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Abstract

The pls package implements Principal Component Regression (PCR) and Partial Least
Squares Regression (PLSR) in R, and is freely available from the CRAN website, licensed
under the Gnu General Public License (GPL).

The user interface is modelled after the traditional formula interface, as exemplified by
lm. This was done so that people used to R would not have to learn yet another interface,
and also because we believe the formula interface is a good way of working interactively
with models. It thus has methods for generic functions like predict, update and coef. It
also has more specialised functions like scores, loadings and RMSEP, and a flexible cross-
validation system. Visual inspection and assessment is important in chemometrics, and
the pls package has a number of plot functions for plotting scores, loadings, predictions,
coefficients and RMSEP estimates.

The package implements PCR and several algorithms for PLSR. The design is modular,
so that it should be easy to use the underlying algorithms in other functions. It is our
hope that the package will serve well both for interactive data analysis and as a building
block for other functions or packages using PLSR or PCR.

We will here describe the package and how it is used for data analysis, as well as how
it can be used as a part of other packages. Also included is a section about formulas and
data frames, for people not used to the R modelling idioms.

1 Introduction

This vignette is meant as an introduction to the pls package. It is based on the paper ‘The
pls Package: Principal Component and Partial Least Squares Regression in R’, published in
Journal of Statistical Software [18].

The PLSR methodology is shortly described in Section 2. Section 3 presents an example
session, to get an overview of the package. In Section 4 we describe formulas and data frames
(as they are used in pls). Users familiar with formulas and data frames in R can skip this
section on first reading. Fitting of models is described in Section 5, and cross-validatory choice
of components is discussed in Section 6. Next, inspecting and plotting models is described
(Section 7), followed by a section on predicting future observations (Section 8). Finally,
Section 9 covers more advanced topics such as parallel computing, setting options, using the
underlying functions directly, and implementation details.
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2 Theory

Multivariate regression methods like Principal Component Regression (PCR) and Partial
Least Squares Regression (PLSR) enjoy large popularity in a wide range of fields, includ-
ing the natural sciences. The main reason is that they have been designed to confront the
situation that there are many, possibly correlated, predictor variables, and relatively few
samples—a situation that is common, especially in chemistry where developments in spec-
troscopy since the seventies have revolutionised chemical analysis. In fact, the origin of PLSR
lies in chemistry (see, e.g., [22, 13]). The field of near-infrared (NIR) spectroscopy, with its
highly overlapping lines and difficult to interpret overtones, would not have existed but for a
method to obtain quantitative information from the spectra.

Also other fields have benefited greatly from multivariate regression methods like PLSR
and PCR. In medicinal chemistry, for example, one likes to derive molecular properties from
the molecular structure. Most of these Quantitative Structure-Activity Relations (QSAR,
and also Quantitative Structure-Property Relations, QSPR), and in particular, Comparative
Molecular Field Analysis (ComFA) [2], use PLSR. Other applications range from statistical
process control [11] to tumour classification [19] to spatial analysis in brain images [16] to
marketing [5].

In the usual multiple linear regression (MLR) context, the least-squares solution for

Y = XB + E (1)

is given by
B = (XTX)−1XTY (2)

The problem often is that XTX is singular, either because the number of variables (columns)
in X exceeds the number of objects (rows), or because of collinearities. Both PCR and PLSR
circumvent this by decomposing X into orthogonal scores T and loadings P

X = TP (3)

and regressing Y not on X itself but on the first a columns of the scores T . In PCR, the scores
are given by the left singular vectors of X, multiplied with the corresponding singular values,
and the loadings are the right singular vectors of X. This, however, only takes into account
information about X, and therefore may be suboptimal for prediction purposes. PLSR aims
to incorporate information on both X and Y in the definition of the scores and loadings. In
fact, for one specific version of PLSR, called SIMPLS [4], it can be shown that the scores and
loadings are chosen in such a way to describe as much as possible of the covariance between X
and Y , where PCR concentrates on the variance of X. Other PLSR algorithms give identical
results to SIMPLS in the case of one Y variable, but deviate slightly for the multivariate Y
case; the differences are not likely to be important in practice.

2.1 Algorithms

In PCR, we approximate the X matrix by the first a Principal Components (PCs), usually
obtained from the singular value decomposition (SVD):

X = X̃(a) + EX = (U (a)D(a))V
T
(a) + EX = T (a)P

T
(a) + EX
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Next, we regress Y on the scores, which leads to regression coefficients

B = P (T TT )−1T TY = V D−1UTY

where the subscripts a have been dropped for clarity.
For PLSR, the components, called Latent Variables (LVs) in this context, are obtained

iteratively. One starts with the SVD of the crossproduct matrix S = XTY , thereby including
information on variation in both X and Y , and on the correlation between them. The first
left and right singular vectors, w and q, are used as weight vectors for X and Y , respectively,
to obtain scores t and u:

t = Xw = Ew (4)

u = Y q = F q (5)

where E and F are initialised as X and Y , respectively. The X scores t are often normalised:

t = t/
√
tT t (6)

The Y scores u are not actually necessary in the regression but are often saved for interpre-
tation purposes. Next, X and Y loadings are obtained by regressing against the same vector
t:

p = ET t (7)

q = F T t (8)

Finally, the data matrices are ‘deflated’: the information related to this latent variable, in
the form of the outer products tpT and tqT , is subtracted from the (current) data matrices E
and F .

