
Motif Reference Manual 1157

Section 6 - UIL Data Types

This page describes the format and contents of each reference page in Section 6,
which covers each of the UIL data types.

Name
Type – a brief description of the data type.

Synopsis

Syntax:
The literal syntax for specifying a value of the data type. Anything in constant
width type should be typed exactly as shown. Items in italics are expressions that
should be replaced by actual values when you specify a value. Anything enclosed
in brackets is optional. An ellipsis (...) means that the previous expression can be
repeated multiple times and a vertical bar (|) means to select one of a set of
choices.

MrmType:
The Mrm value type that corresponds to the data type. These types are returned
by MrmFetchLiteral().

Availability
This section appears for data types that were added in Motif 2.0 or later.

Description
This section gives an overview of the data type. It explains the literal syntax that
is used to specify a value of the type in a UIL module.

The UIL compiler supports integer, float, single_float, boolean, string, and
compound_string expressions in most contexts where a value of one of the types
is expected. Expressions can include literal or named values, but any named val-
ues that are used must be declared private or exported because the result of an
expression cannot be computed if it contains an imported value.

The UIL compiler allows both string and arithmetic expressions. String expres-
sions contain NULL-terminated strings and compound strings, while arithmetic
expressions can contain integer, float, single_float, and boolean values.

A string expression, consists of two or more string or compound_string values
concatenated with the string concatenation operator (&). The string and
compound_string reference sections contains more details and examples of string
concatenation.

Introduction UIL Data Types

1158 Motif Reference Manual

An arithmetic expression consists of one or more boolean, integer, single_float,
or float values and one or more arithmetic operators. The following operations
can be used in arithmetic expressions:

When the UIL compiler evaluates an expression, higher precedence operations
are performed before those of lower precedence. Binary operations of equal prec-
edence are evaluated from left to right, while unary operations of equal prece-
dence are evaluated from right to left. You can change the default order of
evaluation by using parentheses to group subexpressions that should be evaluated
first. For example, in the expression 2+4*5, 4*5 is evaluated first, followed by
20+2. If the expression is written (2+4)*5, then 2+4 is evaluated first, followed
by 6*5.

The type of an expression is the type of its most complex operand. The UIL com-
piler converts the value of the less complex type in an operation to a value of the

Operator Type Operand Types Operation Precedence
~ unary boolean NOT 1 (highest)

integer One’s complement 1
- unary integer Negation 1

float Negation 1
+ unary integer None 1

float None 1
* binary integer Multiplication 2

float Multiplication 2
/ binary integer Division 2

float Division 2
+ binary integer Addition 3

float Addition 3
- binary integer Subtraction 3

float Subtraction 3
>> binary integer Shift right 4
<< binary integer Shift left 4
& binary boolean AND 5

integer Bitwise AND 5
| binary boolean OR 6

integer Bitwise OR 6
^ binary boolean XOR 6

integer Bitwise XOR 6 (lowest)

UIL Data Types Introduction

Motif Reference Manual 1159

most complex type. The order of complexity for operands in a string expression
is string followed by compound_-string. For operations in an arithmetic expres-
sion, the order is boolean, integer, single_float, and float.

For example, if a string expression contains only strings, the type of the concate-
nated expression is string, but if it contains both strings and compound strings, its
type is compound_-string. The result of concatenating two NULL-terminated
strings is a NULL-terminated string, unless the two strings have different charac-
ter sets or writing directions, in which case the result is a compound string. If an
arithmetic expression contains only integers, the type of an expression is integer,
but if it contains both integers and floats, its type is float.

The table below summarizes the valid uses of the types documented in this sec-
tion. For each type, the table indicates the supported storage classes. It also spec-
ifies whether or not values of the type can be specified literally and whether or
not the type can be used for a procedure parameter and as an argument type. The
final column lists the Motif Resource Manager (Mrm) routine that can be used to
fetch values of the type. If certain information is not relevant for a type, the table
entry indicates that it is not applicable (NA).

Type

Supported Storage Classes
Literal
Value

Reason/
Parameter

Fetch
FunctionPrivate Exported Imported

any NA NA NA No Yes NA

argument Yes No No Yes No NA

asciz_table Yes Yes Yes Yes Yes MrmFetchLit-
eral

boolean Yes Yes Yes Yes Yes MrmFetchLit-
eral

character_set NA NA NA Yes No NA

class_rec_name Yes Yes Yes Yes Yes MrmFetchLit-
eral

color Yes Yes Yes Yes Yes MrmFetch-
ColorLiteral

color_table Yes No No Yes No NA

compound_string Yes Yes Yes Yes Yes MrmFetchLit-
eral

compound_string
_component

Yes Yes Yes Yes Yes MrmFetchLit-
eral

Introduction UIL Data Types

1160 Motif Reference Manual

compound_string
_table

Yes Yes Yes Yes Yes MrmFetchLit-
eral

float Yes Yes Yes Yes Yes MrmFetchLit-
eral

font Yes Yes Yes Yes Yes MrmFetchLit-
eral

fontset Yes Yes Yes Yes Yes MrmFetchLit-
eral

font_table Yes Yes Yes Yes Yes MrmFetchLit-
eral

icon Yes Yes Yes Yes Yes MrmFetch-
IconLiteral,
MrmFetchBit-
mapLiteral

integer Yes Yes Yes Yes Yes MrmFetchLit-
eral

integer_table Yes Yes Yes Yes Yes MrmFetchLit-
eral

keysym Yes Yes Yes Yes Yes MrmFetchLit-
eral

pixmap No No Yes No Yes NA

reason Yes No No Yes No NA

rgb Yes Yes Yes Yes Yes MrmFetch-
ColorLiteral

single_float Yes Yes Yes Yes Yes MrmFetchLit-
eral

string Yes Yes Yes Yes Yes MrmFetchLit-
eral

translation_table Yes Yes Yes Yes Yes MrmFetchLit-
eral

wide_character Yes Yes Yes Yes Yes MrmFetchLit-
eral

Type

Supported Storage Classes
Literal
Value

Reason/
Parameter

Fetch
FunctionPrivate Exported Imported

UIL Data Types Introduction

Motif Reference Manual 1161

The UIL compiler may not generate errors when some of the types are used
incorrectly. These cases are documented in the individual type reference pages.

As of Motif version 1.2, the UIL compiler does not support the assignment of a
character_set value to a named variable. A built-in or literal character set must be
specified in all contexts in which a character set is expected. In addition, prior to
Motif 1.2.1, UIL may generate an error if the type widget is used as an argument
or reason type. In this case, the type any can be used as a workaround.

Usage
This section provides less formal information about the data type: when and how
you might want to use it and things to watch out for.

Example
This section provides examples of the use of the type.

See Also
This section refers you to related functions, UIL file format sections, and UIL
data types. The numbers in parentheses following each reference refer to the
sections of this book in which they are found.

widget Yes Yes Yes Yes Yes MrmFetch-
Widget,
MrmFetch-
WidgetOver-
ride

xbitmapfile Yes Yes Yes Yes Yes MrmFetch-
IconLiteral

Type

Supported Storage Classes
Literal
Value

Reason/
Parameter

Fetch
FunctionPrivate Exported Imported

any UIL Data Types

1162 Motif Reference Manual

Name
any – type checking suppression type.

Synopsis

Syntax:
any

MrmType:
MrmRtypeAny

Description
The any type is used to suppress type checking for values passed to callback pro-
cedures or assigned to user-defined arguments. When a callback parameter or
user defined-argument type is specified as any, the UIL compiler allows a value
of any type to be used. Because the type any is only used to specify an expected
type in these two cases, it does not have a literal syntax and values of type any
cannot be defined or declared.

Usage
The any type specifier is used when values of more than one type can be passed
as a callback parameter or assigned to an argument. It can also be used when a
callback or argument expects a type that is not predefined by the UIL compiler.

Since no type checking is performed on callback parameters or arguments
declared as type any, it is possible to specify a value that is not expected by the
callback or widget. You should use caution when specifying the value for a call-
back or argument that uses the any type.

Example
...
! Define activate procedure that takes different arguments depending upon
! usage context. Context must be checked in C code before value is used.
procedure

activate (any);
! Define a resource that can be set to different types.
! Widget checks type field at run-time to determine value type.
value

XtNlabelValue : argument (’labelValue’, any);
XtNlabelType : argument (’labelType’, integer);

See Also
procedure(5), argument(6).

UIL Data Types argument

Motif Reference Manual 1163

Name
argument – user-defined resource type.

