Athena Widget Set -
C Language Interface

X Consortium Standard

Chris D. Peterson, formerly MIT X Consortium

Athena Widget Set - C Language Interface: X Consortium Standard
by ChrisD. Peterson

X Version 11, Release 7.7
Copyright © 1985, 1986, 1987, 1988, 1989, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The OpenGroup.
Copyright © 1985, 1986, 1987, 1988, 1989, 1991 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appearsin all copies and that both that copyright notice and this permission notice appear in supporting documentation, and
that the name of Digital not be used in in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. Digital makes no representations about the suitability of the software described herein for any purpose. It is provided “as is”
without express or implied warranty.

Table of Contents

1. Athena Widgets and The INTHNSICS ...covvuoiiiiiiee e 1
INtroduction t0 the X TOOIKITiiiiiiiieieii e 1
I 11011 0T0] oo | TS PSP SOPPTTRP 2
UNAErTying MOOEL ..ot e 3
Conventions Used in thiS ManUalooooeuiiiiiiiiii e 3
Format of the Widget Reference Chapterso.vuiiiiiiiie i 4
INPUL FOCUS ...t ettt e e et e e r e e e eae s 5

2. USING WIAGELS ... ettt ettt ettt e et et et e e e eba e e eeaans 6
USING WIHOELS ...ttt ettt ettt e ettt ettt n e e e e et e e e enanaeeees 6

SEtiNg the LOCAIEceevieiiei et 6
Initializing the TOOIKITuii e 6
Creating @ WIAQELooeeiiie e 7
COMMON RESDUITESietieiriieiii ettt ettt e et e e e e e e ena s 7
RESOUICE CONVEISIONS ...ttt ettt ettt ettt ettt ettt e et e et e e e 8
RealiZiNg @ WILGELeiiiii e 9
Processing EVENTScooouiiiiiiii e 10
Standard Widget Manipulation FUNCLIONSviiiiiiiniiiiie e 10
Using the Client Callback INterfaceooooivviiiiiii e 12
Programming CONSIAEIAIIONSuuuieiiriieeiiiie e et e ettt e e et e e e e e eena e eees 13
EXAMPIE PrOgIaImSiiiiiiiee ettt ettt eaees 17

3. SIMPIE WILGELS ...ttt ettt 18

ComMMENT WIAGELceeerieeeet ettt 18
RESDUITES ...ttt ettt e et e e e e aeas 19
COomMMEANG ACHIONS ...ttt ettt e e e e s 20

GEIP WIGEL ...ttt e e e e e e e 21
RESDUITES ...ttt ettt e et e e e e aeas 21
GIIP ACHIONS ..ottt et ettt e et ettt e e e et e e eea e ennas 22

LaDE WIAGEL ...ttt 23
RESDUITES ...t ettt et e et e e e e eaaeas 23

B AT AY o o = TSP PPPRTR 24
RESDUITES ...t ettt et e et e e e e eaaeas 25
(RS AN o1 o PP 27
LiSt CAllDBCKS ... ceeeei et 27
Changing the LIStccoouuiiiiii e 28
Highlighting @n TTemeee e 28
Unhighlighting an [TemM ..o e 28
Retrieving the Currently Selected 1temoiiiiiiiiii e 28
L= [Toi 0] P 29

PanNer WILGEL ... 29
RESDUICES ...t ettt e et et e e e e e eaaeas 29
PaNNEr ACHIONS ...t 31
Panner CallDacKSooouuiiiii e 32

REPEALET WILGEL ...t e 32
RESOUICES ...t et 33
REPEALET ACLIONS ...ttt ettt e et e eee 34

SCrollar WIGEL ... oot 35
RESOUICES ...t et 35
SCrollar ACHIONSuieiiii et 37
SCrollbar CallDaCKSiiiiii e 38
CONVENIENCE ROULINEScovtiiiiiiie ettt ettt et e eaans 39
Setting FlOBL RESOUICEScovtteeiiiii ettt e e 39

SIMPIE WILGEL ...ttt 40
RESDUITES ...t ettt e e e e e e e e eaaeas 40

SUPCHAIT WIAGEL ...ttt 41
RESDUITES ...t ettt e e e e e e e e eaaeas 41

Athena Widget Set -
C Language Interface

Getting the StripChart Valueoiiiiiiiii e 42
B0 To o =TT T o = P 43
RESOUICES ... eiitiei ettt e 43
B0 oo =30 AN v 1 45
B0 oo =30 AN v 1 45
RAIO GIOUPS ... ciiiciiii et e e e e e e e e e e e e eens 46
COoNVENIENCE ROULINESiiiieiiieiie et e e e e e e e e e e e e e e e e st e e e eaaeees 46

Y 11 S PP 48
USING the IMENUS ... e e e e e e e e et e e et e e eaa e eees 48
S TSI @ o] = o PP 48
RESOUICES ... eiiit ettt et 49
Subclassing the SME ODJECEuiiiii e 49
SMEBSB ObJECE ... eeiitiiei ittt e e e e et e e e e et a e e et e e e e et e e eera e aaae 49
RESOUICES ... e ittt e 50
SMELINE OBJECE ..uiiiiiii e e 51
RESOUICES ... e ittt e 51

LI 1= T AL o (o = 53
TEXE WIAQEL FOr USEIS ..uiiiiiiii et e e e e e e e e e e e e e e e eaaeees 53
Default Key BiNAINGSuoiiiiiiii e e e e e e e e e eaae s 53
Search and REPIACEcvieii 54

L LT 0= o o TS 55

Text SAlECtioNS FOr USEIS ...iviuiiii e 56
=AY/ To o 1= ot PN 56
Cursor Movement ACtIONS\TPouiiiiic e 57
DEEIE ACHIONS ...uiiiiicii e e e e e e e e e e e et e e e aen 58
SElECHON ACHIONS ...t e e e e 58

The N&W LinE ACHIONSciiiiiiii et e e e e e e e e e e eanees 59

Kill @0 ACLIONS ...uuiit e e e e e e e e aaas 59
MiISCEIIANEOUS ACLIONS .. .ovuiiii i e e e e e 60

Text Selections for Application Programmersceeeueviiiieeieeeiiieciineeeieeeennns 61
Default Trandation BiNAINGSeviiniiiiieii e e e e e e 62
= o0 P 63
S = o o T 1= 64
Unhighlighting TEXEuuiiiici e e e e e aen 64
Getting Current Text SElECHIONocvvuiiiiii e 64
REPIBCING TEXE ..ovniiiiii et e e 65
SEarChiNg fOr TEXE ..oovviiii i e e e s 65
RS (1S o = Y71 o T =« SN 66
Resources ConvenienCe ROULINESccuuiiiiiieiie e e e e e e e e e e aaes 66
Customizing the TeXt WIAGELcovviiiiiicii e e e e e 67
B2 AT/ T o 1= PN 68
RESOUICES ... eiitit it 68
=S T G o= PP 69
RESOUICES .. eiititi et e 70
SUbClassiNg the TEXISINK ...cuvuiiii e e 70
=S (o @ o= o P 74
RESOUICES .. eiititi et e 74
SUBCIASSING thE TEXISIC ..uivviiiii et e e 74

Ascii Sink Object and Multi SINK OBJECEuiiiiiieiiii e 77
RESOUICES .. viiieieti i et 77

Ascii Source Object and Multi Source ODJECEuvvvviiiiiieiie e, 78
RESOUICES .. viiieieti i et 79
COoNVENIENCE ROULINESiiiieiiiiei e e e e e e e e e e e e e e e e et e e e eaaeees 79

F NS o T = Ao o T 80
RESOUICES .. viiieieti i et 8l

6. Composite and Constraint WIAQELSiiiuiiiiiiiiie e e e e e e 83
[7o)t QY To o = P 83
RESOUICES .. viiieieti i et 84

Athena Widget Set -
C Language Interface

LI Y0 | Q= 1 7= 411 <= 85

DT oo YAV o o [~ PN 85
RESOUICES ... e e e et 86
CONSLTAINE RESOUICESviivtieit ittt et e e et e e e e et et e e e e e et e e b e ereeenns 87

LI Y0 | Q= 1 7= 411 <= 87
Automatically Created Children.ccoooiiiiii e 88
CONVENIENCE ROULINEScviiiiiieiiee ettt e e et e e eaes 89
o T4V T o= N 89
RESOUICES ... e e e et 90
CONSLTAINE RESOUICESviivtieit ittt et e e et e e e e et et e e e e e et e e b e ereeenns 90

[Y0 | Q= 1 7= 411 <= 91
CONVENIENCE ROULINEScviiiiiieiiee ettt e e et e e eaes 92

[0= B0V o o= 92
Using the Paned WIdQELoiiiiiiiiic e 93
RESOUICES ... e e e 93
CONSLTAINE RESOUICESviivtieitiii it tee e e e e e et e e et e e e e e et e et e ebaeenns 95

[Y0 | Q= 1 7= 411 <= 96

GIIP TraNG@tionSuiiiiieii e e e e e e e 97
CONVENIENCE ROULINEScviiiiiiieiiee ettt ettt et e e aaes 98
o100 F= YAV o o= PPN 99
RESOUICES ... e e e 99

[Yo | = 17 411 o= PPN 100
POrthole Callbackscuuiiiii e 100

I = =AY/ o o = P 100
RESOUICES . ..ciii i e e e eaaas 101
CONSLTAINE RESOUICES ...evieitieitieii et e e et e e et e e e e e e e et e eaeens 102

[Yo | = 7= 411 o= PPN 102
CONVENIENCE ROULINESovviiiiiieieeee e e 102
VL= T o o) VYo o = N 102
RESOUICES . ..ciii i e e e eaaas 103

[Yo | = 7= 411 o= PPN 104

7. Creating New Widgets (SUBCIassing)c.ueiieeiiiiiiie e e e e 105
U0 LTl o 1= [T TN 106
Private HEAEr Fileoveiieiiii e 107
WiAQEL SOUCE FlE ..oeeeie e e e 109
8. ACKNOWIEAGMENESiiieiii i e e e e e e e et e e e aaas 112

Chapter 1. Athena Widgets and The
Intrinsics

The X Toolkit is made up of two distinct pieces, the Xt Intrinsics and awidget set. The Athenawidget
set is a sample implementation of awidget set built upon the Intrinsics. In the X Toolkit, awidget is
the combination of an X window or subwindow and its associated input and output semantics.

Because the I ntrinsics provide the same basic functionality to all widget setsit may be possible to use
widgets from the Athena widget set with other widget sets based upon the Intrinsics. Since widget
sets may also implement private protocols, all functionality may not be available when mixing and
matching widget sets. For information about the Intrinsics, see the X Toolkit Intrinsics - C Language
Interface.

The Athena widget set is a library package layered on top of the Intrinsics and Xlib that provides
a set of user interface tools sufficient to build a wide variety of applications. This layer extends the
basi c abstractions provided by X and provides the next layer of functionality primarily by supplying a
cohesive set of samplewidgets. Although the Intrinsics are a Consortium standard, thereis no standard
widget set.

To the extent possible, the Intrinsics are "policy-free". The application environment and widget set,
not the Intrinsics, define, implement, and enforce:

» Policy
» Consistency
» Style

Each individual widget implementation defines its own policy. The X Toolkit design alows for, but
does not necessarily encourage, the free mixing of radically differing widget implementations.

Introduction to the X Toolkit

The X Toolkit provides tools that simplify the design of application user interfaces in the X Window
System programming environment. It assists application programmers by providing a set of common
underlying user-interface functions. It also lets widget programmers modify existing widgets, by
subclassing, or add new widgets. By using the X Toolkit intheir applications, programmers can present
asimilar user interface across applications to all workstation users.

The X Toolkit consists of:

» A set of Intrinsics functions for building widgets
» An architectural model for constructing widgets
» A widget set for application programming

While the mgjority of the Intrinsics functions are intended for the widget programmer, a subset of the
Intrinsics functions are to be used by application programmers (see X Toolkit Intrinsics - C Language
Interface). The architectural model lets the widget programmer design new widgets by using the
Intrinsics and by combining other widgets. The application interfacelayersbuilt ontop of the X Toolkit
include a coordinated set of widgets and composition policies. Some of these widgets and policiesare
specific to a single application domain, and others are common to a variety of applications.

The remainder of this chapter discusses the X Toolkit and Athenawidget set:

e Terminology

Athena Widgets and The Intrinsics

* Model
» Conventions used in this manual

» Format of the Widget Reference Chapters

Terminology

In addition to the terms already defined for X programming (see Xlib - C Language Interface), the
following termsare specific to the I ntrinsics and Athenawidget set and used throughout thisdocument.

Appl i cation programer

A programmer who uses the X Toolkit to produce an application user interface.
Child

» A widget that is contained within another "parent” widget.

C ass

e Thegenera group to which a specific object belongs.

dient

A function that uses awidget in an application or for composing other widgets.
Ful | Name

» The name of awidget instance appended to the full name of its parent.

I nst ance

» A specific widget object as opposed to ageneral widget class.

Met hod

A function or procedure implemented by awidget class.

Nane

» The name that is specific to an instance of a widget for a given client. This name is specified at
creation time and cannot be modified.

oj ect

» A data abstraction consisting of private data and private and public functions that operate on the
private data. Users of the abstraction can interact with the object only through calls to the object's
public functions. In the X Toolkit, some of the object's public functions are called directly by the
application, while others are called indirectly when the application calls the common Intrinsics
functions. In general, if afunction is common to all widgets, an application uses asingle Intrinsics
function to invoke the function for al types of widgets. If a function is unique to a single widget
type, the widget exports the function.

Par ent

* A widget that contains at least one other (“child") widget. A parent widget is also known as a
composite widget.

Resource

Athena Widgets and The Intrinsics

» A named piece of datain awidget that can be set by aclient, by an application, or by user defaults.
Super cl ass

» A larger class of which a specific class is a member. All members of a class are also members of
the superclass.

User

* A person interacting with a workstation.

W dget

» An object providing a user-interface abstraction (for example, a Scrollbar widget).

W dget cl ass

» Thegeneral group to which a specific widget belongs, otherwise known as the type of the widget.
W dget progranmer

» A programmer who adds new widgets to the X Toolkit.

Underlying Model

The underlying architectural model is based on the following premises:

» Every user-interface widget is associated with an X window. The X window ID for a widget is
readily available from the widget. Standard Xlib calls can be used by widgets for many of their
input and output operations.

» The data for every widget is private to the widget and its subclasses. That is, the data is neither
directly accessible nor visible outside of the module implementing the widget. All program
interaction with the widget is performed by a set of operations (methods) that are defined for the
widget.

» Widget semantics are clearly separated from widget layout geometry. Widgets are concerned with
implementing specific user-interface semantics. They have little control over issues such as their
sizeor placement relative to other widget peers. Mechanisms are provided for associating geometric
managers with widgets and for widgets to make suggestions about their own geometry.

Conventions Used in this Manual

« All resources available to the widgets are listed with each widget. Many of these are available to
more than one widget class due to the object oriented nature of the Intrinsics. The new resources
for each widget are listed in bold text, and the inherited resources are listed in plain text.

 Global symbols are printed in bol d and can be function names, symbols defined in include files,
or structure names. Arguments are printed in italics.

 Each function isintroduced by a general discussion that distinguishes it from other functions. The
function declaration itself follows, and each argument is specifically explained. General discussion
of the function, if any is required, follows the arguments. Where applicable, the last paragraph of
the explanation lists the return values of the function.

Athena Widgets and The Intrinsics

 To €eliminate any ambiguity between those argumentsthat you pass and those that afunction returns
to you, the explanations for all arguments that you pass start with the word specifies or, in the case
of multiple arguments, the word specify. The explanationsfor all argumentsthat are returned to you
start with the word returns or, in the case of multiple arguments, the word return. The explanations
for all arguments that you can pass and are returned start with the words specifies and returns.

» Any pointer to a structure that is used to return a value is designated as such by the _return suffix
as part of its name. All other pointers passed to these functions are used for reading only. A few
arguments use pointers to structures that are used for both input and output and are indicated by
using the _in_out suffix.

Format of the Widget Reference Chapters

Themajority of thisdocument isareference guidefor the Athenawidget set. Chaptersthreethrough six
give the programmer all information necessary to use the widgets. The layout of the chapters follows
a specific pattern to allow the programmer to easily find the desired information.

The first few pages of every chapter give an overview of the widgets in that section. Widgets are
grouped into chapters by functionality.

"Chapter Simple Widgets

"Chapter Menus

"Chapter Text Widgets

"Chapter Composite and Constraint Widget

Following the introduction will be a description of each widget in that chapter. When no functional
grouping is obvious the widgets are listed in alphabetical order, such asin chapters three and six.

The first section of each widget's description is a table that contains general information about this
widget class. Hereis the table for the Box widget, and an explanation of all the entries.

Application Header file <X11/ Xaw Box. h>
Cl ass Header file <X11/ Xaw BoxP. h>

Cl ass boxW dget d ass

Gl ass Nanme Box

Super cl ass Conposite

Application Header File Thisfilemustbeincludedwhen an application usesthiswidget.
It usually contains the class definition, and some resource
macros. Thisis often called the *“public" header file.

Cl ass Header File Thisfilewill only be used by widget programmers. It will need
to be included by any widget that subclasses this widget. This
is often called the private" header file.

d ass This is the widget class of this widget. This global symbol is
passed to Xt Cr eat eW dget so that the Intrinsics will know
which type of widget to create.

Cl ass Nane This s the resource name of this class. This name can be used
in aresource file to match any widget of this class.

Athena Widgets and The Intrinsics

Super cl ass Thisisthe superclass that this widget class is descended from.
If you understand how the superclass works it will allow you
to more quickly understand what this widget does, since much
of its functionality may be inherited from its superclass.

After thistablefollows ageneral description of the default behavior of thiswidget, as seen by the user.
In many cases this functionality may be overridden by the application programmer, or by the user.

The next section is a table showing the name, class, type and default value of each resource that is
availableto thiswidget. Thereis also a column containing notes describing special restrictions placed
upon individual resources.

A Thisresource may be automatically adjusted when another resourceis changed.

C Thisresourceis only settable at widget creation time, and may not be modified
with Xt Set Val ues.

D Do not modify thisresource. While setting this resource will work, it can cause
unexpected behavior. When this symbol appears there is another, preferred,
interface provided by the X Toolkit.

R Thisresourceis READ-ONLY, and may not be modified.

After the resource table is a detailed description of every resource available to that widget. Many
of these are redundant, but printing them with each widget saves page flipping. The names of the
resources that are inherited are printed in plain text, while the names of the resources that are new to
thisclassareprintedinbol d. If you have already read the description of the superclassyou need only
pay attention to the resources printed in bold.

For each composite widget there isa section on layout semantics that follows the resource description.
This section will describe the effect of constraint resources on the layout of the children, aswell asa
genera description of where it prefersto place its children.

Descriptions of default transations and action routines come next, for widgets to which they apply.
The last item in each widget's documentation is the description of all convenience routines provided
by the widget.

Input Focus

The Intrinsics define a resource on al Shell widgets that interact with the window manager called
i nput . This resource requests the assistance of window manager in acquiring the input focus. The
resourcedefaultsto Fal se inthelntrinsics, but isredefined to default to Tr ue when an applicationis
using the Athenawidget set. An application programmer may override thisdefault and set the resource
back to Fal se if the application does not need the window manager to give it the input focus. See
the X Toolkit Intrinsics - C Language Interface for details on the input resource.

Chapter 2. Using Widgets
Using Widgets

Widgets serve asthe primary toolsfor building auser interface or application environment. The Athena
widget set consists of primitive widgetsthat contain no children (for example, acommand button) and
composite widgets which may contain one or more widget children (for example, a Box widget).

The remaining chapters explain the widgets that are provided by the Athena widget set. These user-
interface components serve asan interface for application programmerswho do not want to implement
their own widgets. In addition, they serve as a starting point for those widget programmerswho, using
the Intrinsics mechanisms, want to implement alternative application programming interfaces.

This chapter is a brief introduction to widget programming. The examples provided use the Athena
widgets, though most of the concepts will apply to al widget sets. Although there are severa
programming interfaces to the X Toolkit, only one is described here. A full description of the
programming interface is provided in the document X Toolkit Intrinsics - C Language Interface.

Setting the Locale

If it is desirable that the application take advantage of internationalization (i18n), you must establish
locale with Xt Set LanguagePr oc before Xt Di spl ayl nitializeor XtApplnitialize
is called. For full details, please refer to the document X Toolkit Intrinsics - C Language Interface,
section 2.2. However, the following simplest-case cal is sufficient in many or most applications.

Xt Set LanguagePr oc(NULL, NULL, NULL);

Most notably, this will affect the Standard C locale, determine which resource files will be loaded,
and what fonts will be required of FontSet specifications. In many cases, the addition of thislineis
the only source change required to internationalize Xaw programs, and will not disturb the function
of programsin the default "C" locale.

Initializing the Toolkit

Y ou must call atoolkit initialization function before invoking any other toolkit routines (besideslocale
setting, above). Xt Appl niti al i ze opensthe X server connection, parses the command line, and
creates an initial widget that will serve as the root of atree of widgets created by this application.

Wdget XtApplnitialize(app_context return, application_class,
options, num opti ons, *argc_in_out, *argv_in_out,
*fal | back_resources, args, num.args);

app_con_return Returns the application context of this application, if non-
NULL.
application_class Specifies the class name of this application, which is usually

the generic name for all instances of this application. A useful
convention is to form the class name by capitalizing the first
letter of the application name. For example, the application
named ““xman" has a class name of ~“Xman".

options Specifies how to parse the command line for any application-
specific resources. The options argument is passed as a

Using Widgets

parameter to Xr mPar seComand. For further information,
see Xlib - C Language Interface.

num_options Specifies the number of entries in the options list.
argc_in_out Specifies a pointer to the number of command line parameters.
argv_in_out Specifies the command line parameters.

fallback resources Specifiesresource valuesto be used if the site-wide application

class defaults file cannot be opened, or NULL.

args Specifiestheargument list to use when creating the Application
shell.
num args Specifies the number of argumentsin args.

This function will remove the command line arguments that the toolkit reads from argc_in_out, and
argv_in_out. It will then attempt to open the display. If the display cannot be opened, an error message
isissued and XtApplnitialize terminates the application. Once the display is opened, all resources are
read from the locations specified by the Intrinsics. This function returns an ApplicationShell widget
to be used as the root of the application's widget tree.

Creating a Widget

Creating awidget is athree-step process. First, the widget instance is allocated, and various instance-
specific attributes are set by using Xt Cr eat eW dget . Second, the widget's parent is informed of
the new child by using Xt ManageChi | d. Finally, X windows are created for the parent and al its
children by using Xt Real i zeW dget and specifying the top-most widget. The first two steps
can be combined by using Xt Cr eat eManagedW dget . In addition, Xt Real i zeW dget is
automatically called when the child becomes managed if the parent is already realized.

To alocate, initialize, and manage awidget, use Xt Cr eat eManagedW dget

W dget Xt Creat eManagedW dget (nane, wi dget_class, parent, args,

num ar gs) ;

name Specifies the instance name for the created widget that is used
for retrieving widget resources.

widget_class Specifies the widget class pointer for the created widget.

parent Specifies the parent widget ID.

args Specifies the argument list. The argument list is a variable-
length list composed of name and value pairs that contain
information pertaining to the specific widget instance being
created. For further information, see Section 2.7.2.

num_args Specifies the number of arguments in the argument list. If the

num_argsis zero, the argument list is never referenced.

When awidget instance is successfully created, the widget identifier is returned to the application. If
an error is encountered, the Xt Er r or routineisinvoked to inform the user of the error.

For further information, see X Toolkit Intrinsics - C Language Interface.

Common Resources

Although awidget can have unique argumentsthat it understands, all widgets have common arguments
that provide some regularity of operation. The common arguments allow arbitrary widgets to be

Using Widgets

managed by higher-level components without regard for the individual widget type. Widgets will
ignore any argument that they do not understand.

The following resources are retrieved from the argument list or from the resource database by all of

the Athena widgets:
Name Class Type Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive AncestorSensitive Boolean True
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel XtDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's Colormap
depth Depth int Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension widget dependent
mappedWhenManaged | M appedWhenManaged Boolean True
screen Screen Screen Parent's Screen
sensitive Sensitive Boolean True
tranglations Trandations TrandationTable widget dependent
width Width Dimension widget dependent
X Position Position 0
y Position Position 0

Thefollowing additional resources are retrieved from the argument list or from the resource database
by many of the Athena widgets:

Name Class Type Default Value
callback Callback XtCallbackList NULL
cursor Cursor Cursor widget dependent
foreground Foreground Pixel XtDefaultForeground
insensitiveBorder Insensitive Pixmap GreyPixmap

Resource Conversions

Most resources in the Athena widget set have a converter registered that will trandlate the string in
a resource file to the correct internal representation. While some are obvious (string to integer, for
example), others need specific mention of the allowabl e values. Three general converters are described
here:

e Cursor
* Pixel
e Bitmap

Many widgets have defined special converters that apply only to that widget. When these occur, the
documentation section for that widget will describe the converter.

Using Widgets

Cursor Conversion

The value for the cur sor Name resource is specified in the resource database as a string, and is of
the following forms:

» A standard X cursor namefrom< X11/ cur sor f ont. h >. Thenamesincur sor f ont . h each
describe a specific cursor. The resource names for these cursors are exactly like the names in this
file except the XC_ isnot used. The cursor definition XC_gunby has aresource name of gunby.

» Glyphs, asin FONT font-name glyph-index [[font-name] glyph-index]. The first font and glyph
specify the cursor source pixmap. The second font and glyph specify the cursor mask pixmap. The
mask font defaults to the source font, and the mask glyph index defaults to the source glyph index.

» A relative or absolute file name. If arelative or absolute file name is specified, that file is used to
create the source pixmap. Then the string "Mask" is appended to locate the cursor mask pixmap. If
the "Mask" file does not exist, the suffix "msk" istried. If "msk" fails, no cursor mask will be used.
If the filename does not start with '/ or *./' the the bitmap file path is used (see section 2.4.3).

Pixel Conversion

The string-to-pixel converter takes any namethat is acceptable to X ParseColor (see Xlib - C Language
Interface). In addition this routine understands the special toolkit symbols “XtDefaultForeground'
and “XtDefaultBackground', described in X Toolkit Intrinsics - C Language Interface. In short the
acceptable pixel names are:

» Any color name for the rgh.txt file (typically in the directory /usr/lib/X11 on POSIX systems).

* A numeric specification of the form #<red><green><blue> where these numeric values are
hexadecimal digits (both upper and lower case).

» The special strings “XtDefaultForeground' and “XtDefaultBackground'

Bitmap Conversion

The string-to-bitmap converter attemptsto | ocate afile containing bitmap datawhose nameis specified
by the input string. If the file name is relative (i.e. does not begin with / or ./), the directories to be
searched are specified inthebi t mapFi | ePat h resource--classBi t mapFi | ePat h. Thisresource
specifies acolon (:) separated list of directories that will be searched for the named bitmap or cursor
glyph (seesection 2.4.1). Thebi t mapFi | ePat h resourceisglobal to the application, and may not

be specified differently for each widget that wishes to convert a cursor to bitmap. In addition to the
directories specified inthe bi t mapFi | ePat h resource adefault directory is searched. When using
POSIX the default directory is/ usr /i ncl ude/ X11/ bi t maps .

