iterator, with the exception
that it returns particles rather than vertices. As a particle defines an edge or line (rather than a
point) in the particle/vertex graph, it is intuitive to define the particle iterator relative to a vertex
(point in the graph) - thus the starting point (root) is still a vertex, and the range is defined
relative to this root. The extension to particles can be made by using the particle’s production or
end vertex as the root. Possible ranges are defined by an enumeration called HepMC::IteratorRange.
The possibilities are:

• parents: walks over all particles incoming to the root

• children: walks over all particles outgoing from the root

• family: walks over all particles incoming or outgoing from the root

• ancestors: walks over all incoming particles or particles incoming to ancestor vertices of the
root - i.e. returns the parents, grandparents, great-grandparents, . . .

• descendants: walks over all outgoing particles or particles outgoing to descendant vertices
of the root - i.e. returns the children, grandchildren, great-grandchildren, . . .

• relatives: walks over all particles belonging to the same particle/vertex graph structure as
the root

The class is composed of a GenVertex::vertex iterator - and the same considerations apply.

6 Ascii Output

Ascii output uses begin and end keys to denote blocks of events. The HepMC version is written
immediately before the begin key, but is not part of the event block.

Within a block of events, each line of information begins with a single character key denoting
the information found on the line.

General GenEvent information is followed by a list of vertices and associated particles. The
count of vertices is expected to match the number of vertices specified in the general event infor-
mation. Each vertex line specifies how many particle lines are associated with the vertex.

As of HepMC 2.05, it is possible to read and write events directly with the streaming I/O opera-
tors >> and << instead of using IO GenEvent. However, the HepMC event block header and footer
will not be written automatically if this method is used. The user must call write HepMC IO block begin
and write HepMC IO block end explicitly. IO GenEvent uses these operators internally.

We describe the Ascii output here, which persists all information contained in a HepMC Gen-
Event.

6.1 Basic IO GenEvent Structure

Block Keys

• begin event block: HepMC::IO GenEvent-START EVENT LISTING
• end event block: HepMC::IO GenEvent-END EVENT LISTING

17

Line Keys

• E: general GenEvent information
• U: momentum and position units
• C: GenCrossSection information: This line will appear ONLY if GenCrossSection is defined.
• H: HeavyIon information: This line will contain zeros if there is no associated HeavyIon object.
• F: PdfInfo information: This line will contain zeros if there is no associated PdfInfo object.
• V: GenVertex information
• P: GenParticle information

Note that the E, U, C, H, and F lines contain event header information. There will be one and
only one of these lines per event. The header information is followed immediately by a V (vertex)
line. Each vertex line is immediately followed by the P (particle) lines for particles associated with
that vertex. For purposes of IO, particles are associated with a vertex if they are in the list of
outgoing particles. In addition, if an incoming particle is not an outgoing particle of some other
vertex, then it is classified as an ”orphan” incoming particle and associated with the vertex IO.
In this way, each particle appears only once in the Ascii listing. An example of the basic format
written to a file is shown in Figure 4. See Figure 6 for an example of streaming ouput and Figure 5
for an example with GenCrossSection information.

HepMC::Version 2.04.00

HepMC::IO_GenEvent-START_EVENT_LISTING

E 9 51 -1.0000000000000000e+00 -1.0000000000000000e+00 -1.0000000000000000e+00 20 0 309 1 2 0 0

U GEV MM

H 0 0 0 0 0 0 0 0 0 0 0 0 0

F 2 3 3.5000000000000003e-01 6.4999999999999991e-01 8.4499999999999993e+00 2.4499999779912355e+03 4.5499999591265787e+03 230 230

V -1 0 0 0 0 0 1 3 0

P 1 2212 0 0 6.9999999371178146e+03 7.0000000000000000e+03 9.3827000000000005e-01 3 0 0 -1 0

P 3 21 -9.5802904850995474e-01 3.4892974578914365e-01 1.5677975928920182e+01 1.5711094833049845e+01 0 3 0 0 -3 0

P 12 2101 2.5787537037233477e-01 -1.1110299643709216e-01 1.2403958218239170e+03

1.2403959888942973e+03 5.7933000000000001e-01 2 0 0 -9 0

P 25 2 7.0015367813761997e-01 -2.3782674935205150e-01 2.3333682308044050e+00 2.4698753078332274e+00 3.3000000000000002e-01 2 0 0 -15 0