Synopsis

Syntax:
argument (string_expression [, argument_type])

MrmType:
none

Description
An argument value represents a user-defined resource. An argument is repre-
sented literally by the symbol argument, followed by a string expression that
evaluates to the name of the resource and an optional resource type. The name of
the resource is assigned to the name member of the ArgList structure passed to
XtSetValues(). The name is typically the name of a resource with the XmN
or XtN prefix removed. The type of the argument, if specified, is used by the UIL
compiler to perform type checking of assignments to the resource. If omitted, the
type defaults to any.

Usage
A user-defined resource can be used in the arguments section of a UIL module,
for both built-in Motif widgets and user-defined widgets. While user-defined
arguments are typically assigned to a named variable in the value section, they
can also be specified literally in the arguments section of an object definition. If
you are defining arguments for a widget or widget set that is not predefined, you
should define them as named variables in a separate UIL module that can be
included by any module that uses the widget(s).

Arguments must be private values; they cannot be imported or exported. The UIL
compiler allows imported and exported declarations, but it generates an error
when the user-defined argument is used. Since argument values cannot be
exported, they cannot be retrieved by an application.

The argument type can only be used to define non-callback resource types. The
reason type is used to specify user-defined callback resources.

Some versions of the UIL compiler may not allow the definition of arguments of
type widget. If you encounter this problem, use the type any as a workaround.
The compiler may allow the definition of arguments of type argument or reason.
If arguments with these types are used, the actual value set as the widget’s
resource is undefined.

argument UIL Data Types

1164 Motif Reference Manual

Example
From Xaw/Tree.uih:

! Resource and definitions for the Athena Tree widget.
value

XtNautoReconfigure : argument (‘autoReconfigure’, boolean);
XtNgravity : argument (‘gravity’, integer);
NorthGravity : 2;
WestGravity : 4;
EastGravity : 6;
SouthGravity : 8;
! Use any type because compiler may not allow widget:
XtNtreeParent : argument (’treeParent’, any);

...

From my_module.uil:

include file ’Xaw/Tree.uih’;
object parent : XmPushButton { }
object child : XmPushButton {

arguments {
XtNtreeParent = parent;

};
};

object tree : procedure user_defined XawCreateTreeWidget {
arguments {

XtNautoReconfigure = false;
XtNgravity = NorthGravity;

};
controls {

XmPushButton parent;
XmPushButton child;

};
};

See Also
MrmRegisterClass(3), include(5), object(5), reason(6).

UIL Data Types asciz_string_table

Motif Reference Manual 1165

Name
asciz_string_table – array of NULL-terminated strings.

Synopsis

Syntax:
asciz_table (string_expression [, ...]) or
asciz_string_table (string_expression [, ...])

MrmType:
MrmRtypeChar8Vector

Description
An asciz_string_table value represents an array of NULL-terminated strings. An
asciz_string_table is represented literally by the symbol asciz_table or
asciz_string_table, followed by a list of string expressions separated by commas.
String variables in this list can be forward referenced.

Usage
There are no built-in Motif resources of type asciz_string_table, so values of this
type are usually passed as callback parameters or retrieved with MrmFetchL-
iteral(). The type asciz_string_table can be used as the type of an imported
value, as a parameter type in a procedure declaration, or as the type in an argu-
ment literal. An asciz_string_table obtained by the application as a callback
parameter, a widget resource, or with MrmFetchLiteral() is NULL-termi-
nated.

Example
...
! Declare a procedure that expects an array of NULL-terminated strings.
procedure

set_names (asciz_table);

! Define a couple of asciz_tables
value

dwarfs : asciz_table (‘Dopey’, ‘Doc’, ‘Sneezy’, ‘Sleepy’, ‘Happy’,
’Grumpy’, ’Bashful’);
numbers : asciz_string_table (one, two);
one : ’one’;
two : ’two’;
reindeer : imported asciz_string;

! Define some asciz_table resources.
value

XtNniceList : argument (‘niceList’, asciz_table);

asciz_string_table UIL Data Types

1166 Motif Reference Manual

XtNnaughtyList : argument (‘naughtyList’, asciz_table);

object doit : XmPushButton {
callbacks {

XmNactivateCallback = procedure set_names (dwarfs);
};

};
...

See Also
MrmFetchLiteral(3), procedure(5), argument(6),
compound_string(6), compound_string_table(6), string(6).

UIL Data Types boolean

Motif Reference Manual 1167

Name
boolean – true/false type.

Synopsis

Syntax:
true | on | false | off

MrmType:
MrmRtypeBoolean

Description
Values of type boolean may be either true (on) or false (off). A boolean value is
represented literally by true, false, on, or off. A boolean variable can be defined
in the value section by setting a named variable to one of these literal values or to
another boolean variable.

Usage
The type name boolean can be used as the type of an imported value, as a param-
eter type in a procedure declaration, or as the type in an argument literal.

A boolean value can be explicitly converted to an integer, float, or single_float
value by specifying the conversion type followed by the boolean value in paren-
theses. true and on convert to the value 1 or 1.0, while false and off convert to the
value 0 or 0.0.

The storage allocated by Mrm for a boolean value is sizeof(int) not
sizeof(Boolean). Because sizeof(Boolean) is less than sizeof(int) on many sys-
tems, you should use an int pointer rather than a Boolean pointer when retrieving
a boolean value with MrmFetchLiteral().

Example
...
procedure

set_sleepy_state (boolean);

value
map_flag : true;
one : integer (true);
zero : integer (false);
debug : imported boolean;
XtNtimed : argument (’timed’, boolean);

object sleep : XmPushButton {
arguments {

XmNmapWhenManaged = map_flag;

boolean UIL Data Types

1168 Motif Reference Manual

XmNtraversalOn = off;
};
callbacks {

XmNactivateCallback = procedure set_sleepy_state (true);
};

};
...

See Also
MrmFetchLiteral(3), procedure(5), argument(6), float(6),
integer(6), single_float(6).

UIL Data Types character_set

Motif Reference Manual 1169

Name
character_set – character set type for use with strings and font lists.

Synopsis

Syntax:
character_set (string_expression

[, right_to_left = boolean_expression]
[, sixteen_bit = boolean_expression])

MrmType:
none

Description
The character_set type represents a user-defined character set that can be used
when defining strings, compound_strings, fonts, fontsets, and font_tables. A
character set specifies the encoding that is used for character values. A
character_set is represented literally by the symbol character_set, followed by a
string expression that names the character set and two optional properties.

If the right_to_left property of the character set for a string is set to true, the
string is parsed and stored from right to left and compound strings created from
the string have a direction component of XmSTRING_DIRECTION_R_TO_L.
The default value of this property is false. The direction component used by a
compound_string can be specified independently of the parsing direction using
the compound_string literal syntax.

If the sixteen_bit property of the character set for a string is set to true, the string
is interpreted as having double-byte characters. Strings with this property set to
true must contain an even number of bytes or the UIL compiler generates an
error.

Usage
A character_set value is used to specify the character set for string,
compound_string, font, fontset, and font_table values. The right_to_left and
sixteen_bit properties only apply to strings and compound strings and have no
effect on character sets specified for fonts and fontsets.

Unlike most of the UIL types, the character_set type cannot be assigned to a
named variable in a value section, or used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal. A
character set value can only be specified with the character_set literal syntax.

If a font, fontset, or font_table that uses a user-defined character set is exported or
used as a resource value, the UIL compiler may exit with a severe internal error.
As a result, only the predefined character sets can be used with font, fontset, and

character_set UIL Data Types

1170 Motif Reference Manual

font_list values. You can work around this problem by specifying values of these
types in an X resource file.

The UIL compiler may allow the use of string variables and the string concatena-
tion operator (&) in a character_set name specification. Although no errors are
generated, a string using such a character set may be incorrectly converted to a
compound_string value. To avoid this problem, you should always specify a
quoted string as the name in a character_set literal.

UIL defines a number of built-in character sets that you can use to define string,
compound_string, font, fontset, and font_table values. The following table sum-
marizes the built-in character sets:

UIL Name Character Set Parse Direction Writing Direction 16 Bit

iso_latin1 ISO8859-1 L to R L to R No

iso_latin2 ISO8859-2 L to R L to R No

iso_latin3 ISO8859-3 L to R L to R No

iso_latin4 ISO8859-4 L to R L to R No

iso_latin5 ISO8859-5 L to R L to R No

iso_cyrillic ISO8859-5 L to R L to R No

iso_arabic ISO8859-6 L to R L to R No

iso_arabic_lr ISO8859-6 L to R R to L No

iso_greek ISO8859-7 L to R L to R No

iso_hebrew ISO8859-8 R to L R to L No

iso_hebrew_lr ISO8859-8 L to R R to L No

jis_katakana JISX0201.1976-0 L to R L to R No

gb_hanzi GB2313.1980-0 L to R L to R Yes

gb_hanzi_gr GB2313.1980-1 L to R L to R Yes

jis_kanji JISX0208.1983-0 L to R L to R Yes

jis_kanji_gr JISX0208.1983-1 L to R L to R Yes

ksc_hangul KSC5601.1987-0 L to R L to R Yes

ksc_hangul_gr KSC5601.1987-1 L to R L to R Yes

UIL Data Types character_set

Motif Reference Manual 1171

Example
...
value

! Define font with user-defined character set.
big: font (’*times-medium-r-normal-*-240-75-75-*’,
character_set = character_set (’body’));
! Declare some strings with user-defined character sets.
player : #character_set (big) "Mookie Wilson";
hello : exported #iso_hebrew "\355\345\354\371\";
...