Realizing a Widget
The Xt Real i zeW dget function performs two tasks:

» Calculates the geometry constraints of all managed descendants of this widget. The actual
calculation is put off until realize time for performance reasons.

* Creates an X window for the widget and, if it is a composite widget, realizes each of its managed
children.

voi d Xt Real i zeWdget(w);
* Specifies the widget.

For further information about this function, see the X Toolkit Intrinsics - C Language Interface.

Using Widgets

Processing Events

Now that the application has created, managed and realized itswidgets, it isready to processthe events
that will be delivered by the X Server to this client. A function call that will process the events is
Xt AppMai nLoop.

voi d Xt AppMai nLoop(app_context);

app_context Specifiesthe application context of thisapplication. Thevalueis
normally returned by Xt Applnitialize.

Thisfunction never returns: itisan infinite loop that processesthe X events. User input can be handled
through callback procedures and application defined action routines. More details are provided in X
Toolkit Intrinsics - C Language Interface.

Standard Widget Manipulation Functions

After awidget has been created, a client can interact with that widget by calling one of the standard
widget manipulation routines provided by the Intrinsics, or a widget class-specific manipulation
routine.

The Intrinsics provide generic routines to give the application programmer access to a set of standard
widget functions. The common widget routines let an application or composite widget perform the
following operations on widgets without requiring explicit knowledge of the widget type.

 Control the mapping of widget windows
» Destroy awidget instance
* Obtain an argument value

» Set an argument value
Mapping Widgets

By default, widget windows are mapped (made viewable) automatically by Xt Real i zeW dget .
This behavior can be disabled by using Xt Set MappedWhenManaged, making the client
responsible for calling Xt MapW dget to make the widget viewable.

voi d Xt Set MappedwWhenManaged(w, map_when_nanaged);
w Specifies the widget.

map_when_managed Specifies the new vaue If map when managed is
True, the widget is mapped automatically when it is
realized. If map when_managed is Fal se, the client
must call Xt MapW dget or make a second call to
Xt Set MappedWhenManaged to cause the child window to
be mapped.

The definition for Xt MapW dget is:
voi d Xt MapW dget (w);
w Specifies the widget.

When you are creating several children in sequence for a previously realized common parent it is
generally more efficient to construct alist of children asthey are created (using Xt Cr eat eW dget)
and then use Xt ManageChi | dr en to request that their parent managed them al at once. By
managing a list of children at one time, the parent can avoid wasteful duplication of geometry
processing and the associated ““screen flash".

10

Using Widgets

voi d Xt ManageChil dren(children, numchildren);
children Specifies alist of children to add.
num_children Specifies the number of children to add.

If the parent is already visible on the screen, it is especially important to batch updates so that the
minimum amount of visible window reconfiguration is performed.

For further information about these functions, see the X Toolkit Intrinsics - C Language Interface.

Destroying Widgets
To destroy awidget instance of any type, use Xt Dest r oyW dget
voi d Xt DestroyWdget(w);
w Specifies the widget.
Xt Dest r oyW dget destroys the widget and recursively destroys any children that it may have,

including the windows created by its children. After calling Xt Dest r oyW dget , no further
references should be made to the widget or any children that the destroyed widget may have had.

Retrieving Widget Resource Values

To retrieve the current value of a resource attribute associated with a widget instance, use
Xt Get Val ues .

void Xt CGetValues(w, args, numargs);

w Specifies the widget.

args Specifiesavariable-length argument list of nameand addr ess pairs
that contain the resource name and the addressinto which theresource
valueis stored.

num args Specifies the number of arguments in the argument list.

The arguments and values passed in the argument list are dependent on the widget. Note that the caller
is responsible for providing space into which the returned resource value is copied; the Ar gLi st
contains a pointer to this storage (e.g. X and y must be allocated as Position). For further information,
see the X Toolkit Intrinsics - C Language Interface.

Modifying Widget Resource Values

To modify the current value of a resource attribute associated with a widget instance, use
Xt Set Val ues .

voi d Xt SetValues(w, args, num.args);
w Specifies the widget.

args Specifies an array of name and val ue pairs that contain the
arguments to be modified and their new values.

num args Specifies the number of arguments in the argument list.

The arguments and values that are passed will depend on the widget being modified. Some widgets
may not allow certain resources to be modified after the widget instance has been created or realized.
No natification is given if any part of a Xt Set Val ues request isignored.

11

Using Widgets

For further information about these functions, see the X Toolkit Intrinsics - C Language Interface.
The argument list entry for Xt Get Val ues specifies the address to which the caller wants the
value copied. The argument list entry for Xt Set Val ues , however, contains the new value itself,
if the size of value is less than sizeof(XtArgVal) (architecture dependent, but at least sizeof(long));
otherwise, it is a pointer to the value. String resources are always passed as pointers, regardless of
the length of the string.

Using the Client Callback Interface

Widgets can communicate changes in their state to their clients by means of a callback facility. The
format for aclient's callback handler is:

void Cal |l backProc(w, client_data, «call_data);
w Specifies widget for which the callback is registered.

client_data Specifies arbitrary client-supplied data that the widget should
pass back to the client when the widget executes the client's
callback procedure. This is a way for the client registering
the callback to also register client-specific data: a pointer to
additional information about the widget, a reason for invoking
the callback, and so on. If no additional information is necessary,
NULL may be passed as this argument. This field is aso
frequently known as the closure.

call_data Specifies any callback-specific data the widget wants to pass to
the client. For example, when Scrollbar executesitsj unpPr oc
callback list, it passes the current position of the thumb in
call_data.

Callbacks can beregistered either by creating an argument containing the callback list described below
or by using the special convenienceroutines Xt AddCal | back and Xt AddCal | backs.Whenthe
widget is created, apointer to alist of callback procedure and data pairs can be passed in the argument
listto Xt Cr eat eW dget . Thelistisof type Xt Cal | backLi st

typedef struct {
Xt Cal | backProc cal |l back;
Xt Poi nter cl osure;
} XtCall backRec, *XtCall backLi st;

The callback list must be allocated and initialized before calling Xt Cr eat eW dget . The end of
thelist isidentified by an entry containing NULL in callback and closure. Once the widget is created,
the client can change or de-allocate this list; the widget itself makes no further reference to it. The
closurefield contains the client_data passed to the callback when the callback list is executed.

The second method for registering callbacksisto use Xt AddCal | back after the widget has been
crested.

voi d Xt AddCal | back(w, callback _nane, callback, client_data);

w Specifies the widget to add the callback to.

callback _name Specifies the callback list within the widget to append to.

callback Specifies the callback procedure to add.

client_data Specifies the data to be passed to the callback when it is
invoked.

12

Using Widgets

Xt

AddCal | back adds the specified callback to the list for the named widget.

All widgetsprovideacallback list named dest r oy Cal | back whereclients can register procedures
that are to be executed when the widget is destroyed. The destroy callbacks are executed when the
widget or an ancestor is destroyed. The call_data argument is unused for destroy callbacks.

Programming Considerations

This section provides some guidelines on how to set up an application program that usesthe X Toolkit.

Writing Applications

When writing an application that uses the X Toolkit, you should make sure that your application
performs the following:

1

9.
10

11.

12

Include< X11/Intrinsic.h >inyour application programs. This header file automatically
includes< X11/ Xli b. h >, soal Xlib functions aso are defined. It may aso be necessary to
include< X11/ Stri ngDef s. h >when setting up argument lists, as many of the XtNsomething
definitions are only defined in thisfile.

. Include the widget-specific header files for each widget type that you need to use. For example, <

X11/ Xaw Label . h >and< X11/ Xaw Conmmand. h >.

. Call the Xt Appl nitialize function before invoking any other toolkit or Xlib functions. For

further information, see Section 2.1 and the X Toolkit Intrinsics - C Language Interface.

. To pass attributes to the widget creation routines that will override any site or user customizations,

set up argument lists. In thisdocument, alist of valid argument namesis provided in the discussion
of each widget. The names each have a global symbol defined that begins with Xt N to help catch
spelling errors. For example, Xt NI abel isdefined for thel abel resource of many widgets.

. For further information, see Section 2.9.2.2.

. When the argument list is set up, create the widget with the Xt Cr eat eManagedW dget

function. For further information, see Section 2.2 and the X Toolkit Intrinsics - C Language
Interface.

. If the widget has any callback routines, set by the Xt Ncal | back argument or the

Xt AddCal | back function, declare these routines within the application.

. After creating the initial widget hierarchy, windows must be created for each widget by calling

Xt Real i zeW dget onthetop level widget.

Most applications now sit in aloop processing events using Xt AppMai nLoop , for example:

Xt Cr eat eManagedW dget (nane, cl ass, parent, args, num.args);
Xt Real i zeW dget (shel 1) ;
Xt AppMai nLoop(app_cont ext);

For information about this function, see the X Toolkit Intrinsics - C Language I nterface.

Link your application with | i bXaw (the Athena widgets), | i bXnmu (miscellaneous utilities),

i bXt (the X Toolkit Intrinsics), |i bSM (Session Management), | i bl CE (Inter-Client
Exchange), | i bXext (the extension library needed for the shape extension code which allows
rounded Command buttons), and | i bX11 (the core X library). The following provides a sample
command line:

13.

cc -0 application application.c \-IXaw \-| Xnu \-1Xt \
\-ISM\-1I1CE \-]Xext \-1X11

13

Using Widgets

Changing Resource Values

The Intrinsics support two methods of changing the default resource values; the resource manager,
and an argument list passed into XtCreateWidget. While resources values will get updated no matter
which method you use, the two methods provide slightly different functionality.

Resource Manager This method picks up resource definitions described in Xlib - C Language
Interface from many different locations at run time. The locations most
important to the application programmer are the fallback resources and
the app-defaults file, (see X Toolkit Intrinsics - C Language Interface
for the complete list). Since these resource are loaded at run time, they
can be overridden by the user, allowing an application to be customized
to fit the particular needs of each individual user. These values can
also be modified without the need to rebuild the application, alowing
rapid prototyping of user interfaces. Application programmers should use
resources in preference to hard-coded values whenever possible.

Argument Lists The values passed into the widget at creation time via an argument list
cannot be modified by the user, and allow no opportunity for customization.
It is used to set resources that cannot be specified as strings (e.g. callback
lists) or resources that should not be overridden (e.g. window depth) by the
user.

Specifying Resources

It isimportant for all X Toolkit application programmers to understand how to use the X Resource
Manager to specify resources for widgets in an X application. This section will describe the most
common methods used to specify these resources, and how to use the X Resource manager.

Xrdb Thexr db utility may be used to load afile containing resourcesinto
the X server. Once the resources are loaded, the resources will affect
any new applications started on the display that they were loaded
onto.

Application Defaults The application defaults (app-defaults) file (normally in /usr/lib/X 11/
app-defaults/classname) for an application is loaded whenever the
application is started.

The resource specification has two colon-separated parts, a name, and avalue. The value is a string
whose format is dependent on the resource specified by name. Name is constructed by appending a
resource nameto a full widget name.

Thefull widget nameisalist of the name of every ancestor of the desired widget separated by periods
(). Eachwidget also hasaclassassociated with it. A classisatype of widget (e.g. Label or Scrollbar or
Box). Notice that class names, by convention, begin with capital | etters and instance names begin with
lower case letters. The class of any widget may be used in place of its namein aresource specification.
Here are afew examples:

xman.form.button1 This is a fully specified resource name, and will affect only
widgets caled buttonl that are children of widgets called
form that are children of applications named xman. (Note that
whiletypically two widgetsthat are siblingswill have different
names, it is not prohibited.)

Xman.Form.Command Thiswill match any Command widget that isachild of aForm
widget that isitself achild of an application of class Xman.

Xman.Form.buttonl This is a mixed resource name with both widget names and
classes specified.

14

Using Widgets

This syntax allows an application programmer to specify any widget in the widget tree. To match more
than one widget (for example a user may want to make all Command buttons blue), use an asterisk
(*) instead of a period. When an asterisk is used, any number of widgets (including zero) may exist
between the two widget names. For example:

Xman* Command This matches all Command widgets in the Xman application.
Foo* buttonl This matches any widget in the Foo application that is named
buttonl.

Theroot of all application widget treesisthewidget returned by Xt Appl ni ti al i ze. Eventhough
thisisactually an ApplicationShell widget, the toolkit replaces its widget class with the class name of
the application. The name of thiswidget is either the name used to invoke the application (ar gv[0])
or the name of the application specified using the standard -name command line option supported by
the Intrinsics.

The last step in constructing the resource name is to append the name of the resource with either a
period or asterisk to the full or partial widget name already constructed.

*foreground:Blue Specifies that all widgets in all applications will have a
foreground color of blue.

Xman*borderWidth:10 Specifiesthat all widgetsin an application whose classis Xman
will have a border width of 10 (pixels).

xman.form.buttonl.label: Testing Specifies that a particular widget in the xman application will
have alabel named Testing.

An exclamation point (!) in thefirst column of alineindicatesthat the rest of the line should be treated
as acomment.

Fi nal Words

The Resource manager is a powerful tool that can be used very effectively to customize X Toolkit
applications at run time by either the application programmer or the user. Some final pointsto note:

* An application programmer may add new resources to their application. These resources are
associated with the global application, and not any particular widget. The X Toolkit function used
for adding the application resourcesis Xt Get Appl i cati onResour ces.

» Be careful when creating resource files. Since widgets will ignore resources that they do not
understand, any spelling errors will cause a resource to have no effect.

» Only one resource line will match any given resource. There is a set of precedence rules, which
take the following general stance.

» « More specific overrides less specific, thus period always overrides asterisk.
« Names on the | eft are more specific and override names on the right.
« When resource specifications are exactly the same, user defaults will override program defaults.

For acomplete explanation of the rules of precedence, and other specific topics see X Toolkit Intrinsics
- C Language Interface and Xlib - C Language Interface.

Creating Argument Lists

To set up an argument list for the inline specification of widget attributes, you may use any of the
four approaches discussed in this section. Each resource name has a global symbol associated with
it. Thisglobal symbol has the form XtNresource name. For example, the symbol for ~“foreground” is
Xt Nf or egr ound. For further information, see the X Toolkit Intrinsics - C Language | nterface.

15

Using Widgets

Argument are specified by using the following structure:

typedef struct {
String nane;

Xt ArgVval val ue;
} Arg, *ArglList;

The first approach isto statically initialize the argument list. For example:

static Arg arglist[] = {

{Xt N\wi dt h, (XtArgVal) 400},
{ Xt Nhei ght, (XtArgVal) 300},
1

This approach is convenient for lists that do not need to be computed at runtime and makes adding or
deleting new elements easy. The Xt Nunber macro isused to compute the number of elementsin the
argument list, preventing simple programming errors:

Xt Cr eat eW dget (nane, class, parent, arglist, XtNunber(arglist));

The second approach isto use the Xt Set Ar g macro. For example:

Arg arglist[10];
XtSet Arg(arglist[1], XtNwi dth, 400);
Xt Set Arg(arglist[2], XtNnheight, 300);

To makeit easier to insert and delete entries, you also can use a variable index:

Arg arglist[10];

Cardi nal i=0;

XtSet Arg(arglist[i], XtNwi dth, 400); i ++;
XtSet Arg(arglist[i], XtNheight, 300); i ++;

Thei variable can then be used asthe argument list count in the widget create function. Inthisexample,
Xt Nurber would return 10, not 2, and thereforeis not useful. Y ou should not use auto-increment or
auto-decrement within thefirst argument to Xt Set Ar g . Asitiscurrently implemented, Xt Set Ar g
isamacro that dereferences the first argument twice.

The third approach isto individually set the elements of the argument list array:

Arg arglist[10];

arglist[0].nanme = XtNwi dth;
arglist[0].value = (XtArgVal) 400;
arglist[1].nanme = Xt Nheight;

16

Using Widgets

arglist[1].value = (XtArgVval) 300;

Notethat in thisexample, asinthe previousexample, Xt Nunber would return 10, not 2, and therefore
would not be useful.

The fourth approach is to use a mixture of the first and third approaches: you can statically define the
argument list but modify some entries at runtime. For example:

static Arg arglist[] = {
{Xt N\wi dt h, (XtArgVal) 400},
{ Xt Nhei ght, (XtArgVal) NULL},

i
arglist[1].value = (XtArgVval) 300;

In this example, Xt Nunber can be used, asin thefirst approach, for easier code maintenance.

Example Programs

The best way to understand how to use any programming library is by trying some simple examples.
A collection of example programs that introduces each of the widgets in that Athena widget set, as
well as many important toolkit programming concepts, is available in the X11R5 contrib release as
distributed by the X Consortium. It can be found in the directory cont ri b/ exanpl es/ Xawinthe
archive at http://www.x.org/releases/X 11R5/contrib-1.tar.Z See the READMVE file from that directory
for aguide to the examples.

17

http://www.x.org/releases/X11R5/contrib-1.tar.Z

Chapter 3. Simple Widgets

Each of these widgets performs aspecific user interface function. They are simple because they cannot
have widget children\(emthey may only be used as leaves of the widget tree. These widgets display
information or take user input.

Conmmand A push button that, when selected, may cause a specific action to take place. This
widget can display a multi-line string or a bitmap or pixmap image.

Gip A rectangle that, when selected, will cause an action to take place.

Label A rectangle that can display a multi-line string or a bitmap or pixmap image.

Li st A list of text strings presented in row column format that may be individually

selected. When an element is selected an action may take place.

Panner A rectangular area containing a slider that may be moved in two dimensions.
Notification of movement may be continuous or discrete.

Repeat er A push button that triggers an action at an increasing rate when selected. Thiswidget
can display amulti-line string or a bitmap or pixmap image.

Scrol | bar A rectangular area containing a thumb that when dlid along one dimension may
cause a specific action to take place. The Scrollbar may be oriented horizontally or
verticaly.

Si npl e The base class for most of the simple widgets. Provides a rectangular area with a
settable mouse cursor and special border.

StripChart A rea timedatagraph that will automatically update and scroll.
Toggl e A push button that contains state information. Toggles may also be used as "radio

buttons' to implement a "one of many" or "zero or one of many" group of buttons.
Thiswidget can display a multi-line string or a bitmap or pixmap image.

Command Widget

Application header file <X11/ Xaw Conmmand. h>

Cl ass header file <X11/ Xaw ComandP. h>

G ass commandW dget d ass

Cl ass Nanme Cormmand

Super cl ass Label

The Command widget is an area, often rectangular, that contains text or agraphical image. Command
widgets are often referred to as ““push buttons." When the pointer is over a Command widget, the

widget becomes highlighted by drawing a rectangle around its perimeter. This highlighting indicates
that the widget isready for selection. When mouse button 1 is pressed, the Command widget indicates

18

Simple Widgets

that it has been selected by reversing its foreground and background colors. When the mouse button
is released, the Command widget's not i fy action is invoked, calling al functions on its callback
list. If the pointer is moved off of the widget before the pointer button is released, the widget reverts
to its normal foreground and background colors, and releasing the pointer button has no effect. This
behavior allows the user to cancel an action.

Resources

When creating a Command widget instance, the following resources are retrieved from the argument
list or from the resource database:

3

Pa

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's Colormap
cornerRoundPercenCornerRoundPercent Dimension 25
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar XawTextEncoding8bit
font Font XFontStruct XtDefaultFont
foreground Foreground Pixel tDefaultForeground
height Height Dimension A graphic
height + 2 *
nt er nal Hei ght
highlightThickness Thickness Dimension A 2 (0if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internal Width Width Dimension 4
international International Boolean C False
justify Justify Justify XtdustifyCenter
(center)
|abel L abel String name of widget
leftBitmap LeftBitmap Bitmap None
appedWhenM anadddppedWhenManaged Boolean True
pointerColor Foreground Pixel tDefaultForeground
interColorBackground Background Pixel XtDefaultBackgroungd
resize Resize Boolean True

19

Simple Widgets

Name Class Type Notes Default Value
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
shapeStyle ShapeStyle ShapeStyle Rectangle
tranglations Trandations TrangationTable See below
width Width Dimension A graphic
width + 2 *
i nternal Wdth
X Position Position 0
y Position Position 0

\" Resource Descriptions

Command Actions

The Command widget supports the following actions:

Switching the button's interior between the foreground and background colors with set , unset ,

andr eset.

Processing application callbackswith not i fy

Switching the internal border between highlighted and unhighlighted stateswith hi ghl i ght and

unhi ghl i ght

The following are the default trandlation bindings used by the Command widget:

<Ent er W ndow>: hi ghlight (\])

<LeaveW ndow>:
<Bt n1Down>:
<Bt n1Up>:

reset(\|)

set(\])
notify(\|) unset(\]|)

Thefull list of actions supported by Command is:

hi ghl i ght (condi ti on)

unhi ghl i ght (\])

set (\))

unset (\))

Displays the interna highlight border in the color
(foreground or background) that contrasts with the
interior color of the Command widget. The conditions
WhenUnset and Al ways are understood by this action
procedure. If no argument is passed, WhenUnset isassumed.

Displays the interna highlight border in the color
(f or egr ound or backgr ound) that matches the interior
color of the Command widget.

Enterstheset state,inwhichnot i f y ispossible. Thisaction
causes the button to display its interior in the f or egr ound
color. The label or bitmap is displayed in the backgr ound
color.

Cancels the set state and displays the interior of the button in
the backgr ound color. The label or bitmap is displayed in
thef or egr ound color.

20

Simple Widgets

Grip

reset (\)) Cancels any set or highlight and displays the interior of the
button in the backgr ound color, with the label or bitmap
displayed inthef or egr ound color.

noti fy(\) Whenthebuttonisintheset statethisaction callsall functions
in the callback list named by the cal | back resource. The
value of the call_data argument passed to these functions is
undefined.

A very common aternative to registering callbacks is to augment a Command's translations with an
action performing the desired function. This often takes the form of:

*Myapp*save. transl ati ons: #augnent <BtnlDown>, <BtnlUp>: Save()

When abitmap of depth greater that one (1) is specified the set(), unset(), and reset() actions have no
effect, since there are no foreground and background colors used in a multi-plane pixmap.

Widget

Application header file <X11/ Xaw Gri p. h>

Cl ass header file <X11/ Xaw Gri pP. h>

Cl ass gri pWdget d ass

Class Name Gip

Supercl ass Sinpl e

The Grip widget provides a small rectangular region in which user input events (such as ButtonPress

or ButtonRelease) may be handled. The most common use for the Grip widget is as an attachment
point for visually repositioning an object, such as the pane border in a Paned widget.

Resources

When creating a Grip widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 0

21

Simple Widgets

Name Class Type Notes Default Value
callback Callback Callback NULL
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel tDefaultForeground
height Height Dimension 8
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C Fase
mappedWhenManaddadppedWhenManaged Boolean True
pointerColor Foreground Pixel tDefaultForeground
painterColorBackground Background Pixel XtDefaultBackground
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
translations Tranglations TrandationTable NULL
width Width Dimension 8
X Position Position 0
y Position Position 0
cal | back All routines on this list are called whenever the Gri pActi on
action routine is invoked. The call_data contains all information
passed to the action routine. A detailed description is given below
intheG i p Actions section.
f or egr ound A pixel value which indexes the widget's colormap to derive the

color used to flood fill the entire Grip widget.

Grip Actions

The Grip widget does not declare any default event trandlation bindings, but it does declare a
single action routine named Gr i pAct i on. The client specifies an arbitrary event trandation table,
optionally giving parametersto the G i pAct i on routine.

The Gri pAct i on routine executes the callbacks on thecal | back list, passingascal | _dataa
pointer to aXawG i pCal | Dat a structure, defined in the Grip widget's application header file.

typedef struct XawGipCallData {
XEvent *event,
String *parans;
Car di nal num par ans;
} XawGri pCal | Dat aRec, *XawG i pCal | Dat a,
GipCall DataRec, *GipCallData; /* supported for R4 conpatibility */

22

Simple Widgets

In this structure, the event is a pointer to the input event that triggered the action. params and
num_params give the string parameters specified in the trandation table for the particular event
binding.

The following is an example of a tranglation table that uses the GripAction:

<Bt n1Down>: Gri pAction(press)
<Bt n1Moti on>: Gi pActi on(nove)
<Bt nlUp>: Gri pAction(rel ease)

For acomplete description of the format of trandation tables, seethe X Toolkit Intrinsics - C Language
Interface.

Label Widget

Application header file <X11/ Xaw Label . h>

Cl ass header file <X11/ Xaw Label P. h>

Cl ass | abel Wdget d ass

Cl ass Name Label

Supercl ass Sinpl e

A Label widget holds a graphic displayed within a rectangular region of the screen. The graphic may
be atext string containing multiplelines of charactersin an 8 bit or 16 bit character set (to be displayed
with a font), or in a multi-byte encoding (for use with a fontset). The graphic may aso be a bitmap
or pixmap. The Label widget will alow its graphic to be left, right, or center justified. Normally, this

widget can be neither selected nor directly edited by the user. It isintended for use as an output device
only.

Resources

When creating a Label widget instance, the following resources are retrieved from the argument list
or from the resource database;

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel tDefaultBackground

23

Simple Widgets
Name Class Type Notes Default Value
backgroundPixmap Pixmap Pixmap tUnspecifiedPixmap
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar XawTextEncoding8hit
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel tDefaultForeground
height Height Dimension graphic
height + 2 *
nt er nal Hei ght
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internal Width Width Dimension 4
international International Boolean Fase
justify Justify Justify XtdustifyCenter
(center)
|abel Label String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenManaddadppedWhenManaged Boolean True
pointerColor Foreground Pixel tDefaultForeground
painterColorBackground Background Pixel XtDefaultBackground
resize Resize Boolean True
screen Screen Screen Parent's Screen
sensitive Sensitive Boolean True
tranglations Tranglations TranslationTable See above
width Width Dimension A graphic
width + 2 *
i nternal Wdth
X Position Position 0
y Position Position 0

List Widget

24

Simple Widgets

Application header file <X11/Xaw List. h>

Cl ass header

Cl ass |istWdgetd ass

Cl ass Nane Li st

Supercl ass Sinmpl e

file <X11/ Xaw/ Li st P. h>

The List widget contains alist of strings formatted into rows and columns. When one of the stringsis
selected, it is highlighted, and the List widget's Not i f y action isinvoked, calling all routines on its
callback list. Only one string may be selected at atime.

Resources

When creating a List widget instance, the following resources are retrieved from the argument list or
from the resource database:
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback Callback NULL
colormap Colormap Colormap Parent's Colormap
columnSpacing Spacing Dimension 6
cursor Cursor Cursor XC_left_ptr
cursorName Cursor String NULL
defaultColumns Columns int 2
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
forceColumns Columns Boolean False
foreground Foreground Pixel tDefaultForeground
height Height Dimension A Enough spaceto
contain the list
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internal Width Width Dimension 4
international International Boolean C Fase
list List Pointer name of widget
longest Longest int A 0

25

S

mple Widgets

3

col umSpaci ng

r owSpaci ng

def aul t Col ums

f ont

f ont Set

f or ceCol utms

f oreground

\fPinternalHeight\fP

\fPinternal Width\fP

list

Name Class Type Notes Default Value
appedWhenM anadddppedWhenManaged Boolean True
numberStrings NumberStrings int A computed
for NULL
terminated list
pasteBuffer Boolean Boolean False
pointerColor Foreground Pixel tDefaultForeground
painterColorBackground Background Pixel XtDefaultBackground
rowSpacing Spacing Dimension 2
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
tranglations Trandlations TranglationTable See below
verticalList Boolean Boolean Fase
width Width Dimension A Enough spaceto
contain the list
X Position Position 0
y Position Position 0
cal | back All functions on this list are called whenever the noti fy

actionisinvoked. Thecall _dataargument containsinformation
about the element selected and is described in detail in the
Li st Cal | backs section.