V -2 0 0 0 0 0 1 2 0

P 2 2212 0 0 -6.9999999371178146e+03 7.0000000000000000e+03 9.3827000000000005e-01 3 0 0 -2 0

P 4 1 2.7745239600449745e-01 -1.8469236508822412e-01 -1.2668437617555701e+03 1.2668438056011901e+03 0 3 0 0 -4 0

P 116 2203 -2.7745239600449745e-01 1.8469236508822412e-01 -1.8910900158159372e+03 1.8910902024916190e+03 7.7132999999999996e-01 2 0 0 -15 0

Figure 4: Example of the format written to a file. Only the first few lines are shown. Notice that
this event has no GenCrossSection information.

HepMC::Version 2.05.00

HepMC::IO_GenEvent-START_EVENT_LISTING

E 1 65 -1.0000000000000000e+00 -1.0000000000000000e+00 -1.0000000000000000e+00 20 0 357 1 2 0 0

U GEV MM

C 1.0660000000000000e-01 1.0000000000000000e-02

H 0 0 0 0 0 0 0 0 0 0 0 0 0

F 2 3 3.5000000000000003e-01 6.4999999999999991e-01 8.4499999999999993e+00 2.4499999779912355e+03 4.5499999591265787e+03 230 230

V -1 0 0 0 0 0 1 3 0

P 1 2212 0 0 6.9999999371178146e+03 7.0000000000000000e+03 9.3827000000000005e-01 3 0 0 -1 0

P 3 -1 7.2521029125687850e-02 4.0916270130125820e-01 2.3327360517627892e+02 2.3327397528518750e+02 0 3 0 0 -3 0

P 11 2214 -1.1686660480579378e-01 -8.5929732056936881e-03 6.3364496390829606e+02 6.3364619182056367e+02 1.2419302372801875e+00 2 0 0 -25 0

P 91 1 4.4345575680105935e-02 -4.0056972809556451e-01 6.4508531915990204e+02 6.4508552945967551e+02 3.3000000000000002e-01 2 0 0 -26 0

V -2 0 0 0 0 0 1 2 0

Figure 5: Example of the format written to a file when GenCrossSection is used. Only the first few
lines are shown.

18

E 1 65 -1.0000000000000000e+00 -1.0000000000000000e+00 -1.0000000000000000e+00 20 0 357 1 2 0 0

U GEV MM

H 0 0 0 0 0 0 0 0 0 0 0 0 0

F 2 3 3.5000000000000003e-01 6.4999999999999991e-01 8.4499999999999993e+00 2.4499999779912355e+03 4.5499999591265787e+03 230 230

V -1 0 0 0 0 0 1 3 0

P 1 2212 0 0 6.9999999371178146e+03 7.0000000000000000e+03 9.3827000000000005e-01 3 0 0 -1 0

P 3 -1 7.2521029125687850e-02 4.0916270130125820e-01 2.3327360517627892e+02 2.3327397528518750e+02 0 3 0 0 -3 0

P 11 2214 -1.1686660480579378e-01 -8.5929732056936881e-03 6.3364496390829606e+02 6.3364619182056367e+02 1.2419302372801875e+00 2 0 0 -25 0

P 91 1 4.4345575680105935e-02 -4.0056972809556451e-01 6.4508531915990204e+02 6.4508552945967551e+02 3.3000000000000002e-01 2 0 0 -26 0

V -2 0 0 0 0 0 1 2 0

P 2 2212 0 0 -6.9999999371178146e+03 7.0000000000000000e+03 9.3827000000000005e-01 3 0 0 -2 0

P 4 2 7.8470425410496383e-02 3.2223590540096692e-01 -1.4955117837986219e+01 1.4958794842314219e+01 0 3 0 0 -4 0

P 95 2103 -7.8470425410496383e-02 -3.2223590540096692e-01 -3.0233822815549665e+03 3.0233823981369064e+03 7.7132999999999996e-01 2 0 0 -28 0

V -3 0 0 0 0 0 0 1 0

P 5 -1 4.5914398456298945e-02 2.5904843777716324e-01 1.4768981337590043e+02 1.4769004769866316e+02 0 3 0 0 -5 0

Figure 6: Example of the streaming output format. Only the first few lines are shown. Notice that
the streaming output does not automatically write the IO GenEvent begin and end block lines.
The user may optionally choose to add those ”headers” to the output stream.

