
X Session Management Protocol

X Consortium Standard

Mike Wexler, Kubota Pacific Computer, Inc

X Session Management Protocol: X Consortium Standard
by Mike Wexler

X Version 11, Release 7.7

Version 1.0
Copyright © 1992, 1993, 1994, 2002 The Open Group

Abstract

This document specifies a protocol that facilitates the management of groups of client applications by a session
manager. The session manager can cause clients to save their state, to shut down, and to be restarted into a
previously saved state. This protocol is layered on top of the X.Org ICE protocol.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

X Window System is a trademark of The Open Group.

iii

Table of Contents
1. Acknowledgments .. 1
2. Definitions and Goals ... 2
3. Overview of the Protocol .. 3
4. Data Types ... 5
5. Protocol Setup and Message Format .. 6
6. Client Identification String .. 7
7. Protocol .. 8
8. Errors ... 15
9. State Diagrams .. 16

Client State Diagram .. 16
Session Manager State Diagram ... 17

10. Protocol Encoding .. 20
Types ... 20
Messages .. 21

11. Predefined Properties ... 25

1

Chapter 1. Acknowledgments
First I would like to thank the entire ICCCM and Intrinsics working groups for the comments and
suggestions. I would like to make special thanks to the following people (in alphabetical order), Jordan
Brown, Ellis Cohen, Donna Converse, Vania Joloboff, Stuart Marks, Ralph Mor and Bob Scheifler.

2

Chapter 2. Definitions and Goals
The purpose of the X Session Management Protocol (XSMP) is to provide a uniform mechanism for
users to save and restore their sessions. A session is a group of clients, each of which has a particular
state. The session is controlled by a network service called the session manager. The session manager
issues commands to its clients on behalf of the user. These commands may cause clients to save their
state or to terminate. It is expected that the client will save its state in such a way that the client can be
restarted at a later time and resume its operation as if it had never been terminated. A client's state might
include information about the file currently being edited, the current position of the insertion point
within the file, or the start of an uncommitted transaction. The means by which clients are restarted
is unspecified by this protocol.

For purposes of this protocol, a client of the session manager is defined as a connection to the session
manager. A client is typically, though not necessarily, a process running an application program
connected to an X Window System display. However, a client may be connected to more than one X
display or not be connected to any X displays at all.

This protocol is layered on top of the X Consortium's ICE protocol and relies on the ICE protocol to
handle connection management and authentication.

3

Chapter 3. Overview of the Protocol
Clients use XSMP to register themselves with the session manager (SM). When a client starts up, it
should connect to the SM. The client should remain connected for as long as it runs. A client may
resign from the session by issuing the proper protocol messages before disconnecting. Termination of
the connection without notice will be taken as an indication that the client died unexpectedly.

Clients are expected to save their state in such a way as to allow multiple instantiations of themselves
to be managed independently. A unique value called a client-ID is provided by the protocol for the
purpose of disambiguating multiple instantiations of clients. Clients may use this ID, for example, as
part of a filename in which to store the state for a particular instantiation. The client-ID should be saved
as part of the command used to restart this client (the RestartCommand) so that the client will retain the
same ID after it is restarted. Certain small pieces of state might also be stored in the RestartCommand.
For example, an X11 client might place a '-twoWindow' option in its RestartCommand to indicate that
it should start up in two window mode when it is restarted.

The client finds the network address of the SM in a system-dependent way. On POSIX systems an
environment variable called SESSION_MANAGER will contain a list of network IDs. Each id will
contain the transport name followed by a slash and the (transport-specific) address. A TCP/IP address
would look like this:

tcp/hostname:portnumber

where the hostname is a fully qualified domain name. A Unix Domain address looks like this:

local/hostname:path

A DECnet address would look like this:

decnet/nodename::objname

If multiple network IDs are specified, they should be separated by commas.

Rationale

There was much discussion over whether the XSMP protocol should use X as the transport
protocol or whether it should use its own independent transport. It was decided that it
would use an independent protocol for several reasons. First, the Session Manager should be
able to manage programs that do not maintain an X connection. Second, the X protocol is
not appropriate to use as a general-purpose transport protocol. Third, a session might span
multiple displays.

The protocol is connection based, because there is no other way for the SM to determine
reliably when clients terminate.