The amount of space, in pixels, between each of the rows and
columnsin thelist.

Thedefault number of columns. Thisvalueisused when neither
the width nor the height of the List widget is specified or when
f or ceCol unms isTr ue.

The text font to use when displaying the | i st, when the
i nt ernati onal resourceisf al se.

The text font set to use when displaying the | i st , when the
i nt er nati onal resourceistrue.

Forces the default number of columns to be used regardl ess of
the List widget's current size.

A pixel value which indexes the widget's colormap to derive
the color used to paint the text of the list elements.

The margin, in pixels, between the edges of the list and the
corresponding edge of the List widget's window.

An array of text strings displayed in the List widget. If
nunber St ri ngs iszero (thedefault) thenthel i st must be
NULL terminated. If avalueisnot specifiedfor thel i st , then
nunber St ri ngs is set to 1, and the name of the widget is
usedasthel i st ,and| ongest issettothelength of thename

26

Simple Widgets

of thewidget. Thel i st isusedin place, and must be available
to the List widget for the lifetime of this widget, or until it is
changed with Xt Set Val ues or XawLi st Change.

| ongest Specifiesthewidth, in pixels, of thelongest string in the current
list. The List widget will computethisvalueif zero (the default)
is specified. If thisresourceis set by hand, entries longer than
this will be clipped to fit.

nunber Strings The number of strings in the current list. If a value of zero
(the default) is specified, the List widget will computeit. When
computing the number of strings the List widget assumes that
thel i st isNULL terminated.

past eBuf f er If this resource is set to Tr ue then the name of the currently
selected list element will be put into CUT_BUFFER_0.

vertical Li st If this resource is set to Tr ue then the list elements will be
presented in column major order.

List Actions

The List widget supports the following actions:

 Highlighting and unhighlighting the list element under the pointer with Set and Unset
» Processing application callbacks with Not i fy

Thefollowing is the default trand ation table used by the List Widget:

<Bt n1Down>, <Bt n1Up>: Set(\]|) Notify(\]|)

Thefull list of actions supported by List widget is:

Set (\) Sets the list element that is currently under the pointer. To
inform the user that this element is currently set, it is drawn with
foreground and background colorsreversed. If thisactioniscalled
when there is no list element under the cursor, the currently set
element will be unset.

Unset (\)) Cancelsthe set state of the element under the pointer, and redraws
it with normal foreground and background colors.

Not i fy(\]) Calls all callbacks on the List widget's callback list. Information
about the currently selected list element is passed in the call_data
argument (seeLi st Cal | backs below).

List Callbacks

All procedures on the List widget's callback list will have a XawLi st Ret ur nSt r uct passed to
them as call_data. The structureis defined in the List widget's application header file.

typedef struct _XawLi stReturnStruct {
String string; /* string shown in the list. */

27

Simple Widgets

int list_index; /* index of the itemselected. */
} XawlLi st ReturnStruct;

Note

Thelist_index item used to be called simply index. Unfortunately, this name collided with a
global name defined on some operating systems, and had to be changed.

Changing the List

To change the list that is displayed, use XawLi st Change .

voi d XawLi st Change(w, |ist, |longest, resize);

w Specifiesthe List widget.

list Specifies the new list for the List widget to display.

nitems Specifies the number of items in the list. If a value less than 1 is

specified, list must be NULL terminated, and the number of items will
be calculated by the List widget.

longest Specifies the length of the longest item in thelist in pixels. If avalue
lessthan 1 is specified, the List widget will calculate the value.

resize Specifies a Boolean value that if Tr ue indicates that the List widget
should try to resize itself after making the change. The constraints of
the List widget's parent are always enforced, regardless of the value
specified here.

XawLi st Change will unset al list elements that are currently set before the list is actually
changed. Thelist isused in place, and must remain usable for the lifetime of the List widget, or until
list has been changed again with this function or with Xt Set Val ues.

Highlighting an Item
To highlight an item in the list, use XawLi st Hi ghl i ght

void XawLi stHi ghlight(w, item;

w Specifiesthe List widget.
item Specifies an index into the current list that indicates the item to be
highlighted.

Only one item can be highlighted at a time. If an item is aready highlighted when
XawLi st Hi ghl i ght is called, the highlighted item is unhighlighted before the new item is
highlighted.

Unhighlighting an Item
To unhighlight the currently highlighted item in the list, use XawLi st Unhi ghl i ght
voi d XawLi st Unhi ghlight(w);
w Specifiesthe List widget.

Retrieving the Currently Selected Item

Toretrieve the list element that is currently set, use XawlLi st ShowCur r ent

28

Simple Widgets

XawLi st Ret urnSt ruct *XawLi st ShowCurrent (w);
w Specifiesthe List widget.

XawLi st ShowCur r ent returns a pointer to an XawLi st Ret ur nSt r uct structure, containing
the currently highlighted item. If the value of the index member is XAW_LIST_NONE, the string
member is undefined, and no item is currently selected.

Restrictions

Many programmers create a " "scrolled list" by putting a List widget with many entries as a child of a
Viewport widget. The List continuesto create awindow as big asits contents, but that big window is
only visible where it intersects the parent Viewport'swindow. (1.e., it is “"clipped.")

Whilethisisauseful technique, thereisaserious drawback. X doesnot support windows above 32,767

pixelsin width or height, but this height limit will be exceeded by a List's window when the List has
many entries (i.e., with a 12 point font, about 3000 entries would be too many.)

Panner Widget

Application header file <X11/ Xaw Panner. h>
Cl ass header file <X11/ Xaw Panner P. h>

Cl ass panner Wdget d ass

Cl ass Nanme Panner

Supercl ass Sinpl e

A Panner widget is arectangle, called the “"canvas," on which another rectangle, the “dlider," moves
in two dimensions. It is often used with a Porthole widget to move, or ““scroll," athird widget in two
dimensions, in which case the slider's size and position gives feedback as to what portion of the third
widget isvisible.

The slider may be scrolled around the canvas by pressing, dragging, and releasing Buttonl; the default
trandation also enables scrolling via arrow keys and some other keys. While scrolling isin progress,
the application receives notification through callback procedures. Notification may be done either
continuously whenever the slider moves or discretely whenever the dider has been given a new
location.

Resources

When creating a Panner widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
allowOff AllowOff Boolean False
ancestorSensitive | AncestorSensitive Boolean D True

29

Simple Widgets

the canvas.

Name Class Type Notes Default Value
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
backgroundStipple|BackgroundStipple String NULL
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
canvasHeight CanvasHeight Dimension 0
canvasWidth CanvasWidth Dimension 0
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
defaultScale DefaultScale Dimension 8
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel tDefaultForeground
height Height Dimension A depends on
orientation
internal Space Internal Space Dimension 4
international International Boolean C Fase
lineWidth LineWidth Dimension 0
mappedWhenManadéddppedWhenManaged Boolean True
pointerColor Foreground Pixel tDefaultForeground
painterColorBackground Background Pixel tDefaultBackground
reportCallback ReportCallback Callback NULL
resize Resize Boolean True
rubberBand RubberBand Boolean False
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
shadowColor ShadowColor Pixel tDefaultForeground
shadowThickness | ShadowThickness Dimension 2
dliderX SliderX Position 0
dliderY SliderY Position 0
sliderHeight SliderHeight Dimension 0
dliderWidth SliderWidth Dimension 0
trandations Tranglations TrandationTable See below
width Width Dimension A depends on
orientation
X Position Position 0
y Position Position 0
al | owOx f Whether to allow the edges of the slider to go off the edges of

30

Simple Widgets

backgroundSti ppl e

canvasHei ght
canvasWdt h

def aul t Scal e

f or egr ound

i nt er nal Space

| i neWdth

report Cal | back

resi ze

r ubber Band

shadowCol or

shadowThi ckness

sliderX
sliderY
sl i der Hei ght
sliderWdth

Panner Actions

The name of a bitmap pattern to be used as the background for
the area representing the canvas.

The size of the canvas.

The percentage size that the Panner widget should haverelative
to the size of the canvas.

A pixel value which indexes the widget's colormap to derive
the color used to draw the Slider.

The width of internal border in pixels between a dlider
representing the full size of the canvas and the edge of the
Panner widget.

The width of the lines in the rubberbanding rectangle when
rubberbanding isin effect instead of continuous scrolling. The
default isO.

All functions on this callback list are called when thenot i fy
action is invoked. See the Panner Acti ons section for
details.

Whether or not to resize the panner whenever the canvas size
is changed so that the def aul t Scal e is maintained.

Whether or not scrolling should be discrete (only moving
a rubberbanded rectangle until the scrolling is done) or
continuous (moving the slider itself). This controls whether or
not thenov e action procedurealsoinvokesthenot i f y action
procedure.

The color of the shadow underneath the slider.
The width of the shadow underneath the slider.

The location of the slider in the coordinates of the canvas.

The size of the dlider.

The actions supported by the Panner widget are:

start ()

st op()
abort ()

nove()

page(xanount ,yanount)

This action begins movement of the slider.
This action ends movement of the dlider.

This action ends movement of the slider and restores it to the
position it held when the st ar t action was invoked.

This action moves the outline of the dider (if the
rubber Band resource is True) or the dider itsaf (by
invoking thenot i f y action procedure).

This action moves the slider by the specified amounts. The
format for the amounts is a signed or unsigned floating-point
number (e.g., +1.0 or \-.5) followed by either p indicating pages

31

Simple Widgets

notify()

set (what ,val ue)

The default bindings for Panner are;

<Bt n1Down>: start(\]|)
<Bt n1Moti on>: move(\]|)

(slider sizes), or ¢ indicating canvas sizes. Thus, page(+0,
+.5p) represents vertical movement down one-half the height
of the dider and page(0,0) represents moving to the upper left
corner of the canvas.

This action informs the application of the dider's current
position by invoking the report Cal | back functions
registered by the application.

This action changes the behavior of the Panner. The what
argument must currently be the string r ubber band and
controls the value of ther ubber Band resource. Theval ue
argument may have one of thevalueson, of f , ort oggl e.

<Bt n1Up>: notify(\]|) stop(\]|)

<Bt n2Down>: abort(\]|)

<Key>KP_Enter: set(rubberband,toggle)

<Key>space: page(+1p, +1p)
<Key>Del et e: page(\-1p,\-

1p)

<Key>BackSpace: page(\-1p,\-1p)

<Key>Left: page(\-.5p, +0)
<Key>Ri ght: page(+. 5p, +0)

<Key>Up: page(+0,\-.5p)
<Key>Down: page(+0, +. 5p)
<Key>Hone: page(0, 0)

Panner Callbacks

Thefunctionsregisteredonther epor t Cal | back listareinvoked by thenot i f y actionasfollows:

voi d ReportProc(panner,

client_data, report);

panner Specifies the Panner widget.

panner Specifies the client data.

panner Specifies a pointer to an XawPanner Repor t structure containing the location and size
of the dider and the size of the canvas.

Repeater Widget

Application header file <X11/ Xaw Repeater. h>

Cl ass header file <X11/ Xaw RepeaterP. h>

Cl ass repeater Wdget C ass

Cl ass Nane Repeater

32

Simple Widgets

Super cl ass Commrand

The Repeater widget is a subclass of the Command widget; see the Command documentation for
details. The difference isthat the Repeater can call itsregistered callbacks repeatedly, at an increasing
rate. The default translation does so for the duration the user holds down pointer button 1 while the
pointer is on the Repeater.

Resources

When creating a Repeater widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's Colormap
cornerRoundPercenCornerRoundPercent Dimension 25
cursor Cursor Cursor None
cursorName Cursor String NULL
decay Decay Int 5
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar XawTextEncoding8bit
flash Boolean Boolean False
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel tDefaultForeground
height Height Dimension A graphic
height + 2 *
nt er nal Hei ght
highlightThickness Thickness Dimension A 2 (0if Shaped)
initialDelay Delay Int 200
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internal Width Width Dimension 4
international International Boolean C Fase
justify Justify Justify XtdustifyCenter
(center)

33

S

mple Widgets

3

pa

Name Class Type Notes Default Value
|abel Label String name of widget
leftBitmap LeftBitmap Bitmap None
appedWhenM anadddppedWhenManaged Boolean True
minimumDelay | MinimumDelay Int 10
pointerColor Foreground Pixel tDefaultForeground
interColorBackground Background Pixel XtDefaultBackground
repeatDelay Delay Int 50
resize Resize Boolean True
screen Screen Pointer R Parent's Screen
sensitive Sensitive Boolean True
shapeStyle ShapeStyle ShapeStyle Rectangle
startCallback StartCallback Callback NULL
stopCallback StopCallback Callback NULL
trandations Tranglations TrandationTable See below
width Width Dimension A graphic
width + 2 *
i nternal Wdth
X Position Position 0
y Position Position 0

\" Resource Descriptions

decay

flash

i nitial Del ay

m ni munDel ay
r epeat Del ay

start Cal | back

st opCal | back

Repeater Actions

The number of milliseconds that should be subtracted from
each succeeding interval while the Repeater button is being
held down until the interval has reached mi ni nunDel ay
milliseconds.

Whether or not to flash the Repeater button whenever the timer
goes off.

The number of milliseconds between the beginning of the
Repeater button being held down and thefirst invocation of the
cal | back function.

The minimum time between callbacks in milliseconds.

The number of milliseconds between each callback after the
first (minus an increasing number of decays).

Thelist of functions to invoke by the st ar t action (typically
when the Repeater button is first pressed). The callback data
parameter is set to NULL.

The list of functions to invoke by the st op action (typically
when the Repeater button is released). The callback data
parameter is set to NULL.

The Repeater widget supports the following actions beyond those of the Command button:

start ()

Thisinvokesthe functionsonthest art Cal | back and cal | back
lists and sets a timer to go off in i nitial Del ay milliseconds.

34

Simple Widgets

The timer will cause the cal | back functions to be invoked with
increasing frequency until the st op action occurs.

This invokes the functions on the st opCal | back list and prevents
any further timers from occuring until the next st art action.

st op()

The following are the default translation bindings used by the Repeater widget:

<Ent er W ndow>: hi ghlight(\])
<LeaveW ndow>: unhi ghlight(\])
<Bt n1Down>: set(\|) start(\]|)
<Bt nl1Up>: stop(\|) unset(\])

Scrollbar Widget

Application header file
Cl ass header file

<X11/ Xaw/ Scr ol | bar. h>

<X11/ Xaw Scr ol | bar P. h>

d ass scrol | bar Wdget d ass
Cl ass Name Scrol | bar
Super cl ass Si npl e

A Scrollbar widget isarectangle, called the " canvas," on which another rectangle, the "thumb," moves
in onedimension, either vertically or horizontally. A Scrollbar can be used alone, asavalue generator,
or it can be used within a composite widget (for example, a Viewport). When a Scrollbar is used to
move, or " scroll," the contents of another widget, the size and the position of the thumb usually give
feedback asto what portion of the other widget's contents are visible.

Each pointer button invokes a specific action. Pointer buttons 1 and 3 do not move the thumb
automatically. Instead, they return the pixel position of the cursor on the scroll region. When pointer
button 2 is clicked, the thumb moves to the current pointer position. When pointer button 2 is held
down and the pointer is moved, the thumb follows the pointer.

The pointer cursor in the scroll region changes depending on the current action. When no pointer
buttonis pressed, the cursor appears as adouble-headed arrow that pointsin the direction that scrolling
can occur. When pointer button 1 or 3 is pressed, the cursor appears as a single-headed arrow that
pointsin the logical direction that the thumb will move. When pointer button 2 is pressed, the cursor
appears as an arrow that points to the top or the left of the thumb.

When the user scrolls, the application receives natification through callback procedures. For both
discrete scrolling actions, the callback returns the Scrollbar widget, the client_data, and the pixel
position of the pointer when the button was released. For continuous scrolling, the callback routine
returns the scroll bar widget, the client data, and the current relative position of the thumb. When the
thumb is moved using pointer button 2, the callback procedure isinvoked continuously. When either
button 1 or 3 is pressed, the callback procedure is invoked only when the button is released and the
client callback procedure is responsible for moving the thumb.

Resources

When creating a Scrollbar widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True

35

Simple Widgets

3

Pa

Name Class Type Notes Default Value
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel tDefaultForeground
height Height Dimension A depends on
orientation
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C Fase
jumpProc Callback XtCallbackList NULL
length Length Dimension 1
appedWhenM anadddppedWhenManaged Boolean True
minimumThumb | MinimumThumb Dimension 7
orientation Orientation Orientation XtorientVertica
(vertical)
pointerColor Foreground Pixel tDefaultForeground
interColorBackground Background Pixel XtDefaultBackground
screen Screen Screen R parent's Screen
scrolIDCursor Cursor Cursor XC_sb_down_arrow
scrollHCursor Cursor Cursor XC sb h double arrow
scrollL Cursor Cursor Cursor XC _sb_left_arrow
scrollProc Callback XtCallbackList NULL
scrol|RCursor Cursor Cursor XC_sb right_arrow|
scrollUCursor Cursor Cursor XC_sb up_arrow
scrollV Cursor Cursor Cursor XC_sh v_arrow
sensitive Sensitive Boolean True
shown Shown Float 0.0
thickness Thickness Dimension 14
thumb Thumb Bitmap GreyPixmap
thumbProc Callback XtCallbackList NULL
topOf Thumb TopOfThumb Float 0.0
translations Tranglations TrandationTable See below
width Width Dimension A depends on
orientation
X Position Position 0
y Position Position 0

36

Simple Widgets

f or eground A pixel value which indexes the widget's colormap to derive
the color used to draw the thumb.

j unpPr oc All functions on this callback list are called when the
Not i f yThunb action is invoked. See the Scrol | bar
Act i ons section for detalls.

| ength The height of a vertical scrollbar or the width of a horizontal
scrollbar.

m ni mumrhunb The smallest size, in pixels, to which the thumb can shrink.

orientation The orientation is the direction that the thumb will be allowed

to move. This value can be either Xt ori ent Verti cal or
XtorientHorizontal .

scrol | DCur sor This cursor is used when scrolling backward in a vertical
scrollbar.

scrol | HCur sor This cursor is used when a horizontal scrollbar isinactive.

scrol | LCursor This cursor is used when scrolling forward in a horizontal
scrollbar.

scrol | Proc All functions on this callback list may be called when the

Noti fyScrol | action is invoked. See the \fBScrollbar
Actions\fP section for details.

scrol | RCursor This cursor is used when scrolling backward in a horizontal
scrollbar, or when thumbing a vertical scrollbar.

scrol | UCur sor This cursor is used when scrolling forward in a vertical
scrollbar, or when thumbing a horizontal scrollbar.

scrol | VCursor This cursor is used when avertical scrollbar isinactive.

shown This is the size of the thumb, expressed as a percentage (0.0 -
1.0) of the length of the scrollbar.

t hi ckness The width of a vertical scrollbar or the height of a horizontal
scrollbar.

t hunb This pixmap is used to tile (or stipple) the thumb of the

scrollbar. If notiling is desired, then set this resourceto None.
This resource will accept either a bitmap or a pixmap that is
the same depth as the window. The resource converter for this
resource constructs bitmaps from the contents of files. (See
Converting Bitmaps for details)

t opOf Thunb The location of the top of the thumb, as a percentage (0.0 -
1.0) of the length of the scrollbar. This resource was called
t op in previous versions of the Athena widget set. The name
collided with the a Form widget constraint resource, and had
to be changed.

Scrollbar Actions

The actions supported by the Scrollbar widget are:

Start Scrol | (value) The possible values are Forward, Backward, or Continuous.
This must be the first action to begin a new movement.

37

Simple Widgets

Not i fyScr ol | (value) The possible values are Proportional or FullLength. If
the argument to StartScroll was Forward or Backward,
NotifyScroll executesthe scr ol | Pr oc callbacks and passes
either; the position of the pointer, if value is Proportional, or
the full length of the scroll bar, if value is FullLength. If the
argument to StartScroll was Continuous, NotifyScroll returns
without executing any callbacks.

EndScrol I (V) This must be the last action after amovement is complete.

MoveThunb(*) Repositions the Scrollbar's thumb to the current pointer
location.

Not i f yThumb(\)\ Calls the callbacks and passes the relative position of the

pointer as a percentage of the scroll bar length.

The default bindings for Scrollbar are:

<Bt n1Down>: Start Scrol | (Forwar d)

<Bt n2Down>: Start Scrol | (Conti nuous) MoveThunb(\|) NotifyThunmb(\]|)
<Bt n3Down>: Start Scrol | (Backwar d)

<Bt n2Mot i on>: MoveThunb(\]|) NotifyThunb(\])

<Bt nUp>: NotifyScroll (Proportional) EndScroll (\])

Examples of additional bindings a user might wish to specify in aresource file are;

*Scrol | bar. Transl ati ons: \\
~Met a<Key>space: Start Scrol | (Forward) NotifyScroll (FullLength) \\n\\
Met a<Key>space: Start Scrol | (Backward) NotifyScroll (FullLength) \\n\\
EndScrol I (\])

Scrollbar Callbacks

There are two callback lists provided by the Scrollbar widget. The procedural interface for these
functionsis described here.

The cdlling interface to thescr ol | Pr oc callback procedureis:

void Scroll Proc(scrollbar, «client_data, position);

scrollbar Specifies the Scrollbar widget.
client_data Specifiesthe client data.
position Specifies apixel position in integer form.

Thescrol | Proc calback is used for incremental scrolling and is called by the Not i f yScr ol |
action. The position argument is a signed quantity and should be cast to an int when used. Using the
default button bindings, button 1 returns a positive value, and button 3 returns a negative value. In
both cases, the magnitude of the value is the distance of the pointer in pixels from the top (or left) of
the Scrollbar. The value will never be greater than the length of the Scrollbar.

The calling interface to thej unpPr oc callback procedureis:
voi d JumpProc(scrollbar, «client_data, percent_ptr);

scrollbar Specifiesthe ID of the scroll bar widget.

38

Simple Widgets

client_data Specifies the client data.
percent_ptr Specifiesthe floating point position of the thumb (0.0 \- 1.0).
Thej unpPr oc callback is used to implement smooth scrolling and is called by the Not i f y Thunb
action. Percent_ptr must be cast to a pointer to float before use; i.e.

float percent = *(float*)percent_ptr;
With the default button bindings, button 2 movesthethumb interactively, and thej unpPr oc iscalled
on each new position of the pointer, while the pointer button remains down. The value specified by

percent_ptr isthe current location of the thumb (from the top or left of the Scrollbar) expressed as a
percentage of the length of the Scrollbar.

Convenience Routines

To set the position and length of a Scrollbar thumb, use
voi d XawScrol | bar Set Thunb(w, top, shown);
w Specifies the Scrollbar widget.

top Specifies the position of the top of the thumb as a fraction of the length
of the Scrollbar.

shown Specifies the length of the thumb as a fraction of the total Iength of the
Scrollbar.

XawScr ol | bar Thunb movesthe visible thumb to anew position (0.0\- 1.0) and length (0.0\- 1.0).
Either the top or shown arguments can be specified as \-1.0, in which case the current value is left
unchanged. Values greater than 1.0 are truncated to 1.0.

If called fromj unpProc, XawScr ol | bar Set Thunb has no effect.

Setting Float Resources

Theshown andt opOf Thurmb resources are of type float. These resources can be difficult to get into
an argument list. The reason isthat C performs an automatic cast of the float value to an integer value,
usually truncating the important information. The following code fragment is one portable method of
getting afloat into an argument list.

top = 0.5;
if (sizeof(float) > sizeof (XtArgval)) {
/*

\ * If afloat is larger than an XtArgVal then pass this
\ * resource val ue by reference.
\ x/
Xt Set Arg(args[0], XtNshown, &top);
}
el se {
/*
\ * Convince C not to performan autonatic conversion, which
\ * would truncate 0.5 to O.
\ x/
XtArgval * | _top = (XtArgval *) ⊤
Xt Set Arg(args[0], XtNshown, *I| _top);

39

Simple Widgets

}

Simple Widget

Application Header file <Xaw Sinple. h>

Cl ass Header file <Xaw Si npl eP. h>

d ass

si mpl eW dget Cl ass

Cl ass Nanme Sinmple

Super cl ass Core

The Simple widget is not very useful by itself, asit has no semantics of its own. It main purposeisto
be used as a common superclass for the other simple Athena widgets. This widget adds six resources
to the resource list provided by the Core widget and its superclasses.

Resources

When creating a Simple widget instance, the following resources are retrieved from the argument list
or from the resource database:

3

pa

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension 0
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C Fase
appedWhenM anadddppedWhenManaged Boolean True
pointerColor Foreground Pixel tDefaultForeground
interColorBackground Background Pixel XtDefaultBackgroungd
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True

40

Simple Widgets

Name Class Type Notes Default Value
tranglations Trandations TranglationTable NULL
width Width Dimension 0
X Position Position 0
y Position Position 0

StripChart Widget

Application Header file <Xaw StripChart. h>
Cl ass Header file <Xaw StripCharP. h>

Class stripChart Wdgetd ass

Class Name StripChart

Super cl ass Sinpl e

The StripChart widget is used to provide a roughly real time graphical chart of a single value. For
example, it is used by the common client program x| oad to provide a graph of processor load. The
StripChart reads data from an application, and updates the chart at the updat e interval specified.

Resources

When creating a StripChart widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel tDefaultForeground
getVaue Callback XtCallbackList NULL
height Height Dimension 120
highlight Foreground Pixel tDefaultForeground

41

Simple Widgets

3

pa

Name Class Type Notes Default Value
insensitiveBorder Insensitive Pixmap GreyPixmap
international International Boolean C Fase
jumpScroll JumpScroll int A half the width
of the widget
appedWhenM anadddppedWhenManaged Boolean True
minScale Scale int 1
pointerColor Foreground Pixel tDefaultForeground
interColorBackground Background Pixel XtDefaultBackground
screen Screen Pointer R Parent's Screen
sensitive Sensitive Boolean True
trandations Tranglations TrandationTable NULL
update Interval int 10
width Width Dimension 120
X Position Position 0
y Position Position 0

f or egr ound

get Val ue

hi ghl i ght

j unpScrol |

m nScal e

updat e

A pixel value which indexes the widget's colormap to derive the
color that will be used to draw the graph.

A list of callback functions to call every updat e seconds. This
list should contain one function, which returns the value to be
graphed by the StripChart widget. The following section describes
the procedural interface. Behavior when thislist hasmorethan one
function is undefined.

A pixel value which indexes the widget's colormap to derive the
color that will be used to draw the scale lines on the graph.