En+1 = En − tpT (9)

F n+1 = F n − tqT (10)

The estimation of the next component then can start from the SVD of the crossproduct
matrix ET

n+1F n+1. After every iteration, vectors w, t, p and q are saved as columns in
matrices W , T , P and Q, respectively. One complication is that columns of matrix W can
not be compared directly: they are derived from successively deflated matrices E and F .
It has been shown that an alternative way to represent the weights, in such a way that all
columns relate to the original X matrix, is given by

R = W (P TW )−1 (11)

Now, we are in the same position as in the PCR case: instead of regressing Y on X, we
use scores T to calculate the regression coefficients, and later convert these back to the realm
of the original variables by pre-multiplying with matrix R (since T = XR):

B = R(T TT )−1T TY = RT TY = RQT

Again, here, only the first a components are used. How many components are optimal has to
be determined, usually by cross-validation.

Many alternative formulations can be found in literature. It has been shown, for instance,
that only one of X and Y needs to be deflated; alternatively, one can directly deflate the
crossproduct matrix S (as is done in SIMPLS, for example). Moreover, there are many
equivalent ways of scaling. In the example above, the scores t have been normalised, but
one can also choose to introduce normalisation at another point in the algorithm. Unfortu-
nately, this can make it difficult to directly compare the scores and loadings of different PLSR
implementations.
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2.2 On the use of PLSR and PCR

In theory, PLSR should have an advantage over PCR. One could imagine a situation where a
minor component in X is highly correlated with Y ; not selecting enough components would
then lead to very bad predictions. In PLSR, such a component would be automatically present
in the first LV. In practice, however, there is hardly any difference between the use of PLSR
and PCR; in most situations, the methods achieve similar prediction accuracies, although
PLSR usually needs fewer latent variables than PCR. Put the other way around: with the
same number of latent variables, PLSR will cover more of the variation in Y and PCR will
cover more of X. In turn, both behave very similar to ridge regression [6].

It can also be shown that both PCR and PLSR behave as shrinkage methods [9], although
in some cases PLSR seems to increase the variance of individual regression coefficients, one
possible explanation of why PLSR is not always better than PCR.

3 Example session

In this section we will walk through an example session, to get an overview of the package.
To be able to use the package, one first has to load it:

> library(pls)

This prints a message telling that the package has been attached, and that the package
implements a function loadings that masks a function of the same name in package stats.
(The output of the commands have in some cases been suppressed to save space.)

Three example data sets are included in pls:

yarn A data set with 28 near-infrared spectra (NIR) of PET yarns, measured at 268 wave-
lengths, as predictors, and density as response (density) [20]. The data set also includes
a logical variable train which can be used to split the data into a training data set of
size 21 and test data set of size 7. See ?yarn for details.

oliveoil A data set with 5 quality measurements (chemical) and 6 panel sensory panel
variables (sensory) made on 16 olive oil samples [15]. See ?oliveoil for details.

gasoline A data set consisting of octane number (octane) and NIR spectra (NIR) of 60 gaso-
line samples [10]. Each NIR spectrum consists of 401 diffuse reflectance measurements
from 900 to 1700 nm. See ?gasoline for details.

These will be used in the examples that follow. To use the data sets, they must first be loaded:

> data(yarn)

> data(oliveoil)

> data(gasoline)

For the rest of the paper, it will be assumed that the package and the data sets have been
loaded as above. Also, all examples are run with options(digits = 4).

In this section, we will do a PLSR on the gasoline data to illustrate the use of pls. The
spectra are shown in Figure 1. We first divide the data set into train and test data sets:

> gasTrain <- gasoline[1:50,]

> gasTest <- gasoline[51:60,]
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Figure 1: Gasoline NIR spectra

A typical way of fitting a PLSR model is

> gas1 <- plsr(octane ~ NIR, ncomp = 10, data = gasTrain, validation = "LOO")

This fits a model with 10 components, and includes leave-one-out (LOO) cross-validated
predictions [12]. We can get an overview of the fit and validation results with the summary

method:

> summary(gas1)

Data: X dimension: 50 401

Y dimension: 50 1

Fit method: kernelpls

Number of components considered: 10

VALIDATION: RMSEP

Cross-validated using 50 leave-one-out segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

CV 1.545 1.357 0.2966 0.2524 0.2476 0.2398 0.2319

adjCV 1.545 1.356 0.2947 0.2521 0.2478 0.2388 0.2313

7 comps 8 comps 9 comps 10 comps

CV 0.2386 0.2316 0.2449 0.2673

adjCV 0.2377 0.2308 0.2438 0.2657

TRAINING: % variance explained

1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps

X 78.17 85.58 93.41 96.06 96.94 97.89 98.38 98.85

octane 29.39 96.85 97.89 98.26 98.86 98.96 99.09 99.16

9 comps 10 comps

X 99.02 99.19

octane 99.28 99.39

The validation results here are Root Mean Squared Error of Prediction (RMSEP). There are
two cross-validation estimates: CV is the ordinary CV estimate, and adjCV is a bias-corrected
CV estimate [17]. (For a LOO CV, there is virtually no difference).