See Also
compound_string(6), font(6), fontset(6), font_table(6),
string(6).

class_rec_name UIL Data Types

1172 Motif Reference Manual

Name
class_rec_name – widget class pointer type.

Synopsis

Syntax:
class_rec_name (string_expression)

MrmType:
MrmRtypeClassRecName

Description
The class_rec_name type represents a pointer to a widget class record. A
class_rec_name value is represented literally by the symbol class_rec_name, fol-
lowed by a string that specifies the class name. The string can either be the name
of a class from a widget’s class definition or the name of a widget creation func-
tion registered with MrmRegisterClass(). The string is converted to a
widget class pointer at run-time by Mrm when a class_rec_name value is refer-
enced. Mrm finds the widget class pointer corresponding to the name by search-
ing the list of widgets registered with MrmRegisterClass(). This list
includes the built-in Motif widgets and any user-defined widgets that have been
registered.

Usage
The type class_rec_name can be used as the type of an imported value, as the
parameter type in a procedure declaration, or as the type in an argument literal.
None of the built-in Motif widgets have a class_rec_name resource, however. If a
class_rec_name value is specified as a resource value for a widget and the con-
version of the class name string to a widget class pointer fails at run-time (inside
a call to MrmFetchWidget(), MrmFetchWidgetOverride(), or Mrm-
FetchSetValues()), Mrm does not set the resource. If MrmFetchLit-
eral() is used to retrieve the value and the conversion fails, MrmNOT_FOUND
is returned.

Example
...
value

pbclass : class_rec_name (’XmPushButton’);
...

See Also
MrmFetchSetValues(3), MrmFetchWidget(3),
MrmFetchWidgetOverride(3), MrmInitialize(3),
MrmRegisterClass(3), procedure(5), argument(6).

UIL Data Types color

Motif Reference Manual 1173

Name
color – color specified as color name.

Synopsis

Syntax:
color (string_expression [foreground | background])

MrmType:
MrmRtypeColor

Description
A color value represents a named color. A color is represented literally by the
symbol color, followed by a string expression that evaluates to the color name
and an optional foreground or background property to indicate how the color is
displayed on a monochrome screen. Mrm converts the color name to an X Color
at run-time with XAllocNamedColor() on a color display, or chooses black or
white on a monochrome display. The X server maintains a color name database
that is used to map color names to RGB values. The text version of this database
is typically in the file /usr/lib/x11/rgb.txt. See Volume One, Xlib Programming
Manual, and Volume Two, Xlib Reference Manual, for more information on color
allocation.

Usage
The color type can be used as the type of an imported value, as a parameter type
in a procedure declaration, or as the type in an argument literal. An rgb value can
also be specified in any context that a color value is valid. There are several
built-in Motif color resources, such as XmNforeground and XmNbackground.

The optional foreground and background properties can be used to specify the
mapping of colors on a monochrome display or when a color allocation fails
because the colormap is full. Mrm dynamically determines the appropriate fore-
ground or background color based on the context in which a color value is used.

When a color is used as a resource value for a widget (directly or indirectly in an
icon’s color_table), the background and foreground colors are obtained from the
widget. When a color is retrieved for the color_table of an icon retrieved with
MrmFetchIconLiteral(), the background and foreground colors are sup-
plied by the application as arguments to the function.

If the foreground or background property is not specified, Mrm uses the Color
returned by XAllocNamedColor() on a monochrome display. When an allo-
cation fails on a color display and neither property is specified, black is used. In
addition, black is always used when an allocation on a color display fails in

color UIL Data Types

1174 Motif Reference Manual

MrmFetchColorLiteral(); the procedure does not take fallback back-
ground and foreground colors arguments.

As of Motif version 1.2.1, the color substitutions described above do not take
place. When a color allocation fails for a color specified directly or indirectly as a
resource value, the resource is not set. If the allocation fails in a call to Mrm-
FetchColorLiteral() or MrmFetchIconLiteral(),
MrmNOT_FOUND is returned.

Example
...
value

background : color (’chocolate mint’, background);
foreground : color (’whipped cream’, foreground);

object label: XmLabel {
arguments {

XmNbackground = color (’red’);
};

};
...

See Also
MrmFetchColorLiteral(3), MrmFetchIconLiteral(3),
MrmFetchSetValues(3), MrmFetchWidget(3),
MrmFetchWidgetOverride(3), color_table(6), icon(6), rgb(6).

UIL Data Types color_table

Motif Reference Manual 1175

Name
color_table – character-to-color mapping type.

Synopsis

Syntax:
color_table (color_expression = ’character’ [, ...])

MrmType:
none

Description
A color_table value is used to define a mapping from color names or RGB values
to the single characters that are used to represent pixel values in icons. A
color_table is represented literally by the symbol color_table, followed by a list
of mappings. Each mapping associates a previously-defined color value with a
single character. A color value can be a variable or a literal of type color or rgb,
the global background color, or the symbol foreground color.

Usage
The sole purpose of a color_table is to define colors that can be used in an icon
definition. Because the color mappings are needed at compile-time to construct
an icon, a color_table value must be private. The UIL compiler may allow an
imported or exported color_table definition, but it generates an error when the
value is used. Unlike most other UIL types, a color_table cannot be used as a
parameter type in a procedure declaration or as the type in an argument literal.

The color values background color and foreground color can be used to map a
character to the background or foreground color. These colors are determined at
run-time by Mrm, based on the context in which an icon is used. When an icon is
a resource value for a widget, the foreground and background colors are obtained
from the widget. When an icon is retrieved by the application with MrmFetch-
IconLiteral(), the foreground and background colors are supplied by the
application as arguments to the function.

The colors in a color_table are allocated at run-time by Mrm when an icon that
uses the color table is retrieved as the value for a widget resource or retrieved by
the application with MrmFetchIconLiteral(). See the color reference page
for a description of how Mrm allocates colors and what happens when a color
allocation fails.

The UIL compiler may not perform type checking on the color values in a
color_table. If the compiler allows the use of a value that is not a color, it will
crash when the color_table is used.

color_table UIL Data Types

1176 Motif Reference Manual

Example
...
value

blue : color (’blue’);
yellow : rgb (65535,65535,0);
palette : color_table (background color = ’ ’,

foreground color = ’*’,
color (’red’) = ’r’,
rgb (0,65535,0) = ’g’,
blue = ’b’,
yellow = ’y’);

plus : icon (color_table = palette, ‘brb’, ‘rrr’, ‘brb’);
...

See Also
MrmFetchIconLiteral(3), color(6), icon(6), rgb(6).

UIL Data Types compound_string

Motif Reference Manual 1177

Name
compound_string – Motif compound string type.

Synopsis

Syntax:
compound_string (string_expression

[, character_set = character_set]
[, right_to_left = boolean_expression]
[, separate = boolean_expression])

MrmType:
MrmRtypeCString

Description
A compound_string value represents a Motif XmString. An XmString is the data
type for a Motif compound string. The Motif toolkit uses compound strings,
rather than character strings, to represent most text values. A compound string is
composed of one or more segments, where each segment can contain a font list
element tag, a string direction, and a text component. The tag specifies the font,
and thus the character set, that is used to display the text component.

UIL-generated compound_strings can contain up to four components: a sin-
gle-byte, multi-byte, or wide-character string, a character set, a writing direction,
and a separator. Like NULL-terminated strings, compound_strings can be con-
catenated with the concatenation operator (&). A compound_string is represented
literally by the symbol compound_string, followed by a string expression and an
optional list of properties. The valid properties are character_set, right_to_left,
and separate. They may be specified in any order, but each may occur only once.

The character_set property is used to establish the character set of the
compound_string. It can be set to one of the UIL built-in character sets or to a
user-defined character set. If a character set is specified in the definition of the
string using the #character_set notation, it takes precedence over the
character_set property setting. If the character_set property is omitted, the
default character set of the module is used.

The right_to_left property is used to set the writing direction of the
compound_string. If the right_to_left property is omitted, the writing direction
defaults to that of the character set of the compound_string.