It should be noted that this protocol introduces another single point of failure into the system.
Although it is possible for clients to continue running after the SM has exited, this will
probably not be the case in normal practice. Normally the program that starts the SM will
consider the session to be terminated when the SM exits (either normally or abnormally).

To get around this would require some sort of rendezvous server that would also introduce
a single point of failure. In the absence of a generally available rendezvous server, XSMP is
kept simple in the hopes of making simple reliable SMs.

Some clients may wish to manage the programs they start. For example, a mail program could start
a text editor for editing the text of a mail message. A client that does this is a session manager
itself; it should supply the clients it starts with the appropriate connection information (i.e., the
SESSION_MANAGER environment variable) that specifies a connection to itself instead of to the top
level session manager.

Overview of the Protocol

4

Each client has associated with it a list of properties. A property set by one client is not visible to
any other client. These properties are used for the client to inform the SM of the client's current state.
When a client initially connects to the SM, there are no properties set.

5

Chapter 4. Data Types
XSMP messages contain several types of data. Both the SM and the client always send messages in
their native byte order. Thus, both sides may need to byte-swap the messages received. The need to
do byte-swapping is determined at run-time by the ICE protocol.

If an invalid value is specified for a field of any of the enumerated types, a BadValue error message
must be sent by the receiver of the message to the sender of the message.

Type Name Description

BOOL False or True

INTERACT_STYLE None Errors or Any

DIALOG_TYPE Error or Normal

SAVE_TYPE Global Local or Both

CARD8 a one-byte unsigned integer

CARD16 a two-byte unsigned integer

CARD32 a four-byte unsigned integer

ARRAY8 a sequence of CARD8s

LISTofARRAY8 a sequence of ARRAY8s

PROPERTY a property name (an ARRAY8), a type name, and a value of that type

LISTofPROPERTY a counted collection of PROPERTYs.

6

Chapter 5. Protocol Setup and
Message Format

To start the XSMP protocol, the client sends the server an ICE ProtocolSetup message. All XSMP
messages are in the standard ICE message format. The message's major opcode is assigned to XSMP
by ICE at run-time. The different parties (client and SM) may be assigned different major opcodes for
XSMP. Once assigned, all XSMP messages issued by this party will use the same major opcode. The
message's minor opcode specifies which protocol message this message contains.

7

Chapter 6. Client Identification String
A client ID is a string of XPCS characters encoded in ISO Latin 1 (ISO 8859-1). No null characters
are allowed in this string. The client ID string is used in the RegisterClient and Register-
ClientReply messages.

Client IDs consist of the pieces described below. The ID is formed by concatenating the pieces in
sequence, without separator characters. All pieces are padded on the left with '0' characters so as
to fill the specified length. Decimal numbers are encoded using the characters '0' through '9', and
hexadecimal numbers using the characters '0' through '9' and 'A' through 'F'.

• Version. This is currently the character '1'.

• Address type and address. The address type will be one of

 '1' a 4-byte IPv4 address encoded as 8 hexadecimal digits
 '2' a 6-byte DECNET address encoded as 12 hexadecimal digits
 '6' a 16-byte IPv6 address encoded as 32 hexadecimal digits

The address is the one of the network addresses of the machine where the session manager (not
the client) is running. For example, the IP address 198.112.45.11 would be encoded as the string
"QC6702D0B".

• Time stamp. A 13-digit decimal number specifying the number of milliseconds since 00:00:00 UTC,
January 1, 1970.

• Process-ID type and process-ID. The process-ID type will be one of

 '1' a POSIX process-ID encoded as a 10-digit decimal number.

The process-ID is the process-ID of the session manager, not of a client.

• Sequence number. This is a four-digit decimal number. It is incremented every time the session
manager creates an ID. After reaching "Q9999" it wraps to "Q0000".

Rationale

Once a client ID has been assigned to the client, the client keeps this ID indefinitely. If the
client is terminated and restarted, it will be reassigned the same ID. It is desirable to be able
to pass client IDs around from machine to machine, from user to user, and from session
manager to session manager, while retaining the identity of the client. This, combined with
the indefinite persistence of client IDs, means that client IDs need to be globally unique.
The construction specified above will ensure that any client ID created by any user, session
manager, and machine will be different from any other.

8

Chapter 7. Protocol
The protocol consists of a sequence of messages as described below. Each message type is specified by
an ICE minor opcode. A given message type is sent either from a client to the session manager or from
the session manager to a client; the appropriate direction is listed with each message's description. For
each message type, the set of valid responses and possible error messages are listed. The ICE severity
is given in parentheses following each error class.