It is often simpler to judge the RMSEPs by plotting them:



3 EXAMPLE SESSION 6

0 2 4 6 8 10

0.
2

0.
6

1.
0

1.
4

octane

number of components

R
M

S
E

P

CV
adjCV

Figure 2: Cross-validated RMSEP curves for the gasoline data

> plot(RMSEP(gas1), legendpos = "topright")

This plots the estimated RMSEPs as functions of the number of components (Figure 2).
The legendpos argument adds a legend at the indicated position. Two components seem to be
enough. This gives an RMSEP of 0.297. As mentioned in the introduction, the main practical
difference between PCR and PLSR is that PCR often needs more components than PLSR to
achieve the same prediction error. On this data set, PCR would need three components to
achieve the same RMSEP.

Once the number of components has been chosen, one can inspect different aspects of the
fit by plotting predictions, scores, loadings, etc. The default plot is a prediction plot:

> plot(gas1, ncomp = 2, asp = 1, line = TRUE)

This shows the cross-validated predictions with two components versus measured values
(Figure 3). We have chosen an aspect ratio of 1, and to draw a target line. The points follow
the target line quite nicely, and there is no indication of a curvature or other anomalies.

Other plots can be selected with the argument plottype:

> plot(gas1, plottype = "scores", comps = 1:3)

This gives a pairwise plot of the score values for the three first components (Figure 4).
Score plots are often used to look for patterns, groups or outliers in the data. (For instance,
plotting the two first components for a model built on the yarn dataset clearly indicates the
experimental design of that data.) In this example, there is no clear indication of grouping or
outliers. The numbers in parentheses after the component labels are the relative amount of X
variance explained by each component. The explained variances can be extracted explicitly
with

> explvar(gas1)

Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 Comp 7 Comp 8 Comp 9 Comp 10

78.1708 7.4122 7.8242 2.6578 0.8768 0.9466 0.4922 0.4723 0.1688 0.1694
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Figure 3: Cross-validated predictions for the gasoline data

The loading plot (Figure 5) is much used for interpretation purposes, for instance to look
for known spectral peaks or profiles:

> plot(gas1, "loadings", comps = 1:2, legendpos = "topleft",

+ labels = "numbers", xlab = "nm")

> abline(h = 0)

The labels = "numbers" argument makes the plot function try to interpret the variable
names as numbers, and use them as x axis labels.

A fitted model is often used to predict the response values of new observations. The
following predicts the responses for the ten observations in gasTest, using two components:

> predict(gas1, ncomp = 2, newdata = gasTest)

, , 2 comps

octane

51 87.94

52 87.25

53 88.16

54 84.97

55 85.15

56 84.51

57 87.56
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Figure 4: Score plot for the gasoline data
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4 FORMULAS AND DATA FRAMES 9

58 86.85

59 89.19

60 87.09

Because we know the true response values for these samples, we can calculate the test set
RMSEP:

> RMSEP(gas1, newdata = gasTest)

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps

1.5369 1.1696 0.2445 0.2341 0.3287 0.2780

6 comps 7 comps 8 comps 9 comps 10 comps

0.2703 0.3301 0.3571 0.4090 0.6116

For two components, we get 0.244, which is quite close to the cross-validated estimate above
(0.297).

4 Formulas and data frames

The pls package has a formula interface that works like the formula interface in R’s standard
lm functions, in most ways. This section gives a short description of formulas and data
frames as they apply to pls. More information on formulas can be found in the lm help file,
in Chapter 11 of ‘An Introduction to R’, and in Chapter 2 of ‘The White Book’ [1]. These
are good reads for anyone wanting to understand how R works with formulas, and the user is
strongly advised to read them.

4.1 Formulas

A formula consists of a left hand side (lhs), a tilde (~), and a right hand side (rhs). The lhs
consists of a single term, representing the response(s). The rhs consists of one or more terms
separated by +, representing the regressor(s). For instance, in the formula a ~ b + c + d, a
is the response, and b, c, and d are the regressors. The intercept is handled automatically,
and need not be specified in the formula.

Each term represents a matrix, a numeric vector or a factor (a factor should not be used
as the response). If the response term is a matrix, a multi-response model is fit. In pls, the
right hand side quite often consists of a single term, representing a matrix regressor: y ~ X.

It is also possible to specify transformations of the variables. For instance, log(y) ~

msc(Z) specifies a regression of the logarithm of y onto Z after Z has been transformed by
Multiplicative Scatter (or Signal) Correction (MSC) [7], a pre-treatment that is very common
in infrared spectroscopy. If the transformations contain symbols that are interpreted in the
formula handling, e.g., +, * or ^, the terms should be protected with the I() function, like
this: y ~ x1 + I(x2 + x3). This specifies two regressors: x1, and the sum of x2 and x3.

4.2 Data frames

The fit functions first look for the specified variables in a supplied data frame, and it is
advisable to collect all variables there. This makes it easier to know what data has been used
for fitting, to keep different variants of the data around, and to predict new data.
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To create a data frame, one can use the data.frame function: if v1, v2 and v3 are factors
or numeric vectors, mydata <- data.frame(y = v1, a = v2, b = v3) will result in a data
frame with variables named y, a and b.