When the separate property is set to true, UIL adds a separator component to the
end of the compound_string. Separators usually appear as line breaks when a
compound string is displayed. If omitted, the separate property defaults to false.
Newline characters present in the string expression of a compound string literal
are not converted to separators.

compound_string UIL Data Types

1178 Motif Reference Manual

Usage
When a compound_string literal contains a string expression consisting of two or
more concatenated strings, they are combined into a single component if the
character set and writing direction of each is the same. If any of the character sets
differ, each string is placed in a separate string component with its own character
set and direction components. If the separate property is set to true, a separator
component is added to the end of the entire compound_string.

A compound_string with a character_set that differs from
XmFALLBACK_-CHARSET is only displayed correctly in a Motif widget if the
XmFontList of the widget includes an XFontStruct or an XFontSet entry for the
character_set.

The type compound_string can also be used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal.

Example
...
procedure

set_label_string (compound_string);

value
ying : "Ying";
yang : #iso_latin1"Yang";
left : compound_string (ying, character_set=iso_latin1, separate=true);
right : compound_string (yang, right_to_left=true);
day : compound_string (’moon’ & ’ ’ & ’sun’);
other : imported compound_string;

lines : exported left & right;

object verse : XmLabel {
arguments {

XmNlabelString = lines;
};

};

value
XtNgraphicCaption : argument (’graphicCaption’, compound_string);

...

See Also
XmStringCreate(1), XmStringCreateLocalized(1),
character_set(6), compound_string_component(6),
compound_string_table(6), string(6).

UIL Data Types compound_string_component

Motif Reference Manual 1179

Name
compound_string_component – Motif compound string component type.

Synopsis

Syntax:
compound_string_component (component_type [, { string | enumval }])

MrmType:
MrmRtypeCString

Availability
Motif 2.0 and later.

Description
A compound_string_component value represents a compound string containing a
single component. It is the UIL equivalent of the Motif function XmString-
ComponentCreate(). The compound string so produced can be concatenated
with other segments to create more complex compound strings. As for the
compound_string data type, the symbol & is the concatenation operator.

The component_type parameter specifies the type of compound string segment to
be created. The value is one of the constants defined for the XmStringCompo-
nentType enumeration. Depending upon the type of the segment, a second quali-
fying parameter may be required: the valid component types, together with any
extra argument is as follows:

Where component_type is XmSTRING_COMPONENT_DIRECTION,
compound_string_component is equivalent to the Motif function XmString-
DirectionCreate(), and the XmStringDirection argument is as required for
that function: XmSTRING_DIRECTION_L_TO_R,
XmSTRING_DIRECTION_R_TO_L, or
XmSTRING_DIRECTION_DEFAULT.

Usage
The compound_string_component data type can be used in an analogous fashion
to the compound_string type. The differences lie in the degree of control in con-
structing the compound strings: tab, separator, and rendition components can be
created. The components XmSTRING_COMPONENT_RENDITION_BEGIN
and XmSTRING_COMPONENT_RENDITION_END take as argument a string
which is matched against a rendition tag within the current render table.

compound_string_component UIL Data Types

1180 Motif Reference Manual

Example
...
value

tab : compound_string_component
(XmSTRING_COMPONENT_TAB);

separator : compound_string_component
(XmSTRING_COMPONENT_SEPARATOR);

charset : compound_string_component
(XmSTRING_COMPONENT_CHARSET,
iso_latin1);

l_to_r_text : compound_string_component
(XmSTRING_COMPONENT_TEXT,
"left_to_right");

r_to_l_text : compound_string_component
(XmSTRING_COMPONENT_TEXT,
"left-to-right");

r_to_l : compound_string_component
(XmSTRING_COMPONENT_DIRECTION,
XmSTRING_DIRECTION_R_TO_L);

l_to_r : compound_string_component
(XmSTRING_COMPONENT_DIRECTION,
XmSTRING_DIRECTION_L_TO_R);

cstring : r_to_l & charset & r_to_l_text & separator & l_to_r &
l_to_r_text;

object label: XmLabel {
arguments {

XmNlabelString = cstring;
}

};
...

See Also
XmStringComponentCreate(1), XmStringDirectionCreate(1),
compound_string(6), compound_string_table(6), string(6).

UIL Data Types compound_string_table

Motif Reference Manual 1181

Name
compound_string_table – array of compound strings.

Synopsis

Syntax:
compound_string_table (string_expression [, ...]) or
string_table (string_expression [, ...])

MrmType:
MrmRtypeCStringVector

Description
A compound_string_table value represents an array of Motif XmStrings. An
XmString is the data type for a Motif compound string. The Motif toolkit uses
compound strings, rather than character strings, to represent most text values. A
compound string is composed of one or more segments, where each segment can
contain a font list element tag, a string direction, and a text component. The tag
specifies the font, and thus the character set, that is used to display the text com-
ponent.

A compound_string_table is represented literally by the symbol
compound_string_table or string_table, followed by a list of string or
compound_string expressions. The UIL compiler automatically converts a string
expression to a compound_string.

Usage
A common use of compound_string_table values is to set resources of the type
XmStringTable in a UIL module or in the application with MrmFetchSetVal-
ues(). When a compound_string_table is assigned to a built-in XmStringTable
resource, UIL automatically sets the corresponding count resource. The table
below lists the XmStringTable resources and their related count resources.

Widget XmStringTable Resource Related Resource

XmList XmNitems XmNitemCount

XmList XmNselectedItems XmNselectedItemCount

XmSelectionBox XmNlistItems XmNlistItemCount

XmCommand XmNhistoryItems XmNhistoryItemCount

XmFileSelectionBox XmNdirListItems XmNdirListItemCount

XmFileSelectionBox XmNfileListItems XmNfileListItemCount

compound_string_table UIL Data Types

1182 Motif Reference Manual

The associated count is not automatically set for compound_string_tables that are
assigned using MrmFetchSetValues().

The type compound_string_table can also be used as the type of an imported
value, as a parameter type in a procedure declaration, or as the type in an argu-
ment literal. A compound_string_table that is obtained by the application as a
callback parameter, a widget resource, or with MrmFetchLiteral() is
NULL-terminated.

If a compound_string_table contains a forward reference to a compound_string
value, all items in the list before that entry may be lost by the UIL compiler. To
avoid this problem, you should be sure to define all compound_strings used in a
compound_string_table before they are referenced.

Example
...
procedure

set_items (string_table);

value
fruit_list : string_table (’apple’, ’banana’, ’grape’);

object list : XmList {
arguments {

XmNitems = fruit_list;
};

};

value
XtNnameList : argument (‘nameList’, compound_string_list);

...

See Also
character_set(6), compound_string(6),
compound_string_component(6), string(6).

UIL Data Types float

Motif Reference Manual 1183

Name
float – double-precision floating point type.

Synopsis

Syntax:
[+ | -]integer.integer [e [+ | -]integer]

MrmType:
MrmRtypeFloat

Description
A float value represents a negative or positive double-precision floating point
number. A float is represented literally by an optional sign, one or more consecu-
tive digits which must include a decimal point, and an optional exponent. The
UIL compiler uses atof() to convert literal float values to the architecture’s
internal representation.

A float can also be represented literally by the symbol float followed by a
boolean, integer, or single_float expression. The expression is converted to a
float and can be used in any context that a float value is valid. A float is formed
from a boolean by converting true and on to 1.0 and false and off to 0.0.

Usage
The allowable range of a float value is determined by the size of a C double on
the machine where the UIL module is compiled. Since a double on most architec-
tures is typically a minimum of four bytes, float values may safely range from
1.4013e-45 to 3.40282e+38 (positive or negative). Although many architectures
represent a double using eight bytes, you can ensure greater portability by keep-
ing float values within the four-byte range. The UIL compiler generates an error
if it encounters a float outside of the machine’s representable range.

The type float can be used as the type of an imported value, as a parameter type
in a procedure declaration, or as the type in an argument literal.

Example
...
! Declare some floating point values.
value

pi : 3.14159;
burn_rate : imported float;
one_point_oh : float (true);
ten_even : float (10);

float UIL Data Types

1184 Motif Reference Manual

! Declare a procedure which takes a float parameter.
procedure

set_temperature (float);

! Declare an argument of type float.
value

XtNorbitalVelocity : argument (’orbitalVelocity’, float);
...

See Also
boolean(6), integer(6), single_float(6).

UIL Data Types font

Motif Reference Manual 1185

Name
font – XFontStruct type.

