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CHAPTER 16

Missing Values: Lowering Blood
Pressure During Surgery

16.1 Introduction

It is sometimes necessary to lower a patient’s blood pressure during surgery,
using a hypotensive drug. Such drugs are administered continuously during
the relevant phase of the operation; because the duration of this phase varies
so does the total amount of drug administered. Patients also vary in the extent
to which the drugs succeed in lowering blood pressure. The sooner the blood
pressure rises again to normal after the drug is discontinued, the better. The
data in Table 16.1 (a missing-value version of the data presented by ?) relate to
a particular hypotensive drug and give the time in minutes before the patient’s
systolic blood pressure returned to 100mm of mercury (the recovery time), the
logarithm (base 10) of the dose of drug in milligrams, and the average systolic
blood pressure achieved while the drug was being administered. The question
of interest is how is the recovery time related to the other two variables? For
some patients the recovery time was not recorded and the missing values are
indicated as NA in Table 16.1.

Table 16.1: bp data. Blood pressure data.

logdose bloodp recovtime logdose bloodp recovtime

2.26 66 7 2.70 73 39
1.81 52 10 1.90 56 28
1.78 72 18 2.78 83 12
1.54 67 NA 2.27 67 60
2.06 69 10 1.74 84 10
1.74 71 13 2.62 68 NA
2.56 88 21 1.80 64 22
2.29 68 12 1.81 60 21
1.80 59 9 1.58 62 14
2.32 73 NA 2.41 76 4
2.04 68 20 1.65 60 27
1.88 58 31 2.24 60 26
1.18 61 23 1.70 59 NA
2.08 68 22 2.45 84 15
1.70 69 13 1.72 66 8
1.74 55 9 2.37 68 46
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Table 16.1: bp data (continued).

logdose bloodp recovtime logdose bloodp recovtime

1.90 67 50 2.23 65 24
1.79 67 NA 1.92 69 NA
2.11 68 11 1.99 72 25
1.72 59 8 1.99 63 45
1.74 68 NA 2.35 56 72
1.60 63 16 1.80 70 25
2.15 65 23 2.36 69 28
2.26 72 7 1.59 60 10
1.65 58 NA 2.10 51 25
1.63 69 NA 1.80 61 44
2.40 70 NA

16.2 Analyzing Multiply Imputed Data

From the analysis of each data set we need to look at the estimates of the
quantity of interest, say Q, and the variance of the estimates. We let Q̂i be
the estimate from the ith data set and Si its corresponding variance. The
combined estimate of the quantity of interest is

Q̄ =
1

m

m∑

i=1

Q̂i.

To find the combined variance involves first calculating the within-imputation
variance,

S̄ =
1

m

m∑

i=1

Si

followed by the between-imputation variance,

B =
1

m− 1

m∑

i=1

(Q̂i − Q̄)2

then the required total variance can now be found from

T = S̄ + (1 +m−1)B

This total variance is made up of two components; the first which preserves the
natural variability, S̄, is simply the average of the variance estimates for each
imputed data set and is analogous to the variance that would be suitable if we
did not need to account for missing data; the second component, B, estimates
uncertainty caused by missing data by measuring how the point estimates
vary from data set to data set. More explanation of how the formula for T
arises is given in ?.
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The overall standard error is simply the square root of T . A significance
test for Q and a confidence interval is found from the usual test statistic, (Q−

hypothesized value of Q)/
√

T , the value of which is referred to a Student’s
t-distribution. The question arises however as to what is the appropriate value
for the degrees of freedom of the test, say v0? ? suggests that the answer to
this question is given by;

v0 = (m− 1)(1 + 1/r2)

where

r =
B +B/m

S̄

But ? noted that using this value of v0 can produce values that are larger than
the degrees of freedom in the complete data, a result which they considered
‘clearly inappropriate’. Consequently they developed an adapted version that
does not lead to the same problem. Barnard and Rubin’s revised value for the
degrees of freedom of the t-test in which we are interested is v1 given by;

v1 =
v0v2

v0 + v2

where

v2 =
n(n− 1)(1− λ)

n+ 2

and

λ =
r

√

r2 + 1
.

The quantity v1 is always less than or equal to the degrees of freedom of the
test applied to the hypothetically complete data. (For more details see ?).

16.3 Analysis Using R

To begin we shall analyze the blood pressure data in Table 16.1 using the
complete-case approach, i.e., by simply removing the data for patients where
the recovery time is missing. To begin we might simply count the number of
missing values using the sapply function as follows:

R> sapply(bp, function(x) sum(is.na(x)))

logdose bloodp recovtime

0 0 10

So there are ten missing values of recovery time but no missing values amongst
the other two variables. Now we use the summary function to look at some basic
statistics of the complete data for recovery time:

R> summary(bp$recovtime, na.rm = TRUE)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

4.0 10.5 21.0 22.4 26.5 72.0 10
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R> layout(matrix(1:3, nrow = 1))

R> plot(bloodp ~ logdose, data = bp)

R> plot(recovtime ~ bloodp, data = bp)

R> plot(recovtime ~ logdose, data = bp)
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Figure 16.1 Scatterplots of the complete cases of the bp data.