PLSR and PCR are often used with a matrix as the single predictor term (especially when
one is working with spectroscopic data). Also, multi-response models require a matrix as the
response term. If Z is a matrix, it has to be protected by the ‘protect function’ I() in calls
to data.frame: mydata <- data.frame(..., Z = I(Z)). Otherwise, it will be split into
separate variables for each column, and there will be no variable called Z in the data frame,
so we cannot use Z in the formula. One can also add the matrix to an existing data frame:

> mydata <- data.frame(...)

> mydata$Z <- Z

This will also prevent Z from being split into separate variables. Finally, one can use cbind

to combine vectors and matrices into matrices on the fly in the formula. This is most useful
for the response, e.g., cbind(y1, y2) ~ X.

Variables in a data frame can be accessed with the $ operator, e.g., mydata$y. However,
the pls functions access the variables automatically, so the user should never use $ in formulas.

5 Fitting models

The main functions for fitting models are pcr and plsr. (They are simply wrappers for the
function mvr, selecting the appropriate fit algorithm). We will use plsr in the examples in
this section, but everything could have been done with pcr (or mvr).

In its simplest form, the function call for fitting models is plsr(formula, ncomp, data)

(where plsr can be substituted with pcr or mvr). The argument formula is a formula as
described above, ncomp is the number of components one wishes to fit, and data is the data
frame containing the variables to use in the model. The function returns a fitted model
(an object of class "mvr") which can be inspected (Section 7) or used for predicting new
observations (Section 8). For instance:

> dens1 <- plsr(density ~ NIR, ncomp = 5, data = yarn)

If the response term of the formula is a matrix, a multi-response model is fit, e.g.,

> dim(oliveoil$sensory)

[1] 16 6

> plsr(sensory ~ chemical, data = oliveoil)

Partial least squares regression , fitted with the kernel algorithm.

Call:

plsr(formula = sensory ~ chemical, data = oliveoil)

(As we see, the print method simply tells us what type of model this is, and how the fit
function was called.)

The argument ncomp is optional. If it is missing, the maximal possible number of compo-
nents are used. Also data is optional, and if it is missing, the variables specified in the formula
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is searched for in the global environment (the user’s workspace). Usually, it is preferable to
keep the variables in data frames, but it can sometimes be convenient to have them in the
global environment. If the variables reside in a data frame, e.g. yarn, do not be tempted to
use formulas like yarn$density ~ yarn$NIR! Use density ~ NIR and specify the data frame
with data = yarn as above.

There are facilities for working interactively with models. To use only part of the samples
in a data set, for instance the first 20, one can use arguments subset = 1:20 or data =

yarn[1:20,]. Also, if one wants to try different alternatives of the model, one can use the
function update. For instance

> trainind <- which(yarn$train == TRUE)

> dens2 <- update(dens1, subset = trainind)

will refit the model dens1 using only the observations which are marked as TRUE in yarn$train,
and

> dens3 <- update(dens1, ncomp = 10)

will change the number of components to 10. Other arguments, such as formula, can also be
changed with update. This can save a bit of typing when working interactively with models
(but it doesn’t save computing time; the model is refitted each time). In general, the reader is
referred to ‘The White Book’ [1] or ‘An Introduction to R’ for more information about fitting
and working with models in R.

Missing data can sometimes be a problem. The PLSR and PCR algorithms currently
implemented in pls do not handle missing values intrinsically, so observations with missing
values must be removed. This can be done with the na.action argument. With na.action

= na.omit (the default), any observation with missing values will be removed from the model
completely. With na.action = na.exclude, they will be removed from the fitting process,
but included as NAs in the residuals and fitted values. If you want an explicit error when there
are missing values in the data, use na.action = na.fail. The default na.action can be set
with options(), e.g., options(na.action = quote(na.fail)).

Standardisation and other pre-treatments of predictor variables are often called for. In
pls, the predictor variables are always centered, as a part of the fit algorithm. Scaling can
be requested with the scale argument. If scale is TRUE, each variable is standardised by
dividing it by its standard deviation, and if scale is a numeric vector, each variable is divided
by the corresponding number. For instance, this will fit a model with standardised chemical
measurements:

> olive1 <- plsr(sensory ~ chemical, scale = TRUE, data = oliveoil)

As mentioned earlier, MSC [7] is implemented in pls as a function msc that can be used
in formulas:

> gas2 <- plsr(octane ~ msc(NIR), ncomp = 10, data = gasTrain)

This scatter corrects NIR prior to the fitting, and arranges for new spectra to be automatically
scatter corrected (using the same reference spectrum as when fitting) in predict:

> predict(gas2, ncomp = 3, newdata = gasTest)

There are other arguments that can be given in the fit call: validation is for selecting
validation, and ... is for sending arguments to the underlying functions, notably the cross-
validation function mvrCv. For the other arguments, see ?mvr.
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6 Choosing the number of components with cross-validation

Cross-validation, commonly used to determine the optimal number of components to take
into account, is controlled by the validation argument in the modelling functions (mvr,
plsr and pcr). The default value is "none". Supplying a value of "CV" or "LOO" will cause
the modelling procedure to call mvrCv to perform cross-validation; "LOO" provides leave-
one-out cross-validation, whereas "CV" divides the data into segments. Default is to use ten
segments, randomly selected, but also segments of consecutive objects or interleaved segments
(sometimes also referred to as ‘Venetian blinds’) are possible through the use of the argument
segment.type. One can also specify the segments explicitly with the argument segments;
see ?mvrCv for details.