Synopsis

Syntax:
font (string_expression [, character_set = character_set])

MrmType:
MrmRtypeFont

Description
A font value represents an XFontStruct, which is an Xlib structure that specifies
font metric information. A font is represented literally by the symbol font, fol-
lowed by a string expression that evaluates to the name of the font and an
optional character_set. All parts of the string expression that make up the font
name must be private to the UIL module. The character_set is associated with
the font if it appears in a font_table. If character_set is not specified, it is deter-
mined from the codeset portion of the LANG environment variable if it is set, or
XmFALLBACK_CHARSET otherwise.

The string expression that specifies the font name is an X Logical Font Descrip-
tion (XLFD) string. This string is stored in the UID file and used as a parameter
to XLoadQueryFont() at run-time to load the font. See Volume One, Xlib Pro-
gramming Manual, and Volume Two, Xlib Reference Manual, for more informa-
tion on fonts.

Usage
You can use a font value to specify a font or font_table resource. When a font is
assigned to a font_table resource, at run-time Mrm automatically creates an
XmFontList that contains only the specified font. A font value can also be used
as an element in font_table, although in this context it must be private to the UIL
module.

The font type can be used as the type of an imported value, as a parameter type in
a procedure declaration, or as the type in an argument literal.

In some versions of UIL, the default character_set is always ISO8859-1, instead
of being based on the LANG environment variable or
XmFALLBACK_CHARSET.

The UIL compiler may exit with a severe internal error if a user-defined
character_set is used in a font that is exported or specified as a resource value. If
this problem occurs in your version of UIL, only predefined character_set values
can be used in font, fontset, and font_table values. The workaround is to specify
these problematic values in an X resource file.

font UIL Data Types

1186 Motif Reference Manual

Example
...
procedure

change_font (font);

value
title_font : font (’-*-helvetica-bold-r-nor-
mal-*-160-100-100-*-iso8859-1’);
family : ’courier’;
style : ’medium’;
body_font : font (’-*-’ & family &’-’& style & ’-r-nor-
mal-*-120-100-100*-iso8859-1’);
kanjiFont : font (’-*-JISX0208.1983-1’, character_set = jis_kanji);
default_font : imported font;

value
XtNheadlineFont : argument (‘headlineFont’, font);

object label: XmLabel {
arguments {

XmNfontList = title_font;
};

};
...

See Also
character_set(6), fontset(6), font_table(6).

UIL Data Types font_table

Motif Reference Manual 1187

Name
font_table – Motif font list type.

Synopsis

Syntax:
font_table ([character_set =] font_expression [, ...])

MrmType:
MrmRtypeFontList

Description
A font_table value represents a Motif XmFontList. An XmFontList is a data
type that specifies the fonts that are in use. Each entry in a font list specifies a
font or a font set and an associated tag. When a Motif compound string
(XmString) is displayed, the font list tag for the string is used to match the string
with a font or a font set, so that the compound string is displayed appropriately.

In UIL, a font_table is represented literally by the symbol font_table, followed by
a list of one or more font or fontset values. The elements of a font_table must be
defined as private values. The character_set of an entry in the list can be overrid-
den by preceding it with a predefined or user-defined character_set and an equal
sign (=).

Usage
The font_table type can be used as the type of an imported value, as a parameter
type in a procedure declaration, or as the type in an argument literal. A font_table
is converted to an XmFontList at run-time by Mrm.

The UIL compiler may exit with a severe internal error if a user-defined
character_set is used in a font_table that is exported or specified as a resource
value. This situation can occur if character_set is specified directly or indirectly
in one of the entries. If this problem occurs in your version of UIL, only prede-
fined character_set values can be used in font, fontset, and font_table values. The
workaround is to specify these problematic values in an X resource file.

Example
...
procedure

switch_styles (font_table);

value
latin1 : font (’*-iso8859-1’, character_set = iso_latin1);
hebrew : font (’*-iso8859-8’, character_set = iso_hebrew);
list : font_table (latin1, hebrew);

font_table UIL Data Types

1188 Motif Reference Manual

value
XtNdefaultFonts : argument (‘defaultFonts’, font_table);

object label: XmLabel {
arguments {

XmNfontList = list;
};

};
...

See Also
XmFontListAppendEntry(1), XmFontListEntryCreate(1),
XmFontListEntryLoad(1), character_set(6), font(6), fontset(6).

UIL Data Types fontset

Motif Reference Manual 1189

Name
fontset – XFontSet type.

Synopsis

Syntax:
fontset (string_expression [, ...] [, character_set = character_set])

MrmType:
MrmRtypeFontSet

Description
A fontset value represents an XFontSet, which is an Xlib structure that specifies
all of the fonts that are needed to display text in a particular locale. A fontset is
represented literally by the symbol fontset, followed by a list of string expres-
sions that evaluate to font names and an optional character_set. All parts of the
string expressions that make up the list of font names must be private to the UIL
module. The character_set is associated with the fontset if it appears in a
font_table. If character_set is not specified, it is determined from the codeset
portion of the LANG environment variable if it is set, or
XmFALLBACK_CHARSET otherwise.

The string expression that specifies the font name is a list or wildcarded set of X
Logical Font Description (XLFD) strings. This list is stored in the UID file and
used as a parameter to XCreateFontSet() at run-time to load the font set. See
Volume One, Xlib Programming Manual, and Volume Two, Xlib Reference Man-
ual, for more information on fonts.

Usage
You can use a fontset value to specify a fontset or font_table resource. When a
fontset is assigned to a font_table resource, at run-time Mrm automatically cre-
ates an XmFontList that contains only the specified fontset. A fontset value can
also be used as an element in font_table, although in this context it must be pri-
vate to the UIL module.

The fontset type can be used as the type of an imported value, as a parameter type
in a procedure declaration, or as the type in an argument literal.

In some versions of UIL, the default character set is always ISO8859-1, instead
of being based on the LANG environment variable or
XmFALLBACK_CHARSET.

The UIL compiler may exit with a severe internal error if a user-defined
character_set is used in a fontset that is exported or specified as a resource value.
If this problem occurs in your version of UIL, only predefined character_set val-
ues can be used in font, fontset, and font_table values. The workaround is to spec-
ify these problematic values in an X resource file.

fontset UIL Data Types

1190 Motif Reference Manual

Example
procedure

change_fontset (fontset);

value
japanese_font : fontset (‘-misc-fixed-*-75-75-*’);
default_font : imported font;

value
XtNbodyFontSet : argument (‘bodyFontSet’, fontset);

object label: XmLabel {
arguments {

XmNfontList = japanese_font;
};

};

See Also
character_set(6), font(6), font_table(6).

UIL Data Types icon

Motif Reference Manual 1191

Name
icon – multi-color rectangular pixmap type.

Synopsis

Syntax:
icon ([color_table = color_table_name ,] row [, ...])

MrmType:
MrmRtypeIconImage

Description
An icon value represents a multi-color rectangular pixmap, or array of pixel val-
ues. An icon is represented literally by the symbol icon, followed by an optional
color_table specification and a list of strings that represent the rows of pixel val-
ues in the icon.

If a color_table is specified, it must be a private value and cannot be forward ref-
erenced. If a color_table is not specified, the following default color_table is
used:

color_table (background_color = ’ ’, foreground color = ’*’)

Each row in the icon is a character expression that represents a row of pixel val-
ues. Each character in the row represents a single pixel. All of the rows in the
icon must be the same length and must contain only characters defined in the
color_table for the icon. The UIL compiler generates an error if these rules are
violated.

Usage
The type icon can be used as the type of an imported value, as a parameter type in
a procedure declaration, or as the type in an argument literal. An icon can be
retrieved by an application with MrmFetchIconLiteral() or MrmFetch-
BitmapLiteral().

When an icon is specified as a resource value for a widget, the depth of the pix-
map created by Mrm at run-time is the same as the depth of the widget. When an
icon is retrieved with MrmFetchIconLiteral(), the depth of the resulting
pixmap is the value returned from the DefaultDepthOfScreen() macro.
When an icon is retrieved with MrmFetchBitmapLiteral(), the depth of the
resulting pixmap is always one. The color_table of an icon retrieved with this
function must only contain mappings for background color and foreground color
or the function fails and returns MrmNOT_FOUND.

The UIL compiler may not check the type of the value specified as the
color_table for an icon. If the compiler allows the specification of a value that is

icon UIL Data Types

1192 Motif Reference Manual

not a color_table, it generates an error message when the icon is referenced. If no
reference to the icon occurs in the module, the compiler exits with a severe inter-
nal error.

If the row values in an icon literal do not consist entirely of string literals, the
UIL compiler may generate an error message or crash with a segmentation viola-
tion.

If a named value is declared as an imported icon in one UIL module file, but
defined with a different type in another, an error is generated at run time when
Mrm attempts to retrieve the icon. If you attempt to define a named variable with
the value of an icon variable, the UIL compiler may generate a large number of
errors that are seemingly unrelated to the assignment.