When the graph reaches the right edge of the window it must be
scrolled to the left. This resource specifies the number of pixels
it will jJump. Smooth scrolling can be achieved by setting this
resource to 1.

The minimum scale for the graph. The number of divisions on the
graph will always be greater than or equal to this value.

The number of seconds between graph updates. Each update is
represented on the graph as a 1 pixel wide line. Every updat e
secondstheget Val ue procedurewill be used to get anew graph
point, and this point will be added to theright end of the StripChart.

Getting the StripChart Value

The StripChart widget will call the application routine passed to it astheget Val ue callback function
every updat e seconds to obtain another point for the StripChart graph.

The calling interface for the get Val ue callback is:

voi d(*get Val ueProc) (w,

w

client_data

client_data, value);
Specifies the StripChart widget.

Specifies the client data.

42

Simple Widgets

value Returns a pointer to a double. The application should set the
address pointed to by this argument to a double containing the

value to be graphed on the StripChart.

Thisfunction is used by the StripChart to call an application routine. The routine will pass the value
to be graphed back to the the StripChart in the val ue field of this routine.

Toggle Widget

Application Header file <Xaw/ Toggl e. h>
Cl ass Header file <Xaw/ Toggl eP. h>

d ass
Cl ass Nane
Super cl ass

t oggl eW dget Cl ass

Toggl e
Conmmand

The Toggle widget is an area, often rectangular, that displays a graphic. The graphic may be a text
string containing multiple lines of charactersin an 8 bit or 16 bit character set (to be displayed with a
font), or in amulti-byte encoding (for use with afontset). The graphic may also be abitmap or pixmap.

This widget maintains a Boolean state (e.g. True/False or On/Off) and changes state whenever it is
selected. When the pointer is on the Toggle widget, the Toggle widget may become highlighted by
drawing arectangle around its perimeter. This highlighting indicates that the Toggle widget is ready
for selection. When pointer button 1 is pressed and released, the Toggle widget indicates that it has
changed state by reversing its foreground and background colors, and itsnot i f y action isinvoked,
calling al functions on its callback list. If the pointer is moved off of the widget before the pointer
button is released, the Toggle widget reverts to its previous foreground and background colors, and
releasing the pointer button has no effect. This behavior allows the user to cancel the operation.

Toggle widgets may also be part of a ““radio group.” A radio group is alist of at least two Toggle
widgets in which no more than one Toggle may be set at any time. A radio group isidentified by the
widget ID of any one of its members. The convenience routine XawToggl eGet Cur r ent will
return information about the Toggle widget in the radio group.

Toggle widget state is preserved across changes in sensitivity.

Resources

When creating a Toggle widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
bitmap Bitmap Pixmap None
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
callback Callback XtCallbackL.ist NULL
colormap Colormap Colormap Parent's Colormap
cornerRoundPercenCornerRoundPercent Dimension 25
cursor Cursor Cursor None

43

Simple Widgets

—

Name Class Type Notes Default Value
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
encoding Encoding UnsignedChar XawTextEncoding8bi
font Font XFontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel tDefaultForeground
height Height Dimension A graphic
height + 2 *
nt er nal Hei ght
highlightThickness Thickness Dimension A 2 (0if Shaped)
insensitiveBorder Insensitive Pixmap GreyPixmap
internalHeight Height Dimension 2
internal Width Width Dimension 4
international International Boolean C False
justify Justify Justify XtdustifyCenter
(center)
|abel L abel String name of widget
leftBitmap LeftBitmap Bitmap None
mappedWhenM anaddadppedWhenManaged Boolean True
pointerColor Foreground Pixel tDefaultForeground
painterColorBackground Background Pixel XtDefaultBackground
radioData RadioData Pointer Name of widget
radioGroup Widget Widget No radio group
resize Resize Boolean True
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
shapeStype ShapeStyle ShapeStyle Rectangle
state State Boolean Off
trandations Tranglations TrandationTable See below
width Width Dimension A graphic
width + 2 *
i nternal Wdth
X Position Position 0
y Position Position 0
radi oDat a Specifies the data that will be returned by
XawToggl eCet Cur r ent when thisisthe currently set widget
in the radio group. This value is aso used to identify the Toggle
that will be set by acall to XawToggl eSet Current. The
value NULL will bereturned by XawToggl eGet Current if
no widget in aradio group is currently set. Programmers must not
specify NULL (or Zero) asr adi oDat a.
radi oG oup Specifies another Togglewidget that isin the radio group towhich

this Toggle widget should be added. A radio group isagroup of at

44

Simple Widgets

|east two Toggle widgets, only one of which may be set at atime.
If this value is NULL (the default) then the Toggle will not be
part of any radio group and can change state without affecting any
other Toggle widgets. If the widget specified in this resource is
not already in aradio group then anew radio group will be created
containing these two Toggle widgets. No Toggle widget can bein
multipleradio groups. The behavior of aradio group of onetoggle
isundefined. A converter is registered which will convert widget
names to widgets without caching.

state Specifies whether the Toggle widget is set (Tr ue) or unset
(Fal se).

Toggle Actions

The Toggle widget supports the following actions:

 Switching the Toggle widget between the foreground and background colorswith set andunset

andt oggl e

» Processing application callbackswith not i fy

» Switching the internal border between highlighted and unhighlighted states with hi ghl i ght and

unhi ghl i ght

The following are the default translation bindings used by the Toggle widget:

<Ent er W ndow>: hi ghl i ght (Al ways)
<LeaveW ndow>: unhi ghl i ght ()

<Bt n1Down>, <Bt n1Up>:

Toggle Actions

toggl e() notify()

Thefull list of actions supported by Toggleis.

hi ghl i ght (condition)

unhi ghl i ght ()

set ()

unset ()

t oggl e()

Displays the interna highlight border in the color
(foreground or background) that contrasts with
the interior color of the Toggle widget. The conditions
WhenUnset and Al ways are understood by this action
procedure. If no argument is passed then WhenUnset is
assumed.

Displays the interna highlight border in the color
(f oreground or backgr ound) that matches the interior
color of the Toggle widget.

Enters the set state, in which notify is possible. This
action causes the Toggle widget to display its interior in the
f or egr ound color. The label or bitmap is displayed in the
backgr ound color.

Cancels the set state and displays the interior of the Toggle
widget in the backgr ound color. The label or bitmap is
displayed inthef or egr ound color.

Changesthe current state of the Togglewidget, causing to be set
if it was previously unset, and unset if it was previously set. If
thewidget isto beset, and isin aradio group then thisprocedure
may unset another Toggle widget causing all routines on its

45

Simple Widgets

callback list to beinvoked. The callback routinesfor the Toggle
that isto be unset will be called before the one that isto be set.

reset() Cancelsany set or hi ghl i ght and displays the interior of
the Toggle widget in the backgr ound color, with the label
displayed inthef or egr ound color.

notify() When the Toggle widget is in the set state this action calls
al functions in the callback list named by the cal | back
resource. The value of the call_data argument in these callback
functionsis undefined.

When a bitmap of depth greater that one (1) is specified the set(), unset(), and reset() actions have no
effect, since there are no foreground and background colors used in a multi-plane pixmap.

Radio Groups

There are typically two types of radio groups desired by applications. The default tranglations for the
Toggle widget implement a"zero or one of many" radio group. This meansthat there may be no more
than one Toggle widget active, but there need not be any Toggle widgets active.

The other type of radio group is "one of many" and has the more strict policy that there will always
be exactly one radio button active. Toggle widgets can be used to provide this interface with a slight
modification to the trandlation table of each Toggle in the group.

<Ent er W ndow>: hi ghl i ght (Al ways)
<LeaveW ndow>: unhi ghl i ght ()
<Bt n1Down>, <Bt n1Up>: set() notify()

This trandation table will not allow any Toggle to be unset except as a result of another Toggle
becoming set. It is the application programmer's responsibility to choose an initial state for the radio
group by setting the st at e resource of one of its member widgetsto Tr ue.

Convenience Routines

The following functions allow easy access to the Toggle widget's radio group functionality.

Changing the Toggle's Radio Group.

To enable an application to change the Toggle's radio group, add the Toggle to a radio group, or
remove the Toggle from aradio group, use XawToggl eChangeRadi oG oup.

voi d XawToggl eChangeRadi oG oup(radi o_group);

w Specifies the Toggle widget.

radio_group Specifies any Toggle in the new radio group. If NULL then the
Toggle will be removed from any radio group of which it isa
member.

If aToggle is aready set in the new radio group, and the Toggle to be added is also set then the
previously set Togglein the radio group is unset and its callback procedures are invoked. Finding the
Currently selected Toggle in aradio group of Toggles

To find the currently selected Toggle in a radio group of Toggle widgets use
XawToggl eGet Current.

Xt Poi nter XawToggl eGet Current (XawToggl eGet Current (radi o_group),
radi o_group);

46

Simple Widgets

radio_group Specifies any Toggle widget in the radio group.

The value returned by this function is the r adi oDat a of the Toggle in this radio group that is
currently set. The default valuefor r adi oDat a isthe name of that Togglewidget. If no Toggleis set
in the radio group specified then NULL is returned. Changing the Toggle that is set in aradio group.

To change the Toggle that is currently set in aradio group use XawToggl eSet Cur rent .
voi d XawToggl eSet Current (radio_data), radio_group, radio_data);
radio_group Specifies any Toggle widget in the radio group.

radio_data Specifiesther adi oDat a identifying the Toggle that should be
set in the radio group specified by the radio_group argument.

XawToggl eSet Cur r ent locates the Toggle widget to be set by matching radio_data against the

r adi oDat a for each Togglein theradio group. If nonematch, XawToggl eSet Curr ent returns
without making any changes. If more than one Toggle matches, XawToggl eSet Cur r ent will
choose a Toggle to set arbitrarily. If this causes any Toggle widgets to change state, all routines in
their callback listswill beinvoked. The callback routinesfor aToggle that isto be unset will be called
before the one that isto be set. Unsetting all Togglesin aradio group.

To unset all Toggle widgetsin aradio group use XawToggl eUnset Current .

voi d XawToggl eUnset Current (XawToggl eUnset Current (radi o_group),
radi o_group);

radio_group Specifies any Toggle widget in the radio group.

If this causes a Toggle widget to change state, all routines on its callback list will be invoked.

47

Chapter 4. Menus

The Athenawidget set provides support for single paned non-hierarchical popup and pulldown menus.
Since menus are such a common user interface tool, support for them must be provided in even the
most basic widget sets. In menuing as in other areas, the Athena Widget Set provides only basic
functionality.

Menusin the Athena widget set are implemented as a menu container (the SimpleMenu widget) and a
collection of objectsthat comprise the menu entries. The SimpleMenu widget isitself adirect subclass
of the OverrideShell widget class, so no other shell is necessary when creating a menu. The managed
children of a SimpleMenu must be subclasses of the Sme (Simple Menu Entry) object.

The Athena widget set provides three classes of Sme objects that may be used to build menus.

Sme The base class of all menu entries. It may be used as a menu entry itself to provide blank
spacein amenu. "Sme" means "Simple Menu Entry."

SmeBSB This menu entry provides a selectable entry containing a text string. A bitmap may also
be placed in the left and right margins. "BSB" means "Bitmap String Bitmap."

SmelLine Thismenu entry provides an unselectable entry containing a separator line.

The SimpleMenu widget informs the window manager that it should ignore its window by setting the
Override Redirect flag. Thisisthe correct behavior for the press-drag-rel ease style of menu
operation. If click-move-click or "pinable" menus are desired it isthe responsibility of the application
programmer, using the SimpleMenu resources, to inform the window manager of the menu.

Toalow easy creation of pulldown menus, aMenuButton widget isal so provided aspart of the Athena
widget set.

Using the Menus

The default configuration for the menus is press-drag-release. The menus will typically be activated
by clicking a pointer button while the pointer is over a MenuButton, causing the menu to appear in a
fixed location relative to that button; thisisapul | down menu. Menus may also be activated when a
specific pointer and/or key sequence is used anywhere in the application; thisisapopup menu (e.g.
clicking Ctrl-<pointer button 1> in the common application xt er mj. In this case the menu should be
positioned under the cursor. Typically menus will be placed so the pointer cursor is on the first menu
entry, or the last entry selected by the user.

The menu remains on the screen as long as the pointer button is held down. Moving the pointer will
highlight different menu items. If the pointer leaves the menu, or moves over an entry that cannot
be selected then no menu entry will highlighted. When the desired menu entry has been highlighted,
releasing the pointer button removes the menu, and causes any mechanism associated with this entry
to be invoked.

Sme Object

Application Header file <X11/ Xaw Sne. h>
Cl ass Header file <X11/ Xaw SmeP. h>
Cass snmeojectd ass

Cl ass Nane Sne

48

Menus

Super cl ass Rect Qo]

The Sme object is the base class for all menu entries. While this object is mainly intended to be
subclassed, it may be used in amenu to add blank space between menu entries.

Resources

The resources associated with the SmeLine object are defined in this section, and affect only the single
menu entry specified by this object. There are no new resources added for this class, as it picks up
all its resources from the RectObj class.

Name Class Type Notes Default Value
ancestorSensitive | AncestorSensitive Boolean True
callback Callback XtCallbackList NULL
destroyCallback Callback XtCallbackList NULL
height Height Dimension 0
international International Boolean C False
sensitive Sensitive Boolean True
width Width Dimension 1

Keep in mind that the SimpleMenu widget will forceall menu itemsto be the width of thewidest entry.

Subclassing the Sme Object

To Create anew Sme object class you will need to define three class methods. These methods allow
the SimpleMenu to highlight and unhighlight the menu entry as the pointer cursor moves over it, as
well as notify the entry when the user has selected it. All of these methods may be inherited from the
Sme object, although the default semantics are not very interesting.

Hi ghl i ght (\)) Called to put the menu entry into the highlighted state.
Unhi ghl i ght (\]) Called to return the widget to its normal (unhighlighted) state.
Not i fy(\]) Called when the user selects this menu entry.

Other then these methods, creating a new object is straight forward. Here is some information that
may help you avoid some common mistakes.

1. Objects can be zero pixels high.

2. Objectsdraw on their parent's window, therefore the Drawing dimensions are different from those
of widgets. For instance, y locationsvary fromy toy + hei ght, not O to hei ght .

3. XtSetVauescallsmay comefrom the application whilethe Smeishighlighted, and if the SetVaues
method returns True, will result in an expose event. The SimpleMenu may later call the menu
entry'sunhi ghl i ght procedure. However, dueto the asynchronous nature of X, the expose event
generated by Xt Set Val ues will come after this unhighlight.

4. Remember that your subclass of the Sme does not own the window. Share the space with other
menu entries, and refrain from drawing outside the subclass's own section of the menu.

SmeBSB Object

49

Menus

Application Header file <X11/Xaw SneBSB. h>
Cl ass Header file <X11/ Xaw SmeBSBP. h>

Cl ass snmeBSBhj ect d ass

Cl ass Nanme SnmeBSB

Supercl ass Sne

The SmeBSB object is used to create a menu entry that contains a string, and optional bitmaps in
its left and right margins. Since each menu entry is an independent object, the application is able to
change the font, color, height, and other attributes of the menu entries, on an entry by entry basis. The
format of the string may either be the encoding of the 8 bit f ont utilized, or in amulti-byte encoding
for usewith af ont Set .

Resources

The resources associated with the SmeB SB object are defined in this section, and affect only thesingle
menu entry specified by this object.

Name Class Type Notes Default Value
ancestorSensitive | AncestorSensitive Boolean D True
callback Callback Callback NULL
destroyCallback Callback XtCallbackList NULL
font Font FontStruct XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel tDefaultForeground
height Height Dimension A Font height +
vert Space
international International Boolean C False
justify Justify Justify XtjustifyL eft
|abel Label String NULL
leftBitmap LeftBitmap Pixmap XtUnspecifiedPixmap
leftMargin leftMargin Dimension 4
rightBitmap RightBitmap Pixmap XtUnspecifiedPixmap
rightMargin rightMargin Dimension 4
sensitive Sensitive Boolean True
vertSpace VertSpace int 25
width Width Dimension A TextWidth
+ margins
callback All callback functions on this list are called when the SimpleMenu natifies this

entry that the user has selected it.

font The text font to use when displaying the | abel , when the i nt er nat i onal
resourceisf al se.

fontSet The text font set to use when displaying thel abel , whenthei nt er nat i onal
resourceist r ue.

50

Menus

foreground

justify

[abel

leftBitmap

rightBitmap

leftMargin

rightMargin

vertSpace

A pixel value which indexes the SimpleMenu's colormap to derive the foreground
color of the menu entry's window. This color is also used to render al 1'sin the
left and right bi t naps. Keep in mind that the SimpleMenu widget will force the
width of all menu entries to be the width of the longest entry.

How the label is to be rendered between the left and right margins when the
space is wider than the actual text. This resource may be specified with the
valuesXt Justi fyLeft, Xt JustifyCenter,orXtJustifyRi ght.When
specifying the justification from a resource file the values | ef t, cent er, or
ri ght may be used.

Thisis athe string that will be displayed in the menu entry. The exact location of
this string within the bounds of the menu entry is controlled by thel ef t Mar gi n,
ri ght Margi n,vert Space, andj usti fy resources.

Thisisaname of abitmap to display in the left or right margin of the menu entry.
All 1'siin the bitmap will be rendered in the foreground color, and al 0's will be
drawn in the background color of the SimpleMenu widget. It is the programmers
responsihility to make sure that the menu entry istall enough, and the appropriate
margin wide enough to accept the bitmap. If careis not taken the bitmap may extend
into another menu entry, or into this entry's label.

This is the amount of space (in pixels) that will be left between the edge of the
menu entry and the label string.

Thisis the amount of vertical padding, expressed as a percentage of the height of
thefont, that isto be placed around thelabel of amenu entry.. Thelabel and bitmaps
are aways centered vertically within the menu. The default value for this resource
(25) causes the default height to be 125% of the height of the font.

SmelLine Object

Application Header file <X11/Xaw SneLi ne. h>

Cl ass Header file <X11/ Xaw SmeLi neP. h>

Cl ass snelLi neCbj ect O ass

Cl ass Nane SmelLi ne

Supercl ass Sne

The SmeLine object is used to add a horizontal line or menu separator to amenu. Since each SmelL.ine
is an independent object, the application is able to change the color, height, and other attributes of
the SmeL.ine objects on an entry by entry basis. This object is not selectable, and will not highlight
when the pointer cursor is over it.

Resources

The resources associated with the SmeLine object are defined in this section, and affect only the single
menu entry specified by this object.

51

Menus

Name Class Type Notes Default Value
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel tDefaultForegroun
height Height Dimension i neWdth
international International Boolean C False
lineWidth LineWidth Dimension 1
stipple Stipple Pixmap XtUnspecifiedPixmap
width Width Dimension 1
foreground A pixel value which indexes the SimpleMenu's colormap to derive the foreground
color used to draw the separator line. Keep in mind that the SimpleM enu widget will
force al menu items to be the width of the widest entry. Thus, setting the width is
generaly not very important.
lineWidth The width of the horizontal line that is to be displayed.
stipple If a bitmap is specified for this resource, the line will be stippled through it. This

allowsthe menu separator to be rendered as something more exciting than just aline.
For instance, if you define a stipple that is a chain link, then your menu separators

will look like chains.

52

Chapter 5. Text Widgets

Text

The Text widget providesawindow that will allow an application to display and edit one or morelines
of text. Options are provided to alow the user to add Scrollbars to its window, search for a specific
string, and modify the text in the buffer.

The Text widget is made up of a number of pieces; it was modularized to ease customization. The
AsciiText widget class (actually not limited to ASCII but so named for compatibility) is be general
enough to most needs. If more flexibility, special features, or extra functionality is needed, they can
be added by implementing a new TextSource or TextSink, or by subclassing the Text Widget (See
Section 5.8 for customization details.)

The words insertion point are used in this chapter to refer to the text caret. Thisisthe symbol that is
displayed between two characters in the file. The insertion point marks the location where any new
characters will be added to the file. To avoid confusion the pointer cursor will always be referred to
asthe pointer.

The text widget supports three edit modes, controlling the types of modifications a user is allowed
to make:

» Append-only
+ Editable
» Read-only

Read-only mode does not allow the user or the programmer to modify the text in the widget. While
the entire string may be reset in read-only mode with Xt Set Val ues, it cannot be modified via
with XawText Repl ace. Append-only and editable modes allow the text at the insertion point to
be modified. The only differenceisthat text may only be added to or removed from the end of abuffer
in append-only mode.

Widget for Users

The Text widget provides many of the common keyboard editing commands. These commands allow
users to move around and edit the buffer. If an illegal operation is attempted, (such as deleting
charactersin aread-only text widget), the X server will beep.

Default Key Bindings

The default key bindings are patterned after those in the EMACS text editor:

Crl-a Beginning O Line Meta-b Backward Wrd

Crl-b Backward Character Meta-f Forward Word

Crl-d Delete Next Character Meta-i Insert File
Crl-e End O Line Meta-k Kill To End O Paragraph
Crl-f Forward Character Meta-q Form Paragraph
Crl-g Multiply Reset Meta-v Previous Page

Crl-h Delete Previous Character Meta-y Insert Current Selection
Crl-j Newine And Indent Meta-z Scroll One Line Down
CGrl-k Kill To End O Line Meta-d Del ete Next Word
Crl-1 Redraw Display Meta-D Kill Wrd

Crl-mNew ine Meta-h Del ete Previous Wrd

Ctrl-n Next Line Meta-H Backward Kill Word

Crl-o Newine And Backup Meta-< Beginning O File

53

Text Widgets

Crl-p Previous Line Meta-> End O File

Ctrl-r Search/Repl ace Backward Meta-] Forward Paragraph
Ctrl-s Search/Repl ace Forward Meta-[Backward Paragraph
Crl-t Transpose Characters

Crl-u Multiply by 4 Meta-Delete Del ete Previ ous Wrd
Crl-v Next Page Meta-Shift Delete Kill Previous Wrd
Crl-wKill Selection Mta-Backspace Del ete Previous Wrd
Crl-y Unkill Meta-Shift Backspace Kill Previous Wrd
Crl-z Scroll One Line Up

Ctrl-\\ Reconnect to input nethod

Kanji Reconnect to input nethod

In addition, the pointer may be used to cut and paste text:

Button 1 Down Start Selection
Butt on Moti on Adj ust Sel ection
Button 1 Up End Sel ection (cut)

=Y

Button 2 Down |Insert Current Sel ection (paste)

w

Butt on Down Extend Current Selection
Butt on Moti on Adj ust Sel ection
Button 3 Up End Sel ection (cut)

w

Since all of these key and pointer bindings are set through the trandations and resource manager,
the user and the application programmer can modify them by changing the Text widget's
transl ati ons resource.

Search and Replace

The Text widget provides a search popup that can be used to search for a string within the current
Text widget. The popup can be activated by typing either Control-r or Control-s. If Control-sis used
the search will be forward in the file from the current location of the insertion point; if Control-r is
used the search will be backward. The activated popup is placed under the pointer. It has a number of
buttons that allow both text searches and text replacements to be performed.

At the top of the search popup are two toggle buttons labeled backward and forward. One of these
buttons will always be highlighted; this is the direction in which the search will be performed. The
user can change the direction at any time by clicking on the appropriate button.

Directly under the buttons there are two text areas, one labeled Search for: and the other labeled
Replace with:. If this is a read-only Text widget the Replace with: field will be insensitive and no
replacements will be allowed. After each of these labels will be atext field. This field will allow the
user to enter astring to search for and the string to replaceit with. Only one of thesetext fieldswill have
awindow border around it; thisisthe active text field. Any key pressesthat occur when thefocusinin
the search popup will be directed to the active text field. There are also afew special key sequences:

Carriage Return: Execute the action, and pop down the search wi dget.
Tab: Execute the action, then nove to the next field.

Shift Carriage Return: Execute the action, then nove to the next field.
Control-g Tab: Enter a Tab into a text field.

Control -c: Pop down the search popup.

54

Text Widgets

Using these special key sequences should alow simple searches without ever removing one's hands
from the keyboard.

Near the bottom of the search popup isarow of buttons. These buttons alow the same actionsto to be
performed as the key sequences, but the buttons will leave the popup active. This can be quite useful
if many searches are being performed, as the popup will beleft on the display. Since the search popup
is a transient window, it may be picked up with the window manager and pulled off to the side for
use at alater time.

Search Search for the specified string.

Replace Replace the currently highlighted string with the string in the Replace with text field,
and move onto the next occurrence of the Search for text field. The functionality is
commonly referred to as query-replace.

ReplaceAll Replace al occurrences of the search string with the replace string from the current
insertion point position to the end (or beginning) of thefile. Thereisno key sequence
to perform this action.

ReplaceAll Remove the search popup from the screen.

Finally, wheni nt er nati onal resourceist r ue, there may be a pre-edit buffer below the button
row, for composing input. Its presence is determined by the X locale in use and the VendorShell's
pr eedit Type resource.

The widget hierarchy for the search popup is show below, all widgets are listed by class and instance
name.

Text <nane of Text w dget>
Transi ent Shell search
Form form
Label |abell
Label | abel 2
Toggl e backwar ds
Toggl e forwards
Label searchLabe
Text searchText
Label repl acelLabe
Text repl aceText
Command search
Conmand repl aceOne
Command repl aceAll
Conmand cancel

File Insertion

To insert afile into a text widget, type the key sequence Meta-i, which will activate the file insert
popup. This popup will appear under the pointer, and any text typed while the focusisin this popup
will be redirected to the text field used for the filename. When the desired filename has been entered,
click on Insert File, or type Carriage Return. The named file will then be inserted in the text widget
beginning at theinsertion point position. If an error occurswhen opening thefile, an error message will
be printed, prompting the user to enter thefilename again. Thefileinsert may be aborted by clicking on
Cancel. If Meta-i istyped at atext widget that is read-only, it will beep, asnofileinsertionisallowed.

Thewidget hierarchy for thefileinsert popup isshow below; all widgetsarelisted by classandinstance
name.

55

Text Widgets

Text <nane of Text w dget>
Transient Shell insertFile
Form form
Label | abel
Text text
Conmmand insert
Conmmand cancel

Text Selections for Users

Text

Thetext widgets have atext selection mechanism that allowsthe user to copy pieces of thetext into the
PRI MARY selection, and paste into the text widget some text that another application (or text widget)
has put in the PRI MARY selection.

One method of selecting text is to press pointer button 1 on the beginning of the text to be selected,
drag the pointer until all of the desired text is highlighted, and then release the button to activate the
selection. Another method is to click pointer button 1 at one end of the text to be selected, then click
pointer button 3 at the other end.

To modify a currently active selection, press pointer button 3 near either the end of the selection that
you want to adjust. This end of the selection may be moved while holding down pointer button 3.
When the proper area has been highlighted release the pointer button to activate the selection.

The selected text may now be pasted into another application, and will remain active until some other
client makes a selection. To paste text that some other application has put into the PRI MARY selection
use pointer button 2. First place the insertion point where you would like the text to be inserted, then
click and release pointer button 2.

Rapidly clicking pointer button 1 the following number of timeswill adjust the selection as described.

Two Select theword under the pointer. A word boundary is defined by the Text
widget to be a Space, Tab, or Carriage Return.