When validation is performed in this way, the model will contain an element comprising
information on the out-of-bag predictions (in the form of predicted values, as well as MSEP
and R2 values). As a reference, the MSEP error using no components at all is calculated as
well. The validation results can be visualised using the plottype = "validation" argument
of the standard plotting function. An example is shown in Figure 2 for the gasoline data;
typically, one would select a number of components after which the cross-validation error does
not show a significant decrease.

The decision on how many components to retain will to some extent always be subjective.
However, especially when building large numbers of models (e.g., in simulation studies), it can
be crucial to have a consistent strategy on how to choose the“optimal”number of components.
Two such strategies have been implemented in function selectNcomp. The first is based on the
so-called one-sigma heuristic [8] and consists of choosing the model with fewest components
that is still less than one standard error away from the overall best model. The second strategy
employs a permutation approach, and basically tests whether adding a new component is
beneficial at all [21]. It is implemented backwards, again taking the global minimum in
the crossvalidation curve as a starting point, and assessing models with fewer and fewer
components: as long as no significant deterioration in performance is found (by default on
the α = 0.01 level), the algorithm continues to remove components. Applying the function is
quite straightforward:

> ncomp.onesigma <- selectNcomp(gas2, method = "onesigma", plot = TRUE,

+ ylim = c(.18, .6))

> ncomp.permut <- selectNcomp(gas2, method = "randomization", plot = TRUE,

+ ylim = c(.18, .6))

This leads to the plots in Figure 6 – note that graphical arguments can be supplied to cus-
tomize the plots. In both cases, the global minimum of the crossvalidation curve is indicated
with gray dotted lines, and the suggestion for the optimal number of components with a
vertical blue dashed line. The left plot shows the width of the one-sigma intervals on which
the suggestion is based; the right plot indicates which models have been assessed by the per-
mutation approach through the large blue circles. The two criteria do not always agree (as
in this case) but usually are quite close.

When a pre-treatment that depends on the composition of the training set is applied,
the cross-validation procedure as described above is not optimal, in the sense that the cross-
validation errors are biased downward. As long as the only purpose is to select the optimal
number of components, this bias may not be very important, but it is not too difficult to avoid
it. The modelling functions have an argument scale that can be used for auto-scaling per
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Figure 6: The two strategies for suggesting optimal model dimensions: the left plot shows the
one-sigma strategy, the right plot the permutation strategy.

segment. However, more elaborate methods such as MSC need explicit handling per segment.
For this, the function crossval is available. It takes an mvr object and performs the cross-
validation as it should be done: applying the pre-treatment for each segment. The results
can be shown in a plot (which looks very similar to Figure 2) or summarised in numbers.

> gas2.cv <- crossval(gas2, segments = 10)

> plot(MSEP(gas2.cv), legendpos="topright")

> summary(gas2.cv, what = "validation")

Data: X dimension: 50 401

Y dimension: 50 1

Fit method: kernelpls

Number of components considered: 10

VALIDATION: RMSEP

Cross-validated using 10 random segments.

(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps

CV 1.545 1.296 0.2724 0.2483 0.2465 0.2355 0.2410

adjCV 1.545 1.294 0.2715 0.2477 0.2422 0.2321 0.2358

7 comps 8 comps 9 comps 10 comps

CV 0.2331 0.2526 0.2568 0.2677

adjCV 0.2293 0.2462 0.2489 0.2582

Applying MSC in this case leads to nearly identical cross-validation estimates of prediction
error.

When the scaling does not depend on the division of the data into segments (e.g., log-
scaling), functions crossval and mvrCv give the same results; however, crossval is much
slower.
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Cross-validation can be computationally demanding (especially when using the function
crossval). Therefore, both mvrCv and crossval can perform the calculations in parallel on
a multi-core machine or on several machines. How to do this is described in Section 9.2.

7 Inspecting fitted models

A closer look at the fitted model may reveal interesting agreements or disagreements with
what is known about the relations between X and Y. Several functions are implemented in
pls for plotting, extracting and summarising model components.

7.1 Plotting

One can access all plotting functions through the "plottype" argument of the plot method
for mvr objects. This is simply a wrapper function calling the actual plot functions; the latter
are available to the user as well.

The default plot is a prediction plot (predplot), showing predicted versus measured val-
ues. Test set predictions are used if a test set is supplied with the newdata argument. Oth-
erwise, if the model was built using cross-validation, the cross-validated predictions are used,
otherwise the predictions for the training set. This can be overridden with the which argu-
ment. An example of this type of plot can be seen in Figure 3. An optional argument can be
used to indicate how many components should be included in the prediction.

To assess how many components are optimal, a validation plot (validationplot) can
be used such as the one shown in Figure 2; this shows a measure of prediction performance
(either RMSEP, MSEP, or R2) against the number of components. Usually, one takes the
first local minimum rather than the absolute minimum in the curve, to avoid over-fitting.