Example
...
value

! Define an icon that uses default color table and can be retrieved
! as a resource or with any of the fetch procedures including
! MrmFetchBitmapLiteral():
checker : icon (’* *’, ’ * ’, ’* *’);
! Define an icon that uses a custom color table which contains named
! colors. This icon cannot be retrieved with MrmFetchBitmapLiteral().
red_blue : color_table (color(’red’) = ’r’, color(’blue’) = ’b’);
plus : icon (color_table = red_blue, ’brb’, ’rrr’, ’brb’);
! Declare an argument of type icon.
XtNwmIcon : argument (‘wmIcon’, icon);

! Declare a procedure taking an icon parameter.
procedure

display_icon (icon);

! Use an icon for a resource value
object label: XmLabel {

arguments {
XmNlabelType = XmPIXMAP;
XmNlabelPixmap = plus;

};
};
...

See Also
MrmFetchBitmapLiteral(3), MrmFetchIconLiteral(3),
MrmFetchSetValues(3), MrmFetchWidget(3),
MrmFetchWidgetOverride(3), color_table(6), pixmap(6),

UIL Data Types icon

Motif Reference Manual 1193

xbitmapfile(6).

integer UIL Data Types

1194 Motif Reference Manual

Name
integer – whole number type.

Synopsis

Syntax:
[+ | -]0-9[...]

MrmType:
MrmRtypeInteger

Description
An integer value represents a negative or positive whole number. An integer is
represented literally by an optional sign followed by one or more consecutive
digits.

An integer can also be represented literally by the symbol integer followed by a
float, single_float, or boolean expression. The expression is converted to an
integer and can be used in any context that an integer value is valid. An integer is
formed from a float or single_float by truncating the fractional value. You can
add 0.5 to the float or single_float value if rounding is desired. If a float or
single_float larger (smaller) than MAXINT (-MAXINT) is converted to an inte-
ger, the resulting value is MAXINT (MININT). An integer is formed from a
boolean by converting true and on to 1 and false and off to 0.

Usage
The allowable range of an integer value is determined by the size of an integer on
the machine where the UIL module is compiled. Since an integer on most archi-
tectures is typically a minimum of four bytes, integer values may safely range
from -2147483647 (-MAXINT) to 2147483647 (MAXINT). You can ensure
greater portability by keeping integer values within the four-byte range. The UIL
compiler generates an error if it encounters an integer outside of the machine’s
representable range.

The type integer can be used as the type of an imported value, as a parameter
type in a procedure declaration, or as the type in an argument literal.

Widget resources of type Position (short) and Dimension (unsigned short) are
specified as integers in UIL. As a result, the UIL compiler does not generate an
error if an out-of-range value is assigned to such a resource. If the sizeof(short) is
smaller than sizeof(int), part of the out-of-range value is truncated, which pro-
duces an undefined result. The part truncated depends on the C compiler and
byte-ordering of the machine on which the UIL module is compiled. For maxi-
mum portability, Position values should be limited to the range -32768 to 32767
and Dimension values should be limited to the range 0 to 65536.

UIL Data Types integer

Motif Reference Manual 1195

The UIL compiler uses -MAXINT to MAXINT, not MININT to MAXINT, as the
allowable range for integers, which means that on an architecture with four-byte
integers, the minimum integer value allowed is -2147483647, not -2147483648.
The value MININT can be used, however, by converting a float smaller than
-MAXINT to an integer.

Example
...
! Declare a procedure taking an integer value.
procedure

set_speed (integer);

! Define some integer variables.
value

meaning_of_life: 41;
the_question : imported integer;
half_life : meaning_of_life / 2;
ten : integer (10.75);
round_factor : 0.5;
eleven : integer (10.75 + round_factor);
one : integer (true);
! Generate MININT value by converting large negative float:
minint : integer (-3.0e30);

! Define an argument of type integer.
value

XtNsize : argument (’size’, integer);

object pb : XmPushButton {
arguments {

XmNleftOffset = -3;
};

};
...

See Also
boolean(6), float(6), integer_table(6), single_float(6).

integer_table UIL Data Types

1196 Motif Reference Manual

Name
integer_table – array of integers.

Synopsis

Syntax:
integer_table (integer_expression [, ...])

MrmType:
MrmRtypeIntegerVector

Description
An integer_table1 value represents an array of integers. An integer_table is rep-
resented literally by the symbol integer_table, followed by a list of integer
expressions.

Usage
The type name integer_table can be used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal. In
Motif 1.2, the XmNselectionArray resource of the XmText and XmTextField
widgets is the only built-in integer_table resource. When the resource is set, UIL
automatically sets the XmNselectionArrayCount resource to the number of ele-
ments in the array. In Motif 2.0 and later, the XmNselectedPositions resource of
the List, and the XmNdetailOrder resource of the Container are also built-in
integer_table types. The XmNselectedPositionCount and XmNdetailOrderCount
resources are automatically set by UIL respectively.

Unlike asciz_string_table and compound_string_table values, an integer_table is
not NULL-terminated. As a result, you must either use integer_table values of a
set length, include the length explicitly, or use a value to indicate the end of the
array. The application code that uses the values must use the same conventions as
the UIL module.

Example
...
value

! Define table with known number of elements (12).
days: integer_table (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
! Define table with length as first element.
grades : integer_table (5, 95, 87, 100, 92, 82);
! Define table with last element of MININT.
end_of_table : integer (3.0e-30);

1.Erroneously given as integer_type in 1st edition.

UIL Data Types integer_table

Motif Reference Manual 1197

ages : integer_table (25, 29, 29, 30, 32, end_of_table);

! Declare a procedure taking an integer_table
procedure

compute_average (integer_table);

! Declare an argument taking an integer table
value

XtNdaysPerMonth : argument (‘daysPerMonth’, integer_table);
...

See Also
integer(6).

keysym UIL Data Types

1198 Motif Reference Manual

Name
keysym – character type.

Synopsis

Syntax:
keysym (string_literal)

MrmType:
MrmRtypeKeysym

Description
A keysym value is used to represent a single character. A keysym is represented
literally by the symbol keysym, followed by a string value that contains exactly
one character. If the string is a variable, it can be forward referenced and must be
private to the UIL module.

Usage
A keysym value is typically used to specify a widget mnemonic resource, such as
XmNmnemonic. The keysym type can be used as the type of an imported value,
as a parameter type in a procedure declaration, or as the type in an argument lit-
eral.

When a keysym is retrieved by an application with MrmFetchLiteral(), the
value argument returned is the character value of the keysym, not a pointer to the
value like many other types.

The UIL compiler may not generate an error if the string expression in a keysym
literal is more than one character long, but an error will be generated by Mrm at
run-time. If an invalid keysym is specified as a resource value, the resource is not
set. If the application attempts to retrieve an invalid keysym with MrmFetchL-
iteral(), MrmNOT_FOUND is returned.

Example
...
procedure

set_keysym (keysym);

value
d_key : keysym (‘d’);
XtNquitKey : argument (‘quitKey’, keysym);

object the_button : XmPushButton
arguments {

XmNmnemonic = keysym (‘b’);
};

UIL Data Types keysym

Motif Reference Manual 1199

};
...

See Also
MrmFetchLiteral(3).

UIL Data Types

Motif Reference Manual 1200

Name
pixmap – generic icon or xbitmapfile type.

Synopsis

Syntax:
No literal syntax.

MrmType:
MrmRtypeIconImage or MrmRtypeXBitmapFile

Description
A pixmap value can be either an icon or xbitmapfile. In either case, the type spec-
ifies an array of pixel values. A pixmap does not have its own literal representa-
tion; a pixmap value is specified with either the icon or xbitmapfile literal syntax.

Usage
The type pixmap can be used as the type of an imported value, as a parameter
type in a procedure declaration, or as the type in an argument literal. The purpose
of the pixmap type is to allow either an icon or an xbitmapfile value to be
imported, passed as a callback argument, or specified as a resource value.

Example
...
value

! Declare an imported pixmap that can be defined as an icon or xbitmapfile.
stop_pixmap : imported pixmap;
! Declare an argument to which an icon or xbitmapfile can be assigned.
XtNstipplePixmap : argument (‘stipplePixmap’, pixmap);

! Declare a procedure to which an icon or xbitmapfile can be passed.
procedure

print_pixmap (pixmap);
...

See Also
icon(6), xbitmapfile(6).

UIL Data Types

Motif Reference Manual 1201

Name
reason – user-defined callback type.

Synopsis

Syntax:
reason (string_expression)

MrmType:
none

Description
A reason value represents a user-defined callback. A reason is represented liter-
ally by the symbol reason, followed by a string expression that evaluates to the
name of a callback. The name of the reason is assigned to the name member of
the ArgList structure passed to XtSetValues(). The name is typically the
name of a callback with the XmN or XtN prefix removed.