Thr ee Select the line under the pointer.

Four Select the paragraph under the pointer. A paragraph boundary is defined
by the text widget as two Carriage Returnsin a row with only Spaces or
Tabs between them.

Fi ve Select the entire text buffer.

To unset the text selection, click pointer button 1 without moving it.

Widget Actions

All editing functions are performed by translation manager actions that may be specified through the
transl at i ons resourcein the Text widget.

I nsert Point Myvenent Del et e
forwar d- character del et e- next - char act er
backwar d- char act er del et e- previ ous-char act er
f or war d- wor d del et e- next -word
backwar d- wor d del et e- previ ous-wor d
f or war d- par agr aph del et e-sel ecti on

backwar d- par agr aph
begi nni ng-of -1 i ne

56

Text Widgets

end- of -1 i ne
next-1ine
previous-1line
next - page

previ ous- page

begi nni ng-of -file
end-of -file

scrol | -one-1line-up
scrol | -one-1ine-down

M scel | aneous
redr aw di spl ay
insert-file
i nsert-char
insert-string
di spl ay- car et
focus-in
focus-in
search
mul tiply
f or m par agr aph
transpose-characters
no- op
XawWWPr ot ocol s
reconnect-im

Sel ection
sel ect -word
sel ect - al
sel ect-start
sel ect - adj ust
sel ect -end
extend-start
ext end- adj ust
ext end- end
i nsert-sel ection

New Li ne
new i ne- and- i ndent
newl i ne- and- backup

new i ne

Kill
kKill-word
backwar d- ki | | -word
kill-selection
Kill-to-end-of-line

kil | -paragraph
kill -to-end-of - paragraph

Most of the actionstake no arguments, and unless otherwise noted you may assumethisto be the case.

Cursor Movement Actions\fP

forward-character()

backward-character()

forward-word()

backward-word()

forward-paragraph()
backward-paragraph()

beginning-of-line()
end-of-lineg()

next-ling()

These actions move the insert point forward or backward one
character in the buffer. If the insert point is at the end or
beginning of aline this action will move theinsert point to the
next (or previous) line.

These actions move the insert point to the next or previous
word boundary. A word boundary is defined as a Space, Tab
or Carriage Return.

These actions move the insert point to the next or previous
paragraph boundary. A paragraph boundary is defined as two
Carriage Returns in a row with only Spaces or Tabs between
them.

These actions move to the beginning or end of the current line.
If theinsert point is already at the end or beginning of the line
then no action istaken.

57

Text Widgets

previous-ling()

next-page()
previous-page()

beginning-of-file()
end-of -file()

scroll-one-line-up()

scroll-one-line-down()

Delete Actions

delete-next-character()

delete-previous-character()

delete-next-word()

delete-previous-word()

delete-selection()

Selection Actions

select-word()

select-all()

select-start()

These actions move the insert point up or down oneline. If the
insert point is currently N characters from the beginning of the
linethen it will be N characters from the beginning of the next
or previousline. If N is past the end of the line, the insert point
is placed at the end of the line.

These actions move the insert point up or down one page in
the file. One page is defined as the current height of the text
widget. The insert point is always placed at the first character
of the top line by this action.

These actions place the insert point at the beginning or end
of the current text buffer. The text widget is then scrolled
the minimum amount necessary to make the new insert point
location visible.

These actions scroll the current text field up or down by
one line. They do not move the insert point. Other than the
scrollbars this is the only way that the insert point may be
moved off of the visible text area. The widget will be scrolled
so that the insert point is back on the screen as soon as some
other action is executed.

These actions remove the character immediately before or after
the insert point. If a Carriage Return is removed then the next
line is appended to the end of the current line.

These actions remove all characters between the insert point
location and the next word boundary. A word boundary is
defined as a Space, Tab or Carriage Return.

This action removes all charactersin the current selection. The
selection can be set with the selection actions.

This action selects the word in which the insert point is
currently located. If the insert point is between words then it
will select the previous word.

This action selects the entire text buffer.

Thisaction setstheinsert point to the current pointer location (if
triggered by a button event) or text cursor location (if triggered
by akey event). It will then begin a selection at this location.
If many of these selection actions occur quickly in succession
then the selection count mechanism will be invoked (see the
section titled \fBText Selections for Application Programmers
\fP for details).

58

Text Widgets

select-adjust()

select-end(namef,name,...])

extend-start()

extend-adjust()

extend-end(name[,name,...])

insert-selection(name],name,...])

The New Line Actions

newline-and-indent()

newline-and-backup()

newline()

Kill and Actions
kill-word()

backward-kill-word()

kill-selection()

kill-to-end-of-ling()

kill-paragraph()

kill-to-end-of -paragraph()

Thisaction allows asel ection started with the sel ect-start action
to be modified, as described above.

This action ends a text selection that began with the select-
start action, and asserts ownership of the selection or selections
specified. A name can be a selection (e.g., PRI MARY) or a cut
buffer (e.g.,, CUT_BUFFERQ). Note that case is important. If
no names are specified, PRI MARY is asserted.

This action finds the nearest end of the current selection, and
movesit to the current pointer location (if triggered by abutton
event) or text cursor location (if triggered by akey event).

This action allows a selection started with an extend-start
action to be modified.

This action ends a text selection that began with the extend-
start action, and asserts ownership of the selection or selections
specified. A name can be a selection (e.g. PRI MARY) or a cut
buffer (e.g CUT_BUFFERO). Note that case isimportant. If no
names are given, PRI MARY is asserted.

This action retrieves the value of the first (left-most) named
selection that exists or the cut buffer that is not empty and
insertsitintothe Text widget at the current insert point location.
A name can be a selection (e.g. PRI MARY) or a cut buffer (e.g
CUT_BUFFERQ). Note that case isimportant.

This action inserts a newline into the text and adds spaces to
that line to indent it to match the previous line.

This action inserts a newline into the text after the insert point.

Thisactioninsertsanewlineinto thetext beforetheinsert point.

These actions act exactly like the delete-next-word and del ete-
previous-word actions, but they stuff the word that was killed
into the kill buffer (CUT_BUFFER_1).

This action deletes the current selection and stuffs the deleted
text into the kill buffer (CUT_BUFFER _1).

This action deletes the entire line to the right of the insert
point position, and stuffs the deleted text into the kill buffer
(CUT_BUFFER_1).

This action deletes the current paragraph, if between
paragraphs it deletes the paragraph above the insert point, and
stuffs the deleted text into the kill buffer (CUT_BUFFER _1).

This action del etes everything between the current insert point
|ocation and the next paragraph boundary, and stuffsthe del eted
text into the kill buffer (CUT_BUFFER _1).

59

Text Widgets

Miscellaneous Actions

redraw-display()

insert-file([filename])

insert-char()

insert-string(string[,string,...])

display-caret(state,when)

*Text . Transl ati ons:
<Focusl n>:
<FocusQut >:

focus-in()

focus-out()

search(direction,[string])

This action recomputes the location of al the text lines on the
display, scrolls the text to vertically center the line containing
the insert point on the screen, clears the entire screen, and
redisplaysit.

This action activates the insert file popup. The filename option
specifiesthe default filenameto put in thefilename buffer of the
popup. If no filenameis specified the buffer isempty at startup.

This action may only be attached to a key event. When
the i nt ernati onal resource is f al se, this action calls
XLookupString to trandate the event into a (rebindable)
Latin-1 character (sequence) and inserts it into the text
at the insert point. When the i nt er nati onal resource
is true, characters are passed to the input method via
XwcLookupString, and any committed string returned is
inserted into the text at the insert point.

This action inserts each string into the text at the
insert point location. Any string beginning with the
characters "0x" followed by an even number of hexadecimal
digits is interpreted as a hexadecimal constant and the
corresponding string is inserted instead. This hexadecimal
string may represent up to 50 8-bit characters. When
thel nt er nat i onal resourceist r ue, ahexadecimal string
is intrepeted as being in a multi-byte encoding, and a
hexadecimal or regular string will result in an error message if
itisnot legal in the current locale.

This action alows the insert point to be turned on and off.
The state argument specifies the desired state of the insert
point. This value may be any of the string values accepted for
Boolean resources (e.g. on, Tr ue, of f, Fal se, etc.). If no
arguments are specified, the default value is Tr ue. The when
argument specifies, for Ent er Noti fy or LeaveNotify
events whether or not the focus field in the event is to be
examined. If the second argument is not specified, or specified
as something other than al ways then if the action is bound to
an EnterNotify or LeaveNot i fy event, the action will
betaken only if thefocusfieldis Tr ue. An augmented binding
that might be useful is:

#override \\
di spl ay-caret (on) \\n\\

di spl ay-caret (of f)

These actions do not currently do anything.

This action activates the search popup. The direction must
be specified as either f or war d or backwar d. The string is
optional andisused asaninitial valuefor the Searchfor: string.

60

Text Widgets

multiply(value)

form-paragraph()

transpose-characters()

no-op([action])

For further explanation of the search widget see the section on
Text Searches.

The multiply action allows the user to multiply the effects of
many of the text actions. Thus the following action sequence
multiply(10) delete-next-word() will delete 10 words. It does
not matter whether these actions take place in one event or
many events. Using the default trandlations the key sequence
\fIControl-u, Control-d\fP will delete 4 characters. Multiply
actions can be chained, thus \fimultiply(5) multiply(5)\fP is
the same as multiply(25). If the string r eset is passed to
the multiply action the effects of all previous multiplies are
removed and a beep is sent to the display.

This action removes all the Carriage Returns from the current
paragraph and reinserts them so that each line is as long
as possible, while dtill fitting on the current screen. Lines
are broken at word boundaries if at all possible. This action
currently works only on Text widgets that use ASCII text.

This action will swap the position of the character to the left
of the insert point with the character to the right of the insert
point. Theinsert point will then be advanced one character.

The no-op action makes no change to the text widget, and
is mainly used to override trandations. This action takes one
optional argument. If this argument is RingBell then abeep is
sent to the display.

XawWMProtocols([wm_protocol_narfih)s action is written specifically for the file insertion and

reconnect-im()

the search and replace dialog boxes. This action is attached
to those shells by the Text widget, in order to handle
ClientM essage eventswiththeWM_PROTOCOL Satominthe
detail field. This action supports WM_DELETE _WINDOW
on the Text widget popups, and may support other
window manager protocols if necessary in the future.
The popup will be dismissed if the window manager
sends a WM_DELETE_WINDOW request and there are no
parameters in the action call, which is the default. The popup
will also be dismissed if the parameters include the string
“wm_delete window," and the event is a ClientM essage event
requesting dismissal or is not a ClientMessage event. This
action is not sensitive to the case of the strings passed as
parameters.

When the i nternational resource is true, input is
usualy passed to an input method, a separate process, for
composing. Sometimes the connection to this process gets
severed; this action will attempt to reconnect it. Causes for
severageinclude network trouble, and the user explicitly killing
one input method and starting a new one. This action may also
establish first connection when the application is started before
the input method.

Text Selections for Application Programmers

Thedefault behavior of thetext selection array isdescribed inthe section called Text Sel ecti ons
for Users. To modify the selections a programmer must construct a XawText Sel ect Type
array (called the selection array), containing the selections desired, and pass this as the new

61

Text Widgets

value for the sel ecti onTypes resource. The selection array may also be modified using
the XawText Set Sel ecti onArray function. All selection arrays must end with the value
Xawsel ect Nul | . The sel ecti onTypes resource has no converter registered and cannot be
modified through the resource manager.

The array contains a list of entries that will be called when the user attempts to select text in rapid
succession with the select-start action (usually by clicking a pointer button). The first entry in the
selection array will be used when the select-start action isinitially called. The next entry will be used
when select-start is called again, and so on. If a timeout value (/10 of a second) is exceeded, the
the next select-start action will begin at the top of the selection array. When Xawsel ect Nul | is
reached the array is recycled beginning with the first element.

Xawsel ect Al | Selects the contents of the entire buffer.

Selects text characters as the
pointer moves over them.

Xawsel ect Char

Xawsel ect Li ne Selects the entireline.

Xawsel ect Nul | Indicates the end of the selection array.

Xawsel ect Par agr aph Selects the entire paragraph.

Xawsel ect Posi ti on Selects the current pointer position.

Selects whole words as the
pointer moves onto them.

Xawsel ect Wr d

The default selectType array is:

{Xawsel ect Posi ti on, Xawsel ect Wrd, Xawsel ectLine, Xawsel ect Paragraph, Xawsel ect.

The selection array is not copied by the text widgets. The application must allocate space for the array
and cannot deallocate or changeit until the text widget isdestroyed or until anew selection array isset.

Default Translation Bindings

The following trandations are defaults built into every Text widget. They can be overridden, or
replaced by specifying anew value for the Text widget'st r ansl at i ons resource.

Crl <Key>A: begi nni ng-of -1ine() \\n\\
Crl <Key>B: backwar d- character () \\n\\
Crl <Key>D: del et e-next-character () \\n\\
Crl <Key>E: end-of -line() \\n\\

Crl <Key>F: forward-character() \\n\\
Crl <Key>G mul tiply(Reset) \\n\\

Crl <Key>H: del et e- previ ous-character () \\n\\
Crl <Key>J: new i ne-and-i ndent () \\n\\
Crl <Key>K: kKill-to-end-of-line() \\n\\
Crl <Key>L: redraw di splay() \\n\\

Crl <Key>M new i ne() \\n\\

Crl <Key>N: next-line() \\n\\

Crl <Key>QO new i ne- and- backup() \\n\\
Crl <Key>P: previous-line() \\n\\

Crl <Key>R: sear ch(backward) \\n\\

Crl <Key>S: search(forward) \\n\\

Crl <Key>T: transpose-characters() \\n\\

62

Text Widgets

Crl <Key>U: mul tiply(4) \\n\\

Crl <Key>V: next - page() \\n\\

Crl <Key>W kill-selection() \\n\\

Crl <Key>Y: i nsert-sel ection(CUT_BUFFERL) \\n\\
Crl <Key>Z: scroll-one-line-up() \\n\\

Crl <Key>\\: reconnect-im) \\n\\

Met a<Key>B: backwar d-word() \\n\\

Met a<Key>F: forward-word() \\n\\

Met a<Key>| : insert-file() \\n\\

Met a<Key>K: kill-to-end-of-paragraph() \\n\\
Met a<Key>Q form paragraph() \\n\\

Met a<Key>V: previ ous-page() \\n\\

Met a<Key>Y: i nsert-sel ecti on(PRI MARY, CUT_BUFFERO) \\n\\
Met a<Key>Z: scrol | -one-1line-down() \\n\\

: Met a<Key>d: del et e- next -word() \\n\\

: Met a<Key>D: kill-word() \\n\\

: Met a<Key>h: del et e- previ ous-word() \\n\\

: Met a<Key>H: backwar d- ki | | -word() \\n\\

D Met a<Key>\\ <:
: Met a<Key>\\ >:

begi nni ng-of -file() \\n\\
end-of -file() \\n\\

: Met a<Key>] : f orwar d- paragraph() \\n\\
: Met a<Key>[: backwar d- par agraph() \\n\\
~Shift Meta<Key>Del et e: del et e- previ ous-word() \\n\\

\ Shift

Met a<Key>Del et e:

backward- kil | -word() \\n\\

~Shift Met a<Key>Backspace: del et e- previ ous-word() \\n\\
\ Shift Meta<Key>Backspace: backward- kil | -word() \\n\\
<Key>Ri ght : forward-character() \\n\\

<Key>Left: backwar d- character () \\n\\

<Key>Down: next-line() \\n\\

<Key>Up: previous-line() \\n\\

<Key>Del et e: del et e- previ ous-character () \\n\\
<Key>BackSpace: del et e- previ ous-character () \\n\\

<Key>Li nef eed:

<Key>Ret ur n:

new i ne-and-i ndent () \\n\\
newl i ne() \\n\\

<Key>: i nsert-char() \\n\\
<Key>Kanj i : reconnect-im) \\n\\
<Focusl n>: focus-in() \\n\\
<FocusCut >: focus-out () \\n\\
<Bt n1Down>: sel ect-start() \\n\\

<Bt n1\bt i on>:

ext end- adj ust () \\n\\

<Bt n1Up>: ext end- end(PRI MARY, CUT_BUFFERO) \\n\\
<Bt n2Down>: i nsert-sel ecti on(PRI MARY, CUT_BUFFERO) \\n\\
<Bt n3Down>: extend-start() \\n\\

<Bt n3\bt i on>:

<Bt n3Up>:

ext end- adj ust () \\n\\

ext end- end(PRI MARY, CUT_BUFFERO) \\n

Text Functions

The following functions are provided as convenience routines for use with the Text widget. Although
many of these actions can be performed by modifying resources, these interfaces are frequently more
efficient.

These data structures are defined in the Text widget's public header file, <X11/Xaw/Text.h>.
typedef long XawTextPosition;

Character positions in the Text widget begin at 0 and end at n, where n is the number of characters
in the Text source widget.

63

Text Widgets

typedef struct {
int firstPos;
int |ength;
char *ptr;
unsi gned | ong format;
} XawText Bl ock, *XawText Bl ockPtr;

firstPos The first position, or index, to use within the ptr field. The value is
commonly zero.

length The number of characters to be used from the ptr field. The number
of characters used is commonly the number of charactersin ptr, and
must not be greater than the length of the string in ptr.

ptr Contains the string to be referenced by the Text widget.

format This flag indicates whether the data pointed to by pt r is char or
wchar_t. When the associated widget has i nt er nati onal set
to f al se this field must be XawFmt8Bit. When the associated
widget hasi nt er nati onal settotr ue thisfield must be either
XawFmt8Bit or XawFmtWide.

Note
Note: Previous versions of Xaw used FMI8BI T , which has been retained for

backwards compatibility. FMT8BI T is deprecated and will eventually be removed from the
implementation.

Selecting Text

To select apiece of text, use XawText Set Sel ecti on :

voi d XawText Set Sel ection(w, right);

w Specifies the Text widget.
left Specifies the character position at which the selection begins.
right Specifies the character position at which the selection ends.

See section 5.4 for a description of XawText Posi ti on. If redisplay is enabled, this function
highlights the text and makes it the PRI MARY selection. This function does not have any effect on
CUT_BUFFERO.

Unhighlighting Text
To unhighlight previously highlighted text in awidget, use XawText Unset Sel ecti on:
voi d XawText Unset Sel ection(w);
w Specifies the Text widget.

Getting Current Text Selection

To retrieve the text that has been selected by thistext widget use XawText Get Sel ecti onPos:

64

Text Widgets

voi d XawText Get Sel ecti onPos(w, *end_return);

w Specifies the Text widget.
begin return Returns the beginning of the text selection.
end_return Returns the end of the text selection.

See section 5.4 for a description of XawText Posi ti on. If the returned values are equal, no text
iscurrently selected.

Replacing Text

To modify the text in an editable Text widget use XawText Repl ace:

i nt XawText Repl ace(w, end, *text);

w Specifies the Text widget.

start Specifies the starting character position of the text replacement.
end Specifies the ending character position of the text replacement.
text Specifies the text to be inserted into the file.

This function will not be able to replace text in read-only text widgets. It will also only be able to
append text to an append-only text widget.

See section 5.4 for a description of XawText Posi ti on and XawText Bl ock.
This function may return the following values:
XawEdi t Done The text replacement was successful.

XawPosi ti onError The edit mode is Xaw ext Append and st art is not the
position of the last character of the source.

XawEdi t Err or Either the Source was read-only or the range to be deleted is
larger than the length of the Source.

The XawText Repl ace arguments st art and end represent the text source character positions
for the existing text that is to be replaced by the text in the text block. The characters from start up to
but not including end are deleted, and the characters specified on the text block are inserted in their
place. If start and end are equal, no text is deleted and the new text isinserted after start.

Searching for Text

To search for astring in the Text widget, use XawText Sear ch:

XawText Posi ti on XawText Search(w, dir, text);

w Specifies the Text widget.

dir Specifies the direction to search in. Legal values are XawsdLeft and
XawsdRi ght .

text Specifies atext block structure that contains the text to search for.

See section 5.4 for a description of XawText Position and XawText Bl ock. The
XawText Sear ch function will begin at the insertion point and search in the direction specified for a
string that matches the one passed in text. If the string is found the location of the first character in the
stringisreturned. If the string could not be found then thevalue XawText Sear chEr r or isreturned.

65

Text Widgets

Redisplaying Text
Toredisplay arange of characters, use XawText | nval i dat e:

voi d XawText | nvalidate(w, to);

w Specifies the Text widget.
from Specifiesthe start of the text to redisplay.
to Specifies the end of the text to redisplay.

See section 5.4 for a description of XawText Posi ti on. The XawText | nval i dat e function
causes the specified range of characters to be redisplayed immediately if redisplay is enabled or the
next time that redisplay is enabled.

To enableredisplay, use XawText Enabl eRedi spl ay:
voi d XawText Enabl eRedi spl ay(w);
w Specifies the Text widget.

The XawText Enabl eRedi spl ay function flushes any changes due to batched updates when
XawText Di sabl eRedi spl ay was called and allows future changes to be reflected immediately.

To disable redisplay while making several changes, use XawText Di sabl eRedi spl ay.
voi d XawText Di sabl eRedi spl ay(w);
w Specifies the Text widget.

The XawText Di sabl eRedi spl ay function causes all changes to be batched until either
XawText Di spl ay or XawText Enabl eRedi spl ay iscaled.

To display batched updates, use XawText Di spl ay:
voi d XawText Di spl ay(w);
w Specifies the Text widget.

The XawText Di spl ay function forces any accumulated updates to be displayed.

Resources Convenience Routines

To obtain the character position of the left-most character on the first line displayed in the widget (the
value of thedi spl ayPosi t i on resource), use XawText TopPosi ti on.

XawText Posi ti on XawText TopPosition(w);

w Specifies the Text widget.

To assign anew selection array to atext widget use XawText Set Sel ecti onArray:
voi d XawText Set Sel ecti onArray(w, sarray);

w Specifies the Text widget.

sarray Specifies a selection array as defined in the section called \fBText
Selections for Application Programmers\fP.

Calling thisfunction is equivalent to setting the value of thesel ect i onTypes resource.

66

Text Widgets

To movetheinsertion point to the specified source position, use XawText Set | nserti onPoi nt :
voi d XawText Set | nsertionPoint(w, position);

w Specifies the Text widget.

position Specifies the new position for the insertion point.

See section 5.4 for a description of XawText Posi ti on. The text will be scrolled vertically if
necessary to make the line containing the insertion point visible. Calling this function is equivalent to
setting thei nsert Posi t i on resource.

To obtain the current position of the insertion point, use XawText Get | nserti onPoi nt :
XawText Posi tion XawText GetlnsertionPoint(w);
w Specifies the Text widget.

See section 5.4 for a description of XawText Posi t i on. The result is equivalent to retrieving the
valueof thei nser t Posi t i on resource.

To replace the text source in the specified widget, use XawText Set Sour ce:

voi d XawText Set Source(w, source, position);

w Specifies the Text widget.
source Specifies the text source object.
position Specifies character position that will become the upper left hand

corner of the displayed text. Thisis usually set to zero.

See section 5.4 for a description of XawText Posi ti on. A display update will be performed if
redisplay is enabled.

To obtain the current text source for the specified widget, use XawText Get Sour ce:
W dget XawText Get Source(w);

w Specifies the Text widget.

This function returns the text source that this Text widget is currently using.

To enable and disable the insertion point, use XawText Di spl ayCar et :

voi d XawText Di spl ayCaret(w, visible);

w Specifies the Text widget.

visible Specifies whether or not the caret should be displayed.

If vi si bl e isFal se theinsertion point will be disabled. The marker is re-enabled either by setting
vi si bl e to True, by caling Xt Set Val ues, or by executing the di spl ay- car et action
routine.

Customizing the Text Widget

The remainder of this chapter will describe customizing the Text widget. The Text widget may be
customized by subclassing, or by creating new sources and sinks. Subclassing is described in detail in
Chapter 7; this section will describe only those things that are specific to the Text widget. Attributes
of the Text widget base class and creating new sources and sinks will be discussed.

67

Text Widgets

Text

The Text widget is made up of a number of different pieces, with the Text widget as the base widget
class. It and the AsciiText widget are the only true "widgets' in the Text widget family. The other
pieces (sources and sinks) are X Toolkit objects and have no window associated with them. No source
or sink is useful unless assigned to a Text widget.

Each of the following pieces of the Text widget has a specific purpose, and will be, or has been,
discussed in detail in this chapter:

Text This is the glue that binds everything else together. This widget reads the text data
from the source, and displays the information in the sink. All translations and actions
are handled in the Text widget itself.

Text Si nk Thisobject isresponsible for displaying and clearing the drawing area. It also reports
the configuration of the window that contains the drawing area. The TextSink does
not have its own window; instead it does its drawing on the Text widget's window.

Text Src This object is responsible for reading, editing and searching through the text buffer.

Asci i Si nk Thisobjectisasubclassof the TextSink and knows how to display ASCI| text. Support
has been added to display any 8-bit character set, given the font.

Mul ti Si nk Thisobject isasubclass of the TextSink and knows how to display font sets.
Ascii Src Thisobject isasubclass of the TextSrc and knows how to read strings and files.

Mul ti Src Thisobject isasubclass of the TextSrc and knows how to read strings and multibyte
files, converting them to wide characters based on locale.

Asci i Text This widget is a subclass of the Text widget. When created, the AsciiText
automatically creates and attaches either an AsciiSrc and AsciiSink, or aMultiSrc and
MultiSink, to itself. The AsciiText provides the simplest interface to the Athena Text
widgets.

Widget

Application Header file <X11/ Xaw/ Text . h>
Cl ass Header file <X11/ Xaw/ Text P. h>
C ass t ext Wdget C ass
Cl ass Name Text

Super cl ass Si npl e

The Text widget is the glue that binds all the other pieces together, it maintains the internal state of
the displayed text, and acts as a mediator between the source and sink.

This section lists the resources that are actually part of the Text widget, and explains the functionality
provided by each.

Resources

When creating a Text widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
autoFill AutoFill Boolean Fase
background Background Pixel XtDefaultBackgroungd

68

Text Widgets

3

Pa

Name Class Type Notes Default Value
backgroundPixmap Pixmap Pixmap tUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap tUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
bottomMargin Margin Position 2
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor XC_xterm
cursorName Cursor String NULL
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
displayCaret Output Boolean True
displayPosition TextPosition XawTextPosition 0
height Height Dimension A Font height
+ margins
insensitiveBorder Insensitive Pixmap GreyPixmap
insertPosition TextPosition int 0
leftMargin Margin Position 2
appedWhenM anadddppedWhenManaged Boolean True
pointerColor Foreground Pixel tDefaultForeground
interColorBackground Background Pixel tDefaultBackground
resize Resize awTextResizeMode X awtextResizeNevey
rightMargin Margin Position 4
screen Screen Pointer R Parent's Screen
scrollHorizontal Scroll ScrollMode X awtextScrolINever
scrollVertical Scroll XawTextScrollMode X awtextScrolINever
selectTypes SelectTypes awTextSelectTypef See above
sensitive Sensitive Boolean True
textSink TextSink Widget NULL
textSource TextSource Widget NULL
topMargin Margin Position 2
trandations Tranglations TrandationTable See above
unrealizeCallback Callback XtCallbackList NULL
width Width Dimension 100
wrap Wrap WrapMode X awtextWrapNever
X Position Position 0
y Position Position 0

TextSink Object

69

Text Widgets

Application Header file <X11/Xaw Text Si nk. h>

Cl ass Header

d ass

t ext Si nkCbj ect Cl ass

Cl ass Nane Text Si nk

Super cl ass bj ect

file <X11/ Xaw Text Si nkP. h>

The TextSink object istheroot object for all text sinks. Any new text sink objects should be subclasses
of the TextSink Object. The TextSink Class contains all methods that the Text widget expects a text

sink to export.