RegisterClient [Client # SM]

 previous-ID: ARRAY8

 Valid Responses: RegisterClientReply

 Possible Errors: BadValue (CanContinue)

The client must send this message to the SM to register the client's existence. If a client is being
restarted from a previous session, the previous-ID field must contain the client ID from the
previous session. For new clients, previous-ID should be of zero length.

If previous-ID is not valid, the SM will send a BadValue error message to the client. At this point
the SM reverts to the register state and waits for another RegisterClient The client should then
send a RegisterClient with a null previous-ID field.

RegisterClientReply [Client # SM]

 client-ID: ARRAY8

The client-ID specifies a unique identification for this client. If the client had specified an ID
in the previous-ID field of the RegisterClient message, client-ID will be identical to
the previously specified ID. If previous-ID was null, client-ID will be a unique ID freshly
generated by the SM. The client-ID format is specified in section 6.

If the client didn't supply a previous-ID field to the RegisterClient message, the SM must
send a SaveYourself message with type = Local, shutdown = False, interact-style = None, and
fast = False immediately after the RegisterClientReply The client should respond to this like
any other SaveYourself message.

SaveYourself [Client # SM]

 type: SAVE_TYPE
 shutdown: BOOL
 interact-style: INTERACT_STYLE
 fast: BOOL

 Valid Responses:
 SetProperties
 DeleteProperties
 GetProperties
 SaveYourselfDone
 SaveYourselfPhase2Request
 InteractRequest

Protocol

9

The SM sends this message to a client to ask it to save its state. The client writes a state
file, if necessary, and, if necessary, uses SetProperties to inform the SM of how to restart
it and how to discard the saved state. During this process it can, if allowed by interact-
style, request permission to interact with the user by sending an InteractRequest message.
After the state has been saved, or if it cannot be successfully saved, and the properties are
appropriately set, the client sends a SaveYourselfDone message. If the client wants to save
additional information after all the other clients have finished changing their own state, the client
should send SaveYourselfPhase2Request instead of SaveYourselfDone The client must
then freeze interaction with the user and wait until it receives a SaveComplete Die or a
ShutdownCancelled message.

If interact-style is None the client must not interact with the user while saving state. If the
interact-style is Errors the client may interact with the user only if an error condition arises.
If interact-style is Any then the client may interact with the user for any purpose. This is
done by sending an InteractRequest message. The SM will send an Interact message to
each client that sent an InteractRequest The client must postpone all interaction until it gets
the Interact message. When the client is done interacting it should send the SM an Interact-
Done message. The InteractRequest message can be sent any time after a SaveYourself
and before a SaveYourselfDone

Unusual circumstances may dictate multiple interactions. The client may initiate as many
InteractRequest - Interact - InteractDone sequences as it needs before it sends
SaveYourselfDone

When a client receives SaveYourself and has not yet responded SaveYourselfDone to a
previous SaveYourself it must send a SaveYourselfDone and may then begin responding as
appropriate to the newly received SaveYourself

The type field specifies the type of information that should be saved: Global Local or Both The
Local type indicates that the application must update the properties to reflect its current state, send
a SaveYourselfDone and continue. Specifically it should save enough information to restore the
state as seen by the user of this client. It should not affect the state as seen by other users. The Global
type indicates that the user wants the client to commit all of its data to permanent, globally-accessible
storage. Both indicates that the client should do both of these. If Both is specified, the client should
first commit the data to permanent storage before updating its SM properties.

Examples

If a word processor was sent a SaveYourself with a type of Local it could create a
temporary file that included the current contents of the file, the location of the cursor, and
other aspects of the current editing session. It would then update its RestartCommand
property with enough information to find the temporary file, and its DiscardCommand
with enough information to remove it.

If a word processor was sent a SaveYourself with a type of Global it would simply
save the currently edited file.

If a word processor was sent a SaveYourself with a type of Both it would first save the
currently edited file. It would then create a temporary file with information such as the current
position of the cursor and what file is being edited. It would then update its Restart-
Command property with enough information to find the temporary file, and its Discard-
Command with enough information to remove it.

