2D plotting¶
Sage provides extensive 2D plotting functionality. The underlying rendering is done using the matplotlib Python library.
The following graphics primitives are supported:
- arrow()– an arrow from a min point to a max point
- circle()– a circle with given radius
- ellipse()– an ellipse with given radii and angle
- arc()– an arc of a circle or an ellipse
- disk()– a filled disk (i.e. a sector or wedge of a circle)
- line()– a line determined by a sequence of points (this need not be straight!)
- point()– a point
- text()– some text
- polygon()– a filled polygon
The following plotting functions are supported:
- plot()– plot of a function or other Sage object (e.g., elliptic curve)
- The following log plotting functions: 
The following miscellaneous Graphics functions are included:
Type ? after each primitive in Sage for help and examples.
EXAMPLES:
We draw a curve:
sage: plot(x^2, (x,0,5))
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(2), (x,Integer(0),Integer(5)))
Graphics object consisting of 1 graphics primitive
We draw a circle and a curve:
sage: circle((1,1), 1) + plot(x^2, (x,0,5))
Graphics object consisting of 2 graphics primitives
>>> from sage.all import *
>>> circle((Integer(1),Integer(1)), Integer(1)) + plot(x**Integer(2), (x,Integer(0),Integer(5)))
Graphics object consisting of 2 graphics primitives
Notice that the aspect ratio of the above plot makes the plot very tall because the plot adopts the default aspect ratio of the circle (to make the circle appear like a circle). We can change the aspect ratio to be what we normally expect for a plot by explicitly asking for an ‘automatic’ aspect ratio:
sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), aspect_ratio='automatic')
>>> from sage.all import *
>>> show(circle((Integer(1),Integer(1)), Integer(1)) + plot(x**Integer(2), (x,Integer(0),Integer(5))), aspect_ratio='automatic')
The aspect ratio describes the apparently height/width ratio of a unit square. If you want the vertical units to be twice as big as the horizontal units, specify an aspect ratio of 2:
sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), aspect_ratio=2)
>>> from sage.all import *
>>> show(circle((Integer(1),Integer(1)), Integer(1)) + plot(x**Integer(2), (x,Integer(0),Integer(5))), aspect_ratio=Integer(2))
The figsize option adjusts the figure size.  The default figsize is
4.  To make a figure that is roughly twice as big, use figsize=8:
sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), figsize=8)
>>> from sage.all import *
>>> show(circle((Integer(1),Integer(1)), Integer(1)) + plot(x**Integer(2), (x,Integer(0),Integer(5))), figsize=Integer(8))
You can also give separate horizontal and vertical dimensions. Both will be measured in inches:
sage: show(circle((1,1), 1) + plot(x^2, (x,0,5)), figsize=[4,8])
>>> from sage.all import *
>>> show(circle((Integer(1),Integer(1)), Integer(1)) + plot(x**Integer(2), (x,Integer(0),Integer(5))), figsize=[Integer(4),Integer(8)])
However, do not make the figsize too big (e.g. one dimension greater
than 327 or both in the mid-200s) as this will lead to errors or crashes.
See show() for full details.
Note that the axes will not cross if the data is not on both sides of both axes, even if it is quite close:
sage: plot(x^3, (x,1,10))
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(3), (x,Integer(1),Integer(10)))
Graphics object consisting of 1 graphics primitive
When the labels have quite different orders of magnitude or are very large, scientific notation (the \(e\) notation for powers of ten) is used:
sage: plot(x^2, (x,480,500))  # no scientific notation
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(2), (x,Integer(480),Integer(500)))  # no scientific notation
Graphics object consisting of 1 graphics primitive
sage: plot(x^2, (x,300,500))  # scientific notation on y-axis
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(2), (x,Integer(300),Integer(500)))  # scientific notation on y-axis
Graphics object consisting of 1 graphics primitive
But you can fix your own tick labels, if you know what to expect and have a preference:
sage: plot(x^2, (x,300,500), ticks=[100,50000])
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(2), (x,Integer(300),Integer(500)), ticks=[Integer(100),Integer(50000)])
Graphics object consisting of 1 graphics primitive
To change the ticks on one axis only, use the following notation:
sage: plot(x^2, (x,300,500), ticks=[None,50000])
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(2), (x,Integer(300),Integer(500)), ticks=[None,Integer(50000)])
Graphics object consisting of 1 graphics primitive
You can even have custom tick labels along with custom positioning.
sage: plot(x^2, (x,0,3), ticks=[[1,2.5],pi/2], tick_formatter=[["$x_1$","$x_2$"],pi])  # long time
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(2), (x,Integer(0),Integer(3)), ticks=[[Integer(1),RealNumber('2.5')],pi/Integer(2)], tick_formatter=[["$x_1$","$x_2$"],pi])  # long time
Graphics object consisting of 1 graphics primitive
We construct a plot involving several graphics objects:
sage: G = plot(cos(x), (x, -5, 5), thickness=5, color='green', title='A plot')
sage: P = polygon([[1,2], [5,6], [5,0]], color='red')
sage: G + P
Graphics object consisting of 2 graphics primitives
>>> from sage.all import *
>>> G = plot(cos(x), (x, -Integer(5), Integer(5)), thickness=Integer(5), color='green', title='A plot')
>>> P = polygon([[Integer(1),Integer(2)], [Integer(5),Integer(6)], [Integer(5),Integer(0)]], color='red')
>>> G + P
Graphics object consisting of 2 graphics primitives
Next we construct the reflection of the above polygon about the
\(y\)-axis by iterating over the list of first-coordinates of
the first graphic element of P (which is the actual
Polygon; note that P is a Graphics object, which consists
of a single polygon):
sage: Q = polygon([(-x,y) for x,y in P[0]], color='blue')
sage: Q   # show it
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> Q = polygon([(-x,y) for x,y in P[Integer(0)]], color='blue')
>>> Q   # show it
Graphics object consisting of 1 graphics primitive
We combine together different graphics objects using “+”:
sage: H = G + P + Q
sage: print(H)
Graphics object consisting of 3 graphics primitives
sage: type(H)
<class 'sage.plot.graphics.Graphics'>
sage: H[1]
Polygon defined by 3 points
sage: list(H[1])
[(1.0, 2.0), (5.0, 6.0), (5.0, 0.0)]
sage: H       # show it
Graphics object consisting of 3 graphics primitives
>>> from sage.all import *
>>> H = G + P + Q
>>> print(H)
Graphics object consisting of 3 graphics primitives
>>> type(H)
<class 'sage.plot.graphics.Graphics'>
>>> H[Integer(1)]
Polygon defined by 3 points
>>> list(H[Integer(1)])
[(1.0, 2.0), (5.0, 6.0), (5.0, 0.0)]
>>> H       # show it
Graphics object consisting of 3 graphics primitives
We can put text in a graph:
sage: L = [[cos(pi*i/100)^3,sin(pi*i/100)] for i in range(200)]
sage: p = line(L, rgbcolor=(1/4,1/8,3/4))
sage: tt = text('A Bulb', (1.5, 0.25))
sage: tx = text('x axis', (1.5,-0.2))
sage: ty = text('y axis', (0.4,0.9))
sage: g = p + tt + tx + ty
sage: g.show(xmin=-1.5, xmax=2, ymin=-1, ymax=1)
>>> from sage.all import *
>>> L = [[cos(pi*i/Integer(100))**Integer(3),sin(pi*i/Integer(100))] for i in range(Integer(200))]
>>> p = line(L, rgbcolor=(Integer(1)/Integer(4),Integer(1)/Integer(8),Integer(3)/Integer(4)))
>>> tt = text('A Bulb', (RealNumber('1.5'), RealNumber('0.25')))
>>> tx = text('x axis', (RealNumber('1.5'),-RealNumber('0.2')))
>>> ty = text('y axis', (RealNumber('0.4'),RealNumber('0.9')))
>>> g = p + tt + tx + ty
>>> g.show(xmin=-RealNumber('1.5'), xmax=Integer(2), ymin=-Integer(1), ymax=Integer(1))
We can add a graphics object to another one as an inset:
sage: g1 = plot(x^2*sin(1/x), (x, -2, 2), axes_labels=['$x$', '$y$'])
sage: g2 = plot(x^2*sin(1/x), (x, -0.3, 0.3), axes_labels=['$x$', '$y$'],
....:           frame=True)
sage: g1.inset(g2, pos=(0.15, 0.7, 0.25, 0.25))
Multigraphics with 2 elements
>>> from sage.all import *
>>> g1 = plot(x**Integer(2)*sin(Integer(1)/x), (x, -Integer(2), Integer(2)), axes_labels=['$x$', '$y$'])
>>> g2 = plot(x**Integer(2)*sin(Integer(1)/x), (x, -RealNumber('0.3'), RealNumber('0.3')), axes_labels=['$x$', '$y$'],
...           frame=True)
>>> g1.inset(g2, pos=(RealNumber('0.15'), RealNumber('0.7'), RealNumber('0.25'), RealNumber('0.25')))
Multigraphics with 2 elements
We can add a title to a graph:
sage: plot(x^2, (x,-2,2), title='A plot of $x^2$')
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(2), (x,-Integer(2),Integer(2)), title='A plot of $x^2$')
Graphics object consisting of 1 graphics primitive
We can set the position of the title:
sage: plot(x^2, (-2,2), title='Plot of $x^2$', title_pos=(0.5,-0.05))
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(x**Integer(2), (-Integer(2),Integer(2)), title='Plot of $x^2$', title_pos=(RealNumber('0.5'),-RealNumber('0.05')))
Graphics object consisting of 1 graphics primitive
We plot the Riemann zeta function along the critical line and see the first few zeros:
sage: i = CDF.0      # define i this way for maximum speed.
sage: p1 = plot(lambda t: arg(zeta(0.5+t*i)), 1, 27, rgbcolor=(0.8,0,0))
sage: p2 = plot(lambda t: abs(zeta(0.5+t*i)), 1, 27, color=hue(0.7))
sage: print(p1 + p2)
Graphics object consisting of 2 graphics primitives
sage: p1 + p2    # display it
Graphics object consisting of 2 graphics primitives
>>> from sage.all import *
>>> i = CDF.gen(0)      # define i this way for maximum speed.