Since dl text sinks will have some resources in common, the TextSink defines a few new resources.

Resources

When creating an TextSink object instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes Default Value
background Background Pixel tDefaultBackground
destroyCallback Callback XtCallbackList NULL
foreground Foreground Pixel tDefaultForeground

Subclassing the TextSink

The only purpose of the TextSink Object is to be subclassed. It contains the minimum set of class
methods that all text sinks must have. While all may be inherited, the direct descendant of TextSink
nmust speci fy some of them as TextSink does contain enough information to be avalid text sink
by itself. Do not try to use the TextSink as a valid sink for the Text widget; it is not intended to be

used asasink by itself.

Function Inherit with Public Interface must specify
DisplayText XtlnheritDisplayText XawTextSinkDisplayText yes
InsertCursor XtlnheritlnsertCursor XawTextSinklnsertCursof yes

ClearToBackground XtlnheritClear ToBackgtemicextSink Clear ToBackground no
FindPosition XtInheritFindPosition XawTextSinkFindPosition yes
FindDistance XtlnheritFindDistance Xaw TextSinkFindDistance yes

Resolve XtlnheritResolve XawTextSinkResolve yes
MaxLines XtlnheritMaxLines | XawTextSinkMaxLines no
MaxHeight XtlnheritMaxHeight XawTextSinkMaxHeight no
SetTabs XtInheritSetTabs XawTextSinkSetTabs no
GetCursorBounds Xt nheritGetCursorBoDm*sTextSi nkGetCursorBounds yes

Displaying Text

To display a section of the text buffer contained in the text source usethe function Di spl ayText :

voi d Di spl ayText (

w, VY, pos2,

hi ghl i ght);

70

Text Widgets

w Specifies the TextSink object.

X Specifiesthe x location to start drawing the text.

y Specifiesthe y location to start drawing text.

posl Specifies the location within the text source of the first character to
be printed.

pos2 Specifies the location within the text source of the last character to
be printed.

highlight Specifies whether or not to paint the text region highlighted.

The Text widget will only pass one line at a time to the text sink, so this function does not need to
know how to line feed the text. It is acceptable for this function to just ignore Carriage Returns. x and
y denote the upper left hand corner of the first character to be displayed.

Displaying the Insert Point

The function that controls the display of the text cursor is | nsert Cur sor . This function will be
called whenever the text widget desires to change the state of, or move the insert point.

void InsertCursor(w, Yy, state);

w Specifies the TextSink object.

X Specifiesthe x location of the cursor in Pixels.

y Specifiesthey location of the cursor in Pixels.

state Specifiesthe state of the cursor, may be one of Xawi sOn or Xawi sOf f .

X and y denote the upper left hand corner of the insert point.

Clearing Portions of the Text window

To clear a portion of the Text window to its background color, the Text widget will call
Cl ear ToBackgr ound. The TextSink object already definesthisfunction ascalling XCl ear Ar ea
on the region passed. Thisbehavior will be used if you specify Xt | nheri t O ear ToBackgr ound
for this method.

voi d O ear ToBackground(w, vy, height);

w Specifies the TextSink object.

X Specifies the x location, in pixels, of the Region to clear.
y Specifiesthey location, in pixels, of the Region to clear.
width Specifies the width, in pixels, of the Region to clear.
height Specifies the height, in pixels, of the Region to clear.

X and y denote the upper left hand corner of region to clear.

Finding a Text Position Given Pixel Values

To find the text character position that will be rendered at a given x location the Text widget uses the
function Fi ndPosi tion:

71

Text Widgets

void FindPosition(w, f r onPos, wi dt h, st opAt Wr dBr eak,

*pos_return, *height_return);

w Specifies the TextSink object.

fromPos Specifies areference position, usually thefirst character in this
line. This character isawaysto theleft of the desired character
location.

fromx Specifies the distance that the left edge of fromPosis from the

|eft edge of thewindow. Thisisthe reference x location for the
reference position.

width Specifies the distance, in pixels, from the reference position to
the desired character position.

stopAtWordBreak Specifies whether or not the position that is returned should be
forced to be on aword boundary.

pos return Returns the character position that corresponds to the location
that has been specified, or the work break immediately to the
|eft of the position if stopAtWordBreak is Tr ue.

width_return Returns the actual distance between fromPos and pos_return.
height_return Returns the maximum height of the text between fromPos and
pos_return.

This function need make no attempt to deal with line feeds. The text widget will only call it oneline
at atime.

Another means of finding atext position is provided by the Resol ve function:

voi d Resolve(w, fronPos, wdth, *pos_return);

w Specifies the TextSink object.

fromPos Specifies a reference position, usually the first character in this
line. This character is always to the left of the desired character
location.

fromx Specifies the distance that the left edge of fromPos is from the

left edge of the window. This is the reference x location for the
reference position.

width Specifiesthe distance, in pixels, from the reference position to the
desired character position.

pos return Returnsthe character position that corresponds to the location that
has been specified, or the word break immediately to the left if
stopAtWordBreak is Tr ue.

This function need make no attempt to deal with linefeeds. Thetext widget will only call it oneline at
atime. Thisisamore convenient interfacetothe Fi ndPosi ti on function, and provides a subset
of itsfunctionality.

Finding the Distance Between two Text Positions

To find the distance in pixels between two text positions on the same line use the function
Fi ndDi st ance.

void FindDi stance(w, toPos, fronX, *pos return, *height return);

72

Text Widgets

w Specifies the TextSink object.

fromPos Specifies the text buffer position, in characters, of the first
position.

fromX Specifies the distance that the left edge of fromPosis from the

left edge of the window. Thisisthe reference x location for the
reference position.

toPos Specifies the text buffer position, in characters, of the second
position.

reswidth Return the actual distance between fromPos and pos_return.

resPos Returns the character position that corresponds to the actual

character position used for toPos in the calculations. This may
be different than toPos, for example if fromPos and toPos are
on different linesin thefile.

height_return Returns the maximum height of the text between fromPos and
jpos_return.

This function need make no attempt to deal with line feeds. The Text widget will only call it oneline
at atime.

Finding the Size of the Drawing area

To find the maximum number of lines that will fit into the current Text widget, use the function
MaxLi nes. The TextSink aready defines this function to compute the maximum number of lines
by using the height of f ont .

i nt MaxLines(w, height);

w Specifies the TextSink object.

height Specifies the height of the current drawing area.
Returns the maximum number of lines that will fit in height.

To find the height required for a given number of text lines, use the function MaxHei ght . The
TextSink already defines this function to compute the maximum height of the window by using the
height of f ont .

int MaxHeight(w, lines);
w Specifies the TextSink object.
height Specifies the height of the current drawing area.

Returns the height that will be taken up by the number of lines passed.

Setting the Tab Stops

To set the tab stops for atext sink use the Set Tabs function. The TextSink already defines this
function to set the tab X location in pixels to be the number of characters times the figure width of
font.

void SetTabs(w, *tabs);
w Specifies the TextSink object.

tab_count Specifies the number of tabs passed in tabs.

73

Text Widgets

tabs Specifies the position, in characters, of the tab stops.

This function is responsible for the converting character positions passed to it into whatever internal
positions the TextSink uses for tab placement.

Getting the Insert Point's Size and Location
To get the size and location of theinsert point usethe Get Cur sor Bounds function.
voi d Get CursorBounds(w, *rect_return);
w Specifies the TextSinkObject.
rect_return Returns the location and size of the insert point.

Rect will befilled with the current size and location of the insert point.

TextSrc Object

Application Header file <X11/Xaw Text Src. h>

Cl ass Header file <X11/ Xaw/ Text Sr cP. h>
d ass t ext Srcoj ect d ass

Gl ass Name Text Src

Super cl ass nj ect

The TextSrc object is the root object for all text sources. Any new text source objects should be
subclasses of the TextSrc Object. The TextSrc Class contains al methods the Text widget expects a
text source to export.

Since all text sources will have some resources in common the TextSrc defines afew new resources.

Resources

When creating an TextSrc object instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes Default Value
destroyCallback Callback XtCallbackList NULL
editType EditType EditMode NULL

Subclassing the TextSrc

The only purpose of the TextSrc Object is to be subclassed. It contains the minimum set of class
methodsthat all text sources must have. All class methods of the TextSrc must be defined, asthe Text
widget usesthem all. While all may beinherited, the direct descendant of TextSrc must specify some
of them as TextSrc does not contain enough information to be a valid text source by itself. Do not try
to use the TextSrc as a valid source for the Text widget; it is not intended to be used as a source by
itself and bad things will probably happen.

Function Inherit with Public I nterface must specify
Read XtlnheritRead XawTextSourceRead yes
Replace XtinheritReplace | XawTextSourceReplace no
Scan XtlnheritScan XawTextSourceScan yes
Search XtInheritSearch XawTextSourceSearch no

74

Text Widgets

Function Inherit with Public I nterface must specify
SetSelection XtInheritSetSel ectionXjaw TextSourceSetSel ection no
ConvertSelection XtInheritConvertSel eatmpTextSourceConvertSele(tion no

Reading Text.

To read the text in atext source usethe Read function:

XawText Positi on Read(w, pos, *text_return, |ength);

w Specifies the TextSrc object.

pos Specifiesthe position of thefirst character to beread from thetext buffer.
text Returns the text read from the source.

length Specifies the maximum number of characters the TextSrc should return

to the application in text_return.

This function returns the text position immediately after the characters read from the text buffer. The
function isnot required to read length charactersif that many charactersarein thefile, it may break at
any point that is convenient to the internal structure of the source. It may take severa callsto Read
before the desired portion of the text buffer isfully retrieved.

Replacing Text.
To replace or edit the text in atext buffer usethe Repl ace function:
XawText Posi tion Replace(w, end, *text);
w Specifies the TextSrc object.

start Specifies the position of the first character to be removed from the text buffer. Thisis also
the location to begin inserting the new text.

end Specifiesthe position immediately after thelast character to be removed from thetext buffer.
text Specifies the text to be added to the text source.

This function can return any of the following values:

Xawkdi t Done The text replacement was successful.

XawPosi ti onError The edit mode is Xawt ext Append and st art is not the last character
of the source.

XawEdi t Error Either the Source was read-only or the range to be deleted is larger than the
length of the Source.

The Repl ace arguments st art and end represent the text source character positions for the
existing text that isto be replaced by the text in the text block. The characters from start up to but not
including end are deleted, and the buffer specified by the text block isinserted in their place. If start
and end are equal, no text is deleted and the new text isinserted after start.

Scanning the TextSrc
To search the text source for one of the predefined boundary typesusethe Scan function:

XawText Position Scan(w, position, type, dir, count, include);

75

Text Widgets

w Specifies the TextSrc object.
position Specifies the position to begin scanning the source.
type Specifies the type of boundary to scan for, may be one of: Xawst Posi ti on,

Xawst Whi t eSpace, Xawst EQL, Xawst Par agr aph, Xawst Al | . The exact
meaning of these boundariesisleft up to the individua text source.

dir Specifies the direction to scan, may be either XawsdLeft to search backward, or
XawsdRi ght to search forward.

count Specifies the number of boundaries to scan for.
include Specifies whether the boundary itself should be included in the scan.

The Scan function returns the position in the text source of the desired boundary. It is expected to
return avalid address for al calls made to it, thusif a particular request is made that would take the
text widget beyond the end of the source it must return the position of that end.

Searching through a TextSrc
To search for aparticular string usethe Sear ch function.

XawText Posi ti on Search(w, position, dir, *text);

w Specifies the TextSrc object.
position Specifies the position to begin the search.
dir Specifies the direction to search, may be either XawsdLef t to search backward, or

XawsdRi ght to search forward.
text Specifies atext block containing the text to search for.

This function will search through the text buffer attempting to find a match for the string in the text
block. If amatch is found in the direction specified, then the character location of the first character
in the string is returned. If no text was found then XawText Sear chEr r or isreturned.

Text Selections

While many selection types are handled by the Text widget, text sources may have selection types
unknown to the Text widget. When aselection conversion isrequested by the X server the Text widget
will first call the Convert Sel ect i on function, to attempt the selection conversion.

Bool ean Convert Sel ecti ons(W, *type, *val ue_return,
*length return, *format_return);

w Specifies the TextSrc object.

selection Specifies the type of selection that was requested (e.g.
PRI MARY).

target Specifies the type of the selection that has been requested,

which indicates the desired information about the selection
(e.g. Filename, Text, Window).

type Specifies a pointer to the atom into which the property type of
the converted value of the selectionisto be stored. For instance,
either file name or text might have property type XA STRI NG

value return Returns a pointer into which a pointer to the converted value of
the selection isto be stored. The selection owner isresponsible

76

Text Widgets

for allocating this storage. The memory is considered owned by
thetoolkit, and is freed by XtFree when the Intrinsics selection
mechanism is done with it.

length_return Returns a pointer into which the number of elementsinvalueis
to be stored. The size of each element is determined by format.

format_return Returnsapointer into which the sizein bits of the dataelements
of the selection valueis to be stored.

If this function returns Tr ue then the Text widget will assume that the source has taken care of
converting the selection, Otherwise the Text widget will attempt to convert the selection itself.

If the source needs to know when the text selection is modified it should definea Set Sel ecti on
procedure:

void SetSelection(w, end, selection);

w Specifies the TextSrc object.

start Specifies the character position of the beginning of the new text selection.
end Specifies the character position of the end of the new text selection.
selection Specifies the type of selection that was requested (e.g. PRI MARY).

Ascii Sink Object and Multi Sink Object

Application Header file <X11/Xaw Ascii Si nk. h>
Cl ass Header file <X11/ Xaw Asci i Si nkP. h>

Cl ass ascii SinkQbjectd ass

Cl ass Name Ascii Si nk

Super cl ass Text Si nk

The AsciiSink or MultiSink object is used by a text widget to render the text. Depending on its
i nternati onal resource, a AsciiText widget will create one or the other of these when the
AsciiText itself is created. Both types are nearly identical; the following discussion applies to both,
with MultiSink differences noted only asthey occur. The AsciiSink will display all printing characters
in an 8 bit font, along with handling Tab and Carriage Return. The name has been left as " AsciiSink"
for compatibility. \fl The MultiSink will display all printing charactersin afont set, along with handling
Tab and Carriage Return.\fP The source object al so reportsthe text window metricsto thetext widgets.

Resources

When creating an AsciiSink object instance, the following resources are retrieved from the argument
list or from the resource database:

o

Name Class Type Notes Default Value
background Background Pixel XtDefaultBackgroun
destroyCallback Callback XtCallbackList NULL

77

Text Widgets

Name Class Type Notes Default Value
displayNonprinting Output Boolean True
echo Output Boolean True
font Font XFontStruct* XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel tDefaultForeground

Thisresourceisretrieved by the AsciiSink instead of being copied from the Text widget.

The text font to use when displaying the st r i ng. (Thisresource is present in the AsciiSink, but not
the MultiSink.)

The text font set to use when displaying the st ri ng. (This resource is present in the MultiSink, but
not the AsciiSink.)

Ascii Source Object and Multi Source Object

Application Header file <X11/Xaw Ascii Src. h> or <X11/ Xaw Multi Src. h>
Cl ass Header file <X11/Xaw Ascii SrcP. h> or <X11/ Xaw Mul ti SrcP. h>
Class asciiSrcObjectC ass or nulti SrcObjectd ass

Class Name Ascii Src or MultiSrc

Super cl ass Text Sour ce

The AsciiSrc or MultiSrc object isused by atext widget to read the text from afile or string in memory.
Depending on its i nt er nat i onal resource, an AsciiText widget will create one or the other of
these when the AsciiText itself is created. Both types are nearly identical; the following discussion
applies to both, with Multi Src differences noted only as they occur.

The AsciiSrc understands al Latinl characters plus Tab and Carriage Return. \flIThe MultiSrc
understands any set of character sets that the underlying X implementation's internationalization
handles\fP

The AsciiSrc can be either of two types: XawAsci i Fi | e or XawAsci i Stri ng.

AsciiSrc objects of type XawAsci i Fi | e read thetext from afile and store it into an internal buffer.
Thisbuffer may then be modified, provided the text widget isin the correct edit mode, just asif it were
asourceof typeXawAsci i St ri ng. UnlikeR3and earlier versions of the AsciiSrc, itisnow possible
to specify an editable disk source. Thefileis not updated, however, until acal to XawAsci i Save
is made. When the sourceisin thismodetheuseSt ri ngl nPl ace resource isignored.

AsciiSrc objectsof type XawAsci i St ri ng havethetext buffer implemented asastring. \fIMultiSrc
objects of type XawAsci i St ri ng have the text buffer implemented as a wide character string.\fP
The string owner is responsible for alocating and managing storage for the string.

In the default case for AsciiSrc objects of type XawAscii String, the resource
useSt ri ngl nPl ace isfase, andthewidget ownsthestring. Theinitial value of the string resource,
and any update made by the application programmer to the string resource with Xt Set Val ues,

78

Text Widgets

is copied into memory private to the widget, and managed internally by the widget. The application
writer does not need to worry about running out of buffer space (subject to the total memory available
to the application). The performance does not decay linearly asthe buffer growslarge, asisnecessarily
the case when the text buffer is used in place. The application writer must use Xt Get Val ues to
determine the contents of the text buffer, which will return a copy of the widget's text buffer as it
existed at the time of the Xt Get Val ues call. This copy is not affected by subsequent updates to
thetext buffer, i.e,, it isnot updated asthe user typesinput into the text buffer. This copy isfreed upon
the next call to XtGetValues to retrieve the string resource; however, to conserve memory, thereisa
convenience routine, XawAsci i Sour ceFr eeSt ri ng, alowing the application programmer to
direct the widget to free the copy.

When the resource useStringlnPlace is true and the AsciiSrc object is of type
XawAsci i Stri ng, the application is the string owner. The widget will take the value of the string
resource as its own text buffer, and the | engt h resource indicates the buffer size. In this case the
buffer contents change as the user types at the widget; it is not necessary to call Xt Get Val ues
on the string resource to determine the contents of the buffer-it will simply return the address of the
application's implementation of the text buffer.

Resources

When creating an AsciiSrc object instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes Default Value
callback Callback XtCallbackList NULL
dataCompression | DataCompression Boolean True
destroyCallback Callback Callback NULL
editType EditType EditMode XawtextRead
length Length Int A lengthof string
pieceSize PieceSize Int BUFSIZ
string String String NULL
type Type AsciiType XawAsciiString
useStringlnPlace | UseStringlnPlace Boolean False

Convenience Routines

The AsciiSrc has afew convenience routines that allow the application programmer quicker or easier
access to some of the commonly used functionality of the AsciiSrc.

Conserving Memory

When the AsciiSrc widget isnot inuseSt ri ngl nPl ace mode space must be allocated whenever
thefile is saved, or the string is requested with acall to Xt Get Val ues. Thismemory is allocated
on thefly, and remains valid until the next time a string needs to be allocated. Y ou may save memory
by freeing this string as soon asyou are donewith it by calling XawAsci i Sour ceFreeStri ng.

voi d XawAsci i SourceFreeString(w;
w Specifies the AsciiSrc object.

This function will free the memory that contains the string pointer returned by Xt Get Val ues.
Thiswill normally happen automatically when the next call to Xt Get Val ues occurs, or when the
widget is destroyed.

79

Text Widgets

Saving Files
To save the changes made in the current text source into afileuse XawAsci i Save.
Bool ean XawAsci i Save(W) ;
w Specifies the AsciiSrc object.
XawAsci i Save returns Tr ue if the save was successful. It will update the file named in the
st ri ng resource. If the buffer has not been changed, no action will be taken. This function only
works on an AsciiSrc of type XawAsci i Fi | e.
To save the contents of the current text buffer into anamed fileuse XawAsci i SaveAsFi | e.
Bool ean XawAscii SaveAsFile(w, nane);
w Specifies the AsciiSrc object.
name The name of the file to save the current buffer into.

Thisfunction returns Tr ue if the save was successful. XawAsci i SaveAsFi | e will work with a
buffer of either type XawAsci i St ri ng or type XawAsci i Fi | e.

Seeing if the Source has Changed

To find out if the text buffer in an AsciiSrc object has changed since the last time it was saved with
XawAsci i Save or queried use XawAsci i Sour ceChanged.

Bool ean XawAsci i Sour ceChanged(w);
w Specifies the AsciiSrc object.
This function will return Tr ue if the source has changed since the last time it was saved or queried.

The internal change flag is reset whenever the string is queried via Xt Get Val ues or the buffer
issavedvia XawAsci i Save.

Ascii Text Widget

Application Header file <X11/Xaw Ascii Text. h>

Cl assHeader file <X11/ Xaw Asci i Text P. h>

Class ascii Text Wdget d ass

Cl ass Name Text

Super cl ass Text

Si nk Nane textSink

Sour ce Nane text Source

For the ease of internationalization, the Ascii Text widget class name has not been changed, athough
it isactually ableto support non-ASCI| locales. The Ascii Text widget isreally acollection of smaller

parts. It includes the Text widget itself, a “"Source" (which supports memory management), and a
Sink" (which handles the display). There are currently two supported sources, the AsciiSrc and

80

Text Widgets

MultiSrc, and two supported sinks, the AsciiSink and MultiSink. Some of the resources listed below
are not actually resources of the AsciiText, but belong to the associated source or sink. This is is
noted in the explanation of each resource where it applies. When specifying these resources in a
resource file it is necessary to use * Ascii Text*resource_name instead of * AsciiText.resource_name,
since they actually belong to the children of the Ascii Text widget, and not the Ascii Text widget itself.
However, these resources may be set directly on the AsciiText widget at widget creation time, or via

Xt Set Val ues.

Resources

When creating an Ascii Text widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
autoFill AutoFill Boolean False
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
bottomMargin Margin Position 2
callback Callback XtCallbackList NULL
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor XC_xterm
cursorName Cursor String NULL
dataCompression | DataCompression Boolean True
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
displayCaret Output Boolean True
displayNonprinting Output Boolean True
displayPosition TextPosition XawTextPosition 0
echo Output Boolean True
editType EditType XawTextEditType XawtextRead
font Font XFontStruct* XtDefaultFont
fontSet FontSet XFontSet XtDefaultFontSet
foreground Foreground Pixel tDefaultForeground
height Height Dimension A Font height
+ margins
insensitiveBorder Insensitive Pixmap GreyPixmap
insertPosition TextPosition int 0
international International Boolean C False
leftMargin Margin Dimension 2
length Length int A lengthof string
mappedWhenM anag@'dppedWhenM anagqad Boolean True

81

Text Widgets

pa

Name Class Type Notes Default Value
pieceSize PieceSize XawTextPosition BUFSIZ
pointerColor Foreground Pixel tDefaultForeground
interColorBackground Background Pixel XtDefaultBackground
resize Resize awTextResizeMode X awtextResizeNevey
rightMargin Margin Position 2
screen Screen Screen R Parent's Screen
scrollHorizontal Scroll XawTextScrolIM odqa X awtextScrolINever
scrollVertical Scroll X awTextScrollModé X awtextScrolINever
selectTypes SelectTypes awTextSelectTypef See above
sensitive Sensitive Boolean True
string String String NULL
textSink TextSink Widget An AsciiSink
textSource TextSource Widget An AsciiSrc
topMargin Margin Position 2
trandations Tranglations TrandationTable See above
type Type XawAsciiType XawAsciiString
useStringlnPlace | UseStringlnPlace Boolean False
width Width Dimension 100
wrap Wrap WrapMode XawtextWrapNever
X Position Position 0
y Position Position 0

82

Chapter 6. Composite and Constraint

Widgets

Thesewidgetsmay contain arbitrary widget children. They implement apolicy for thesizeand location
of their children.

Box Thiswidget will pack its children as tightly as possible in non-overlapping rows.

Dialog An implementation of a commonly used interaction semantic to prompt for auxiliary
input from the user, such as afilename.

Form A more sophisticated layout widget that allows the children to specify their positions
relative to the other children, or to the edges of the Form.

Paned Allowschildrento betiled vertically or horizontally. Controlsare also provided to allow
the user to dynamically resize the individual panes.

Porthole Allows viewing of a managed child which is as large as, or larger than its parent,
typically under control of a Panner widget.

Tree Provides geometry management of widgets arranged in a directed, acyclic graph.

Viewport Consists of a frame, one or two scrollbars, and an inner window. The inner window
can contain al the data that is to be displayed. This inner window will be clipped by
the frame with the scrollbars controlling which section of theinner window is currently
visible.

Note

Box W

App
da

The geometry management semantics provided by the X Toolkit give full control of the
size and position of awidget to the parent of that widget. While the children are allowed to
request a certain size or location, it is the parent who makes the final decision. Many of the
composite widgets here will deny any geometry request from their children by default. If a
child widget isnot getting the expected size or location, it ismost likely the parent disallowing
areguest, or implementing semantics dightly different than those expected by the application
programmer.

If the application wishes to change the size or location of any widget it should make a call
to Xt Set Val ues. Thiswill alow the widget to ask its parent for the new size or |ocation.
As noted above the parent is allowed to refuse this request, and the child must live with the
result. If the application is unable to achieve the desired semantics, then perhaps it should
use adifferent composite widget. Under no circumstances should an application programmer
resort to Xt MoveW dget or Xt Resi zeW dget ; these functions are exclusively for the
use of Composite widget implementors.

For moreinformation on geometry management consult the X Toolkit Intrinsics- C Language
Interface.

idget

lication Header file <X11/ Xaw Box. h>

ss Header file <X11/ Xaw BoxP. h>

83

Composite and Constraint Widgets

d ass

Cl ass Nane Box

boxW dget C ass

Super cl ass Conposite

The Box widget provides geometry management of arbitrary widgetsin abox of aspecified dimension.
The children are rearranged when resizing events occur either on the Box or its children, or when
children are managed or unmanaged. The Box widget always attempts to pack its children as tightly
as possible within the geometry allowed by its parent.

Box widgets are commonly used to manage a related set of buttons and are often called ButtonBox
widgets, but the children are not limited to buttons. The Box's children are arranged on a background
that hasits own specified dimensions and color.

Resources

=

When creating a Box widget instance, the following resources are retrieved from the argument list or
from the resource database:
Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension A see Layout
Semanti cs
hSpace HSpace Dimension 4
appedWhenM anadddppedWhenManaged Boolean True
numcChildren ReadOnly Cardinal R 0
orientation Orientation Orientation XtorientVertica
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
vSpace V Space Dimension 4
translations Tranglations TrandationTable NULL
width Width Dimension A see Layout
Semantics
X Position Position 0
y Position Position 0

Composite and Constraint Widgets

hSpace

vSpace

orientation

Layout Semantics

The amount of space, in pixels, to leave between the children.
This resource specifies the amount of space left between the
outermost children and the edge of the box.