And next we can calculate the complete data estimate of the standard devia-
tion of recover time

R> sd(bp$recovtime, na.rm = TRUE)

[1] 15.1

The final numerical results we might be interested in are the correlations of
recovery time with blood pressure and of recovery time with logdose. These
can be found as follows:

R> with(bp, cor(bloodp, recovtime, use = "complete.obs"))

[1] -0.189

R> with(bp, cor(logdose, recovtime, use = "complete.obs"))

[1] 0.21

And a useful graphic of the data is a scatterplot matrix which we can construct
using pairs. The scatterplot matrix is given in Figure 16.1.

To investigate how recovery time is related to blood pressure and logdose we
might begin by fitting a multiple linear regression model (see Chapter ??). The
relevant command and the summary of the results is shown in Figure 16.2.
Note that this summary output reports that ten observations with missing
values were removed prior to the analysis; this is default for many models in
R.
Now let us see what happens when we impute the missing values of the

recovery time variable simply by the mean of the complete case; for this we
will use the mice (?) package;
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R> summary(lm(recovtime ~ bloodp + logdose, data = bp))

Call:

lm(formula = recovtime ~ bloodp + logdose, data = bp)

Residuals:

Min 1Q Median 3Q Max

-20.06 -10.49 -1.77 5.92 36.46

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.310 18.414 1.75 0.087

bloodp -0.688 0.301 -2.28 0.028

logdose 17.773 7.497 2.37 0.023

Residual standard error: 14.2 on 40 degrees of freedom

(10 observations deleted due to missingness)

Multiple R-squared: 0.154, Adjusted R-squared: 0.112

F-statistic: 3.65 on 2 and 40 DF, p-value: 0.0349

Figure 16.2 R output of the complete-case linear model for the bp data.

R> library("mice")

We begin by creating a new data set, imp, which will contain the three variables
log-dose, blood pressure, and recovery time with the missing values in the
latter replaced by the mean recovery time of the complete cases;

R> imp <- mice(bp, method = "mean", m = 1, maxit = 1)

iter imp variable

1 1 recovtime

So now we can find the summary statistics of recovery time to compare with
those given previously

R> with(imp, summary(recovtime))

call :

with.mids(data = imp, expr = summary(recovtime))

call1 :

mice(data = bp, m = 1, method = "mean", maxit = 1)

nmis :

logdose bloodp recovtime

0 0 10

analyses :

[[1]]

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.0 12.0 22.4 22.4 25.0 72.0

Making the comparison we see that only the values of the first and third
quantile and the median have changed. The minimum and maximum values
are the same and so, of course, is the mean. But of more interest is what
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happens to the sample standard deviation; its value for the imputed data can
be found using:

R> with(imp, sd(recovtime))

call :

with.mids(data = imp, expr = sd(recovtime))

call1 :

mice(data = bp, m = 1, method = "mean", maxit = 1)

nmis :

logdose bloodp recovtime

0 0 10

analyses :

[[1]]

[1] 13.6

The value for the imputed data, 13.56 is, as we would expect, lower than that
for the complete data, 15.09. What about the correlations?

R> with(imp, cor(bloodp, recovtime))

call :

with.mids(data = imp, expr = cor(bloodp, recovtime))

call1 :

mice(data = bp, m = 1, method = "mean", maxit = 1)

nmis :

logdose bloodp recovtime

0 0 10

analyses :

[[1]]

[1] -0.183

R> with(imp, cor(logdose, recovtime))

call :

with.mids(data = imp, expr = cor(logdose, recovtime))

call1 :

mice(data = bp, m = 1, method = "mean", maxit = 1)

nmis :

logdose bloodp recovtime

0 0 10

analyses :

[[1]]

[1] 0.186
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R> layout(matrix(1:2, nrow = 1))

R> plot(recovtime ~ bloodp, data = complete(imp),

+ pch = is.na(bp$recovtime) + 1)

R> plot(recovtime ~ logdose, data = complete(imp),

+ pch = is.na(bp$recovtime) + 1)

R> legend("topleft", pch = 1:2, bty = "n",

+ legend = c("original", "imputed"))
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Figure 16.3 Scatterplots of the imputed bp data. Imputed observations are de-
picted as triangles.

The correlations of blood pression and recovery time are very similar before
(−0.19) after (−0.18) imputation. For log-dose, imputation changes the cor-
relation from 0.21 to 0.19.