19

6.2 General Event Information

E - general GenEvent information

• int: event number
• int: number of multi paricle interactions
• double: event scale
• double: alpha QCD
• double: alpha QED
• int: signal process id
• int: barcode for signal process vertex
• int: number of vertices in this event
• int: barcode for beam particle 1
• int: barcode for beam particle 2
• int: number of entries in random state list (may be zero)
• long: optional list of random state integers
• int: number of entries in weight list (may be zero)
• double: optional list of weights

U - momentum and position units

• std::string: momentum units (MEV or GEV)
• std::string: length units (MM or CM)

C - GenCrossSection information

• double: cross section in pb
• double: error associated with this cross section in pb

H - HeavyIon information

• int: Number of hard scatterings
• int: Number of projectile participants
• int: Number of target participants
• int: Number of NN (nucleon-nucleon) collisions
• int: Number of spectator neutrons
• int: Number of spectator protons
• int: Number of N-Nwounded collisions
• int: Number of Nwounded-N collisons
• int: Number of Nwounded-Nwounded collisions
• float: Impact Parameter(fm) of collision
• float: Azimuthal angle of event plane
• float: eccentricity of participating nucleons in the transverse plane
• float: nucleon-nucleon inelastic cross-section

F - PdfInfo information

• int: flavour code of first parton
• int: flavour code of second parton
• double: fraction of beam momentum carried by first parton
• double: fraction of beam momentum carried by second parton
• double: Q-scale used in evaluation of PDF’s (in GeV)
• double: x*f(x) for id1, x1, Q
• double: x*f(x) for id2, x2, Q
• int: LHAPDF set id of first parton (zero by default)
• int: LHAPDF set id of second parton (zero by default)

20

6.3 Vertices and Particles

V - GenVertex information

• int: barcode
• int: id
• double: x
• double: y
• double: z
• double: ctau
• int: number of ”orphan” incoming particles
• int: number of outgoing particles
• int: number of entries in weight list (may be zero)
• double: optional list of weights

P - GenParticle information

• int: barcode
• int: PDG id
• double: px
• double: py
• double: pz
• double: energy
• double: generated mass
• int: status code
• double: Polarization theta
• double: Polarization phi
• int: barcode for vertex that has this particle as an incoming particle
• int: number of entries in flow list (may be zero)
• int, int: optional code index and code for each entry in the flow list

7 Building HepMC

Source code, binary and source code tarballs, bug tracking, etc. are all available from the HepMC
web pages [16] at https://savannah.cern.ch/projects/hepmc/.

Source code tarballs are on the download page: http://lcgapp.cern.ch/project/simu/HepMC/download/.
Binary downloads are available for some releases. The following recipe is a guideline and should be
modified according to taste.

• download source code tarball:
• mkdir cleanDIR: Make a new directory to work in.
• cd cleanDIR:
• tar -xzf HepMCtarball: Unwind the tarball you downloaded.
• mkdir build install: Define directories for building and installation.
• cd build: This is your real working directory.
• ../../HepMC-release/configure –prefix=../install –with-momentum=XX –with-length=YY:

–prefix tells the tools where to install the library and headers. The default install location is /usr/local.
• make: Compile HepMC.
• make check: Run the tests. This is optional but strongly recommended.
• make install: Install everything in your specified directory.

21

8 Examples

Examples are provided in the examples directory of the package and are installed in the instal-
lation directory under examples/HepMC. Tests, found in the test directory of the package, also
provide useful examples. The tests are not installed. Most examples use IO GenEvent. However,
example PythiaStreamIO.cc illustrates explicit use of the streaming I/O operators.