Usage
A user-defined callback can be used in the callbacks section of a UIL module for
both built-in Motif widgets and user-defined widgets. While user-defined call-
backs are typically assigned to a named variable in the value section, they can
also be specified literally in the arguments section of an object definition. If you
are defining arguments for a widget or widget set which is not predefined, you
should define them as named variables in a separate UIL module that can be
included by any module that uses the widget(s).

Reasons must be private values; they cannot be imported or exported. The UIL
compiler allows imported and exported declarations, but it generates an error
when the user-defined reason is used. Since reason values cannot be exported,
they cannot be retrieved by an application.

The reason type can only be used to define callback resource types. The argu-
ment type is used to specify other user-defined resources.

Example
From Xaw/Panner.uih:

! Resources and definitions for the Athena Panner widget.
...
! Callback definitions
value

XtNreportCallback = reason (’XtNreportCallback’);
...

From my_module.uil:

UIL Data Types

Motif Reference Manual 1202

include file ’Xaw/Panner.uih’;

procedure
panner_report();

object panner : user_defined procedure XawCreatePanner {
callbacks {

XtNreportCallback = procedure panner_report();
};

};
...

See Also
MrmRegisterClass(3), include(5), object(5), argument(6).

UIL Data Types

Motif Reference Manual 1203

Name
rgb – color specified with the values of red, green, and blue components.

Synopsis

Syntax:
rgb (red_integer, green_integer, blue_integer)

MrmType:
MrmRtypeColor

Description
The type rgb represents a color as a mixture of red, green, and blue values. An
rgb value is represented literally by the symbol rgb, followed by a list of three
integers that specify the red, green, and blue components of the color. The
amount of each color component can range from 0 (0 percent) to 65,535 (100
percent). Mrm allocates rgb values with XAllocColor(). See Volume 1, Xlib
Programming Manual, and Volume 2, Xlib Reference Manual, for more informa-
tion on color allocation.

Usage
An rgb value or literal can be used anywhere a color value is expected: as a call-
back argument, as a resource value, or in a color_table. Unlike color values, it is
not possible to specify a foreground or background fallback for rgb values. For
this reason, and to maximize the number of shareable color cells, you should use
named colors defined with the color type whenever possible.

If a color cannot be allocated, Mrm substitutes black, unless the color is specified
as the background color or foreground color in a color_table and the foreground
color or background color is already black. In this situation, white is substituted.

In Motif version 1.2.1, the color substitutions described above do not take place.
When a color allocation fails for an rgb value specified directly or indirectly (in
the color_table of an icon) the resource is not set. If the allocation fails in a call to
MrmFetchColorLiteral() or MrmFetchIconLiteral(),
MrmNOT_FOUND is returned. In Motif 2.1, XBlackPixelOfScreen() is
used where XAllocColor() fails.

Note that the values that specify that red, green, and blue components cannot be
integer expressions. The UIL compiler, however, does not generate an error if an
integer expression is encountered; it silently replaces the expression with the
value 0. In addition, the UIL compiler does not report an error if an integer spec-
ified for a color value is less than 0 or greater than 65,535. If any of the three
components is out-of-range, the three values stored in the UID file are undefined.

Example

UIL Data Types

Motif Reference Manual 1204

value
white : rgb (65535, 65535, 65535);
orange : exported rgb (65535, 32767, 0);
grape : imported rgb;
ctable : color_table (white = ’w, orange = ’o’, grape = ’g’);
....

object label : XmLabel {
arguments {

XmNforeground = rgb (0, 0, 32767);
XmNbackground = orange;

};
};

See Also
MrmFetchColorLiteral(3), MrmFetchIconLiteral(3),
MrmFetchSetValues(3), MrmFetchWidget(3),
MrmFetchWidgetOverride(3),
color(6), color_table(6), icon(6).

UIL Data Types

Motif Reference Manual 1205

Name
single_float – single-precision floating point type.

Synopsis

Syntax:
single_float (numeric_expression)

MrmType:
MrmRtypeSingleFloat

Description
A single_float value represents a negative or positive single-precision floating
point number. A single_float is represented literally by the symbol single_float,
followed by a boolean, float or integer expression. The expression is converted to
a single_float and can be used in any context in which a single_float value is
valid. A single_float is formed from a boolean by converting true and on to 1.0
and false and off to 0.0. If a float expression is greater than (less than) the largest
(smallest) representable float, the resulting single_float is +infinity (-infinity).

Usage
The type single_float can be used as the type of an imported value, as a parameter
type in a procedure declaration, or as the type in an argument literal. A
single_float value is used to save space, as the storage used by a single_float is
usually less than that used by a float.

The allowable range of a single_float value is determined by the size of a C float
on the machine where the UIL module is compiled. Since a float on most archi-
tectures is typically a minimum of four bytes, single_float values may safely
range from 1.4013e-45 to 3.40282e+38 (positive or negative). You can ensure
greater portability by keeping single_float values within the four-byte range.

Example
...
! Declare a procedure taking a single_float value.
procedure

sqrt (single_float);

value
avogadro : single_float (6.023e+23);
prime_rate : imported single_float;

! Define an argument of type single_float.
value

XtNarea : argument (’area’, single_float);
...

UIL Data Types

Motif Reference Manual 1206

See Also
boolean(6), float(6), integer(6).

UIL Data Types

Motif Reference Manual 1207

Name
string – NULL-terminated character string type.

Synopsis

Syntax:
[#character_set] "character_expression" or
’character_expression’

MrmType:
MrmRtypeChar8

Description
A string value represents a NULL-terminated single-byte, multi-byte, or
wide-character string. A string literal is represented by either a double or sin-
gle-quoted sequence of characters, that may be up to 2000 characters long.
Newer versions of UIL may allow even longer strings. The type of quotes used to
delimit a string literal determines how the string is parsed by the UIL compiler.

Both double and single-quoted strings can directly contain characters with deci-
mal values in the range 32 to 126 and 160 to 255. Characters with values outside
of the range can only be entered using the escape sequence \value\, where value
represents the character code desired. To allow the easy specification of com-
monly-used non-printing characters codes, UIL recognizes the following escape
sequences:

A double-quoted string consists of an optional character_set, followed by a
sequence of characters surrounded by a double quotes. Double-quoted strings
cannot span multiple lines, but may contain the \n escape sequence. If a

Character Meaning

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\’ Single quote

\” Double quote

UIL Data Types

Motif Reference Manual 1208

character_set is specified, it precedes the string and is indicated by a pound sign
(#). Either a built-in or user-defined character_set can be specified. If a
character_set is not specified, the default character set of the module is used. The
default character_set can be specified with the character_set option in the mod-
ule header of a UIL module. If this option is not set, the default is determined
from the codeset portion of the LANG environment variable if it is set, or
XmFALLBACK_CHARSET otherwise.

If the UIL compiler is invoked with the -s option, double-quoted strings are
parsed in the current locale. When UIL parses localized strings, escape sequences
may be interpreted literally. You can avoid unexpected results by restricting the
use of escape sequences to single quoted strings.

A single-quoted string consists of a sequence of characters surrounded by single
quotes. Unlike double-quoted strings, single-quoted strings can span multiple
lines by using a backslash (\) to indicate that the string is continued on the next
line. The newline character following the backslash is not included in the string.
The \n escape sequence should be used if an embedded newline is desired. The
character_set of a single-quoted string defaults to the codeset portion of the
LANG environment variable if it is set, or XmFALLBACK_CHARSET other-
wise.

The parsing direction of either string variant is determined by the character_set
of the string. A string that is parsed right-to-left is stored in the UID file in the
reverse order that it appeared in the UIL source module. The parsing direction
and character_set writing direction determine the order of individual characters
when a string is printed or displayed. The writing direction of a string is generally
the same as the parsing direction, unless explicitly overridden in a
compound_string literal. The order of the characters in escape sequences is
always the same, regardless of the parsing direction.

Usage
A single or double-quoted string value can be used anywhere a string or string
expression is expected. A string expression can be a single string value or two or
more string values concatenated with the string concatentation operator (&). A
string or string expression can also be used anywhere a compound_string is
expected, since the UIL compiler automatically converts the string to a com-
pound string, with the character set determined by the rules described above.
(When determining the character set, the UIL compiler may use ISO8859-1 as
the fallback character set, even if the value has been changed by the vendor.
Therefore, you should specify a character set explicitly instead of relying on
XmFALLBACK_CHARSET.)