>>> p1 = plot(lambda t: arg(zeta(RealNumber('0.5')+t*i)), Integer(1), Integer(27), rgbcolor=(RealNumber('0.8'),Integer(0),Integer(0)))
>>> p2 = plot(lambda t: abs(zeta(RealNumber('0.5')+t*i)), Integer(1), Integer(27), color=hue(RealNumber('0.7')))
>>> print(p1 + p2)
Graphics object consisting of 2 graphics primitives
>>> p1 + p2    # display it
Graphics object consisting of 2 graphics primitives
Note
Not all functions in Sage are symbolic. When plotting non-symbolic functions
they should be wrapped in lambda:
sage: plot(lambda x:fibonacci(round(x)), (x,1,10))
Graphics object consisting of 1 graphics primitive
>>> from sage.all import *
>>> plot(lambda x:fibonacci(round(x)), (x,Integer(1),Integer(10)))
Graphics object consisting of 1 graphics primitive
Many concentric circles shrinking toward the origin:
sage: show(sum(circle((i,0), i, hue=sin(i/10)) for i in [10,9.9,..,0]))  # long time
>>> from sage.all import *
>>> show(sum(circle((i,Integer(0)), i, hue=sin(i/Integer(10))) for i in (ellipsis_range(Integer(10),RealNumber('9.9'),Ellipsis,Integer(0)))))  # long time
Here is a pretty graph:
sage: g = Graphics()
sage: for i in range(60):
....:    p = polygon([(i*cos(i),i*sin(i)), (0,i), (i,0)],\
....:                color=hue(i/40+0.4), alpha=0.2)
....:    g = g + p
sage: g.show(dpi=200, axes=False)
>>> from sage.all import *
>>> g = Graphics()
>>> for i in range(Integer(60)):
...    p = polygon([(i*cos(i),i*sin(i)), (Integer(0),i), (i,Integer(0))],               color=hue(i/Integer(40)+RealNumber('0.4')), alpha=RealNumber('0.2'))
...    g = g + p
>>> g.show(dpi=Integer(200), axes=False)
Another graph:
sage: x = var('x')
sage: P = plot(sin(x)/x, -4, 4, color='blue') + \
....:     plot(x*cos(x), -4, 4, color='red') + \
....:     plot(tan(x), -4, 4, color='green')
sage: P.show(ymin=-pi, ymax=pi)
>>> from sage.all import *
>>> x = var('x')
>>> P = plot(sin(x)/x, -Integer(4), Integer(4), color='blue') +     plot(x*cos(x), -Integer(4), Integer(4), color='red') +     plot(tan(x), -Integer(4), Integer(4), color='green')
>>> P.show(ymin=-pi, ymax=pi)
PYX EXAMPLES: These are some examples of plots similar to some of the plots in the PyX (http://pyx.sourceforge.net) documentation:
Symbolline:
sage: y(x) = x*sin(x^2)
sage: v = [(x, y(x)) for x in [-3,-2.95,..,3]]
sage: show(points(v, rgbcolor=(0.2,0.6, 0.1), pointsize=30) + plot(spline(v), -3.1, 3))
>>> from sage.all import *
>>> __tmp__=var("x"); y = symbolic_expression(x*sin(x**Integer(2))).function(x)
>>> v = [(x, y(x)) for x in (ellipsis_range(-Integer(3),-RealNumber('2.95'),Ellipsis,Integer(3)))]
>>> show(points(v, rgbcolor=(RealNumber('0.2'),RealNumber('0.6'), RealNumber('0.1')), pointsize=Integer(30)) + plot(spline(v), -RealNumber('3.1'), Integer(3)))
Cycliclink:
sage: g1 = plot(cos(20*x)*exp(-2*x), 0, 1)
sage: g2 = plot(2*exp(-30*x) - exp(-3*x), 0, 1)
sage: show(graphics_array([g1, g2], 2, 1))
>>> from sage.all import *
>>> g1 = plot(cos(Integer(20)*x)*exp(-Integer(2)*x), Integer(0), Integer(1))
>>> g2 = plot(Integer(2)*exp(-Integer(30)*x) - exp(-Integer(3)*x), Integer(0), Integer(1))
>>> show(graphics_array([g1, g2], Integer(2), Integer(1)))
Pi Axis:
sage: g1 = plot(sin(x), 0, 2*pi)
sage: g2 = plot(cos(x), 0, 2*pi, linestyle='--')
sage: (g1 + g2).show(ticks=pi/6,        # show their sum, nicely formatted  # long time
....:                tick_formatter=pi)
>>> from sage.all import *
>>> g1 = plot(sin(x), Integer(0), Integer(2)*pi)
>>> g2 = plot(cos(x), Integer(0), Integer(2)*pi, linestyle='--')
>>> (g1 + g2).show(ticks=pi/Integer(6),        # show their sum, nicely formatted  # long time
...                tick_formatter=pi)
An illustration of integration:
sage: f(x) = (x-3)*(x-5)*(x-7)+40
sage: P = line([(2,0),(2,f(2))], color='black')
sage: P += line([(8,0),(8,f(8))], color='black')
sage: P += polygon([(2,0),(2,f(2))] + [(x, f(x)) for x in [2,2.1,..,8]] + [(8,0),(2,0)],
....:              rgbcolor=(0.8,0.8,0.8), aspect_ratio='automatic')
sage: P += text("$\\int_{a}^b f(x) dx$", (5, 20), fontsize=16, color='black')
sage: P += plot(f, (1, 8.5), thickness=3)
sage: P    # show the result
Graphics object consisting of 5 graphics primitives
>>> from sage.all import *
>>> __tmp__=var("x"); f = symbolic_expression((x-Integer(3))*(x-Integer(5))*(x-Integer(7))+Integer(40)).function(x)
>>> P = line([(Integer(2),Integer(0)),(Integer(2),f(Integer(2)))], color='black')
>>> P += line([(Integer(8),Integer(0)),(Integer(8),f(Integer(8)))], color='black')
>>> P += polygon([(Integer(2),Integer(0)),(Integer(2),f(Integer(2)))] + [(x, f(x)) for x in (ellipsis_range(Integer(2),RealNumber('2.1'),Ellipsis,Integer(8)))] + [(Integer(8),Integer(0)),(Integer(2),Integer(0))],
...              rgbcolor=(RealNumber('0.8'),RealNumber('0.8'),RealNumber('0.8')), aspect_ratio='automatic')
>>> P += text("$\\int_{a}^b f(x) dx$", (Integer(5), Integer(20)), fontsize=Integer(16), color='black')
>>> P += plot(f, (Integer(1), RealNumber('8.5')), thickness=Integer(3))
>>> P    # show the result
Graphics object consisting of 5 graphics primitives
NUMERICAL PLOTTING:
Sage includes Matplotlib, which provides 2D plotting with an interface
that is a likely very familiar to people doing numerical
computation.
You can use plt.clf() to clear the current image frame
and plt.close() to close it.
For example,
sage: import pylab as plt
sage: t = plt.arange(0.0, 2.0, 0.01)
sage: s = sin(2*pi*t)
sage: P = plt.plot(t, s, linewidth=1.0)
sage: xl = plt.xlabel('time (s)')
sage: yl = plt.ylabel('voltage (mV)')
sage: t = plt.title('About as simple as it gets, folks')
sage: plt.grid(True)
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix='.png') as f1:
....:     plt.savefig(f1.name)
sage: plt.clf()
sage: with tempfile.NamedTemporaryFile(suffix='.png') as f2:
....:     plt.savefig(f2.name)
sage: plt.close()
sage: plt.imshow([[1,2],[0,1]])
<matplotlib.image.AxesImage object at ...>
>>> from sage.all import *
>>> import pylab as plt
>>> t = plt.arange(RealNumber('0.0'), RealNumber('2.0'), RealNumber('0.01'))
>>> s = sin(Integer(2)*pi*t)
>>> P = plt.plot(t, s, linewidth=RealNumber('1.0'))
>>> xl = plt.xlabel('time (s)')
>>> yl = plt.ylabel('voltage (mV)')
>>> t = plt.title('About as simple as it gets, folks')
>>> plt.grid(True)
>>> import tempfile
>>> with tempfile.NamedTemporaryFile(suffix='.png') as f1:
...     plt.savefig(f1.name)
>>> plt.clf()
>>> with tempfile.NamedTemporaryFile(suffix='.png') as f2:
...     plt.savefig(f2.name)
>>> plt.close()
>>> plt.imshow([[Integer(1),Integer(2)],[Integer(0),Integer(1)]])
<matplotlib.image.AxesImage object at ...>
We test that imshow works as well, verifying that
Issue #2900 is fixed (in Matplotlib).
sage: plt.imshow([[(0.0,0.0,0.0)]])
<matplotlib.image.AxesImage object at ...>
sage: import tempfile
sage: with tempfile.NamedTemporaryFile(suffix='.png') as f:
....:     plt.savefig(f.name)
>>> from sage.all import *
>>> plt.imshow([[(RealNumber('0.0'),RealNumber('0.0'),RealNumber('0.0'))]])
<matplotlib.image.AxesImage object at ...>
>>> import tempfile
>>> with tempfile.NamedTemporaryFile(suffix='.png') as f:
...     plt.savefig(f.name)
Since the above overwrites many Sage plotting functions, we reset the state of Sage, so that the examples below work!
sage: reset()
>>> from sage.all import *
>>> reset()
See http://matplotlib.sourceforge.net for complete documentation about how to use Matplotlib.
AUTHORS:
- Alex Clemesha and William Stein (2006-04-10): initial version 
- David Joyner: examples 
- Alex Clemesha (2006-05-04) major update 
- William Stein (2006-05-29): fine tuning, bug fixes, better server integration 
- William Stein (2006-07-01): misc polish 
- Alex Clemesha (2006-09-29): added contour_plot, frame axes, misc polishing 
- Robert Miller (2006-10-30): tuning, NetworkX primitive 
- Alex Clemesha (2006-11-25): added plot_vector_field, matrix_plot, arrow, bar_chart, Axes class usage (see axes.py) 
- Bobby Moretti and William Stein (2008-01): Change plot to specify ranges using the (varname, min, max) notation. 
- William Stein (2008-01-19): raised the documentation coverage from a miserable 12 percent to a ‘wopping’ 35 percent, and fixed and clarified numerous small issues. 
- Jason Grout (2009-09-05): shifted axes and grid functionality over to matplotlib; fixed a number of smaller issues. 