Once the SM has send SaveYourself to a client, it can't send another SaveYourself
to that client until the client either responds with a SaveYourselfDone or the SM sends
a ShutdownCancelled

Protocol

10

Advice to Implementors

If the client stores local any state in a file or similar "external" storage, it must create a distinct
copy in response to each SaveYourself message. It must not simply refer to a previous
copy, because the SM may discard that previous saved state using a DiscardCommand
without knowing that it is needed for the new checkpoint.

The shutdown field specifies whether the system is being shut down.

Rationale

The interaction may be different depending on whether or not shutdown is set.

The client must save and then must prevent interaction until it receives a SaveComplete Die or a
ShutdownCancelled because anything the user does after the save will be lost.

The fast field specifies whether or not the client should save its state as quickly as possible. For
example, if the SM knows that power is about to fail, it should set the fast field to True.

SaveYourselfPhase2 [Client # SM]

 Valid Responses:
 SetProperties
 DeleteProperties
 GetProperties
 SaveYourselfDone
 InteractRequest

The SM sends this message to a client that has previously sent a SaveYourselfPhase2Request
message. This message informs the client that all other clients are in a fixed state and this client can
save state that is associated with other clients.

Rationale

Clients that manager other clients (window managers, workspace managers, etc) need to
know when all clients they are managing are idle, so that the manager can save state related
to each of the clients without being concerned with that state changing.

The client writes a state file, if necessary, and, if necessary, uses SetProperties to inform the SM
of how to restart it and how to discard the saved state. During this process it can request permission to
interact with the user by sending an InteractRequest message. This should only be done if an
error occurs that requires user interaction to resolve. After the state has been saved, or if it cannot be
successfully saved, and the properties are appropriately set, the client sends a SaveYourselfDone
message.

SaveYourselfRequest [Client # SM]

 type: SAVE_TYPE
 shutdown: BOOL
 interact-style: INTERACT_STYLE
 fast: BOOL
 global: BOOL

 Valid Responses: SaveYourself

Protocol

11

An application sends this to the SM to request a checkpoint. When the SM receives this request it may
generate a SaveYourself message in response and it may leave the fields intact.

Example

A vendor of a UPS (Uninterruptible Power Supply) might include an SM client that would
monitor the status of the UPS and generate a fast shutdown if the power is about to be lost.

If global is set to True then the resulting SaveYourself should be sent to all applications. If
global is set to False then the resulting SaveYourself should be sent to the application that
sent the SaveYourselfRequest

InteractRequest [Client # SM]

 dialog-type: DIALOG_TYPE

 Valid Responses: Interact ShutdownCancelled

 Possible Errors: BadState (CanContinue)

During a checkpoint or session-save operation, only one client at a time might be granted the privilege
of interacting with the user. The InteractRequest message causes the SM to emit an Interact
message at some later time if the shutdown is not cancelled by another client first.

The dialog-type field specifies either Errors indicating that the client wants to start an error
dialog or Normal meaning the client wishes to start a non-error dialog.

Interact [Client # SM]

 Valid Responses: InteractDone

This message grants the client the privilege of interacting with the user. When the client is done
interacting with the user it must send an InteractDone message to the SM unless a shutdown
cancel is received.

Advice to Implementors

If a client receives a ShutdownCancelled after receiving an Interact message, but
before sending a InteractDone the client should abort the interaction and send a
SaveYourselfDone

InteractDone [Client # SM]

 cancel-shutdown: BOOL

 Valid Responses: ShutdownCancelled

This message is used by a client to notify the SM that it is done interacting.

Setting the cancel-shutdown field to True indicates that the user has requested that the
entire shutdown be cancelled. Cancel-shutdown may only be True if the corresponding
SaveYourself message specified True for the shutdown field and Any or Errors for the
interact-style field. Otherwise, cancel-shutdown must be False.

Protocol

12

SaveYourselfDone [Client # SM]

 success: BOOL

 Valid Responses:
 SaveComplete
 Die
 ShutdownCancelled

This message is sent by a client to indicate that all of the properties representing its state have
been updated. After sending SaveYourselfDone the client must wait for a SaveComplete
ShutdownCancelled or Die message before changing its state. If the SaveYourself operation
was successful, then the client should set the success field to True otherwise the client should set
it to False.

Example

If a client tries to save its state and runs out of disk space, it should return False in the
success field of the SaveYourselfDone message.