Specifies whether the preferred shape of the box (i.e. the
result returned by the query geometry class method) is
tall and narrow Xt orientVertical or short and wide
XtorientHorizontal . When the Box is a child of a
parent which enforces width constraints, it is usualy better to
specify Xt ori ent Verti cal (the default). When the parent
enforces height constraints, it is usualy better to specify
XtorientHorizontal .

Each time a child is managed or unmanaged, the Box widget will attempt to reposition the remaining
children to compact the box. Children are positioned in order |eft to right, top to bottom. The packing
algorithm used depends on theor i ent at i on of the Box.

XtorientVertical

Xt ori ent Hori zont al

When the next child does not fit on the current row, anew row
is started. If achild iswider than the width of the box, the box
will request a larger width from its parent and will begin the
layout process from the beginning if a new width is granted.

When the next child does not fit on the current row, the Box
widens if possible (so as to keep children on a single row);
otherwise anew row is started.

After positioning all children, the Box widget attempts to shrink its own size to the minimum

dimensions required for the layout.

Dialog Widget

Application Header file <X11/ Xaw Di al og. h>

Cl ass Header file <X11/ Xaw/ Di al ogP. h>

Cl ass dial ogWdgetd ass

Cl ass Nane Di al og

Supercl ass Form

The Dialog widget implements a commonly used interaction semantic to prompt for auxiliary input
from a user. For example, you can use a Dialog widget when an application requires a small piece of
information, such as afilename, from the user. A Dialog widget, which is simply a specia case of the
Form widget, provides a convenient way to create a preconfigured form.

Thetypica Dialog widget contains three areas. The first line contains a description of the function of
the Dialog widget, for example, the string Filename:. The second line contains an areainto which the

85

Composite and Constraint Widgets

user typesinput. Thethird line can contain buttons that let the user confirm or cancel the Dialog input.
Any of these areas may be omitted by the application.

Resources

When cregating a Dialog widget instance, the following resources are retrieved from the argument list
or the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
defaultDistance Thickness int 4
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension A Enough space
to contain
all children
icon Icon Bitmap None
label Label String "|abel"
mappedWhenManadéddppedWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
translations Tranglations TrandationTable NULL
value Value String no value widget
width Width Dimension A Enough space
to contain
all children
X Position Position 0
y Position Position 0
i con A pixmap image to be displayed immediately to the left of the Dialog
widget's label.
| abel A string to be displayed at the top of the Dialog widget.
val ue An initial value for the string field that the user will enter text into. By

default, no text entry field is available to the user. Specifying an initial
valuefor val ue activatesthetext entry field. If stringinput isdesired, but

noinitial valueisto be specified then set thisresource to

(empty string).

86

Composite and Constraint Widgets

Constraint Resources

Each child of the Dialog widget may request special layout resources be applied to it. These constraint
resources alow the Dialog widget's children to specify individual layout requirements.

1%

[1%)

Name Class Type Notes Default Value
bottom Edge XawEdgeType XawRubber
fromHoriz Widget Widget NULL (left
edge of Dialog)
fromVert Widget Widget NULL (top
edge of Dialog)
horizDistance Thickness int ef aul t Di st anc
resource
left Edge XawEdgeType XawRubber
resizable Boolean Boolean FALSE
right Edge XawEdgeType XawRubber
top Edge XawEdgeType XawRubber
vertDistance Thickness int ef aul t Di st anc
resource
bott om
| eft
right
top What to do with this edge of the child when
the parent is resized. This resource may be
any edgeType. See Layout Senantics for
details.
fromHori z
fronVert Wi ch widget this child should be placed

hori zDi st ance

underneath (or to the right of).

If a val ue

of NULL is specified then this widget will be
positioned relative to the edge of the par-

ent.

vert Di st ance The anmpount of space,

child and its left or

in pixels, between this
upper nei ghbor.

resi zabl e If this resource is False then the parent

wi dget will ignore all geonetry request nmde
by this child. The parent may still resize
this child itself, however.

Layout Semantics

The Dialog widget uses two different sets of layout seman- tics. Oneis used when initially laying out
the children. The other is used when the Dialog is resized.

The first layout method uses the f r onVert mand f r omHor i z resources to place the children of
the Dialog. A single pass is made through the Dialog widget's children in the order that they were
created. Each child is then placed in the Dialog widget below or to the right of the widget speci- fied
by thef r onVer t mand f r ontHor i z mresources. The distance the new child is placed from its | eft

87

Composite and Constraint Widgets

or upper neighbor isdetermined by thehor i zDi st ance mandvert Di st ance mresources. This
implies some things about how the order of creation affects the possible placement of the children.
The Form widget registers a string to widget converter which does not postpone conversion and does
not cache conversion results.

The second layout method is used when the Dialog is resized. It does not matter what causes this
resize, and it is possi- ble for aresize to happen before the widget becomes visible (due to constraints
imposed by the parent of the Dialog). Thislayout method usesthebot t om,t op,l eft ,andri ght
resources. These resources are used to determine what will happen to each edge of the child when
the Dialog is resized. If a value of XawChai n <something> is specified, the the edge of the child
will remain afixed distance from the chain edge of the Dialog. For exampleif XawChai nLef t mis
specified for the ri ght mresource of a child then the right edge of that child will remain a fixed
distance from the left edge of the Dialog widget. If avalue of XawRubber mis spec- ified, that edge
will grow by the same percentagethat the Dialog grew. For instanceif the Dial og grows by 50% theleft
edge of the child (if specified as XawRubber mwill be 50% farther from the left edge of the Dialog).
One must be very careful when specifying these resources, for when they are specified incorrectly
children may overlap or completely occlude other children when the Dialog widget is resized.

Edge Type Resour ce Name Description
XawChainBottom ChainBottom Edge remains a fixed distance
from bottom of Dialog
XawChainL eft ChainL eft Edge remains a fixed
distance from left of Dialog
XawChainRight ChainRight Edge remains afixed

distance from right of Dialog

XawChainTop ChainTop Edge remains a fixed
distance from top of Dialog

XawRubber Rubber Edgeswill move a
proportional distance

Example

If you wish to force the Dialog to never resize one or more of itschildrenthen set| ef t andri ght
to XawChai nLeft andt op and bot t omto XawChai nTop. Thiswill cause the child to remain a
fixed distance from the top and left edges of the Dialog, and to never resize.

Special Considerations

The Dialog widget automatically sets the t op and bot t om resources for al Children that are
subclasses of the Command widget, aswell asthe widget children that are used to contain thel abel ,
val ue, and i con. This policy allows the buttons at the bottom of the Dialog to interact correctly
with the predefined children, and makes it possible for a client to ssimply create and manage a new
Command button without having to specify its constraints.

The Dialog will also set f ronLef t to the last button in the Dialog for each new button added to
the Dialog widget.

The automatically added constraints cannot be overridden, as they are policy decisions of the Dialog

widget. If a more flexible Dialog is desired, the application is free to use the Form widget to create
its own Dialog policy.

Automatically Created Children.

The Dialog uses Label widgetsto contain thel abel andi con. These widgets are named label and
icon respectively. The Dialog val ue is contained in an AsciiText widget whose name is val ue.

88

Composite and Constraint Widgets

Using Xt NameToW dget the application can change those resources associated with each of these
widgets that are not available through the Dialog widget itself.

Convenience Routines

To return the character string in the text field, use
String XawDi al ogGet Val ueString(w;
w Specifies the Dialog widget.

This function returns a copy of the value string of the Dialog widget. This string is
alocated by the AsciiText widget and will remain valid and unchanged until another call to
XawDi al ogCet Val ueStri ngoran Xt Get Val ues cal ontheval ue widget, when the string
will be automatically freed, and a new string is returned. This string may be freed earlier by calling
thefunction XawAsci i Sour ceFreeStri ng.

To add a new button to the Dialog widget use XawDi al ogAddBut t on.

voi d XawDi al ogAddButton(w, nanme, func, client_data);

w Specifies the Dialog widget.

name Specifies the name of the new Command button to be added to
the Dialog.

func Specifies a callback function to be called when this button is

activated. If NULL is specified then no callback is added.
client_data Specifies the client_data to be passed to the func.

This function is merely a shorthand for the code sequence:

{
W dget button = Xt Creat eManagedW dget (name, comuandW dget d ass, w, NULL, ZERO)

Xt AddCal | back(button, XtNcallback, func, client_data);
}

Form Widget

Application Header file <X11/ Xaw Form h>
Cl ass Header file <X11/Xaw For nP. h>
Class fornWdgetd ass

Cl ass Name Form

Super cl ass Constrai nt

89

Composite and Constraint Widgets

The Form widget can contain an arbitrary number of children or subwidgets. The Form provides
geometry management for its children, which allows individual control of the position of each child.
Any combination of children can be added to a Form. The initial positions of the children may
be computed relative to the positions of previoudly created children. When the Form is resized,
it computes new positions and sizes for its children. This computation is based upon information
provided when a child is added to the Form.

The default width of the Form is the minimum width needed to enclose the children after computing
their initial layout, with amargin of def aul t Di st ance at the right and bottom edges. If a width
and height is assigned to the Form that is too small for the layout, the children will be clipped by the
right and bottom edges of the Form.

Resources

When creating a Form widget instance, the following resources are retrieved from the argument list
or from the resource database;

3

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
defaultDistance Thickness int 4
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension A Enough space
to contain
all children
appedWhenM anadddppedWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
translations Tranglations TrandationTable NULL
width Width Dimension A Enough space
to contain
all children
X Position Position 0
y Position Position 0

Constraint Resources

Each child of the Form widget may request special layout resources be applied to it. These constraint
resources allow the Form widget's children to specify individual layout requirements.

90

Composite and Constraint Widgets

1%

D

Name Class Type Notes Default Value
bottom Edge XawEdgeType XawRubber
fromHoriz Widget Widget NULL (left
edge of Form)
fromVert Widget Widget NULL (top
edge of Form)
horizDistance Thickness int ef aul t Di st anc
resource
left Edge XawEdgeType XawRubber
resizable Boolean Boolean FALSE
right Edge XawEdgeType XawRubber
top Edge XawEdgeType XawRubber
vertDistance Thickness int def aul t Di st anc
resource
bottom
| eft
right
top VWhat to do with this edge of the child when
the parent is resized. This resource may be
any edgeType. See Layout Senmantics for
details.
fronmHori z
fronVert VWi ch widget this child should be pl aced

underneath (or to the right of). If a value
of NULL is specified then this widget will be
positioned relative to the edge of the par-
ent.

hori zDi st ance
vert Di st ance The anount of space,

child and its left or

in pixels, between this
upper nei ghbor.

resi zabl e If this resource is False then the parent

wi dget will ignore all geonetry request made
by this child. The parent may still resize
this child itself, however.

Layout Semantics

The Form widget usestwo different sets of layout semantics. Oneis used wheninitially laying out the
children. The other is used when the Form isresized.

Thefirst layout method usesthef r omVert andf r onHor i z resources to place the children of the
Form. A single pass is made through the Form widget's children in the order that they were created.
Each child is then placed in the Form widget below or to the right of the widget specified by the
fronmVert andfronHori z resources. The distance the new child is placed from its left or upper
neighbor is deter- mined by the hori zDi st ance and vert Di st ance resources. This implies
some things about how the order of creation affects the possible placement of the children. The Form
widget registers a string to widget converter which does not post- pone conversion and does not cache
conversion results.

91

Composite and Constraint Widgets

The second layout method is used when the Form isresized. It does not matter what causesthisresize,
anditispossi- blefor aresize to happen before the widget becomes visible (dueto constraintsimposed
by the parent of the Form). Thislayout method usesthebot t omt op, | ef t ,andri ght resources.
These resources are used to determine what will happen to each edge of the child when the Form is
resized. If avalue of XawChai n <something> is specified, the the edge of the child will remain a
fixed distance from the chain edge of the Form. For example if XawChai nLef t is specified for the
ri ght resource of achild then the right edge of that child will remain afixed distance from the left
edge of the Form widget. If a value of XawRubber is specified, that edge will grow by the same
percentage that the Form grew. For instance if the Form grows by 50% the |eft edge of the child (if
specified as XawRubber will be 50% farther from the left edge of the Form). One must be very
careful when specifying these resources, for when they are specified incorrectly children may overlap
or completely occlude other children when the Form widget is resized.

Edge Type Resour ce Name Description
XawChainBottom ChainBottom Edge remains a fixed distance
from bottom of Form
XawChainL eft ChainL eft Edge remains a fixed
distance from left of Form
XawChainRight ChainRight Edge remains afixed
distance from right of Form
XawChainTop ChainTop Edge remains afixed
distance from top of Form
XawRubber Rubber Edgeswill movea
proportional distance

Example

If you wish to force the Form to never resize one or more of its children, then set | ef t and ri ght
to XawChai nLeft andt op and bot t omto XawChai nTop. Thiswill cause the child to remain a
fixed distance from the top and left edges of the Form, and never to resize.

Convenience Routines
To force or defer are-layout of the Form, use
voi d XawFor nDoLayout (w, do_Il ayout);
w Specifies the Form widget.

do_layout Specifies whether the layout of the Form widget is enabled (Tr ue)
or disabled (Fal se).

When making several changesto the children of a Form widget after the Form has been realized, it is
agood ideato disable relayout until after all changes have been made.

Paned Widget

Application Header file <X11/ Xaw Paned. h>
Cl ass Header file <X11/ Xaw PanedP. h>

Cl ass panedW dget Cl ass

92

Composite and Constraint Widgets

Cl ass Nane Paned

Super cl ass Constrai nt

The Paned widget manages children in a vertically or horizontaly tiled fashion. The panes may be
dynamically resized by the user by using the grips that appear near the right or bottom edge of the
border between two panes.

The Paned widget may accept any widget class as apane except Grip. Grip widgets have a special
meaning for the Paned widget, and adding a Grip asits own pane will confuse the Paned widget.

Using the Paned Widget

The grips alow the panes to be resized by the user. The semantics of how these panes resize is
somewhat complicated, and warrants further explanation here. When the mouse pointer is positioned
on agrip and pressed, an arrow is displayed that indicates the pane that is to be to be resized. While
keeping the mouse button down, the user can move the grip up and down (or left and right). This, in
turn, changes the size of the pane. The size of the Paned widget will not change. Instead, it chooses
another pane (or panes) to resize. For more details on which pane it chooses to resize, see Layout
Semanti cs.

One pointer binding allows the border between two panes to be moved, without affecting any of the
other panes. When this occurs the pointer will change to an arrow that points along the pane border.

The default bindings for the Paned widget's grips are:

M ouse button Paneto Resize - Vertical Paneto Resize - Horizontal
1 (left) above the grip left of the grip
2 (middle) adjust border adjust border
3 (right) below the grip right of the grip
Resources

When creating a Paned widget instance, the following resources are retrieved from the argument list
or the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
betweenCursor Cursor Cursor A Depends on
orientation
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
cursor Cursor Cursor None

93

Composite and Constraint Widgets

Name Class Type Notes Default Value
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
gripCursor Cursor Cursor A Depends on
orientation
griplndent Griplndent Position 10
gripTrandations Trandlations TranglationTable see below
height Height Dimension A Depends on
orientation
hotizontal BetweenCursor ~ Cursor Cursor sb_up_arrow
horizontal GripCursor Cursor Cursor sb_h double arrow|
internalBorderColor; BorderColor Pixel tDefaultForegroun
nternalBorderWidth BorderWidth Dimension 1
leftCursor Cursor Cursor sb_left_arrow
lowerCursor Cursor Cursor sb_down_arrow
mappedWhenM anaddadppedWhenManaged Boolean True
numcChildren ReadOnly Cardinal R 0
orientation Orientation Orientation XtorientVertica
refigureMode Boolean Boolean True
rightCursor Cursor Cursor sb_right_arrow
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
translations Tranglations TrandationTable NULL
upperCursor Cursor Cursor sb_up_arrow
verti cal BetweenCursor Cursor Cursor sb_left_arrow
vertical GripCursor Cursor Cursor sb_v_double_arrow
width Width Dimension A Dependson
orientation
X Paned Position 0
y Paned Position 0
cursor The cursor to use when the mouse pointer is over the Paned
widget, but not in any of its children (children may also inherit
this cursor). It should be noted that the internal borders are
actually part of the Paned widget, not the children.
gri pCursor The cursor to use when the grips are not active.
The default vaue is vertical GipCursor or
hori zont al Gi pCur sor depending on the orientation of
the Paned widget.
gri pl ndent The amount of space |eft between the right (or bottom) edge of

gri pTransl ation

hori zont al Bet weenCur sor

the Paned widget and al the grips.

Tranglation table that will be applied to all grips.

94

Composite and Constraint Widgets

verti cal Bet weenCur sor

hori zont al Gri pCur sor

vertical Gri pCursor

i nt er nal Bor der Col or

i nt er nal Bor der W dt h

| ef t Cur sor

ri ght Cursor

| ower Cur sor

upper Cur sor

orientation

refi gureMode

Constraint Resources

The cursor to be used for the grip when changing the boundary
between two panes. These resources alow the cursors to be
different depending on the orientation of the Paned widget.

The cursor to be used for the grips when they are not active.
These resources allow the cursors to be different depending on
the orientation of the Paned widget.

A pixel value which indexes the widget's colormap to derive
the interna border color of the widget's window. The class
name of this resource allows Paned*BorderColor: blue to
set the internal border color for the Paned widget. An
optimization is invoked if i nt er nal Bor der Col or and
backgr ound are the same, and the internal borders are not
drawn. i nt er nal Bor der W dt h is till left between the
panes, however.

The width of the internal borders. Thisis the amount of space
|eft between the panes. The class name of this resource allows
Paned* BorderWidth: 3 to set the internal border width for the
Paned widget.

The cursor used to indicate which is the important pane to
resize when the Paned widget is oriented horizontally.

The cursor used to indicate which is the important pane to
resize when the Paned widget is oriented vertically. Thisis not
the same as the number of panes, since this also contains a
grip for some of the panes, use XawPanedGet NuntSub to
retrieve the number of panes.

The orientation to stack the panes. This value can be either
XtorientVertical orXtorientHorizontal.

This resource allows pane layout to be suspended. If thisvalue
is Fal se, then no layout actions will be taken. This may
improve efficiency when adding or removing more than one
pane from the Paned widget.

Each child of the Paned widget may request special layout resources be applied to it. These constraint
resources alow the Paned widget's children to specify individual layout requirements.

Name Class Type Notes Default Value
allowResize Boolean Boolean False
max Max Dimension Infinity
min Min Dimension Height of Grips
preferredPaneSize | PreferredPaneSize Dimension ask child
resizeToPreferred Boolean Boolean False

95

Composite and Constraint Widgets

Name Class Type Notes Default Value
showGrip ShowGrip Boolean True
skipAdjust Boolean Boolean False

al | owResi ze

pref erredPaneSi ze

resi zeToPreferred
showGri p

ski pAdj ust

Layout Semantics

If this value is Fal se the the Paned widget will disallow all
geometry requests from this child.

The absolute maximum or minimum size for this pane. These
valueswill never be overridden by the Paned widget. This may
cause some panes to be pushed off the bottom (or right) edge
of the paned widget.

Normally the paned widget makes a QueryGeometry call on a
child to determine the preferred size of the child's pane. There
are times when the application programmer or the user has a
better idea of the preferred size of a pane. Setting this resource
causes the value passed to be interpreted as the preferred size,
in pixels, of this pane.

Determines whether or not to resize each pane to its
preferred size when the Paned widget is resized. See Layout
Semant i cs for details.

If True then a grip will be shown for this pane. The grip
associated with apaneiseither below or to theright of the pane.
No grip is ever shown for the last pane.

This resource is used to determine which pane is forced to be
resized. Setting this value to Tr ue makes this pane less likely
to be forced to be resized. See Layout Semanti cs for
details.

In order to make effective use of the Paned widget it is helpful to know the rules it uses to determine
which child will be resized in any given situation. There are three rules used to determine which child
isresized. While these rules are always the same, the panes that are searched can change depending

upon what caused the relayout.

Layout Rul es

1 Do not let a pane grow larger than its max or smaller than itsm n.

2 Do not adjust paneswith ski pAdj ust set.

3 Do not adjust panes away from their preferred size, although moving one closer

toits preferred sizeisfine.

When searching the children the Paned widget looks for panes that satisfy all the rules, and if
unsuccessful then it eliminates rule 3 and then 2. Rule 1 is always enforced.

If the relayout is due to aresize or change in management then the panes are searched from bottom
to top. If the relayout is due to grip movement then they are searched from the grip selected in the

direction opposite the pane sel ected.

96

Composite and Constraint Widgets

Resizing Panes from a Grip Action

The pane above the grip is resized by invoking the GripAction with UpLef t Pane specified. The
panes below the grip are each checked against al rules, then rules 2 and 1 and finally against rule 1
only. No pane above the chosen pane will ever be resized.

The pane below the grip isresized by invoking the GripAction with LowRi ght Pane specified. The
panes abovethe grip are each checked in this case. No pane bel ow the chosen panewill ever beresized.

Invoking GripAction with Thi sBor der Onl y specified just moves the border between the panes.
No other panes are ever resized.

Resizing Panes after the Paned widget is resized.

When the Pane widget is resized it must determine a new size for each pane. There are two methods
of doing this. The Paned widget can either give each pane its preferred size and then resize the panes
to fit, or it can use the current sizes and then resize the panes to fit. Ther esi zeToPref erred
resource allows the application to tell the Paned widget whether to query the child about its preferred
size (subject to the the pr ef er r edPaneSi ze) or to use the current size when refiguring the pane
locations after the pane has been resized.

Thereis one specia case. All panes assume they should resize to their preferred size until the Paned
widget becomes visible to the user.

Managing Children and Geometry Management

The Paned widget always resizes its children to their preferred sizes when a new child is managed,
or a geometry management request is honored. The Paned widget will first attempt to resize itself to
contain its panes exactly. If thisis not possible then it will hunt through the children, from bottom to
top (right to left), for a pane to resize.

Special Considerations

When a user resizes a pane with the grips, the Paned widget assumes that this new sizeisthe preferred
size of the pane.

Grip Translations

The Paned widget has no action routines of its own, as all actions are handled through the grips. The
grips are each assigned a default Trandation table.

<Bt n1Down>: Gri pAction(Start, UpLeftPane)

<Bt n2Down>: Gri pAction(Start, Thi sBorderOnly)
<Bt n3Down>: Gri pAction(Start, LowRi ghtPane)
<Bt n1Motion>: Gi pAction(Mve, UpLeftPane)

<Bt n2Moti on>: Gi pActi on(Mwve, Thi sBorderOnly)
<Bt n3Moti on>: Gi pActi on(Mve, LowRi ght Pane)
Any<Bt nUp>: Gi pActi on(Conmmit)

The Paned widget interpretsthe Gr i pAct i on as taking two arguments. The first argument may be
any of the following:

Start Sets up the Paned widget for resizing and changes the cursor of the grip.
The second argument determines which pane will be resized, and can
take on any of the three values shown above.

97

Composite and Constraint Widgets

Move Theinternal bordersaredrawn over the current panelocationsto animate
where the borders would actually be placed if you were to move this
border as shown. The second argument must match the second argument
that was passed to the St art action, that began this process. If these
arguments are not passed, the behavior is undefined.

Commi t This argument causes the Paned widget to commit the changes selected

by the previoudly started action. The cursor is changed back to the grip's
inactive cursor. No second argument is needed in this case.

Convenience Routines

To enable or disable a child's request for pane resizing, use XawPanedAl | owResi ze :

voi d XawPanedAl | owResi ze(w, allow resize);

w Specifies the child pane.
allow _resize Specifies whether or not resizing requests for this child will be
granted by the Paned widget.

If allow_resizeisTr ue, the Paned widget allows geometry requestsfrom the child to changethe pane's
height. If allow_resizeisFal se, the Paned widget ignores geometry requestsfrom the child to change
the pane's height. The default stateis Tr ue before the Paneisrealized and Fal se after itisrealized.
This procedure is equivalent to changing the al | owResi ze constraint resource for the child.

To change the minimum and maximum height settings for a pane, use XawPanedSet M nMax :

voi d XawPanedSet M nMax(w, max);

w Specifies the child pane.
min Specifies the new minimum height of the child, expressed in pixels.
max Specifies new maximum height of the child, expressed in pixels.

This procedure is equivalent to setting the mi n and max constraint resources for the child.
To retrieve the minimum and maximum height settings for a pane, use XawPanedGet M nMax :

voi d XawPanedGet M nMax(w, *nmax_return);

w Specifies the child pane.
min_return Returns the minimum height of the child, expressed in pixels.
max_return Returns the maximum height of the child, expressed in pixels.

This procedure is equivalent to getting the mi n and max resources for this child child.

To enable or disable automatic recalculation of pane sizes and positions, use
XawPanedSet Ref i gur eMode :

voi d XawPanedSet Ref i gureMode(w, node);

w Specifies the Paned widget.
mode Specifies whether the layout of the Paned widget is enabled (Tr ue) or
disabled (Fal se).

98

Composite and Constraint Widgets

When making several changes to the children of a Paned widget after the Paned has been realized, it
isagood ideato disable relayout until after all changes have been made.

To retrieve the number of panesin apaned widget use XawPanedGet NunSub:
i nt XawPanedGet NunSub(w) ;
w Specifies the Paned widget.

This function returns the number of panesin the Paned widget. Thisisnot the same as the number
of children, since the grips are also children of the Paned widget.

Porthole Widget

Application Header file <X11/ Xaw Port hol e. h>

Cl ass Header file <X11/ Xaw Port hol eP. h>

Cl ass porthol eWdget d ass

Cl ass Nane Porthol e

Super cl ass Conposite

The Porthole widget provides geometry management of alist of arbitrary widgets, only one of which

may be managed at any particular time. The managed child widget is reparented within the porthole
and is moved around by the application (typically under the control of a Panner widget).

Resources

When creating a Porthole widget instance, the following resources are retrieved from the argument
list or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
height Height Dimension A see Layout
Semanti cs
mappedWhenM anag@'dppedWhenM anagqad Boolean True

99

Composite and Constraint Widgets

Name Class Type Notes Default Value
numChildren ReadOnly Cardinal R 0
reportCallback ReportCallback Callback NULL
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
tranglations Trandlations TranglationTable NULL
width Width Dimension A see Layout
Semanti cs
X Position Position 0
y Position Position 0

report Cal | back A list of functions to invoke whenever the managed child

widget changes size or position.

Layout Semantics

The Porthole widget allows its managed child to request any size that is as large or larger than the
Porthole itself and any location so long as the child still obscures al of the Porthole. This widget
typicaly is used with a Panner widget.

Porthole Callbacks

The functions registered on the r epor t Cal | back list are invoked whenever the managed child
changes size or position:
voi d ReportProc(porthol e,

client_data, report);

porthole Specifies the Porthole widget.
client_data Specifies the client data.
report Specifies a pointer to an XawPanner Report structure containing the location

and size of the dider and the size of the canvas.