The regression coefficients can be visualised using plottype = "coef" in the plot method,
or directly through function coefplot. This allows simultaneous plotting of the regression
vectors for several different numbers of components at once. The regression vectors for the
gasoline data set using MSC are shown in Figure 7 using the command

> plot(gas1, plottype = "coef", ncomp=1:3, legendpos = "bottomleft",

+ labels = "numbers", xlab = "nm")

Note that the coefficients for two components and three components are similar. This is
because the third component contributes little to the predictions. The RMSEPs (see Figure 2)
and predictions (see Section 8) for two and three components are quite similar.

Scores and loadings can be plotted using functions scoreplot (an example is shown in
Figure 4) and loadingplot (in Figure 5), respectively. One can indicate the number of
components with the comps argument; if more than two components are given, plotting the
scores will give a pairs plot, otherwise a scatter plot. For loadingplot, the default is to use
line plots.

Finally, a ‘correlation loadings’ plot (function corrplot, or plottype = "correlation"

in plot) shows the correlations between each variable and the selected components (see Fig-
ure 8). These plots are scatter plots of two sets of scores with concentric circles of radii given
by radii. Each point corresponds to an X variable. The squared distance between the point
and the origin equals the fraction of the variance of the variable explained by the components
in the panel. The default values for radii correspond to 50% and 100% explained variance,
respectively.
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Figure 8: Correlation loadings plot for the gasoline data
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The plot functions accept most of the ordinary plot parameters, such as col and pch. If
the model has several responses or one selects more than one model size, e.g. ncomp = 4:6,
in some plot functions (notably prediction plots (see below), validation plots and coefficient
plots) the plot window will be divided and one plot will be shown for each combination of
response and model size. The number of rows and columns are chosen automatically, but can
be specified explicitly with arguments nRows and nCols. If there are more plots than fit the
plot window, one will be asked to press return to see the rest of the plots.

7.2 Extraction

Regression coefficients can be extracted using the generic function coef; the function takes
several arguments, indicating the number of components to take into account, and whether
the intercept is needed (default is FALSE).

Scores and loadings can be extracted using functions scores and loadings for X, and
Yscores and Yloadings for Y. These also return the percentage of variance explained as
attributes. In PLSR, weights can be extracted using the function loading.weights. When
applied to a PCR model, the function returns NULL.

Note that commands like plot(scores(gas1)) are perfectly correct, and lead to exactly
the same plots as using scoreplot.

7.3 Summaries

The print method for an object of class "mvr" shows the regression type used, perhaps
indicating the form of validation employed, and shows the function call. The summary method
gives more information: it also shows the amount of variance explained by the model (for all
choices of a, the number of latent variables). The summary method has an additional argument
(what) to be able to focus on the training phase or validation phase, respectively. Default is
to print both types of information.

8 Predicting new observations

Fitted models are often used to predict future observations, and pls implements a predict

method for PLSR and PCR models. The most common way of calling this function is pre-

dict(mymod, ncomp = myncomp, newdata = mynewdata), where mymod is a fitted model,
myncomp specifies the model size(s) to use, and mynewdata is a data frame with new X obser-
vations. The data frame can also contain response measurements for the new observations,
which can be used to compare the predicted values to the measured ones, or to estimate the
overall prediction ability of the model. If newdata is missing, predict uses the data used to
fit the model, i.e., it returns fitted values.

If the argument ncomp is missing, predict returns predictions for models with 1 compo-
nent, 2 components, . . ., A components, where A is the number of components used when
fitting the model. Otherwise, the model size(s) listed in ncomp are used. For instance, to get
predictions from the model built in Section 3, with two and three components, one would use

> predict(gas1, ncomp = 2:3, newdata = gasTest[1:5,])

, , 2 comps
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octane

51 87.94

52 87.25

53 88.16

54 84.97

55 85.15

, , 3 comps

octane

51 87.95

52 87.30

53 88.21

54 84.87

55 85.24

(We predict only the five first test observations, to save space.) The predictions with two and
three components are quite similar. This could be expected, given that the regression vectors
(Figure 7) as well as the estimated RMSEPs for the two model sizes were similar.

One can also specify explicitly which components to use when predicting. This is done by
specifying the components in the argument comps. (If both ncomp and comps are specified,
comps takes precedence over ncomp.) For instance, to get predictions from a model with only
component 2, one can use

> predict(gas1, comps = 2, newdata = gasTest[1:5,])

octane

51 87.53

52 86.30

53 87.35

54 85.82

55 85.32

The results are different from the predictions with two components (i.e., components one
and two) above. (The intercept is always included in the predictions. It can be removed by
subtracting mymod$Ymeans from the predicted values.)

The predict method returns a three-dimensional array, in which the entry (i, j, k) is
the predicted value for observation i, response j and model size k. Note that singleton
dimensions are not dropped, so predicting five observations for a uni-response model with
ncomp = 3 gives an 5 × 1 × 1 array, not a vector of length five. This is to make it easier
to distinguish between predictions from models with one response and predictions with one
model size. (When using the comps argument, the last dimension is dropped, because the
predictions are always from a single model.) One can drop the singleton dimensions explicitly
by using drop(predict(...)):

> drop(predict(gas1, ncomp = 2:3, newdata = gasTest[1:5,]))

2 comps 3 comps

51 87.94 87.95
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52 87.25 87.30

53 88.16 88.21

54 84.97 84.87

55 85.15 85.24

Missing values in newdata are propagated to NAs in the predicted response, by default.
This can be changed with the na.action argument. See ?na.omit for details.