• Using the HepMC vertex and particle iterators: example UsingIterators.cc

• Using HepMC with Pythia (Fortran): example MyPythia.cc and example MyPythiaOnlyToHepMC.cc

• An Event Selection with Pythia Events: example MyPythia.cc

• Event Selection and Ascii IO example EventSelection.cc

• Using HepMC with Herwig: example MyHerwig.cc

• Write an event file and then read it: example MyPythia.cc

• Write an event file and then read it with the streaming I/O operators: exam-
ple PythiaStreamIO.cc

• Building an Event from Scratch in the HepMC Framework: example BuildEventFromScratch.cc

• Verify that copying generated events behaves as expected: testHerwigCopies.cc and
testPythiaCopies.cc

I/O examples are shown in Figures 7, 9. 8, and 10.

Figure 7: Reading HepMC events from a file.

// specify an input file

HepMC::IO_GenEvent ascii_in("example.dat",std::ios::in);

// get the first event

HepMC::GenEvent* evt = ascii_in.read_next_event();

// loop until we run out of events

while (evt) {

// analyze the event

...

// delete the created event from memory

delete evt;

// read the next event

ascii_in >> evt;

}

22

Figure 8: Reading HepMC events from an input stream.

// specify an input stream

std::ifstream is("example_PythiaStreamIO_write.dat");

// create an empty event

HepMC::GenEvent evt;

// loop over the input stream

while (is) {

// read the event

evt.read(is);

// make sure we have a valid event

if(evt.is_valid()) {

// analyze the event

...

}

}

Figure 9: Convert events from the HEPEVT common block to HepMC format and write them to
a file.

// common block conversion methods

HepMC::IO_HEPEVT hepevtio;

// specify an output file

HepMC::IO_GenEvent ascii_out("example.dat",std::ios::out);

for (int i = 1; i <= maxEvents; i++) {

// convert an event

HepMC::GenEvent* evt = hepevtio.read_next_event();

// analyze the event

...

// write the HepMC event

ascii_out << evt;

// delete the created event from memory

delete evt;

}

23

Figure 10: Convert events from the HEPEVT common block to HepMC format and write them to
streaming output.

// common block conversion methods

HepMC::IO_HEPEVT hepevtio;

// specify an output stream

std::ofstream os("example_PythiaStreamIO_write.dat");

for (int i = 1; i <= maxEvents; i++) {

// generate the event with Pythia, Herwig, etc.

...

// convert an event

HepMC::GenEvent* evt = hepevtio.read_next_event();

// analyze the event

...

// write the HepMC event

evt->write(os);

// delete the created event from memory

delete evt;

}

24

9 Deprecated Classes

Two major classes have been deprecated: IO Ascii and ParticleData. IO Ascii was deprecated in
2.02.00 and was removed as of HepMC 2.05.00. IO Ascii has been replaced by IO GenEvent, which
uses iostreams instead of files.

The ParticleData classes, deprecated since HepMC 2.02.00, had become outmoded and would
need a lot of work. Instead, we recommend using packages already developed for this purpose, such
as HepPDT [17].

IO ExtendedAscii, introduced in 1.28.00, was deprecated in 2.02.00 and removed as of HepMC
2.04.00.

IO GenEvent and the streaming input operator can read old files written by either IO Ascii or
IO ExtendedAscii.

9.1 HepMC::ParticleData (deprecated since HepMC 2.02.00)

Relevant Data Members

• name: std::string giving an Ascii description of the particle type
• pdg id: unique ID integer denoting the particle type as defined by the PDG
• charge: in fraction of proton charge
• mass: in energy units
• c×lifetime: particle lifetime in [mm]
• spin:

Notes and Conventions

• the lifetime can be set by specifying either the lifetime or the width
• c×lifetime=-1 specifies a stable particle (zero width)

Data for each particle type (mass, lifetime, charge, etc.) can be stored as particle data objects
for which a particle data table container is provided. There are no dependencies between the
particle data objects and the other elements of the event - the relationship exists only by means of
the particle id which is used to lookup information from within a particle data table. As such the
data table and event record are separate modular entities which need not be used in conjunction
(a user may choose to employ the event record while using his own particle data classes).

ParticleData class stores information about a particular particle type. It is intended that a
different ParticleData object is created for each particle and each anti-particle - necessary for CP

violation cases. The charge and spin are stored internally as integers representing proton charge
3

and
photon spin

2
respectively.