SaveYourselfPhase2Request [Client # SM]

 Valid Responses:
 ShutdownCancelled
 SaveYourselfPhase2

This message is sent by a client to indicate that it needs to be informed when all the other clients are
quiescent, so it can continue its state.

Die [Client # SM]

 Valid Responses: ConnectionClosed

When the SM wants a client to die it sends a Die message. Before the client dies it responds by sending
a ConnectionClosed message and may then close its connection to the SM at any time.

SaveComplete [Client # SM]

 Valid Responses:

When the SM is done with a checkpoint, it will send each of the clients a SaveComplete message.
The client is then free to change its state.

ShutdownCancelled [Client # SM]

The shutdown currently in process has been aborted. The client can now continue as if the shutdown
had never happened. If the client has not sent SaveYourselfDone yet, the client can either abort

Protocol

13

the save and send SaveYourselfDone with the success field set to False or it can continue with
the save and send a SaveYourselfDone with the success field set to reflect the outcome of the save.

ConnectionClosed [Client # SM]

 reason: LISTofARRAY8

Specifies that the client has decided to terminate. It should be immediately followed by closing the
connection.

The reason field specifies why the client is resigning from the session. It is encoded as an array
of Compound Text strings. If the resignation is expected by the user, there will typically be zero
ARRAY8s here. But if the client encountered an unexpected fatal error, the error message (which
might otherwise be printed on stderr on a POSIX system) should be forwarded to the SM here, one
ARRAY8 per line of the message. It is the responsibility of the SM to display this reason to the user.

After sending this message, the client must not send any additional XSMP messages to the SM.

Advice to Implementors

If additional messages are received, they should be discarded.

Rationale

The reason for sending the ConnectionClosed message before actually closing the
connections is that some transport protocols will not provide immediate notification of
connection closure.

SetProperties [Client # SM]

 properties: LISTofPROPERTY

Sets the specified properties to the specified values. Existing properties not specified in the Set-
Properties message are unaffected. Some properties have predefined semantics. See section 11,
“Predefined Properties.”

The protocol specification recommends that property names used for properties not defined by the
standard should begin with an underscore. To prevent conflicts among organizations, additional
prefixes should be chosen (for example, _KPC_FAST_SAVE_OPTION). The organizational prefixes
should be registered with the X Registry. The XSMP reserves all property names not beginning with
an underscore for future use.

DeleteProperties [Client # SM]

 property-names: LISTofARRAY8

Removes the named properties.

GetProperties [Client # SM]

 Valid Responses: GetPropertiesReply

Protocol

14

Requests that the SM respond with the values of all the properties for this client.

GetPropertiesReply [Client # SM]

 values: LISTofPROPERTY

This message is sent in reply to a GetProperties message and includes the values of all the
properties.

15

Chapter 8. Errors
When the receiver of a message detects an error condition, the receiver sends an ICE error message
to the sender. There are only two types of errors that are used by the XSMP: BadValue and BadState
These are both defined in the ICE protocol.

Any message received out-of-sequence will generate a BadState error message.

16

Chapter 9. State Diagrams
These state diagrams are designed to cover all actions of both the client and the SM.

Client State Diagram

start:
 ICE protocol setup complete → register

register:
 send RegisterClient → collect-id

collect-id:
 receive RegisterClientReply → idle

shutdown-cancelled:
 send SaveYourselfDone → idle

idle: [Undoes any freeze of interaction with user.]
 receive Die → die
 receive SaveYourself → freeze-interaction
 send GetProperties → idle
 receive GetPropertiesReply → idle
 send SetProperties → idle
 send DeleteProperties → idle
 send ConnectionClosed → connection-closed
 send SaveYourselfRequest → idle

die:
 send ConnectionClosed → connection-closed

freeze-interaction:
 freeze interaction with user → save-yourself

save-yourself:
 receive ShutdownCancelled → shutdown-cancelled
 send SetProperties → save-yourself
 send DeleteProperties → save-yourself
 send GetProperties → save-yourself
 receive GetPropertiesReply → save-yourself
 send InteractRequest → interact-request
 send SaveYourselfPhase2Request → waiting-for-phase2

save-yourself:
 if shutdown mode:
 send SaveYourselfDone → save-yourself-done
 otherwise:
 send SaveYourselfDone → idle