Tree Widget

Application Header file <X11/ Xaw Tree. h>
Cl ass Header file <X11/ Xaw Tr eeP. h>
Class treeWdgetd ass

Cl ass Nanme Tree

Super cl ass Constrai nt

The Tree widget provides geometry management of arbitrary widgets arranged in a directed,
acyclic graph (i.e., a tree). The hierarchy is constructed by attaching a constraint resource called
t r eePar ent to each widget indicating which other node in the tree should be treated as the widget's
superior. The structure of the tree is shown by laying out the nodes in the standard format for tree
diagrams with lines drawn connecting each node with its children.

TheTreesizesitself according to the needs of its children and is not intended to beresized by its parent.
Instead, it should be placed inside another composite widget (such asthe Por t hol e or Vi ewport)
that can be used to scroll around in the tree.

100

Composite and Constraint Widgets

Resources

When creating a Tree widget instance, the following resources are retrieved from the argument list
or from the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
ancestorSensitive | AncestorSensitive Boolean D True
autoReconfigure | AutoReconfigure Boolean False
background Background Pixel XtDefaultBackground
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackL.ist NULL
foreground Foreground Pixel tDefaultForeground
gravity Gravity XtGravity WestGravity
height Height Dimension A see Layout
Semanti cs
hSpace HSpace Dimension 4
linewWidth LineWidth Dimension 0
mappedWhenManaddadppedWhenManaged Boolean True
numChildren ReadOnly Cardinal R 0
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
vSpace V Space Dimension 4
translations Tranglations TrandationTable NULL
width Width Dimension A see Layout
Semantics
X Position Position 0
y Position Position 0

aut oReconfi gure

gravity

hSpace

vSpace

i neWdth

Whether or not to layout the tree every time anode is added or removed.

Specifies the side of the widget from which the tree should grow. Valid
values include West Gravity, NorthGravity, EastGravity, and
Sout hGravity.

The amount of space, in pixels, to leave between the children. This resource
specifies the amount of space left between the outermost children and the

edge of the box.

The width of the lines from nodes that do not have at r ee GC constraint
resource to their children.

101

Composite and Constraint Widgets

Constraint Resources

Each child of the Tree widget must specify its superior node in the tree. In addition, it may specify a
GC to use when drawing aline between it and its inferior nodes.

Name Class Type Notes Default Value
treeGC TreeGC GC NULL
treeParent TreeParent Widget NULL
treeGC This specifies the GC to use when drawing lines between this widget and its

inferiors in the tree. If this resource is not specified, the Tree'sf or egr ound and
I i neW dt h will be used.

treeParent Thisspecifiesthe superior nodeinthetreefor thiswidget. The default isfor the node
to have no superior (and to therefore be at the top of the tree).

Layout Semantics

Each time a child is managed or unmanaged, the Tree widget will attempt to reposition the remaining
children to fix the shape of thetreeif the resourceis set. Children at the top (most superior) of thetree
are drawn at the side specified by the resource.

After positioning all children, the Tree widget attempts to shrink its own size to the minimum
dimensions required for the layout.

Convenience Routines

The most efficient way to layout a tree is to set aut oReconf i gur e to False and then use the
XawTr eeFor ceLayout routine to arrange the children.

voi d XawTr eeFor ceLayout (w);

w Specifiesthe Tree widget.

Viewport Widget

Application Header file <X11/ Xaw Vi ewport. h>
Cl ass Header file <X11/ Xaw Vi ewportP. h>

Cl ass viewportWdget d ass

Cl ass Nane Vi ewport

Super cl ass Form

The Viewport widget consists of aframe window, one or two Scrollbars, and an inner window. The
size of the frame window is determined by the viewing size of the data that is to be displayed and the
dimensions to which the Viewport is created. The inner window is the full size of the data that isto
be displayed and is clipped by the frame window. The Viewport widget controls the scrolling of the
data directly. No application callbacks are required for scrolling.

102

Composite and Constraint Widgets

When the geometry of the frame window is equal in size to the inner window, or when the data does
not require scrolling, the Viewport widget automatically removes any scrollbars. The f or ceBar s
option causes the Viewport widget to display all scrollbars permanently.

Resources

When creating a Viewport widget instance, the following resources are retrieved from the argument
list or the resource database:

Name Class Type Notes Default Value
accelerators Accelerators AcceleratorTable NULL
alowHoriz Boolean Boolean False
alowVert Boolean Boolean False
ancestorSensitive | AncestorSensitive Boolean D True
background Background Pixel XtDefaultBackgroungd
backgroundPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderColor BorderColor Pixel tDefaultForeground
borderPixmap Pixmap Pixmap XtUnspecifiedPixmap
borderWidth BorderWidth Dimension 1
children ReadOnly WidgetList R NULL
colormap Colormap Colormap Parent's Colormap
depth Depth int C Parent's Depth
destroyCallback Callback XtCallbackList NULL
forceBars Boolean Boolean False
height Height Dimension height of the child
mappedWhenM anadddppedWhenManaged Boolean True
numcChildren ReadOnly Cardinal R 0
reportCallback ReportCallback XtCallbackList NULL
screen Screen Screen R Parent's Screen
sensitive Sensitive Boolean True
trandations Tranglations TrandationTable NULL
useBottom Boolean Boolean False
useRight Boolean Boolean False
width Width Dimension width of the child
X Position Position 0
y Position Position 0
al owHori z
al | owvert If these resources are Fal se then the Viewport will never
create a scrollbar in this direction. If it is True then
the scrollbar will only appear when it is needed, unless
forceBarsisTrue.
forceBars When Tr ue the scrollbars that have been allowed will always

bevisible on the screen. If Fal se the scrollbarswill bevisible
only when the inner window is larger than the frame.

103

Composite and Constraint Widgets

report Cal | back These callbacks will be executed whenever the Viewport
adjuststhe viewed area of the child. The call_data parameter is
apointer to an XawPannerReport structure.

useBott om

useRi ght By default the scrollbars appear on theleft and top of the screen.
These resources alow the vertical scrollbar to be placed on the
right edge of the Viewport, and the horizontal scrollbar on the
bottom edge of the Viewport.

Layout Semantics

The Viewport widget manages a single child widget. When the size of the child islarger than the size
of the Viewport, the user can interactively move the child within the Viewport by repositioning the
scrollbars.

The default size of the Viewport before it is realized is the width and/or height of the child. After
it is realized, the Viewport will alow its child to grow vertically or horizontally if al | owMert or
al | owHor i z areset, respectively. If the corresponding vertical or horizontal scrollbar isnot enabled,
the Viewport will propagate the geometry request to its own parent and the child will be allowed
to change size only if the Viewport's parent allows it. Regardless of whether or not scrollbars are
enabled in the corresponding direction, if the child requests anew size smaller than the Viewport size,
the change will be alowed only if the parent of the Viewport alows the Viewport to shrink to the
appropriate dimension.

The scrollbar children of the Viewport are named hori zont al and verti cal . By using these
names the programmer can specify resources for the individual scrollbars. Xt Set Val ues
can be used to modify the resources dynamically once the widget ID has been obtained with
Xt NameToW dget .

Note
Although the Viewport is a Subclass of the Form, no resources for the Form may be supplied

for any of the children of the Viewport. These constraints are managed internally and are not
meant for public consumption.

104

Chapter 7. Creating New Widgets
(Subclassing)

Although the task of creating a new widget may at first appear a little daunting, there is a basic
simple pattern that all widgets follow. The Athena Widget library contains a special widget called the
Template widget that isintended to assist the novice widget programmer in writing a custom widget.

Reasons for wishing to write a custom widget include:
» Providing agraphical interface not currently supported by any existing widget set.

» Convenient access to resource management procedures to obtain fonts, colors, etc., even if user
customization is not desired.

» Convenient access to user input dispatch and translation management procedures.
» Accessto callback mechanism for building higher-level application libraries.
» Customizing the interface or behavior of an existing widget to suit a special application need.

» Desireto alow user customization of resources such as fonts, colors, etc., or to allow convenient
re-binding of keys and buttonsto internal functions.

» Converting a non-Toolkit application to use the Toolkit.

In each of these cases, the operation needed to create a new widget is to "subclass' an existing one.
If the desired semantics of the new widget are similar to an existing one, then the implementation of
the existing widget should be examined to see how much work would be required to create a subclass
that will then be able to share the existing class methods. Much time will be saved in writing the new
widget if an existing widget class Expose, Resize and/or GeometryManager method can be used by
the subclass.

Note that some trivial uses of a ™ bare-bones' widget may be achieved by simply creating an instance
of the Core widget. The class variable to use when creating a Core widget iswi dget Cl ass. The
geometry of the Core widget is determined entirely by the parent widget.

It is very often the case than an application will have a special need for a certain set of functions and
that many copies of these functionswill be needed. For example, when converting an older application
to usethe Toolkit, it may be desirable to have a"Window Widget" class that might have the following
semantics:

« Allocate 2 drawing colorsin addition to a background color.

* Allocate atext font.

» Execute an application-supplied function to handle exposure events.
» Execute an application-supplied function to handle user input events.

It is obviousthat acompletely general-purpose WindowWidgetClass could be constructed that would
export all class methods as callbacks lists, but such a widget would be very large and would have to
choose some arbitrary number of resources such as colorsto allocate. An application that used many
instances of the general-purpose widget would therefore un-necessarily waste many resources.

Inthissection, an outlinewill be given of the procedureto follow to construct a special -purpose widget
to address the items listed above. The reader should refer to the appropriate sections of the X Toolkit
Intrinsics - C Language Interface for complete details of the material outlined here. Section 1.4 of the
Intrinsics should be read in conjunction with this section.

105

Creating New Widgets (Subclassing)

All Athena widgets have three separate files associated with them:

* A "public" header file containing declarations needed by applications programmers

» A "private" header file containing additional declarations needed by the widget and any subclasses
A source code file containing the implementation of the widget

This separation of functions into three files is suggested for all widgets, but nothing in the Toolkit
actually requiresthisformat. In particular, a private widget created for a single application may easily
combine the "public" and "private”" header filesinto a single file, or merge the contents into another
application header file. Similarly, the widget implementation can be merged into other application
code.

In the following example, the public header file< X11/ Xaw/ Tenpl at e. h >, the private header
file< X11/ Xaw/ Tenpl at eP. h >andthesourcecodefile< X11/ Xaw Tenpl at e. ¢ >will be
modified to produce the "WindowWidget" described above. In each case, the files have been designed
so that aglobal string replacement of "Template" and "template" with the name of your new widget,
using the appropriate case, can be done.

Public Header File

The public header file contains declarations that will be required by any application modul e that needs
to refer to the widget; whether to create an instance of the class, to perform an Xt Set Val ues
operation, or to call a public routine implemented by the widget class.

The contents of the Template public header file, < X11/ Xaw/ Tenpl ate. h >, are

/* Copyright (c) X Consortium 1987, 1988 */

#i fndef _Tenplate_h
#define _Tenplate_ h

/**
*
* Tenpl ate wi dget
*

**/

/* Resources:

Nanme Cl ass RepType Default Val ue

background Background Pixel XtDefaultBackground
border BorderCol or Pixel XtDefaultForeground
borderWdth BorderWdth Dinension 1

destroyCal | back Cal |l back Pointer NULL

hei ght Height Dinmension 0

mappedWenManaged MappedWenManaged Bool ean True
sensitive Sensitive Boolean True

width Wdth Dinmension 0

x Position Position O

y Position Position O

*/

106

Creating New Widgets (Subclassing)

/* define any special resource nanes here that are not in <X11/StringDefs.h> */
#def i ne Xt Nt enpl at eResource "t enpl at eResour ce”

#def i ne Xt CTenpl at eResour ce " Tenpl at eResour ce"

/* declare specific Tenpl ateW dget cl ass and instance datatypes */

typedef struct _Tenpl ated assRec* Tenpl at eW dget C ass;
typedef struct _Tenpl at eRec* Tenpl at eW dget ;

/* declare the class constant */
extern Wdget d ass tenpl at eW dget C ass;

#endif /* _Tenplate_h */

You will notice that most of this file is documentation. The crucia parts are the last 8 lines where
macros for any private resource names and classes are defined and where the widget class datatypes
and class record pointer are declared.

For the "WindowWidget", we want 2 drawing colors, a callback list for user input and an
exposeCal | back callback list, and we will declare three convenience procedures, so we need to
add

/| * Resources:

cal I back Cal | back Cal | back NULL

drawi ngCol or1 Col or Pi xel Xt Default Foreground
drawi ngCol or2 Col or Pi xel Xt Defaul t Foreground
exposeCal | back Cal | back Cal |l back NULL

font Font XFont Struct* Xt Defaul t Font

-

#def i ne Xt Ndrawi ngCol or1 "draw ngCol or 1"
#def i ne Xt Ndr awi ngCol or 2 "dr awi ngCol or 2"
#def i ne Xt NexposeCal | back "exposeCal | back"

extern Pixel WndowCol or1(\|/* Wdget */\]|);
extern Pixel WndowCol or2(\|/* Wdget */\]|);
extern Font\ \ W ndowrFont (\|/* Wdget */\|);

Note that we have chosen to call the input callback list by the generic name, cal | back, rather than
a specific name. If widgets that define a single user-input action all choose the same resource name
then there is greater possibility for an application to switch between widgets of different types.

Private Header File

The private header file contains the complete declaration of the class and instance structures for the
widget and any additional private data that will be required by anticipated subclasses of the widget.

107

Creating New Widgets (Subclassing)

Information in the private header file is normally hidden from the application and is designed to be
accessed only through other public procedures; e.g. Xt Set Val ues .

The contents of the Template private header file, < X11/ Xaw Tenpl ateP. h >, are

/* Copyright (c) X Consortium 1987, 1988
*/

#i fndef _Tenpl ateP_h
#defi ne _Tenpl ateP_h

#i ncl ude <X11/ Xaw/ Tenpl at e. h>
/* include superclass private header file */
#i ncl ude <X11/ Cor eP. h>

/* define unique representation types not found in <X11/StringDefs. h> */
#def i ne Xt RTenpl at eResour ce " Tenpl at eResour ce"

typedef struct {

int enpty;
} Tenpl ated assPart ;

typedef struct _Tenpl ated assRec {
CoreC assPart core_cl ass;
Tenpl at e assPart tenpl ate_cl ass;
} Tenpl at ed assRec;

extern Tenpl at eCl assRec tenpl at ed assRec;

typedef struct {
/* resources */
char* resource;
/* private state */
} Tenpl atePart;

typedef struct _Tenpl ateRec {
CorePart core,
Tenpl at ePart tenpl at e;

} Tenpl at eRec;

#endif /* _TenplateP_h */

The private header file includes the private header file of its superclass, thereby exposing the entire
internal structure of the widget. It may not always be advantageous to do this; your own project
development style will dictate the appropriate level of detail to expose in each module.

The "WindowWidget" needsto declare two fieldsin its instance structure to hold the drawing colors,
aresource field for the font and afield for the expose and user input callback lists:

typedef struct {
/* resources */
Pi xel color_1;
Pi xel col or_2;
XFont Struct* font;
Xt Cal | backLi st expose_cal | back;

108

Creating New Widgets (Subclassing)

Xt Cal | backLi st i nput _cal | back;
/* private state */

/* (none) */

} WndowPart;

Widget Source File

The source code file implements the widget class itself. The unique part of thisfileisthe declaration
and initialization of the widget class record structure and the declaration of all resources and action
routines added by the widget class.

The contents of the Template implementation file, < X11/ Xaw/ Tenpl ate. c >, are

/* Copyright (c) X Consortium 1987, 1988
*/

#i ncl ude <X11/IntrinsicP. h>
#i ncl ude <X11/ Stri ngDefs. h>
#i ncl ude "Tenpl at eP. h"

static XtResource resources[] = {
#define offset(field) XtOfsetOf (Tenpl ateRec, tenplate.field)
/* {name, class, type, size, offset, default _type, default_addr}, */
{ XtNtenpl at eResource, XtCTenpl at eResource, Xt RTenpl at eResource,
si zeof (char*), offset(resource), XtRString, (XtPointer) "default" },
#undef of f set

b
static void TenplateAction(/* Wdget, XEvent*, String*, Cardinal* */);

static XtActionsRec actions[] =
{

/* {name, procedure}, */
{"tenpl ate", Tenpl at eAction},
b

static char translations[] =
" <Key>: tenplate(\]|) \\n\\

Tenpl at eC assRec tenpl ateC assRec = {
{ I* core fields */
/* superclass */ (Wdgetd ass) &w dget d assRec,
/* class_nane */ "Tenpl ate",
/* widget _size */ sizeof (Tenpl at eRec),
/* class_initialize */ NULL,
/* class_part _initialize */ NULL,
/* class_inited */ FALSE,
/* initialize */ NULL,
/* initialize _hook */ NULL,
/* realize */ XtlnheritRealize,
/* actions */ actions,
/* num actions */ XtNunber(actions),
/* resources */ resources,
/* numresources */ XtNunber(resources),
/* xrmclass */ NULLQUARK,
/* conpress_notion */ TRUE,

109

Creating New Widgets (Subclassing)

/* conpress_exposure */ TRUE,

/* conpress_enterl eave */ TRUE,

/* visible_ interest */ FALSE,

/* destroy */ NULL,

/* resize */ NULL,

/* expose */ NULL,

/* set_values */ NULL,

/* set _val ues_hook */ NULL,

/* set_values_al nost */ Xtlnherit SetVal uesAl nost,
/* get_val ues_hook */ NULL,

/* accept _focus */ NULL,

/* version */ XtVersion,

/* cal |l back_private */ NULL,

/* tmtable */ translations,

/* query_geonetry */ XtlnheritQueryGeonetry,

/* display_accelerator */ XtlnheritDi splayAccel erator,
/* extension */ NULL

}l
{ /* template fields */
* enpty */ 0

}

W dget Cl ass tenpl at eW dget G ass = (W dget C ass) & enpl at eCl assRec;

The resource list for the "WindowWidget" might ook like the following:

static XtResource resources[] = {
#define offset(field) XtOfset O (WndowW dget Rec, wi ndow. fi el d)
/* {nane, class, type, size, offset, default_type, default_addr}, */
{ Xt Ndraw ngCol or1, XtCCol or, XtRPixel, sizeof(Pixel),
of fset(color_1), XtRString, XtDefaultForeground },
{ Xt Ndraw ngCol or2, XtCCol or, XtRPixel, sizeof(Pixel),
of fset(color_2), XtRString, XtDefaultForeground },
{ XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
offset(font), XtRString, XtDefaultFont },
{ Xt NexposeCal | back, XtCCall back, XtRCall back, sizeof (XtCall backList),
of f set (expose_cal | back), XtRCall back, NULL },
{ XtNcal | back, XtCCall back, XtRCallback, sizeof (XtCallbackList),
of fset (i nput _cal | back), XtRCallback, NULL },
#undef of f set

b

The user input callback will be implemented by an action procedure which passes the event pointer
ascall_data. The action procedure is declared as:

/* ARGSUSED */
static void InputAction(w, event, parans, num parans)
W dget w;
XEvent *event,
String *parans; /* unused */
Cardi nal *num parans; /* unused */
{
Xt Cal | Cal | backs(w, XtNcall back, (XtPointer)event);

}

static XtActionsRec actions[] =

110

Creating New Widgets (Subclassing)

{

/* {name, procedure}, */
{"input”, I|nputAction},
b

and the default input binding will be to execute the input callbacks on KeyPress and
Butt onPress :

static char translations[] =
" <Key>: input(\]) \\n\\
<Bt nDown>: input (\]) \\

In the class record declaration and initialization, the only field that is different from the Template is
the expose procedure:

/* ARGSUSED */
static void Redisplay(w, event, region)
W dget w;
XEvent *event; /* unused */
Regi on region;
{
Xt Cal | Cal | backs(w, XtNexposeCall back, (XtPointer)region);

}

W ndowCl assRec wi ndowCl assRec = {

/* expose */ Redi spl ay,

The "WindowWidget" will also declare three public procedures to return the drawing colors and the
fontid, saving the application the effort of constructing an argument list for acall to Xt Get Val ues :

Pi xel W ndowCol or 1(w)

W dget w;
{

return ((WndowWw dget)w)->w ndow. col or _1;
}
Pi xel W ndowCol or 2(w)

W dget w;
{

return ((WndowWw dget)w)->w ndow. col or_2;
}
Font W ndowFont (w)

W dget w;
{

return ((WndowWw dget)w)->w ndow. font->fid;
}

The "WindowWidget" is now complete. The application can retrieve the two drawing colors from the
widget instance by calling either Xt Get Val ues , or the W ndowCol or functions. The actual
window created for the "WindowWidget" is available by calling the Xt W ndow function.

111

Chapter 8. Acknowledgments

Many thanks go to Ralph Swick (Project Athena/ Digital) who has contributed much time and effort
to this widget set. Previous versions of the widget set are largely due to histime and effort. Many of
the improvements that | have been able to make are because he provided a solid foundation to build
upon. While much of the effort has been Ralph's, many other people have contributed to the code.

Mark Ackerman (fornerly Project Athena)
Donna Converse (M T X Consortiun
JimFulton (formerly MT X Consortium
Loretta Guarino-Reid (Digital WSL)
Charl es Haynes (Digital WSL)

Ri ch Hyde (Digital WSL)

Mary Larson (Digital UEG

Joel McCormack (Digital WSL)

Ron Newman (fornerly Project Athena)
Jeanne Rich (Digital WSL)

Terry Weissman (fornerly Digital WSL)

While not much remains of the X10 toolkit, many of the ideas for this widget set come from that
original version. The design and implementation of the X 10 toolkit were done by:

M ke Gancarz (formerly Digital UEGQ
Charl es Haynes (Digital WSL)

Phil Karlton (formerly Digital W5L)
Kat hl een Langone (Digital UEG

Mary Larson (Digital UEG

Ram Rao (Digital UEGQ

Snmokey Wallace (formerly Digital WSL)
Terry Weissman (fornerly Digital WBL)

| have used the formatting ideas, and some of the words from previous versions of this document. The
X11R3 Athenawidget document was written by:

Ral ph R Swick (Project Athena/ Digital)
Terry Weissman (formerly Digital WSL)
Al Mento (Digital UEGQ

Putting this manual together was a major task in and of itself. | would like to thank Ralph Swick,
Donna Converse, and Jim Fulton for taking the time to help convert my technical knowledge into
legibletext. A special thanksto Jean Diaz (O'Reilly and Associates) for spending nearly amonth with
me working out all the annoying little details.

Chris D. Peterson
MT X Consortium 1989

The R5 edition of this document has been edited by the research staff of the MIT X Consortium, with
significant contributions by Jim Fulton (NCD).

Donna Conver se
MT X Consortium 1991

The R6 edition of this document has been edited to reflect changes brought about by research staff of
the Omron Corporation, with special recognitionto Li Y uhong, Seiji Kuwari, and Hiroshi Kuribayashi
for the X 11R5/contrib/lib/Xaw internationalization that inspired this version.

112

Acknowledgments

Frank Sheeran
Omon Corporation 1994

113

	Athena Widget Set - C Language Interface
	Table of Contents
	Chapter 1. Athena Widgets and The Intrinsics
	Introduction to the X Toolkit
	Terminology
	Underlying Model
	Conventions Used in this Manual
	Format of the Widget Reference Chapters
	Input Focus

	Chapter 2. Using Widgets
	Using Widgets
	Setting the Locale
	Initializing the Toolkit
	Creating a Widget
	Common Resources
	Resource Conversions
	Cursor Conversion
	Pixel Conversion
	Bitmap Conversion

	Realizing a Widget
	Processing Events
	Standard Widget Manipulation Functions
	Mapping Widgets
	Destroying Widgets
	Retrieving Widget Resource Values
	Modifying Widget Resource Values

	Using the Client Callback Interface
	Programming Considerations
	Writing Applications
	Changing Resource Values
	Specifying Resources
	Creating Argument Lists

	Example Programs

	Chapter 3. Simple Widgets
	Command Widget
	Resources
	Command Actions

	Grip Widget
	Resources
	Grip Actions

	Label Widget
	Resources

	List Widget
	Resources
	List Actions
	List Callbacks
	Changing the List
	Highlighting an Item
	Unhighlighting an Item
	Retrieving the Currently Selected Item
	Restrictions

	Panner Widget
	Resources
	Panner Actions
	Panner Callbacks

	Repeater Widget
	Resources
	Repeater Actions

	Scrollbar Widget
	Resources
	Scrollbar Actions
	Scrollbar Callbacks
	Convenience Routines
	Setting Float Resources

	Simple Widget
	Resources

	StripChart Widget
	Resources
	Getting the StripChart Value

	Toggle Widget
	Resources
	Toggle Actions
	Toggle Actions
	Radio Groups
	Convenience Routines
	Changing the Toggle's Radio Group.

	Chapter 4. Menus
	Using the Menus
	Sme Object
	Resources
	Subclassing the Sme Object

	SmeBSB Object
	Resources

	SmeLine Object
	Resources

	Chapter 5. Text Widgets
	Text Widget for Users
	Default Key Bindings
	Search and Replace
	File Insertion
	Text Selections for Users

	Text Widget Actions
	Cursor Movement Actions\fP
	Delete Actions
	Selection Actions
	The New Line Actions
	Kill and Actions
	Miscellaneous Actions
	Text Selections for Application Programmers

	Default Translation Bindings
	Text Functions
	Selecting Text
	Unhighlighting Text
	Getting Current Text Selection
	Replacing Text
	Searching for Text
	Redisplaying Text
	Resources Convenience Routines

	Customizing the Text Widget
	Text Widget
	Resources

	TextSink Object
	Resources
	Subclassing the TextSink
	Displaying Text
	Displaying the Insert Point
	Clearing Portions of the Text window
	Finding a Text Position Given Pixel Values
	Finding the Distance Between two Text Positions
	Finding the Size of the Drawing area
	Setting the Tab Stops
	Getting the Insert Point's Size and Location

	TextSrc Object
	Resources
	Subclassing the TextSrc
	Reading Text.
	Replacing Text.
	Scanning the TextSrc
	Searching through a TextSrc
	Text Selections

	Ascii Sink Object and Multi Sink Object
	Resources

	Ascii Source Object and Multi Source Object
	Resources
	Convenience Routines
	Conserving Memory
	Saving Files
	Seeing if the Source has Changed

	Ascii Text Widget
	Resources

	Chapter 6. Composite and Constraint Widgets
	Box Widget
	Resources
	Layout Semantics

	Dialog Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example
	Special Considerations

	Automatically Created Children.
	Convenience Routines

	Form Widget
	Resources
	Constraint Resources
	Layout Semantics
	Example

	Convenience Routines

	Paned Widget
	Using the Paned Widget
	Resources
	Constraint Resources
	Layout Semantics
	Resizing Panes from a Grip Action
	Resizing Panes after the Paned widget is resized.
	Managing Children and Geometry Management
	Special Considerations

	Grip Translations
	Convenience Routines

	Porthole Widget
	Resources
	Layout Semantics
	Porthole Callbacks

	Tree Widget
	Resources
	Constraint Resources
	Layout Semantics
	Convenience Routines

	Viewport Widget
	Resources
	Layout Semantics

	Chapter 7. Creating New Widgets (Subclassing)
	Public Header File
	Private Header File
	Widget Source File

	Chapter 8. Acknowledgments