The scatterplot of the imputed data is found as given by the code displayed
with Figure 16.3. For mean imputation, the imputed value of the recovery
time is constant for all observations and so they appear as a series of points
along the value of the mean value of the observed recovery times namely, 22.4.

Comparison of the multiple linear regression results in Figure 16.4 with
those in Figure 16.2 show some interesting differences, for example, the stan-
dard errors of the regression coefficients are somewhat lower for the mean
imputed data but the conclusions drawn from the results in each table would
be broadly similar.

The single imputation of a sample mean is not to be recommended and so
we will move on to using a more sophisticated multiple imputation procedure
know as predictive mean matching. The method is described in detail in ?
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R> with(imp, summary(lm(recovtime ~ bloodp + logdose)))

call :

with.mids(data = imp, expr = summary(lm(recovtime ~ bloodp +

logdose)))

call1 :

mice(data = bp, m = 1, method = "mean", maxit = 1)

nmis :

logdose bloodp recovtime

0 0 10

analyses :

[[1]]

Call:

lm(formula = recovtime ~ bloodp + logdose)

Residuals:

Min 1Q Median 3Q Max

-19.31 -8.19 -0.60 5.11 38.38

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.004 15.915 2.20 0.032

bloodp -0.606 0.262 -2.31 0.025

logdose 13.864 5.960 2.33 0.024

Residual standard error: 12.9 on 50 degrees of freedom

Multiple R-squared: 0.128, Adjusted R-squared: 0.0928

F-statistic: 3.66 on 2 and 50 DF, p-value: 0.0328

Figure 16.4 R output of the mean imputation linear model for the bp data.

who considers it both easy-to-use and versatile. And imputations outside the
observed data range will not occur so that problems with meaningless impu-
tations, for example, a negative recovery time, will not occur. The method is
labeled pmm in the mice package and here we will apply it to the blood pres-
sure data with m = 10 (we need to fix the seed in order to make the result
reproducible):

R> imp_ppm <- mice(bp, m = 10, method = "pmm",

+ print = FALSE, seed = 1)

The scatterplot of the imputed data is found as given by the code displayed
with Figure 16.5. We only show the imputed recovery times from the first
iteration (m = 1).The imputed recovery times now take different values.
From the resulting object we can compute the mean and standard deviations

of recovery time for each of the m = 10 iterations. We first extract these
numbers from the analyses element of the returned object, convert this list
to a vector, and use the summary function to compute the usual summary
statistics:

R> summary(unlist(with(imp_ppm, mean(recovtime))$analyses))

Min. 1st Qu. Median Mean 3rd Qu. Max.

20.6 21.5 22.2 22.1 22.6 23.1
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R> layout(matrix(1:2, nrow = 1))

R> plot(recovtime ~ bloodp, data = complete(imp_ppm),

+ pch = is.na(bp$recovtime) + 1)

R> plot(recovtime ~ logdose, data = complete(imp_ppm),

+ pch = is.na(bp$recovtime) + 1)

R> legend("topleft", pch = 1:2, bty = "n",

+ legend = c("original", "imputed"))
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Figure 16.5 Scatterplots of the multiple imputed bp data (first iteration). Im-
puted observations are depicted as triangles.

R> summary(unlist(with(imp_ppm, sd(recovtime))$analyses))

Min. 1st Qu. Median Mean 3rd Qu. Max.

14.0 14.3 14.8 14.9 15.6 16.0

We do the same with the correlations as follows

R> summary(unlist(with(imp_ppm,

+ cor(bloodp, recovtime))$analyses))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.249 -0.195 -0.167 -0.171 -0.150 -0.116

R> summary(unlist(with(imp_ppm,

+ cor(logdose, recovtime))$analyses))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.103 0.165 0.236 0.224 0.256 0.364

The estimate of the mean of the blood pressure data from the multiply im-
puted results is 22.09, very similar to the values found previously. Similarly
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the estimate of the standard deviation of the data is 14.93 which lies between
the complete data estimate and the mean-imputed value. The two correla-
tion estimates are also very close to the previous values. The variation in the
estimates of mean, standard deviation, and correlations across the ten impu-
tation is relatively small apart from that for the correlation between log-dose
and recovery time – here there is considerable variation in the values for the
ten imputations.
Finally, we will fit a linear model to each of the imputed samples and then

find the summary statistics for the ten sets of regression coefficients: the results
are given in Figure 16.6:

R> fit <- with(imp_ppm, lm(recovtime ~ bloodp + logdose))

R> summary(pool(fit))

term estimate std.error statistic df p.value

1 (Intercept) 33.216 18.786 1.77 36.5 0.0854

2 bloodp -0.683 0.292 -2.34 45.2 0.0236

3 logdose 17.166 7.922 2.17 22.9 0.0409

Figure 16.6 R output of the multiple imputed linear model for the bp data.