- Jason Grout (2010-10): rewrote aspect ratio portions of the code 
- Jeroen Demeyer (2012-04-19): move parts of this file to graphics.py (Issue #12857) 
- Aaron Lauve (2016-07-13): reworked handling of ‘color’ when passed a list of functions; now more in-line with other CAS’s. Added list functionality to linestyle and legend_label options as well. (Issue #12962) 
- Eric Gourgoulhon (2019-04-24): add - multi_graphics()and insets
- sage.plot.plot.SelectiveFormatter(formatter, skip_values)[source]¶
- This matplotlib formatter selectively omits some tick values and passes the rest on to a specified formatter. - EXAMPLES: - This example is almost straight from a matplotlib example. - sage: # needs numpy sage: from sage.plot.plot import SelectiveFormatter sage: import matplotlib.pyplot as plt sage: import numpy sage: fig = plt.figure() sage: ax = fig.add_subplot(111) sage: t = numpy.arange(0.0, 2.0, 0.01) sage: s = numpy.sin(2*numpy.pi*t) sage: p = ax.plot(t, s) sage: formatter = SelectiveFormatter(ax.xaxis.get_major_formatter(), ....: skip_values=[0,1]) sage: ax.xaxis.set_major_formatter(formatter) sage: import tempfile sage: with tempfile.NamedTemporaryFile(suffix='.png') as f: ....: fig.savefig(f.name) - >>> from sage.all import * >>> # needs numpy >>> from sage.plot.plot import SelectiveFormatter >>> import matplotlib.pyplot as plt >>> import numpy >>> fig = plt.figure() >>> ax = fig.add_subplot(Integer(111)) >>> t = numpy.arange(RealNumber('0.0'), RealNumber('2.0'), RealNumber('0.01')) >>> s = numpy.sin(Integer(2)*numpy.pi*t) >>> p = ax.plot(t, s) >>> formatter = SelectiveFormatter(ax.xaxis.get_major_formatter(), ... skip_values=[Integer(0),Integer(1)]) >>> ax.xaxis.set_major_formatter(formatter) >>> import tempfile >>> with tempfile.NamedTemporaryFile(suffix='.png') as f: ... fig.savefig(f.name) 
- sage.plot.plot.adaptive_refinement(f, p1, p2, adaptive_tolerance, adaptive_recursion=0.01, level=5, excluded=0)[source]¶
- The adaptive refinement algorithm for plotting a function - f. See the docstring for plot for a description of the algorithm.- INPUT: - f– a function of one variable
- p1,- p2– two points to refine between
- adaptive_recursion– (default: \(5\)) how many levels of recursion to go before giving up when doing adaptive refinement. Setting this to 0 disables adaptive refinement.
- adaptive_tolerance– (default: \(0.01\)) how large a relative difference should be before the adaptive refinement code considers it significant; see documentation for generate_plot_points for more information. See the documentation for- plot()for more information on how the adaptive refinement algorithm works.
- excluded– (default:- False) also return locations where it has been discovered that the function is not defined (y-value will be- 'NaN'in this case)
 - OUTPUT: - A list of points to insert between - p1and- p2to get a better linear approximation between them. If- excluded, also x-values for which the calculation failed are given with- 'NaN'as y-value.
- sage.plot.plot.generate_plot_points(f, xrange, plot_points, adaptive_tolerance, adaptive_recursion=5, randomize=0.01, initial_points=5, excluded=True, imaginary_tolerance=None)[source]¶
- Calculate plot points for a function f in the interval xrange. The adaptive refinement algorithm is also automatically invoked with a relative adaptive tolerance of adaptive_tolerance; see below. - INPUT: - f– a function of one variable
- p1,- p2– two points to refine between
- plot_points– (default: 5) the minimal number of plot points. (Note however that in any actual plot a number is passed to this, with default value 200.)
- adaptive_recursion– (default: 5) how many levels of recursion to go before giving up when doing adaptive refinement. Setting this to 0 disables adaptive refinement.
- adaptive_tolerance– (default: 0.01) how large the relative difference should be before the adaptive refinement code considers it significant. If the actual difference is greater than adaptive_tolerance*delta, where delta is the initial subinterval size for the given xrange and plot_points, then the algorithm will consider it significant.
- initial_points– (default:- None) a list of x-values that should be evaluated
- excluded– (default:- False) add a list of discovered x-values, for which- fis not defined
- imaginary_tolerance– (default:- 1e-8) if an imaginary number arises (due, for example, to numerical issues), this tolerance specifies how large it has to be in magnitude before we raise an error. In other words, imaginary parts smaller than this are ignored in your plot points.
 - OUTPUT: - a list of points (x, f(x)) in the interval xrange, which approximate the function f. 
- if - excludeda tuple consisting of the above and a list of x-values at which- fis not defined
 
- sage.plot.plot.graphics_array(array, nrows=None, ncols=None)[source]¶
- Plot a list of lists (or tuples) of graphics objects on one canvas, arranged as an array. - INPUT: - array– either a list of lists of- Graphicselements or a single list of- Graphicselements
- nrows,- ncols– (optional) integers. If both are given then the input array is flattened and turned into an- nrowsx- ncolsarray, with blank graphics objects padded at the end, if necessary. If only one is specified, the other is chosen automatically.
 - OUTPUT: an instance of - GraphicsArray- EXAMPLES: - Make some plots of \(\sin\) functions: - sage: # long time sage: f(x) = sin(x) sage: g(x) = sin(2*x) sage: h(x) = sin(4*x) sage: p1 = plot(f, (-2*pi,2*pi), color=hue(0.5)) sage: p2 = plot(g, (-2*pi,2*pi), color=hue(0.9)) sage: p3 = parametric_plot((f,g), (0,2*pi), color=hue(0.6)) sage: p4 = parametric_plot((f,h), (0,2*pi), color=hue(1.0)) - >>> from sage.all import * >>> # long time >>> __tmp__=var("x"); f = symbolic_expression(sin(x)).function(x) >>> __tmp__=var("x"); g = symbolic_expression(sin(Integer(2)*x)).function(x) >>> __tmp__=var("x"); h = symbolic_expression(sin(Integer(4)*x)).function(x) >>> p1 = plot(f, (-Integer(2)*pi,Integer(2)*pi), color=hue(RealNumber('0.5'))) >>> p2 = plot(g, (-Integer(2)*pi,Integer(2)*pi), color=hue(RealNumber('0.9'))) >>> p3 = parametric_plot((f,g), (Integer(0),Integer(2)*pi), color=hue(RealNumber('0.6'))) >>> p4 = parametric_plot((f,h), (Integer(0),Integer(2)*pi), color=hue(RealNumber('1.0'))) - Now make a graphics array out of the plots: - sage: graphics_array(((p1,p2), (p3,p4))) # long time Graphics Array of size 2 x 2 - >>> from sage.all import * >>> graphics_array(((p1,p2), (p3,p4))) # long time Graphics Array of size 2 x 2 - One can also name the array, and then use - show()or- save():- sage: ga = graphics_array(((p1,p2), (p3,p4))) # long time sage: ga.show() # long time; same output as above - >>> from sage.all import * >>> ga = graphics_array(((p1,p2), (p3,p4))) # long time >>> ga.show() # long time; same output as above - Here we give only one row: - sage: p1 = plot(sin, (-4,4)) sage: p2 = plot(cos, (-4,4)) sage: ga = graphics_array([p1, p2]); ga Graphics Array of size 1 x 2 sage: ga.show() - >>> from sage.all import * >>> p1 = plot(sin, (-Integer(4),Integer(4))) >>> p2 = plot(cos, (-Integer(4),Integer(4))) >>> ga = graphics_array([p1, p2]); ga Graphics Array of size 1 x 2 >>> ga.show() - It is possible to use - figsizeto change the size of the plot as a whole:- sage: x = var('x') sage: L = [plot(sin(k*x), (x,-pi,pi)) for k in [1..3]] sage: ga = graphics_array(L) sage: ga.show(figsize=[5,3]) # smallish and compact - >>> from sage.all import * >>> x = var('x') >>> L = [plot(sin(k*x), (x,-pi,pi)) for k in (ellipsis_range(Integer(1),Ellipsis,Integer(3)))] >>> ga = graphics_array(L) >>> ga.show(figsize=[Integer(5),Integer(3)]) # smallish and compact - sage: ga.show(figsize=[5,7]) # tall and thin; long time - >>> from sage.all import * >>> ga.show(figsize=[Integer(5),Integer(7)]) # tall and thin; long time - sage: ga.show(figsize=4) # width=4 inches, height fixed from default aspect ratio - >>> from sage.all import * >>> ga.show(figsize=Integer(4)) # width=4 inches, height fixed from default aspect ratio - Specifying only the number of rows or the number of columns computes the other dimension automatically: - sage: ga = graphics_array([plot(sin)] * 10, nrows=3) sage: ga.nrows(), ga.ncols() (3, 4) sage: ga = graphics_array([plot(sin)] * 10, ncols=3) sage: ga.nrows(), ga.ncols() (4, 3) sage: ga = graphics_array([plot(sin)] * 4, nrows=2) sage: ga.nrows(), ga.ncols() (2, 2) sage: ga = graphics_array([plot(sin)] * 6, ncols=2) sage: ga.nrows(), ga.ncols() (3, 2) - >>> from sage.all import * >>> ga = graphics_array([plot(sin)] * Integer(10), nrows=Integer(3)) >>> ga.nrows(), ga.ncols() (3, 4) >>> ga = graphics_array([plot(sin)] * Integer(10), ncols=Integer(3)) >>> ga.nrows(), ga.ncols() (4, 3) >>> ga = graphics_array([plot(sin)] * Integer(4), nrows=Integer(2)) >>> ga.nrows(), ga.ncols() (2, 2) >>> ga = graphics_array([plot(sin)] * Integer(6), ncols=Integer(2)) >>> ga.nrows(), ga.ncols() (3, 2) - The options like - fontsize,- scaleor- framepassed to individual plots are preserved:- sage: p1 = plot(sin(x^2), (x, 0, 6), ....: axes_labels=[r'$\theta$', r'$\sin(\theta^2)$'], fontsize=16) sage: p2 = plot(x^3, (x, 1, 100), axes_labels=[r'$x$', r'$y$'], ....: scale='semilogy', frame=True, gridlines='minor') sage: ga = graphics_array([p1, p2]) sage: ga.show() - >>> from sage.all import * >>> p1 = plot(sin(x**Integer(2)), (x, Integer(0), Integer(6)), ... axes_labels=[r'$\theta$', r'$\sin(\theta^2)$'], fontsize=Integer(16)) >>> p2 = plot(x**Integer(3), (x, Integer(1), Integer(100)), axes_labels=[r'$x$', r'$y$'], ... scale='semilogy', frame=True, gridlines='minor') >>> ga = graphics_array([p1, p2]) >>> ga.show() - See also - GraphicsArrayfor more examples