State Diagrams

17

waiting-for-phase2:
 receive ShutdownCancelled → shutdown-cancelled
 receive SaveYourselfPhase2 → phase2

phase2:
 receive ShutdownCancelled → shutdown-cancelled
 send SetProperties → save-yourself
 send DeleteProperties → save-yourself
 send GetProperties → save-yourself
 receive GetPropertiesReply → save-yourself
 send InteractRequest → interact-request (errors only)
 if shutdown mode:
 send SaveYourselfDone → save-yourself-done
 otherwise:
 send SaveYourselfDone → idle

interact-request:
 receive Interact → interact
 receive ShutdownCancelled → shutdown-cancelled

interact:
 send InteractDone → save-yourself
 receive ShutdownCancelled → shutdown-cancelled

save-yourself-done: (changing state is forbidden)
 receive SaveComplete → idle
 receive Die → die
 receive ShutdownCancelled → idle

connection-closed:
 client stops participating in session

Session Manager State Diagram

start:
 receive ProtocolSetup → protocol-setup

protocol-setup:
 send ProtocolSetupReply → register

register:
 receive RegisterClient → acknowledge-register

acknowledge-register:
 send RegisterClientReply → idle

idle:
 receive SetProperties → idle
 receive DeleteProperties → idle

State Diagrams

18

 receive ConnectionClosed → start
 receive GetProperties → get-properties
 receive SaveYourselfRequest → save-yourself
 send SaveYourself → saving-yourself

save-yourself:
 send SaveYourself → saving-yourself

get-properties:
 send GetPropertiesReply → idle

saving-get-properties:
 send GetPropertiesReply → saving-yourself

saving-yourself:
 receive InteractRequest → saving-yourself
 send Interact → saving-yourself
 send ShutdownCancelled → idle
 receive InteractDone → saving-yourself
 receive SetProperties → saving-yourself
 receive DeleteProperties → saving-yourself
 receive GetProperties → saving-get-properties
 receive SaveYourselfPhase2Request → start-phase2
 receive SaveYourselfDone → save-yourself-done

start-phase2:
 If all clients have sent either SaveYourselfPhase2Request or SaveYourselfDone:
 send SaveYourselfPhase2 → phase2
 else
 → saving-yourself

phase2:
 receive InteractRequest → saving-yourself
 send Interact → saving-yourself
 send ShutdownCancelled → idle
 receive InteractDone → saving-yourself
 receive SetProperties → saving-yourself
 receive DeleteProperties → saving-yourself
 receive GetProperties → saving-get-properties
 receive SaveYourselfDone → save-yourself-done

save-yourself-done:
 If all clients are saved:
 If shutting down:
 send Die → die
 otherwise
 send SaveComplete → idle

 If some clients are not saved:
 → saving-yourself

State Diagrams

19

die:
 SM stops accepting connections

20

Chapter 10. Protocol Encoding
Types

BOOL

0 False

1 True

INTERACT_STYLE

0 None

1 Errors

2 Any

DIALOG_TYPE

0 Error

1 Normal

SAVE_TYPE

0 Global

1 Local

2 Both

ARRAY8

4 CARD32 length

n ListofCARD8, the array p = pad (4 + n, 8)

2 Both

LISTofARRAY8

4 CARD32 count

4 unused

a ARRAY8 first array

b ARRAY8 second array

.

.

.

q ARRAY8 last array

PROPERTY

a ARRAY8 name

b ARRAY8 type (XPCS encoded in Latin-1, case
sensitive)

c LISTofARRAY8 values

LISTofPROPERTY

4 CARD32 count

4 unused

a PROPERTY first property

b PROPERTY second property

.

.

Protocol Encoding

21

LISTofPROPERTY

.

q PROPERTY last property

Messages
XSMP is a sub-protocol of ICE. The major opcode is assigned at run-time by ICE and is represented
here by '?'.

To start the XSMP protocol, the client sends the server an ICE ProtocolSetup message. The
protocol-name field should be specified as "XSMP", the major version of the protocol is 1, the minor
version is 0. These values may change if the protocol is revised. The minor version number will be
incremented if the change is compatible, otherwise the major version number will be incremented.

In ProtocolReply message sent by the session manager, the XSMP protocol defines the vendor
parameter as product identification of the session manager, and defines the release parameter as
the software release identification of the session manager. The session manager should supply this
information in the ICE ProtocolReply message.