UIL Data Types

Motif Reference Manual 1209

Any newline characters in a NULL-terminated string that is converted into a
compound_string are not converted into separator components to make a
multi-line compound string. If you need a multi-line compound string, it must
be specified as a concatenated set of values using the compound_string literal
syntax with the separate property set to true.

The type string can be used as the type of an imported value, as a parameter type
in a procedure declaration, or as the type in an argument literal. String values
used in string expressions or in compound_string literals must be private to the
module in which they are used.

Example
...
procedure

tie_knot (string);

value
display : imported string;
skit_name : ’Unfrozen Caveman Lawyer’;
hello : #iso_hebrew"\237\229\236\249\";
quote : exported ’Quote the Raven, ‘Nevermore.\’\n’;
concat : ’The Cat’ & ’ in the Hat’;
multi : ’All that we see or seem\nIs but a dream within a dream.’;
! Define a resource of type string.
XtNfilename : argument (’filename’, string);

object play : XmPushButton {
arguments {

! String automatically converted to XmString
XmNlabelString = skit_name;

};
};
...

See Also
asciz_string_table(6), character_set(6), compound_string(6),
compound_string_table(6).

UIL Data Types

Motif Reference Manual 1210

Name
translation_table – Xt translation table type.

Synopsis

Syntax:
translation_table ([‘#override‘ | ’#augment’ | ’#replace’] string_expression [,
...])

MrmType:
MrmRtypeTransTable

Description
A translation_table value represents an X Toolkit translation table. A translation
table is a list of translations, where each translation maps an event or an event
sequence to an action name. In UIL, a translation_table is represented literally by
the symbol translation_table, followed by an optional directive and list of string
expressions that are interpreted as translations. If specified, the directive must be
one of #override, #augment, or #replace. The translations are specified as a list of
string expressions, one per translation. The individual translations are concate-
nated and separated with newline characters before they are stored in the UID
file.

Usage
The translation_table type can be used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal.

The syntax of a translation_table is not verified by the UIL compiler. Instead,
Mrm converts a translation_table literal to an XtTranslations value with
XtParseTranslationTable() at run-time. Errors that occur when parsing
the translation_table are passed to XtWarning(). Because XtParseTrans-
lationTable() always returns a valid XtTranslations value, even when pars-
ing errors occur, the run-time conversion of a translation_table cannot fail. See
Volume 4, X Toolkit Intrinsics Programming Manual, and Volume 5, X Toolkit
Intrinsics Reference Manual, for more information about translation tables.

Example
...
procedure

set_translations (translation_table);
exit();

value
XtNquickKeys : argument (’translations’, translation_table);

value

UIL Data Types

Motif Reference Manual 1211

quit_tt : translation_table (’#override’, ’<Key>q: ArmAndActivate()’);
other_tt : imported translation_table;

object quit : XmPushButton {
arguments {

XmNtranslations = quit_tt;
};
callbacks {

XmNactivateCallback = procedure exit();
};

};
...

See Also
MrmFetchLiteral(3).

UIL Data Types

Motif Reference Manual 1212

Name
wide_character – wide-character string type.

Synopsis

Syntax:
wide_character (string_expression)

MrmType:
MrmRtypeWideCharacter

Description
A wide_character value represents a wide-character string. The corresponding C
type is wchar_t *. A wide_character literal is represented by the symbol
wide_character, followed by a string expression.

Usage
A wide_character literal is used to make the UIL compiler parse a regular char-
acter string as a wide-character string. A wide_character string is parsed with the
mbstowcs() function. The operation of this function depends on the setting of
the locale. See the uil reference page for more information regarding the locale
setting. The wide_character literal syntax may not work in early releases of
Motif 1.2. However, you can specify a wide-character string using the normal
UIL string syntax. The difference is that the UIL compiler does not verify that a
wide-character string specified in this way is properly formed.

The type wide_character can also be used as the type of an imported value, as a
parameter type in a procedure declaration, or as the type in an argument literal.

Example
...
procedure

print_wcs (wide_character);

value
wcs : wide_character (’\204\176\224\189\’);
name : imported wide_character;
XtNwideCharacterString : argument (’wideCharacterString’,
wide_character);

object text : XmText {
arguments {

XmNvalueWcs = wcs;
};

};
...

UIL Data Types

Motif Reference Manual 1213

See Also
uil(4), procedure(5), argument(6), string(6).

UIL Data Types

Motif Reference Manual 1214

Name
widget – widget type.

Synopsis

Syntax:
See the object section of the UIL file format reference page.

MrmType:
none

Description
Objects that are declared or defined in a UIL object section are of type widget.
Values of type widget are the only UIL values that are not declared or defined in
a value section. The literal representation of a widget is described in the object
section of the UIL file format reference page.

Usage
The type widget can be used as a parameter type in a procedure declaration or as
the type in an argument literal. When a widget is used as a callback parameter or
resource value in the declaration of another widget, it must be part of the same
hierarchy as that widget. A widget hierarchy is defined by the widget passed to
MrmFetchWidget() or MrmFetchWidgetOverride() and it includes all
of the descendants of that widget. If you need to specify a widget in a different
hierarchy as a callback parameter, you can use the string name of the widget
instead and convert it to a widget pointer in the callback with XtNameToW-
idget().

Widgets can be forward referenced. If Mrm encounters a reference to a widget
that has not been created in the current hierarchy, it creates the remainder of the
hierarchy and makes another attempt to resolve the reference. If the reference
cannot be resolved at that point, Mrm does not add the callback or set the
resource for which the widget is specified. As of Motif 1.2, Mrm does not gener-
ate a warning when a widget reference cannot be resolved.

Prior to Motif 1.2.1, the UIL compiler generates an error when widget is used as
a procedure parameter or type in an argument literal. To work around this prob-
lem, you can use the type any.

Example
...
value

! Declare Athena tree widget constraint argument.
XtNtreeParent : argument (’treeParent’, widget);

UIL Data Types

Motif Reference Manual 1215

procedure
manage (widget);

object
button1 : XmPushButton {

callbacks {
XmNactivateCallback = manage (button3);

}
arguments {

XmNbottomAttachment = XmATTACH_FORM;
XmNbottomOffset = 40;
XmNrightAttachment = XmATTACH_WIDGET;
XmNrightWidget = button1;

};
};
button2 : XmPushButton { };
button3 : XmPushButton {

arguments {
XmNbottomAttachment = XmATTACH_FORM;

};
};
form : XmForm {

controls {
XmPushButton button1;
XmPushButton button2;
unmanaged XmPushButton button3;

};
};

...

See Also
MrmFetchWidget(3), MrmFetchWidgetOverride(3), object(5),
procedure(5), argument(6).

UIL Data Types

Motif Reference Manual 1216

Name
xbitmapfile – X bitmap file type.

Synopsis

Syntax:
xbitmapfile (string_expression)

MrmType:
MrmRtypeXBitmapFile

Description
An xbitmapfile value represents a file that contains a bitmap in the standard X
bitmap file format. An xbitmapfile literal is represented by the symbol xbitmap-
file, followed by a string expression that evaluates to the name of the file contain-
ing the bitmap. The X bitmap is loaded at run-time by Mrm using
XmGetPixmapByDepth(). See Volume 1, Xlib Programming Manual, for
more information about the X bitmap file format.

Usage
The type xbitmapfile can be used as the type of an imported value, as a parameter
type in a procedure declaration, or as the type in an argument literal. An xbitmap-
file value can be retrieved by an application with MrmFetchIconLiteral().
The MrmFetchBitmapLiteral() procedure cannot be used to retrieve val-
ues of the xbitmapfile type.

When an xbitmapfile is specified as a resource value for a widget, the depth of the
pixmap created by Mrm at run-time is the same as the depth of the widget. When
an xbitmapfile is retrieved with MrmFetchIconLiteral(), the depth of the
resulting pixmap is the value returned from the DefaultDepthOfScreen()
macro.

The UIL compiler stores the specified file name in the UID output file, not the X
bitmap to which the name refers. The compiler does not verify that the specified
file exists. If an xbitmapfile specified as a resource cannot be loaded, the
resource is not set. If MrmFetchIconLiteral fails to load an xbitmapfile,
MrmNOT_FOUND is returned.

Example
...
! Declare a bitmap of the most challenging ski slope in the Northeast.
value

goat: xbitmapfile (’goat.xbm’);

object scary : XmLabel {
arguments {

UIL Data Types

Motif Reference Manual 1217

XmNlabelType = XmPIXMAP;
XmNlabelPixmap = goat;

};
};
...

See Also
XmGetPixmapByDepth(2), MrmFetchBitmapLiteral(3),
MrmFetchIconLiteral(3), MrmFetchWidget(3),
MrmFetchWidgetOverride(3), icon(6), pixmap(6).

UIL Data Types

Motif Reference Manual 1218