- sage.plot.plot.list_plot(data, plotjoined=False, aspect_ratio='automatic', **kwargs)[source]¶
- list_plottakes either a list of numbers, a list of tuples, a numpy array, or a dictionary and plots the corresponding points.- If given a list of numbers (that is, not a list of tuples or lists), - list_plotforms a list of tuples- (i, x_i)where- igoes from 0 to- len(data)-1and- x_iis the- i-th data value, and puts points at those tuple values.- list_plotwill plot a list of complex numbers in the obvious way; any numbers for which- CC()makes sense will work.- list_plotalso takes a list of tuples- (x_i, y_i)where- x_iand- y_iare the- i-th values representing the- x- and- y-values, respectively.- If given a dictionary, - list_plotinterprets the keys as \(x\)-values and the values as \(y\)-values.- The - plotjoined=Trueoption tells- list_plotto plot a line joining all the data.- For other keyword options that the - list_plotfunction can take, refer to- plot().- It is possible to pass empty dictionaries, lists, or tuples to - list_plot. Doing so will plot nothing (returning an empty plot).- EXAMPLES: - sage: list_plot([i^2 for i in range(5)]) # long time Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot([i**Integer(2) for i in range(Integer(5))]) # long time Graphics object consisting of 1 graphics primitive - Here are a bunch of random red points: - sage: r = [(random(),random()) for _ in range(20)] sage: list_plot(r, color='red') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> r = [(random(),random()) for _ in range(Integer(20))] >>> list_plot(r, color='red') Graphics object consisting of 1 graphics primitive - This gives all the random points joined in a purple line: - sage: list_plot(r, plotjoined=True, color='purple') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot(r, plotjoined=True, color='purple') Graphics object consisting of 1 graphics primitive - You can provide a numpy array.: - sage: import numpy # needs numpy sage: list_plot(numpy.arange(10)) # needs numpy Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> import numpy # needs numpy >>> list_plot(numpy.arange(Integer(10))) # needs numpy Graphics object consisting of 1 graphics primitive - sage: list_plot(numpy.array([[1,2], [2,3], [3,4]])) # needs numpy Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot(numpy.array([[Integer(1),Integer(2)], [Integer(2),Integer(3)], [Integer(3),Integer(4)]])) # needs numpy Graphics object consisting of 1 graphics primitive - Plot a list of complex numbers: - sage: list_plot([1, I, pi + I/2, CC(.25, .25)]) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot([Integer(1), I, pi + I/Integer(2), CC(RealNumber('.25'), RealNumber('.25'))]) Graphics object consisting of 1 graphics primitive - sage: list_plot([exp(I*theta) for theta in [0, .2..pi]]) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot([exp(I*theta) for theta in (ellipsis_range(Integer(0), RealNumber('.2'),Ellipsis,pi))]) Graphics object consisting of 1 graphics primitive - Note that if your list of complex numbers are all actually real, they get plotted as real values, so this - sage: list_plot([CDF(1), CDF(1/2), CDF(1/3)]) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot([CDF(Integer(1)), CDF(Integer(1)/Integer(2)), CDF(Integer(1)/Integer(3))]) Graphics object consisting of 1 graphics primitive - is the same as - list_plot([1, 1/2, 1/3])– it produces a plot of the points \((0,1)\), \((1,1/2)\), and \((2,1/3)\).- If you have separate lists of \(x\) values and \(y\) values which you want to plot against each other, use the - zipcommand to make a single list whose entries are pairs of \((x,y)\) values, and feed the result into- list_plot:- sage: x_coords = [cos(t)^3 for t in srange(0, 2*pi, 0.02)] sage: y_coords = [sin(t)^3 for t in srange(0, 2*pi, 0.02)] sage: list_plot(list(zip(x_coords, y_coords))) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> x_coords = [cos(t)**Integer(3) for t in srange(Integer(0), Integer(2)*pi, RealNumber('0.02'))] >>> y_coords = [sin(t)**Integer(3) for t in srange(Integer(0), Integer(2)*pi, RealNumber('0.02'))] >>> list_plot(list(zip(x_coords, y_coords))) Graphics object consisting of 1 graphics primitive - If instead you try to pass the two lists as separate arguments, you will get an error message: - sage: list_plot(x_coords, y_coords) Traceback (most recent call last): ... TypeError: The second argument 'plotjoined' should be boolean (True or False). If you meant to plot two lists 'x' and 'y' against each other, use 'list_plot(list(zip(x,y)))'. - >>> from sage.all import * >>> list_plot(x_coords, y_coords) Traceback (most recent call last): ... TypeError: The second argument 'plotjoined' should be boolean (True or False). If you meant to plot two lists 'x' and 'y' against each other, use 'list_plot(list(zip(x,y)))'. - Dictionaries with numeric keys and values can be plotted: - sage: list_plot({22: 3365, 27: 3295, 37: 3135, 42: 3020, 47: 2880, 52: 2735, 57: 2550}) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot({Integer(22): Integer(3365), Integer(27): Integer(3295), Integer(37): Integer(3135), Integer(42): Integer(3020), Integer(47): Integer(2880), Integer(52): Integer(2735), Integer(57): Integer(2550)}) Graphics object consisting of 1 graphics primitive - Plotting in logarithmic scale is possible for 2D list plots. There are two different syntaxes available: - sage: yl = [2**k for k in range(20)] sage: list_plot(yl, scale='semilogy') # long time # log axis on vertical Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> yl = [Integer(2)**k for k in range(Integer(20))] >>> list_plot(yl, scale='semilogy') # long time # log axis on vertical Graphics object consisting of 1 graphics primitive - sage: list_plot_semilogy(yl) # same Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot_semilogy(yl) # same Graphics object consisting of 1 graphics primitive - Warning - If - plotjoinedis- Falsethen the axis that is in log scale must have all points strictly positive. For instance, the following plot will show no points in the figure since the points in the horizontal axis starts from \((0,1)\). Further, matplotlib will display a user warning.- sage: list_plot(yl, scale='loglog') # both axes are log doctest:warning ... Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot(yl, scale='loglog') # both axes are log doctest:warning ... Graphics object consisting of 1 graphics primitive - Instead this will work. We drop the point \((0,1)\).: - sage: list_plot(list(zip(range(1,len(yl)), yl[1:])), scale='loglog') # long time Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot(list(zip(range(Integer(1),len(yl)), yl[Integer(1):])), scale='loglog') # long time Graphics object consisting of 1 graphics primitive - We use - list_plot_loglog()and plot in a different base.:- sage: list_plot_loglog(list(zip(range(1,len(yl)), yl[1:])), base=2) # long time Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot_loglog(list(zip(range(Integer(1),len(yl)), yl[Integer(1):])), base=Integer(2)) # long time Graphics object consisting of 1 graphics primitive - We can also change the scale of the axes in the graphics just before displaying: - sage: G = list_plot(yl) # long time sage: G.show(scale=('semilogy', 2)) # long time - >>> from sage.all import * >>> G = list_plot(yl) # long time >>> G.show(scale=('semilogy', Integer(2))) # long time 
- sage.plot.plot.list_plot_loglog(data, plotjoined=False, base=10, **kwds)[source]¶
- Plot the - datain ‘loglog’ scale, that is, both the horizontal and the vertical axes will be in logarithmic scale.- INPUT: - base– (default: \(10\)) the base of the logarithm; this must be greater than 1. The base can be also given as a list or tuple- (basex, basey).- basexsets the base of the logarithm along the horizontal axis and- baseysets the base along the vertical axis.