RegisterClient

1 ? XSMP

1 1 opcode

2 unused

4 a/8 length of remaining data in 8-byte units

a ARRAY8 previous-ID

RegisterClientReply

1 ? XSMP

1 2 opcode

2 unused

4 a/8 length of remaining data in 8-byte units

a ARRAY8 client-ID

SaveYourself

1 ? XSMP

1 3 opcode

2 unused

4 1 length of remaining data in 8-byte units

1 SAVE_TYPE type

1 BOOL shutdown

1 INTERACT_STYLE interact-style

1 BOOL fast

4 unused

SaveYourselfRequest

1 ? XSMP

1 4 opcode

2 unused

4 1 length of remainning data in 8-byte units

1 SAVE_TYPE type

1 BOOL shutdown

Protocol Encoding

22

SaveYourselfRequest

1 INTERACT_STYLE interact-style

1 BOOL fast

3 unused

InteractRequest

1 ? XSMP

1 5 opcode

1 DIALOG_TYPE dialog type

1 unused

4 0 length of remaining data in 8-byte units

Interact

1 ? XSMP

1 6 opcode

2 unused

4 0 length of remaining data in 8-byte units

InteractDone

1 ? XSMP

1 7 opcode

1 BOOL cancel-shutdown

1 unused

InteractDone

1 ? XSMP

1 7 opcode

1 BOOL cancel-shutdown

1 unused

4 0 length of remaining data in 8-byte units

SaveYourselfDone

1 ? XSMP

1 8 opcode

1 BOOL success

1 unused

4 0 length of remaining data in 8-byte units

Die

1 ? XSMP

1 9 opcode

1 unused

4 0 length of remaining data in 8-byte units

ShutdownCancelled

1 ? XSMP

1 10 opcode

2 unused

4 0 length of remaining data in 8-byte units

Protocol Encoding

23

ConnectionClosed

1 ? XSMP

1 11 opcode

2 unused

4 a/8 length of remaining data in 8-byte units

a LISTofARRAY8 reason

SetProperties

1 ? XSMP

1 12 opcode

2 unused

4 a/8 length of remaining data in 8-byte units

a LISTofPROPERTY properties

DeleteProperties

1 ? XSMP

1 13 opcode

2 unused

4 a/8 length of remaining data in 8-byte units

a LISTofPROPERTY properties

GetProperties

1 ? XSMP

1 14 opcode

2 unused

4 0 length of remaining data in 8-byte units

GetPropertiesReply

1 ? XSMP

1 15 opcode

2 unused

4 a/8 length of remaining data in 8-byte units

a LISTofPROPERTY properties

SaveYourselfPhase2Request

1 ? XSMP

1 16 opcode

2 unused

4 0 length of remaining data in 8-byte units

SaveYourselfPhase2

1 ? XSMP

1 17 opcode

2 unused

4 0 length of remaining data in 8-byte units

SaveComplete

1 ? XSMP

1 18 opcode

2 unused

Protocol Encoding

24

SaveComplete

4 0 length of remaining data in 8-byte units

25

Chapter 11. Predefined Properties
All property values are stored in a LISTofARRAY8. If the type of the property is CARD8, the value
is stored as a LISTofARRAY8 with one ARRAY8 that is one byte long. That single byte contains the
CARD8. If the type of the property is ARRAY8, the value is stored in the first element of a single
element LISTofARRAY8.

The required properties must be set each time a client connects with the SM. The properties must
be set after the client sends RegisterClient and before the client sends SaveYourselfDone
Otherwise, the behavior of the session manager is not defined.

Clients may set, get, and delete nonstandard properties. The lifetime of stored properties does not
extend into subsequent sessions.

Name Type Posix Type Required?

CloneCommand OS-specific LISTofARRAY8 Yes

CurrentDirectory OS-specific ARRAY8 No

DiscardCommand OS-specific LISTofARRAY8 No*

Environment OS-specific LISTofARRAY8 No

ProcessID OS-specific ARRAY8 No

Program OS-specific ARRAY8 Yes

RestartCommand OS-specific LISTofARRAY8 Yes

ResignCommand OS-specific LISTofARRAY8 No

RestartStyleHint CARD8 CARD8 No

ShutdownCommand OS-specific LISTofARRAY8 No

UserID ARRAY8 ARRAY8 Yes

* Required if any state is stored in an external repository (e.g., state file).