The newdata does not have to be a data frame. Recognising the fact that the right hand
side of PLSR and PCR formulas very often are a single matrix term, the predict method
allows one to use a matrix as newdata, so instead of

newdataframe <- data.frame(X = newmatrix)

predict(..., newdata = newdataframe)

one can simply say

predict(..., newdata = newmatrix)

However, there are a couple of caveats: First, this only works in predict. Other functions
that take a newdata argument (such as RMSEP) must have a data frame (because they also
need the response values). Second, when newdata is a data frame, predict is able to perform
more tests on the supplied data, such as the dimensions and types of variables. Third,
with the exception of scaling (specified with the scale argument when fitting the model),
any transformations or coding of factors and interactions have to be performed manually if
newdata is a matrix.

It is often interesting to predict scores from new observations, instead of response values.
This can be done by specifying the argument type = "scores" in predict. One will then
get a matrix with the scores corresponding to the components specified in comps (ncomp is
accepted as a synonym for comps when predicting scores).

Predictions can be plotted with the function predplot. This function is generic, and
can also be used for plotting predictions from other types of models, such as lm. Typically,
predplot is called like this:

> predplot(gas1, ncomp = 2, newdata = gasTest, asp = 1, line = TRUE)

This plots predicted (with 2 components) versus measured response values. (Note that
newdata must be a data frame with both X and Y variables.)

9 Further topics

This section presents a couple of slightly technical topics for more advanced use of the package.

9.1 Selecting fit algorithms

There are several PLSR algorithms, and the pls package currently implements three of them:
the kernel algorithm for tall matrices (many observations, few variables) [3], the classic orthog-
onal scores algorithm (A.K.A. NIPALS algorithm) [14] and the SIMPLS algorithm [4]. The
kernel and orthogonal scores algorithms produce the same results (the kernel algorithm being
the fastest of them for most problems). SIMPLS produces the same fit for single-response
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models, but slightly different results for multi-response models. It is also usually faster than
the NIPALS algorithm.

The factory default is to use the kernel algorithm. One can specify a different algorithm
with the method argument; i.e., method = "oscorespls".

If one’s personal taste of algorithms does not coincide with the defaults in pls, it can be
quite tedious (and error prone) having to write e.g. method = "oscorespls" every time (even
though it can be shortened to e.g. me = "o" due to partial matching). Therefore, the defaults
can be changed, with the function pls.options. Called without arguments, it returns the
current settings as a named list:

> pls.options()

$mvralg

[1] "kernelpls"

$plsralg

[1] "kernelpls"

$cpplsalg

[1] "cppls"

$pcralg

[1] "svdpc"
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$parallel

NULL

$w.tol

[1] 2.22e-16

$X.tol

[1] 1e-12

The options specify the default fit algorithm of mvr, plsr, and pcr. To return only a specific
option, one can use pls.options("plsralg"). To change the default PLSR algorithm for
the rest of the session, one can use, e.g.

> pls.options(plsralg = "oscorespls")

Note that changes to the options only last until R exits. (Earlier versions of pls stored the
changes in the global environment so they could be saved and restored, but current CRAN
policies do not allow this.)

9.2 Parallel cross-validation

Cross-validation is a computationally demanding procedure. A new model has to be fitted for
each segment. The underlying fit functions have been optimised, and the implementation of
cross-validation that is used when specifying the validation argument to mvr tries to avoid
any unneeded calculations (and house-keeping things like the formula handling, which can be
surprisingly expensive). Even so, cross-validation can take a long time, for models with large
matrices, many components or many segments.

By default, the cross-validation calculations in pls is performed serially, on one CPU (core).
(In the following, we will use ‘CPU’ to denote both CPUs and cores.)

Since version 2.14.0, R has shipped with a package parallel for running calculations in
parallel, on multi-CPU machines or on several machines. The pls package can use the facilities
of parallel to run the cross-validations in parallel.

The parallel package has several ways of running calculations in parallel, and not all of
them are available on all systems. Therefore, the support in pls is quite general, so one can
select the ways that work well on the given system.

To specify how to run calculations in parallel, one sets the option parallel in pls.options.
After setting the option, one simply runs cross-validatons as before, and the calculations will
be performed in parallel. This works both when using the crossval function and the vali-

dation argument to mvr. The parallel specification has effect until it is changed.
The default value for parallel is NULL, which specifies that the calculations are done

serially, using one CPU. Specifying the value 1 has the same effect.
Specifying an integer > 1 makes the calculations use the function mclapply with the given

number as the number of CPUs to use. Note: mclapply depends on ‘forking’ which does not
exist on MS Windows, so mclapply cannot be used there.