 - For all other inputs, look at the documentation of - list_plot().- EXAMPLES: - sage: yl = [5**k for k in range(10)]; xl = [2**k for k in range(10)] sage: list_plot_loglog(list(zip(xl, yl))) # use loglog scale with base 10 # long time Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> yl = [Integer(5)**k for k in range(Integer(10))]; xl = [Integer(2)**k for k in range(Integer(10))] >>> list_plot_loglog(list(zip(xl, yl))) # use loglog scale with base 10 # long time Graphics object consisting of 1 graphics primitive - sage: list_plot_loglog(list(zip(xl, yl)), # with base 2.1 on both axes # long time ....: base=2.1) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot_loglog(list(zip(xl, yl)), # with base 2.1 on both axes # long time ... base=RealNumber('2.1')) Graphics object consisting of 1 graphics primitive - sage: list_plot_loglog(list(zip(xl, yl)), base=(2,5)) # long time Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot_loglog(list(zip(xl, yl)), base=(Integer(2),Integer(5))) # long time Graphics object consisting of 1 graphics primitive - Warning - If - plotjoinedis- Falsethen the axis that is in log scale must have all points strictly positive. For instance, the following plot will show no points in the figure since the points in the horizontal axis starts from \((0,1)\).- sage: yl = [2**k for k in range(20)] sage: list_plot_loglog(yl) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> yl = [Integer(2)**k for k in range(Integer(20))] >>> list_plot_loglog(yl) Graphics object consisting of 1 graphics primitive - Instead this will work. We drop the point \((0,1)\).: - sage: list_plot_loglog(list(zip(range(1,len(yl)), yl[1:]))) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot_loglog(list(zip(range(Integer(1),len(yl)), yl[Integer(1):]))) Graphics object consisting of 1 graphics primitive 
- sage.plot.plot.list_plot_semilogx(data, plotjoined=False, base=10, **kwds)[source]¶
- Plot - datain ‘semilogx’ scale, that is, the horizontal axis will be in logarithmic scale.- INPUT: - base– (default: \(10\)) the base of the logarithm; this must be greater than 1
 - For all other inputs, look at the documentation of - list_plot().- EXAMPLES: - sage: yl = [2**k for k in range(12)] sage: list_plot_semilogx(list(zip(yl,yl))) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> yl = [Integer(2)**k for k in range(Integer(12))] >>> list_plot_semilogx(list(zip(yl,yl))) Graphics object consisting of 1 graphics primitive - Warning - If - plotjoinedis- Falsethen the horizontal axis must have all points strictly positive. Otherwise the plot will come up empty. For instance the following plot contains a point at \((0,1)\).- sage: yl = [2**k for k in range(12)] sage: list_plot_semilogx(yl) # plot empty due to (0,1) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> yl = [Integer(2)**k for k in range(Integer(12))] >>> list_plot_semilogx(yl) # plot empty due to (0,1) Graphics object consisting of 1 graphics primitive - We remove \((0,1)\) to fix this.: - sage: list_plot_semilogx(list(zip(range(1, len(yl)), yl[1:]))) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot_semilogx(list(zip(range(Integer(1), len(yl)), yl[Integer(1):]))) Graphics object consisting of 1 graphics primitive - sage: list_plot_semilogx([(1,2),(3,4),(3,-1),(25,3)], base=2) # with base 2 Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot_semilogx([(Integer(1),Integer(2)),(Integer(3),Integer(4)),(Integer(3),-Integer(1)),(Integer(25),Integer(3))], base=Integer(2)) # with base 2 Graphics object consisting of 1 graphics primitive 
- sage.plot.plot.list_plot_semilogy(data, plotjoined=False, base=10, **kwds)[source]¶
- Plot - datain ‘semilogy’ scale, that is, the vertical axis will be in logarithmic scale.- INPUT: - base– (default: \(10\)) the base of the logarithm; this must be greater than 1
 - For all other inputs, look at the documentation of - list_plot().- EXAMPLES: - sage: yl = [2**k for k in range(12)] sage: list_plot_semilogy(yl) # plot in semilogy scale, base 10 Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> yl = [Integer(2)**k for k in range(Integer(12))] >>> list_plot_semilogy(yl) # plot in semilogy scale, base 10 Graphics object consisting of 1 graphics primitive - Warning - If - plotjoinedis- Falsethen the vertical axis must have all points strictly positive. Otherwise the plot will come up empty. For instance the following plot contains a point at \((1,0)\). Further, matplotlib will display a user warning.- sage: xl = [2**k for k in range(12)]; yl = range(len(xl)) sage: list_plot_semilogy(list(zip(xl, yl))) # plot empty due to (1,0) doctest:warning ... Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> xl = [Integer(2)**k for k in range(Integer(12))]; yl = range(len(xl)) >>> list_plot_semilogy(list(zip(xl, yl))) # plot empty due to (1,0) doctest:warning ... Graphics object consisting of 1 graphics primitive - We remove \((1,0)\) to fix this.: - sage: list_plot_semilogy(list(zip(xl[1:],yl[1:]))) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot_semilogy(list(zip(xl[Integer(1):],yl[Integer(1):]))) Graphics object consisting of 1 graphics primitive - sage: list_plot_semilogy([2, 4, 6, 8, 16, 31], base=2) # with base 2 Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> list_plot_semilogy([Integer(2), Integer(4), Integer(6), Integer(8), Integer(16), Integer(31)], base=Integer(2)) # with base 2 Graphics object consisting of 1 graphics primitive 
- sage.plot.plot.minmax_data(xdata, ydata, dict=False)[source]¶
- Return the minimums and maximums of - xdataand- ydata.- If dict is - False, then minmax_data returns the tuple (xmin, xmax, ymin, ymax); otherwise, it returns a dictionary whose keys are ‘xmin’, ‘xmax’, ‘ymin’, and ‘ymax’ and whose values are the corresponding values.- EXAMPLES: - sage: from sage.plot.plot import minmax_data sage: minmax_data([], []) (-1, 1, -1, 1) sage: minmax_data([-1, 2], [4, -3]) (-1, 2, -3, 4) sage: minmax_data([1, 2], [4, -3]) (1, 2, -3, 4) sage: d = minmax_data([-1, 2], [4, -3], dict=True) sage: list(sorted(d.items())) [('xmax', 2), ('xmin', -1), ('ymax', 4), ('ymin', -3)] sage: d = minmax_data([1, 2], [3, 4], dict=True) sage: list(sorted(d.items())) [('xmax', 2), ('xmin', 1), ('ymax', 4), ('ymin', 3)] - >>> from sage.all import * >>> from sage.plot.plot import minmax_data >>> minmax_data([], []) (-1, 1, -1, 1) >>> minmax_data([-Integer(1), Integer(2)], [Integer(4), -Integer(3)]) (-1, 2, -3, 4) >>> minmax_data([Integer(1), Integer(2)], [Integer(4), -Integer(3)]) (1, 2, -3, 4) >>> d = minmax_data([-Integer(1), Integer(2)], [Integer(4), -Integer(3)], dict=True) >>> list(sorted(d.items())) [('xmax', 2), ('xmin', -1), ('ymax', 4), ('ymin', -3)] >>> d = minmax_data([Integer(1), Integer(2)], [Integer(3), Integer(4)], dict=True) >>> list(sorted(d.items())) [('xmax', 2), ('xmin', 1), ('ymax', 4), ('ymin', 3)] 
- sage.plot.plot.multi_graphics(graphics_list)[source]¶
- Plot a list of graphics at specified positions on a single canvas. - If the graphics positions define a regular array, use - graphics_array()instead.- INPUT: - graphics_list– list of graphics along with their positions on the canvas; each element of- graphics_listis either- a pair - (graphics, position), where- graphicsis a- Graphicsobject and- positionis the 4-tuple- (left, bottom, width, height)specifying the location and size of the graphics on the canvas, all quantities being in fractions of the canvas width and height
- or a single - Graphicsobject; its position is then assumed to occupy the whole canvas, except for some padding; this corresponds to the default position- (left, bottom, width, height) = (0.125, 0.11, 0.775, 0.77)
 
 - OUTPUT: an instance of - MultiGraphics- EXAMPLES: - multi_graphicsis to be used for plot arrangements that cannot be achieved with- graphics_array(), for instance:- sage: g1 = plot(sin(x), (x, -10, 10), frame=True) sage: g2 = EllipticCurve([0,0,1,-1,0]).plot(color='red', thickness=2, ....: axes_labels=['$x$', '$y$']) \ ....: + text(r"$y^2 + y = x^3 - x$", (1.2, 2), color='red') sage: g3 = matrix_plot(matrix([[1,3,5,1], [2,4,5,6], [1,3,5,7]])) sage: G = multi_graphics([(g1, (0.125, 0.65, 0.775, 0.3)), ....: (g2, (0.125, 0.11, 0.4, 0.4)), ....: (g3, (0.55, 0.18, 0.4, 0.3))]) sage: G Multigraphics with 3 elements - >>> from sage.all import * >>> g1 = plot(sin(x), (x, -Integer(10), Integer(10)), frame=True) >>> g2 = EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)]).plot(color='red', thickness=Integer(2), ... axes_labels=['$x$', '$y$']) + text(r"$y^2 + y = x^3 - x$", (RealNumber('1.2'), Integer(2)), color='red') >>> g3 = matrix_plot(matrix([[Integer(1),Integer(3),Integer(5),Integer(1)], [Integer(2),Integer(4),Integer(5),Integer(6)], [Integer(1),Integer(3),Integer(5),Integer(7)]])) >>> G = multi_graphics([(g1, (RealNumber('0.125'), RealNumber('0.65'), RealNumber('0.775'), RealNumber('0.3'))), ... (g2, (RealNumber('0.125'), RealNumber('0.11'), RealNumber('0.4'), RealNumber('0.4'))), ... (g3, (RealNumber('0.55'), RealNumber('0.18'), RealNumber('0.4'), RealNumber('0.3')))]) >>> G Multigraphics with 3 elements - An example with a list containing a graphics object without any specified position (the graphics, here - g3, occupies then the whole canvas):- sage: G = multi_graphics([g3, (g1, (0.4, 0.4, 0.2, 0.2))]) sage: G Multigraphics with 2 elements - >>> from sage.all import * >>> G = multi_graphics([g3, (g1, (RealNumber('0.4'), RealNumber('0.4'), RealNumber('0.2'), RealNumber('0.2')))]) >>> G Multigraphics with 2 elements - See also - MultiGraphicsfor more examples
- sage.plot.plot.parametric_plot(funcs, aspect_ratio=1.0, *args, **kwargs)[source]¶
- Plot a parametric curve or surface in 2d or 3d. - parametric_plot()takes two or three functions as a list or a tuple and makes a plot with the first function giving the \(x\) coordinates, the second function giving the \(y\) coordinates, and the third function (if present) giving the \(z\) coordinates.- In the 2d case, - parametric_plot()is equivalent to the- plot()command with the option- parametric=True. In the 3d case,- parametric_plot()is equivalent to- parametric_plot3d(). See each of these functions for more help and examples.- INPUT: - funcs– 2 or 3-tuple of functions, or a vector of dimension 2 or 3
- other options– passed to- plot()or- parametric_plot3d()
 - EXAMPLES: We draw some 2d parametric plots. Note that the default aspect ratio is 1, so that circles look like circles. - sage: t = var('t') sage: parametric_plot((cos(t), sin(t)), (t, 0, 2*pi)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> t = var('t') >>> parametric_plot((cos(t), sin(t)), (t, Integer(0), Integer(2)*pi)) Graphics object consisting of 1 graphics primitive - sage: parametric_plot((sin(t), sin(2*t)), (t, 0, 2*pi), color=hue(0.6)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> parametric_plot((sin(t), sin(Integer(2)*t)), (t, Integer(0), Integer(2)*pi), color=hue(RealNumber('0.6'))) Graphics object consisting of 1 graphics primitive - sage: parametric_plot((1, t), (t, 0, 4)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> parametric_plot((Integer(1), t), (t, Integer(0), Integer(4))) Graphics object consisting of 1 graphics primitive - Note that in parametric_plot, there is only fill or no fill. - sage: parametric_plot((t, t^2), (t, -4, 4), fill=True) Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> parametric_plot((t, t**Integer(2)), (t, -Integer(4), Integer(4)), fill=True) Graphics object consisting of 2 graphics primitives - A filled Hypotrochoid: - sage: parametric_plot([cos(x) + 2 * cos(x/4), sin(x) - 2 * sin(x/4)], ....: (x, 0, 8*pi), fill=True) Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> parametric_plot([cos(x) + Integer(2) * cos(x/Integer(4)), sin(x) - Integer(2) * sin(x/Integer(4))], ... (x, Integer(0), Integer(8)*pi), fill=True) Graphics object consisting of 2 graphics primitives - sage: parametric_plot((5*cos(x), 5*sin(x), x), (x, -12, 12), # long time ....: plot_points=150, color='red') Graphics3d Object - >>> from sage.all import * >>> parametric_plot((Integer(5)*cos(x), Integer(5)*sin(x), x), (x, -Integer(12), Integer(12)), # long time ... plot_points=Integer(150), color='red') Graphics3d Object - sage: y = var('y') sage: parametric_plot((5*cos(x), x*y, cos(x*y)), (x, -4, 4), (y, -4, 4)) # long time Graphics3d Object - >>> from sage.all import * >>> y = var('y') >>> parametric_plot((Integer(5)*cos(x), x*y, cos(x*y)), (x, -Integer(4), Integer(4)), (y, -Integer(4), Integer(4))) # long time Graphics3d Object - sage: t = var('t') sage: parametric_plot(vector((sin(t), sin(2*t))), (t, 0, 2*pi), color='green') # long time Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> t = var('t') >>> parametric_plot(vector((sin(t), sin(Integer(2)*t))), (t, Integer(0), Integer(2)*pi), color='green') # long time Graphics object consisting of 1 graphics primitive - sage: t = var('t') sage: parametric_plot( vector([t, t+1, t^2]), (t, 0, 1)) # long time Graphics3d Object - >>> from sage.all import * >>> t = var('t') >>> parametric_plot( vector([t, t+Integer(1), t**Integer(2)]), (t, Integer(0), Integer(1))) # long time Graphics3d Object - Plotting in logarithmic scale is possible with 2D plots. The keyword - aspect_ratiowill be ignored if the scale is not- 'loglog'or- 'linear'.:- sage: parametric_plot((x, x**2), (x, 1, 10), scale='loglog') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> parametric_plot((x, x**Integer(2)), (x, Integer(1), Integer(10)), scale='loglog') Graphics object consisting of 1 graphics primitive - We can also change the scale of the axes in the graphics just before displaying. In this case, the - aspect_ratiomust be specified as- 'automatic'if the- scaleis set to- 'semilogx'or- 'semilogy'. For other values of the- scaleparameter, any- aspect_ratiocan be used, or the keyword need not be provided.:- sage: p = parametric_plot((x, x**2), (x, 1, 10)) sage: p.show(scale='semilogy', aspect_ratio='automatic') - >>> from sage.all import * >>> p = parametric_plot((x, x**Integer(2)), (x, Integer(1), Integer(10))) >>> p.show(scale='semilogy', aspect_ratio='automatic') 
- sage.plot.plot.plot(funcs, alpha=1, thickness=1, fill=False, fillcolor='automatic', fillalpha=0.5, plot_points=200, adaptive_tolerance=0.01, adaptive_recursion=5, detect_poles=False, exclude=None, legend_label=None, aspect_ratio='automatic', imaginary_tolerance=1e-08, *args, **kwds)[source]¶
- Use plot by writing. - plot(X, ...)- where \(X\) is a Sage object (or list of Sage objects) that either is callable and returns numbers that can be coerced to floats, or has a plot method that returns a - GraphicPrimitiveobject.- There are many other specialized 2D plot commands available in Sage, such as - plot_slope_field, as well as various graphics primitives like- Arrow; type- sage.plot.plot?for a current list.- Type - plot.optionsfor a dictionary of the default options for plots. You can change this to change the defaults for all future plots. Use- plot.reset()to reset to the default options.- PLOT OPTIONS: - plot_points– (default: 200) the minimal number of plot points
- adaptive_recursion– (default: 5) how many levels of recursion to go before giving up when doing adaptive refinement. Setting this to 0 disables adaptive refinement.