9.2 HepMC::ParticleDataTable (deprecated since HepMC 2.02.00)

Important Public Methods

• find: returns the ParticleData instance with the specified pdg id
• operator[]: equivalent to find
• insert: includes the specifed ParticleData instance in the table
• erase: removes the specified ParticleData instance from the table but does not delete it
• iterator/const iterator: iterates over all entries in the table
• make antiparticles from particles: for each charged entry in the table, makes an equivalent entry

with opposite charge and pdg id.
• delete all: removes all ParticleData instances from the table and deletes them
• merge table: merges the entries from the specified ParticleDataTable if they are not already in the

current table
• print: gives a formatted printout of the table to the specified output stream

25

Relevant Data Members

• description: Ascii description of the table stored as std::string
• data table: container of pointers to ParticleData instances mapped onto their associated pdg id’s

ParticleDataTable is a container for ParticleData instances - it is basically just an interface to
an STL map, and STL naming conventions are employed. A ParticleData instance may belong to
any number of ParticleDataTables. The ParticleDataTable is not the owner of the ParticleData
instances and is not responsible for deleting them (though a delete all method is provided). Two
ParticleData instances with identical pdg id’s are forbidden from entering the same ParticleDataT-
able.

10 Acknowlegements

We would like to acknowlege useful suggestions, consultations, and comments from: Ian Hinchliffe,
Pere Mato, H.T. Phillips, Anders Ryd, Maria Smizanska, and Brian Webber. R.D. Schaffer and
Lassi Tuura provided many useful suggestions on the package architecture. Thanks to Witold
Pokorski and Pere Mato for providing the fixes that make HepMC compile and run on Windows
with Microsoft Visual C++.

References

[1] M. Dobbs and J.B. Hansen, “The HepMC C++ Monte Carlo Event Record for High Energy
Physics”, Computer Physics Communications (to be published) [ATL-SOFT-2000-001].

[2] Pythia 8.1 available at http://www.thep.lu.se/ torbjorn/pythiaaux/present.html.

[3] Herwig++ 2.1 available at http://projects.hepforge.org/herwig/.

[4] E. Boos et al., “Generic user process interface for event generators,” arXiv:hep-ph/0109068.

[5] S. Protopopescu, “MC++ Interface”. Available from http://ox3.phy.bnl.gov/s̃erban/mcpp/index.html.

[6] “A Class Library for High Energy Physics,” (CLHEP). Available from
http://wwwasd.web.cern.ch/wwwasd/lhc++/clhep/.

[7] Generator Services Subproject information available at http://lcgapp.cern.ch/project/simu/generator/.

[8] Latest HepMC ChangeLog available at http://simu.cvs.cern.ch/cgi-
bin/simu.cgi/simu/HepMC/ChangeLog?view=markup.

[9] A.A. Stepanov, M. Lee, “The Standard Template Library,” Hewlett-Packard Labora-
tories Technical Report HPL-94-34, April 1994, revised July 7, 1995. Available from
ftp://butler.hpl.hp.com/stl/.

[10] T. Sjostrand et al., “High-energy physics event generation with PYTHIA 6.1,” Comput. Phys.
Commun. 135, 238 (2001).

[11] G. Corcella et al., “Herwig 6: an event generator for Hadron Emission Reactions With Interfer-
ing Gluons (including supersymmetric processes)” JHEP 0101, 010 (2001) [hep-ph/0011363];
hep-ph/0210213.

26

[12] “the Les Houches Accord PDF Interface,” (LHAPDF). Available from
http://projects.hepforge.org/lhapdf/.

[13] A. Ryd, D. Lange, “The EvtGen package for simulating particle decays,” Computing in High
Energy Physics, Chicago, Illinois, USA (1998).

[14] W.-M. Yao et al., “Review of particle physics,” Journal of Physics G33, 1 (2006). Available
from http://pdg.lbl.gov/.

[15] L. Garren, “StdHep 5.05 Monte Carlo Standardization at FNAL,” Fermilab PM0091. Available
from http://cepa.fnal.gov/psm/stdhep/.

[16] “a C++ Event Record for Monte Carlo Generators,” (HepMC). Available from
https://savannah.cern.ch/projects/hepmc/.

[17] HepPDT is available at http://savannah.cern.ch/projects/heppdt/.

[18] MCnet is available at http://www.montecarlonet.org/.

27