Example:

pls.options(parallel = 4) # Use mclapply with 4 CPUs

gas1.cv <- plsr(octane ~ NIR, ncomp = 10, data = gasTrain, validation = "LOO")
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The parallel option can also be specified as a cluster object created by the makeCluster

function from the package parallel. Any following cross-validation will then be performed
with the function parLapply on that cluster. Any valid cluster specification can be used.
The user should stop the cluster with stopCluster(pls.options()$parallel) when it is
no longer needed.

library(parallel) # Needed for the makeCluster call

pls.options(parallel = makeCluster(4, type = "PSOCK")) # PSOCK cluster, 4 CPUs

gas1.cv <- plsr(octane ~ NIR, ncomp = 10, data = gasTrain, validation = "LOO")

## later:

stopCluster(pls.options()$parallel)

Several types of clusters are available: FORK uses forking, so starting the cluster is very
quick, however it is not available on MS Windows. PSOCK starts R processes with the
Rscript command, which is slower, but is supported on MS Windows. It can also start
worker processes on different machines (see ?makeCluster for how). MPI uses MPI to start
and communicate with processes. This is the most flexible, but is often slower to start up
than the other types. It also dependens on the packages snow and Rmpi to be installed and
working. It is especially useful when running batch jobs on a computing cluster, because MPI
can interact with the queue system on the cluster to find out which machines to use when the
job starts.

Here is an example of running a batch job on a cluster using MPI:
R script (myscript.R):

library(parallel) # for the makeCluster call

pls.options(parallel = makeCluster(16, type = "MPI") # MPI cluster, 16 CPUs

gas1.cv <- plsr(octane ~ NIR, ncomp = 10, data = gasTrain, validation = "LOO")

## later:

save.image(file = "results.RData")

stopCluster(pls.options()$parallel)

mpi.exit() # stop Rmpi

To run the job:

mpirun -np 1 R --slave --file=myscript.R

The details of how to run mpirun varies between the different MPI implementations and how
they interact with the queue system used (if any). The above should work for OpenMPI or
Intel MPI running under the Slurm queue system. In other situations, one might have to
specify which machines to use with, e.g., the -host or -machinefile switch.

9.3 Package design

The pls package is designed such that an interface function mvr handles the formula and
data, and calls an underlying fit function (and possibly a cross-validation function) to do the
real work. There are several reasons for this design: it makes it easier to implement new
algorithms, one can easily skip the time-consuming formula and data handling in computing-
intensive applications (simulations, etc.), and it makes it easier to use the pls package as a
building block in other packages.
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The plotting facilities are implemented similarly: the plot method simply calls the correct
plot function based on the plottype argument. Here, however, the separate plot functions are
meant to be callable interactively, because some people like to use the generic plot function,
while others like to use separate functions for each plot type. There are also plot methods
for some of the components of fitted models that can be extracted with extract functions, like
score and loading matrices. Thus there are several ways to get some plots, e.g.:

plot(mymod, plottype = "scores", ...)

scoreplot(mymod, ...)

plot(scores(mymod), ...)

One example of a package that uses pls is lspls, available on CRAN. In that package LS is
combined with PLS in a regression procedure. It calls the fit functions of pls directly, and also
uses the plot functions to construct score and loading plots. There is also the plsgenomics

package, which includes a modified version of (an earlier version of) the SIMPLS fit function
simpls.fit.

9.4 Calling fit functions directly

The underlying fit functions are called kernelpls.fit, oscorespls.fit, and simpls.fit

for the PLSR methods, and svdpc.fit for the PCR method. They all take arguments X, Y,
ncomp, and stripped. Arguments X, Y, and ncomp specify X and Y (as matrices, not data
frames), and the number of components to fit, respectively. The argument stripped defaults
to FALSE. When it is TRUE, the calculations are stripped down to the bare minimum required
for returning the X means, Y means, and the regression coefficients. This is used to speed
up cross-validation procedures.

The fit functions can be called directly, for instance when one wants to avoid the overhead
of formula and data handling in repeated fits. As an example, this is how a simple leave-one-
out cross-validation for a uni-response-model could be implemented, using the SIMPLS:

> X <- gasTrain$NIR

> Y <- gasTrain$octane

> ncomp <- 5

> cvPreds <- matrix(nrow = nrow(X), ncol = ncomp)

> for (i in 1:nrow(X)) {

+ fit <- simpls.fit(X[-i,], Y[-i], ncomp = ncomp, stripped = TRUE)

+ cvPreds[i,] <- (X[i,] - fit$Xmeans) %*% drop(fit$coefficients) +

+ fit$Ymeans

+ }

The RMSEP of the cross-validated predictions are

> sqrt(colMeans((cvPreds - Y)^2))

[1] 1.3570 0.2966 0.2524 0.2476 0.2398

which can be seen to be the same as the (unadjusted) CV results for the gas1 model in
Section 3.
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9.5 Formula handling in more detail

The handling of formulas and variables in the model fitting is very similar to what happens in
the function lm: The variables specified in the formula are looked up in the data frame given
in the data argument of the fit function (plsr, pcr or mvr), or in the calling environment
if not found in the data frame. Factors are coded into one or more of columns, depending
on the number of levels, and on the contrasts option. All (possibly coded) variables are then
collected in a numerical model matrix. This matrix is then handed to the underlying fit or
cross-validation functions. A similar handling is used in the predict method.

The intercept is treated specially in pls. After the model matrix has been constructed,
the intercept column is removed. This ensures that any factors are coded as if the intercept
was present. The underlying fit functions then center the rest of the variables as a part of the
fitting process. (This is intrinsic to the PLSR and PCR algorithms.) The intercept is handled
separately. A consequence of this is that explicitly specifying formulas without the intercept
(e.g., y ~ a + b - 1) will only result in the coding of any factors to change; the intercept
will still be fitted.
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