- adaptive_tolerance– (default: 0.01) how large a difference should be before the adaptive refinement code considers it significant. See the documentation further below for more information, starting at “the algorithm used to insert”.
- imaginary_tolerance– (default:- 1e-8) if an imaginary number arises (due, for example, to numerical issues), this tolerance specifies how large it has to be in magnitude before we raise an error. In other words, imaginary parts smaller than this are ignored in your plot points.
- base– (default: \(10\)) the base of the logarithm if a logarithmic scale is set. This must be greater than 1. The base can be also given as a list or tuple- (basex, basey).- basexsets the base of the logarithm along the horizontal axis and- baseysets the base along the vertical axis.
- scale– string (default:- 'linear'); scale of the axes. Possible values are- 'linear',- 'loglog',- 'semilogx',- 'semilogy'.- The scale can be also be given as single argument that is a list or tuple - (scale, base)or- (scale, basex, basey).- The - 'loglog'scale sets both the horizontal and vertical axes to logarithmic scale. The- 'semilogx'scale sets the horizontal axis to logarithmic scale. The- 'semilogy'scale sets the vertical axis to logarithmic scale. The- 'linear'scale is the default value when- Graphicsis initialized.
- xmin– starting x value in the rendered figure. This parameter is passed directly to the- showprocedure and it could be overwritten.
- xmax– ending x value in the rendered figure. This parameter is passed directly to the- showprocedure and it could be overwritten.
- ymin– starting y value in the rendered figure. This parameter is passed directly to the- showprocedure and it could be overwritten.
- ymax– ending y value in the rendered figure. This parameter is passed directly to the- showprocedure and it could be overwritten.
- detect_poles– boolean (default:- False); if set to- Truepoles are detected. If set to “show” vertical asymptotes are drawn.
- legend_label– a (TeX) string serving as the label for \(X\) in the legend. If \(X\) is a list, then this option can be a single string, or a list or dictionary with strings as entries/values. If a dictionary, then keys are taken from- range(len(X)).
 - Note - If the - scaleis- 'linear', then irrespective of what- baseis set to, it will default to 10 and will remain unused.
- If you want to limit the plot along the horizontal axis in the final rendered figure, then pass the - xminand- xmaxkeywords to the- show()method. To limit the plot along the vertical axis,- yminand- ymaxkeywords can be provided to either this- plotcommand or to the- showcommand.
- This function does NOT simply sample equally spaced points between xmin and xmax. Instead it computes equally spaced points and adds small perturbations to them. This reduces the possibility of, e.g., sampling \(\sin\) only at multiples of \(2\pi\), which would yield a very misleading graph. 
- If there is a range of consecutive points where the function has no value, then those points will be excluded from the plot. See the example below on automatic exclusion of points. 
- For the other keyword options that the - plotfunction can take, refer to the method- show()and the further options below.
 - COLOR OPTIONS: - color– (default:- 'blue') one of:- an RGB tuple (r,g,b) with each of r,g,b between 0 and 1. 
- a color name as a string (e.g., - 'purple').
- an HTML color such as ‘#aaff0b’. 
- a list or dictionary of colors (valid only if \(X\) is a list): if a dictionary, keys are taken from - range(len(X)); the entries/values of the list/dictionary may be any of the options above.
- 'automatic'– maps to default (‘blue’) if \(X\) is a single Sage object; and maps to a fixed sequence of regularly spaced colors if \(X\) is a list
 
- legend_color– the color of the text for \(X\) (or each item in \(X\)) in the legend. Default color is ‘black’. Options are as in- colorabove, except that the choice ‘automatic’ maps to ‘black’ if \(X\) is a single Sage object
- fillcolor– the color of the fill for the plot of \(X\) (or each item in \(X\)). Default color is ‘gray’ if \(X\) is a single Sage object or if- coloris a single color. Otherwise, options are as in- colorabove
 - APPEARANCE OPTIONS: - The following options affect the appearance of the line through the points on the graph of \(X\) (these are the same as for the line function): - INPUT: - alpha– how transparent the line is
- thickness– how thick the line is
- rgbcolor– the color as an RGB tuple
- hue– the color given as a hue
 - LINE OPTIONS: - Any MATPLOTLIB line option may also be passed in. E.g., - linestyle– (default:- '-') the style of the line, which is one of- '-'or- 'solid'
- '--'or- 'dashed'
- '-.'or- 'dash dot'
- ':'or- 'dotted'
- "None"or- " "or- ""(nothing)
- a list or dictionary (see below) 
 - The linestyle can also be prefixed with a drawing style (e.g., - 'steps--')- 'default'(connect the points with straight lines)
- 'steps'or- 'steps-pre'(step function; horizontal line is to the left of point)
- 'steps-mid'(step function; points are in the middle of horizontal lines)
- 'steps-post'(step function; horizontal line is to the right of point)
 - If \(X\) is a list, then - linestylemay be a list (with entries taken from the strings above) or a dictionary (with keys in- range(len(X))and values taken from the strings above).
- marker– the style of the markers, which is one of- "None"or- " "or- ""(nothing) – default
- ","(pixel),- "."(point)
- "_"(horizontal line),- "|"(vertical line)
- "o"(circle),- "p"(pentagon),- "s"(square),- "x"(x),- "+"(plus),- "*"(star)
- "D"(diamond),- "d"(thin diamond)
- "H"(hexagon),- "h"(alternative hexagon)
- "<"(triangle left),- ">"(triangle right),- "^"(triangle up),- "v"(triangle down)
- "1"(tri down),- "2"(tri up),- "3"(tri left),- "4"(tri right)
- 0(tick left),- 1(tick right),- 2(tick up),- 3(tick down)
- 4(caret left),- 5(caret right),- 6(caret up),- 7(caret down),- 8(octagon)
- "$...$"(math TeX string)
- (numsides, style, angle)to create a custom, regular symbol- numsides– the number of sides
- style–- 0(regular polygon),- 1(star shape),- 2(asterisk),- 3(circle)
- angle– the angular rotation in degrees
 
 
- markersize– the size of the marker in points
- markeredgecolor– the color of the marker edge
- markerfacecolor– the color of the marker face
- markeredgewidth– the size of the marker edge in points
- exclude– (default:- None) values which are excluded from the plot range. Either a list of real numbers, or an equation in one variable.
 - FILLING OPTIONS: - fill– boolean (default:- False); one of:- “axis” or - True: Fill the area between the function and the x-axis.
- “min”: Fill the area between the function and its minimal value. 
- “max”: Fill the area between the function and its maximal value. 
- a number c: Fill the area between the function and the horizontal line y = c. 
- a function g: Fill the area between the function that is plotted and g. 
- a dictionary - d(only if a list of functions are plotted): The keys of the dictionary should be integers. The value of- d[i]specifies the fill options for the i-th function in the list. If- d[i] == [j]: Fill the area between the i-th and the j-th function in the list. (But if- d[i] == j: Fill the area between the i-th function in the list and the horizontal line y = j.)
 
- fillalpha– (default: 0.5) how transparent the fill is; a number between 0 and 1
 - MATPLOTLIB STYLE SHEET OPTION: - stylesheet– (default: classic) support for loading a full matplotlib style sheet. Any style sheet listed in- matplotlib.pyplot.style.availableis acceptable. If a non-existing style is provided the default classic is applied.