The result for blood pressure is similar to the previous complete data and
mean-imputed results with the regression coefficient for this variable being
highly significant NA But the result for log dose differs from those found
previously; for the multiply imputed data the regression coefficient for log
dose is not significant at the 5% level NA whereas in both of the previous
two analyses it was significant. This finding reflects the greater variation of
the value of the correlation between log dose and recovery time in the ten
imputations noted above. (Remember that the standard errors in Figure 16.6
computed by pool arise from the formulae given in Section 16.2.)
Now suppose we wish to test the hypothesis that in the population from

which the sample data in Table 16.1 arises a mean recovery time of 27 minutes.
We will test this hypothesis in the usual way using Student’s t-test applied to
the complete-data, the singly imputed data, and the multiply imputed data:

R> with(bp, t.test(recovtime, mu = 27))

One Sample t-test

data: recovtime

t = -2, df = 42, p-value = 0.05

alternative hypothesis: true mean is not equal to 27

95 percent confidence interval:

17.8 27.0

sample estimates:

mean of x

22.4

R> with(imp, t.test(recovtime, mu = 27))$analyses[[1]]
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One Sample t-test

data: recovtime

t = -2, df = 52, p-value = 0.02

alternative hypothesis: true mean is not equal to 27

95 percent confidence interval:

18.7 26.1

sample estimates:

mean of x

22.4

For the multiply imputed data we need to use the lm function to get the
equivalent of the t-test by modeling recovery time minus 27 with an intercept
only and testing for zero intercept. So the code needed is:

R> fit <- with(imp_ppm, lm(I(recovtime - 27) ~ 1))

R> summary(pool(fit))

term estimate std.error statistic df p.value

1 (Intercept) -4.91 2.22 -2.22 39.2 0.0325

Looking at the results of the three analyses we see that the complete-case
analysis fails to reject the hypothesis at the 5% level whereas the other two
analyses lead to results that are statistically significant at the level. This simple
(and perhaps rather artificial) example demonstrates that different conclusions
can be reached by the different approaches.

16.4 Summary of Findings

The estimated standard deviation of the blood pressure is lower when com-
puted from the mean-imputed data than from the complete data. The corre-
sponding value from the multiply imputed data lies between these two values.
The estimate of the mean from the multiply imputed data is very similar to

the value obtained in the complete data analysis. (The value from the singly
imputed data is, of course, the same as from the complete data.)

The estimates of the correlations between blood pressure and recovery time
and log dose and recovery time are very similar in all three analyses but the
variation in the latter across the ten multiple imputations is considerable and
this results in the regression coefficient for log dose being less significant than
in the other two analyses.

Testing the hypothesis that the population mean of recovery time is 27
minutes using complete-case analysis leads to a different conclusion than is
arrived at by the two multiple imputations approaches.

16.5 Final Comments

Missing values are an ever-present possibility in all types of studies although
everything possible should be done to avoid them. But when data contain
missing values multiple imputation can be used to provide valid inferences for
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parameter estimates from the incomplete data. If carefully handled, multiple
imputation can cope with missing data in all types of variables. In this chapter
we have given only a brief account of dealing with missing values; a detailed
account is available in the issue of Statistical Methods in Medical Research

entitled Multiple Imputation: Current Perspectives (Volume 16, Number 3,
2007) and in ?.

Exercises

Ex. 16.1 The data in Table 16.2 give the lowest temperatures (in Fahrenheit)
recorded in various months for cities in the US; missing values are indicated
by NA. Calculate the correlation matrix of the data using

1. the complete-case approach,

2. the available-data approach, and

3. a multiple-imputation approach.

Find the principal components of the data using each of three correlation
matrices and plot the cities in the space of the first two components of each
solution.

Table 16.2: UStemp data. Lowest temperatures in Fahrenheit
recorded in various months for cities in the US.

January April July October

Atlanta -8 26 53 28
Baltimore -7 20 NA 25
Bismark -44 -12 35 5
Boston -12 16 54 28
Chicago -27 7 40 17
Dallas 4 NA 59 29
Denver -25 -2 43 3
ElPaso -8 23 57 NA
Honolulu 53 57 67 NA
Houston 12 31 62 33
Juneau -22 6 36 11
LosAngeles 23 39 49 NA
Miami 30 46 69 51
Nashville -17 23 51 26
NewYork -6 12 52 28
Omaha -23 5 44 13
Phoenix NA 32 61 34
Portland -26 8 40 15
Reno -16 NA 33 8
SanFrancisco 24 31 43 NA
Seattle NA 29 43 28
Washington -5 24 55 29
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Ex. 16.2 Find 95% confidence intervals for the population means of the lowest
temperature in each month using

1. the complete-case approach,

2. the mean value imputation, and

3. a multiple-imputation approach.

Ex. 16.3 Find the correlation matrix for the four months in Table 16.2 using
complete-case analysis, listwise deletion, and multiple imputation.
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