CloneCommand This is like the RestartCommand except it restarts a copy of the
application. The only difference is that the application doesn't supply
its client id at register time. On POSIX systems the type should be a
LISTofARRAY8.

CurrentDirectory On POSIX-based systems specifies the value of the current directory that
needs to be set up prior to starting the program and should be of type
ARRAY8.

DiscardCommand The discard command contains a command that when delivered to the
host that the client is running on (determined from the connection), will
cause it to discard any information about the current state. If this command
is not specified, the SM will assume that all of the client's state is
encoded in the RestartCommand On POSIX systems the type should be
LISTofARRAY8.

Environment On POSIX based systems, this will be of type LISTofARRAY8 where the
ARRAY8s alternate between environment variable name and environment
variable value.

ProcessID This specifies an OS-specific identifier for the process. On POSIX systems
this should of type ARRAY8 and contain the return value of getpid() turned
into a Latin-1 (decimal) string.

Predefined Properties

26

Program The name of the program that is running. On POSIX systems this should
be the first parameter passed to execve and should be of type ARRAY8.

RestartCommand The restart command contains a command that when delivered to the host
that the client is running on (determined from the connection), will cause
the client to restart in its current state. On POSIX-based systems this is
of type LISTofARRAY8 and each of the elements in the array represents
an element in the argv array. This restart command should ensure that the
client restarts with the specified client-ID.

ResignCommand A client that sets the RestartStyleHint to RestartAnyway uses
this property to specify a command that undoes the effect of the client and
removes any saved state.

Example

A user runs xmodmap. xmodmap registers with the SM,
sets RestartStyleHint to RestartAnyway and then
terminates. In order to allow the SM (at the user's request) to undo
this, xmodmap would register a ResignCommand that undoes
the effects of the xmodmap.

RestartStyleHint If the RestartStyleHint property is present, it will contain the
style of restarting the client prefers. If this flag isn't specified,
RestartIfRunning is assumed. The possible values are as follows:

Name Value

RestartIfRunning 0

RestartAnyway 1

RestartImmediately 2

RestartNever 3

The RestartIfRunning style is used in the usual case. The client
should be restarted in the next session if it is connected to the session
manager at the end of the current session.

The RestartAnyway style is used to tell the SM that the application
should be restarted in the next session even if it exits before the current
session is terminated. It should be noted that this is only a hint and the
SM will follow the policies specified by its users in determining what
applications to restart.

Rationale

This can be specified by a client which supports (as MS-Windows
clients do) a means for the user to indicate while exiting that
restarting is desired. It can also be used for clients that spawn other
clients and then go away, but which want to be restarted.

A client that uses RestartAnyway should also set the
ResignCommand and ShutdownCommand properties to commands
that undo the state of the client after it exits.

The RestartImmediately style is like RestartAnyway but in
addition, the client is meant to run continuously. If the client exits, the SM
should try to restart it in the current session.

Predefined Properties

27

Advice to Implementors

It would be wise to sanity-check the frequency which which
RestartImmediately clients are restarted, to avoid a sick
client being restarted continuously.

The RestartNever style specifies that the client does not wish to be
restarted in the next session.

Advice to Implementors

This should be used rarely, if at all. It will cause the client to
be silently left out of sessions when they are restarted and will
probably be confusing to users.

ShutdownCommand This command is executed at shutdown time to clean up after a client that is
no longer running but retained its state by setting RestartStyleHint
to RestartAnyway The command must not remove any saved state as
the client is still part of the session.

Example

A client is run at start up time that turns on a camera. This
client then exits. At session shutdown, the user wants the camera
turned off. This client would set the RestartStyleHint to
RestartAnyway and would register a ShutdownCommand
that would turn off the camera.

UserID Specifies the user's ID. On POSIX-based systems this will contain the the
user's name (the pw_name field of struct passwd).

	X Session Management Protocol
	Table of Contents
	Chapter 1. Acknowledgments
	Chapter 2. Definitions and Goals
	Chapter 3. Overview of the Protocol
	Chapter 4. Data Types
	Chapter 5. Protocol Setup and Message Format
	Chapter 6. Client Identification String
	Chapter 7. Protocol
	Chapter 8. Errors
	Chapter 9. State Diagrams
	Client State Diagram
	Session Manager State Diagram

	Chapter 10. Protocol Encoding
	Types
	Messages

	Chapter 11. Predefined Properties