 - EXAMPLES: - We plot the \(\sin\) function: - sage: P = plot(sin, (0,10)); print(P) Graphics object consisting of 1 graphics primitive sage: len(P) # number of graphics primitives 1 sage: len(P[0]) # how many points were computed (random) 225 sage: P # render Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> P = plot(sin, (Integer(0),Integer(10))); print(P) Graphics object consisting of 1 graphics primitive >>> len(P) # number of graphics primitives 1 >>> len(P[Integer(0)]) # how many points were computed (random) 225 >>> P # render Graphics object consisting of 1 graphics primitive - sage: P = plot(sin, (0,10), plot_points=10); print(P) Graphics object consisting of 1 graphics primitive sage: len(P[0]) # random output 32 sage: P # render Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> P = plot(sin, (Integer(0),Integer(10)), plot_points=Integer(10)); print(P) Graphics object consisting of 1 graphics primitive >>> len(P[Integer(0)]) # random output 32 >>> P # render Graphics object consisting of 1 graphics primitive - We plot with - randomize=False, which makes the initial sample points evenly spaced (hence always the same). Adaptive plotting might insert other points, however, unless- adaptive_recursion=0.- sage: p = plot(1, (x,0,3), plot_points=4, randomize=False, adaptive_recursion=0) sage: list(p[0]) [(0.0, 1.0), (1.0, 1.0), (2.0, 1.0), (3.0, 1.0)] - >>> from sage.all import * >>> p = plot(Integer(1), (x,Integer(0),Integer(3)), plot_points=Integer(4), randomize=False, adaptive_recursion=Integer(0)) >>> list(p[Integer(0)]) [(0.0, 1.0), (1.0, 1.0), (2.0, 1.0), (3.0, 1.0)] - Some colored functions: - sage: plot(sin, 0, 10, color='purple') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin, Integer(0), Integer(10), color='purple') Graphics object consisting of 1 graphics primitive - sage: plot(sin, 0, 10, color='#ff00ff') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin, Integer(0), Integer(10), color='#ff00ff') Graphics object consisting of 1 graphics primitive - We plot several functions together by passing a list of functions as input: - sage: plot([x*exp(-n*x^2)/.4 for n in [1..5]], (0, 2), aspect_ratio=.8) Graphics object consisting of 5 graphics primitives - >>> from sage.all import * >>> plot([x*exp(-n*x**Integer(2))/RealNumber('.4') for n in (ellipsis_range(Integer(1),Ellipsis,Integer(5)))], (Integer(0), Integer(2)), aspect_ratio=RealNumber('.8')) Graphics object consisting of 5 graphics primitives - By default, color will change from one primitive to the next. This may be controlled by modifying - coloroption:- sage: g1 = plot([x*exp(-n*x^2)/.4 for n in [1..3]], (0, 2), ....: color='blue', aspect_ratio=.8); g1 Graphics object consisting of 3 graphics primitives sage: g2 = plot([x*exp(-n*x^2)/.4 for n in [1..3]], (0, 2), ....: color=['red','red','green'], linestyle=['-','--','-.'], ....: aspect_ratio=.8); g2 Graphics object consisting of 3 graphics primitives - >>> from sage.all import * >>> g1 = plot([x*exp(-n*x**Integer(2))/RealNumber('.4') for n in (ellipsis_range(Integer(1),Ellipsis,Integer(3)))], (Integer(0), Integer(2)), ... color='blue', aspect_ratio=RealNumber('.8')); g1 Graphics object consisting of 3 graphics primitives >>> g2 = plot([x*exp(-n*x**Integer(2))/RealNumber('.4') for n in (ellipsis_range(Integer(1),Ellipsis,Integer(3)))], (Integer(0), Integer(2)), ... color=['red','red','green'], linestyle=['-','--','-.'], ... aspect_ratio=RealNumber('.8')); g2 Graphics object consisting of 3 graphics primitives - While plotting real functions, imaginary numbers that are “almost real” will inevitably arise due to numerical issues. By tweaking the - imaginary_tolerance, you can decide how large of an imaginary part you’re willing to sweep under the rug in order to plot the corresponding point. If a particular value’s imaginary part has magnitude larger than- imaginary_tolerance, that point will not be plotted. The default tolerance is- 1e-8, so the imaginary part in the first example below is ignored, but the second example “fails,” emits a warning, and produces an empty graph:- sage: f = x + I*1e-12 sage: plot(f, x, -1, 1) Graphics object consisting of 1 graphics primitive sage: plot(f, x, -1, 1, imaginary_tolerance=0) ...WARNING: ...Unable to compute ... Graphics object consisting of 0 graphics primitives - >>> from sage.all import * >>> f = x + I*RealNumber('1e-12') >>> plot(f, x, -Integer(1), Integer(1)) Graphics object consisting of 1 graphics primitive >>> plot(f, x, -Integer(1), Integer(1), imaginary_tolerance=Integer(0)) ...WARNING: ...Unable to compute ... Graphics object consisting of 0 graphics primitives - We can also build a plot step by step from an empty plot: - sage: a = plot([]); a # passing an empty list returns an empty plot (Graphics() object) Graphics object consisting of 0 graphics primitives sage: a += plot(x**2); a # append another plot Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> a = plot([]); a # passing an empty list returns an empty plot (Graphics() object) Graphics object consisting of 0 graphics primitives >>> a += plot(x**Integer(2)); a # append another plot Graphics object consisting of 1 graphics primitive - sage: a += plot(x**3); a # append yet another plot Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> a += plot(x**Integer(3)); a # append yet another plot Graphics object consisting of 2 graphics primitives - The function \(\sin(1/x)\) wiggles wildly near \(0\). Sage adapts to this and plots extra points near the origin. - sage: plot(sin(1/x), (x, -1, 1)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(Integer(1)/x), (x, -Integer(1), Integer(1))) Graphics object consisting of 1 graphics primitive - Via the matplotlib library, Sage makes it easy to tell whether a graph is on both sides of both axes, as the axes only cross if the origin is actually part of the viewing area: - sage: plot(x^3, (x,0,2)) # this one has the origin Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(x**Integer(3), (x,Integer(0),Integer(2))) # this one has the origin Graphics object consisting of 1 graphics primitive - sage: plot(x^3, (x,1,2)) # this one does not Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(x**Integer(3), (x,Integer(1),Integer(2))) # this one does not Graphics object consisting of 1 graphics primitive - Another thing to be aware of with axis labeling is that when the labels have quite different orders of magnitude or are very large, scientific notation (the \(e\) notation for powers of ten) is used: - sage: plot(x^2, (x,480,500)) # this one has no scientific notation Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(x**Integer(2), (x,Integer(480),Integer(500))) # this one has no scientific notation Graphics object consisting of 1 graphics primitive - sage: plot(x^2, (x,300,500)) # this one has scientific notation on y-axis Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(x**Integer(2), (x,Integer(300),Integer(500))) # this one has scientific notation on y-axis Graphics object consisting of 1 graphics primitive - You can put a legend with - legend_label(the legend is only put once in the case of multiple functions):- sage: plot(exp(x), 0, 2, legend_label='$e^x$') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(exp(x), Integer(0), Integer(2), legend_label='$e^x$') Graphics object consisting of 1 graphics primitive - Sage understands TeX, so these all are slightly different, and you can choose one based on your needs: - sage: plot(sin, legend_label='sin') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin, legend_label='sin') Graphics object consisting of 1 graphics primitive - sage: plot(sin, legend_label='$sin$') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin, legend_label='$sin$') Graphics object consisting of 1 graphics primitive - sage: plot(sin, legend_label=r'$\sin$') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin, legend_label=r'$\sin$') Graphics object consisting of 1 graphics primitive - It is possible to use a different color for the text of each label: - sage: p1 = plot(sin, legend_label='sin', legend_color='red') sage: p2 = plot(cos, legend_label='cos', legend_color='green') sage: p1 + p2 Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> p1 = plot(sin, legend_label='sin', legend_color='red') >>> p2 = plot(cos, legend_label='cos', legend_color='green') >>> p1 + p2 Graphics object consisting of 2 graphics primitives - Prior to Issue #19485, legends by default had a shadowless gray background. This behavior can be recovered by setting the legend options on your plot object: - sage: p = plot(sin(x), legend_label=r'$\sin(x)$') sage: p.set_legend_options(back_color=(0.9,0.9,0.9), shadow=False) - >>> from sage.all import * >>> p = plot(sin(x), legend_label=r'$\sin(x)$') >>> p.set_legend_options(back_color=(RealNumber('0.9'),RealNumber('0.9'),RealNumber('0.9')), shadow=False) - If \(X\) is a list of Sage objects and - legend_labelis ‘automatic’, then Sage will create labels for each function according to their internal representation:- sage: plot([sin(x), tan(x), 1 - x^2], legend_label='automatic') Graphics object consisting of 3 graphics primitives - >>> from sage.all import * >>> plot([sin(x), tan(x), Integer(1) - x**Integer(2)], legend_label='automatic') Graphics object consisting of 3 graphics primitives - If - legend_labelis any single string other than ‘automatic’, then it is repeated for all members of \(X\):- sage: plot([sin(x), tan(x)], color='blue', legend_label='trig') Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> plot([sin(x), tan(x)], color='blue', legend_label='trig') Graphics object consisting of 2 graphics primitives - Note that the independent variable may be omitted if there is no ambiguity: - sage: plot(sin(1.0/x), (-1, 1)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(RealNumber('1.0')/x), (-Integer(1), Integer(1))) Graphics object consisting of 1 graphics primitive - Plotting in logarithmic scale is possible for 2D plots. There are two different syntaxes supported: - sage: plot(exp, (1, 10), scale='semilogy') # log axis on vertical Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(exp, (Integer(1), Integer(10)), scale='semilogy') # log axis on vertical Graphics object consisting of 1 graphics primitive - sage: plot_semilogy(exp, (1, 10)) # same thing Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot_semilogy(exp, (Integer(1), Integer(10))) # same thing Graphics object consisting of 1 graphics primitive - sage: plot_loglog(exp, (1, 10)) # both axes are log Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot_loglog(exp, (Integer(1), Integer(10))) # both axes are log Graphics object consisting of 1 graphics primitive - sage: plot(exp, (1, 10), scale='loglog', base=2) # base of log is 2 # long time Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(exp, (Integer(1), Integer(10)), scale='loglog', base=Integer(2)) # base of log is 2 # long time Graphics object consisting of 1 graphics primitive - We can also change the scale of the axes in the graphics just before displaying: - sage: G = plot(exp, 1, 10) # long time sage: G.show(scale=('semilogy', 2)) # long time - >>> from sage.all import * >>> G = plot(exp, Integer(1), Integer(10)) # long time >>> G.show(scale=('semilogy', Integer(2))) # long time - The algorithm used to insert extra points is actually pretty simple. On the picture drawn by the lines below: - sage: p = plot(x^2, (-0.5, 1.4)) + line([(0,0), (1,1)], color='green') sage: p += line([(0.5, 0.5), (0.5, 0.5^2)], color='purple') sage: p += point(((0, 0), (0.5, 0.5), (0.5, 0.5^2), (1, 1)), ....: color='red', pointsize=20) sage: p += text('A', (-0.05, 0.1), color='red') sage: p += text('B', (1.01, 1.1), color='red') sage: p += text('C', (0.48, 0.57), color='red') sage: p += text('D', (0.53, 0.18), color='red') sage: p.show(axes=False, xmin=-0.5, xmax=1.4, ymin=0, ymax=2) - >>> from sage.all import * >>> p = plot(x**Integer(2), (-RealNumber('0.5'), RealNumber('1.4'))) + line([(Integer(0),Integer(0)), (Integer(1),Integer(1))], color='green') >>> p += line([(RealNumber('0.5'), RealNumber('0.5')), (RealNumber('0.5'), RealNumber('0.5')**Integer(2))], color='purple') >>> p += point(((Integer(0), Integer(0)), (RealNumber('0.5'), RealNumber('0.5')), (RealNumber('0.5'), RealNumber('0.5')**Integer(2)), (Integer(1), Integer(1))), ... color='red', pointsize=Integer(20)) >>> p += text('A', (-RealNumber('0.05'), RealNumber('0.1')), color='red') >>> p += text('B', (RealNumber('1.01'), RealNumber('1.1')), color='red') >>> p += text('C', (RealNumber('0.48'), RealNumber('0.57')), color='red') >>> p += text('D', (RealNumber('0.53'), RealNumber('0.18')), color='red') >>> p.show(axes=False, xmin=-RealNumber('0.5'), xmax=RealNumber('1.4'), ymin=Integer(0), ymax=Integer(2)) - You have the function (in blue) and its approximation (in green) passing through the points A and B. The algorithm finds the midpoint C of AB and computes the distance between C and D. If that distance exceeds the - adaptive_tolerancethreshold (relative to the size of the initial plot subintervals), the point D is added to the curve. If D is added to the curve, then the algorithm is applied recursively to the points A and D, and D and B. It is repeated- adaptive_recursiontimes (5, by default).- The actual sample points are slightly randomized, so the above plots may look slightly different each time you draw them. - We draw the graph of an elliptic curve as the union of graphs of 2 functions. - sage: def h1(x): return abs(sqrt(x^3 - 1)) sage: def h2(x): return -abs(sqrt(x^3 - 1)) sage: P = plot([h1, h2], 1,4) sage: P # show the result Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> def h1(x): return abs(sqrt(x**Integer(3) - Integer(1))) >>> def h2(x): return -abs(sqrt(x**Integer(3) - Integer(1))) >>> P = plot([h1, h2], Integer(1),Integer(4)) >>> P # show the result Graphics object consisting of 2 graphics primitives - It is important to mention that when we draw several graphs at the same time, parameters - xmin,- xmax,- yminand- ymaxare just passed directly to the- showprocedure. In fact, these parameters would be overwritten:- sage: p=plot(x^3, x, xmin=-1, xmax=1,ymin=-1, ymax=1) sage: q=plot(exp(x), x, xmin=-2, xmax=2, ymin=0, ymax=4) sage: (p+q).show() - >>> from sage.all import * >>> p=plot(x**Integer(3), x, xmin=-Integer(1), xmax=Integer(1),ymin=-Integer(1), ymax=Integer(1)) >>> q=plot(exp(x), x, xmin=-Integer(2), xmax=Integer(2), ymin=Integer(0), ymax=Integer(4)) >>> (p+q).show() - As a workaround, we can perform the trick: - sage: p1 = line([(a,b) for a, b in zip(p[0].xdata, p[0].ydata) ....: if b>=-1 and b<=1]) sage: q1 = line([(a,b) for a, b in zip(q[0].xdata, q[0].ydata) ....: if b>=0 and b<=4]) sage: (p1 + q1).show() - >>> from sage.all import * >>> p1 = line([(a,b) for a, b in zip(p[Integer(0)].xdata, p[Integer(0)].ydata) ... if b>=-Integer(1) and b<=Integer(1)]) >>> q1 = line([(a,b) for a, b in zip(q[Integer(0)].xdata, q[Integer(0)].ydata) ... if b>=Integer(0) and b<=Integer(4)]) >>> (p1 + q1).show() - We can also directly plot the elliptic curve: - sage: E = EllipticCurve([0,-1]) # needs sage.schemes sage: plot(E, (1, 4), color=hue(0.6)) # needs sage.schemes Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> E = EllipticCurve([Integer(0),-Integer(1)]) # needs sage.schemes >>> plot(E, (Integer(1), Integer(4)), color=hue(RealNumber('0.6'))) # needs sage.schemes Graphics object consisting of 1 graphics primitive - We can change the line style as well: - sage: plot(sin(x), (x, 0, 10), linestyle='-.') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(x), (x, Integer(0), Integer(10)), linestyle='-.') Graphics object consisting of 1 graphics primitive - If we have an empty linestyle and specify a marker, we can see the points that are actually being plotted: - sage: plot(sin(x), (x,0,10), plot_points=20, linestyle='', marker='.') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(x), (x,Integer(0),Integer(10)), plot_points=Integer(20), linestyle='', marker='.') Graphics object consisting of 1 graphics primitive - The marker can be a TeX symbol as well: - sage: plot(sin(x), (x, 0, 10), plot_points=20, linestyle='', marker=r'$\checkmark$') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(x), (x, Integer(0), Integer(10)), plot_points=Integer(20), linestyle='', marker=r'$\checkmark$') Graphics object consisting of 1 graphics primitive - Sage currently ignores points that cannot be evaluated - sage: from sage.misc.verbose import set_verbose sage: set_verbose(-1) sage: plot(-x*log(x), (x, 0, 1)) # this works fine since the failed endpoint is just skipped. Graphics object consisting of 1 graphics primitive sage: set_verbose(0) - >>> from sage.all import * >>> from sage.misc.verbose import set_verbose >>> set_verbose(-Integer(1)) >>> plot(-x*log(x), (x, Integer(0), Integer(1))) # this works fine since the failed endpoint is just skipped. Graphics object consisting of 1 graphics primitive >>> set_verbose(Integer(0)) - This prints out a warning and plots where it can (we turn off the warning by setting the verbose mode temporarily to -1.) - sage: set_verbose(-1) sage: plot(x^(1/3), (x, -1, 1)) Graphics object consisting of 1 graphics primitive sage: set_verbose(0) - >>> from sage.all import * >>> set_verbose(-Integer(1)) >>> plot(x**(Integer(1)/Integer(3)), (x, -Integer(1), Integer(1))) Graphics object consisting of 1 graphics primitive >>> set_verbose(Integer(0)) - Plotting the real cube root function for negative input requires avoiding the complex numbers one would usually get. The easiest way is to use - real_nth_root(x, n)- sage: plot(real_nth_root(x, 3), (x, -1, 1)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(real_nth_root(x, Integer(3)), (x, -Integer(1), Integer(1))) Graphics object consisting of 1 graphics primitive - We can also get the same plot in the following way: - sage: plot(sign(x)*abs(x)^(1/3), (x, -1, 1)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sign(x)*abs(x)**(Integer(1)/Integer(3)), (x, -Integer(1), Integer(1))) Graphics object consisting of 1 graphics primitive - A way to plot other functions without symbolic variants is to use lambda functions: - sage: plot(lambda x : RR(x).nth_root(3), (x,-1, 1)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(lambda x : RR(x).nth_root(Integer(3)), (x,-Integer(1), Integer(1))) Graphics object consisting of 1 graphics primitive - We can detect the poles of a function: - sage: plot(gamma, (-3, 4), detect_poles=True).show(ymin=-5, ymax=5) - >>> from sage.all import * >>> plot(gamma, (-Integer(3), Integer(4)), detect_poles=True).show(ymin=-Integer(5), ymax=Integer(5)) - We draw the Gamma-Function with its poles highlighted: - sage: plot(gamma, (-3, 4), detect_poles='show').show(ymin=-5, ymax=5) - >>> from sage.all import * >>> plot(gamma, (-Integer(3), Integer(4)), detect_poles='show').show(ymin=-Integer(5), ymax=Integer(5)) - The basic options for filling a plot: - sage: p1 = plot(sin(x), -pi, pi, fill='axis') sage: p2 = plot(sin(x), -pi, pi, fill='min', fillalpha=1) sage: p3 = plot(sin(x), -pi, pi, fill='max') sage: p4 = plot(sin(x), -pi, pi, fill=(1-x)/3, ....: fillcolor='blue', fillalpha=.2) sage: graphics_array([[p1, p2], # long time ....: [p3, p4]]).show(frame=True, axes=False) - >>> from sage.all import * >>> p1 = plot(sin(x), -pi, pi, fill='axis') >>> p2 = plot(sin(x), -pi, pi, fill='min', fillalpha=Integer(1)) >>> p3 = plot(sin(x), -pi, pi, fill='max') >>> p4 = plot(sin(x), -pi, pi, fill=(Integer(1)-x)/Integer(3), ... fillcolor='blue', fillalpha=RealNumber('.2')) >>> graphics_array([[p1, p2], # long time ... [p3, p4]]).show(frame=True, axes=False) - The basic options for filling a list of plots: - sage: (f1, f2) = x*exp(-1*x^2)/.35, x*exp(-2*x^2)/.35 sage: p1 = plot([f1, f2], -pi, pi, fill={1: [0]}, ....: fillcolor='blue', fillalpha=.25, color='blue') sage: p2 = plot([f1, f2], -pi, pi, fill={0: x/3, 1:[0]}, color=['blue']) sage: p3 = plot([f1, f2], -pi, pi, fill=[0, [0]], ....: fillcolor=['orange','red'], fillalpha=1, color={1: 'blue'}) sage: p4 = plot([f1, f2], (x,-pi, pi), fill=[x/3, 0], ....: fillcolor=['grey'], color=['red', 'blue']) sage: graphics_array([[p1, p2], # long time ....: [p3, p4]]).show(frame=True, axes=False) - >>> from sage.all import * >>> (f1, f2) = x*exp(-Integer(1)*x**Integer(2))/RealNumber('.35'), x*exp(-Integer(2)*x**Integer(2))/RealNumber('.35') >>> p1 = plot([f1, f2], -pi, pi, fill={Integer(1): [Integer(0)]}, ... fillcolor='blue', fillalpha=RealNumber('.25'), color='blue') >>> p2 = plot([f1, f2], -pi, pi, fill={Integer(0): x/Integer(3), Integer(1):[Integer(0)]}, color=['blue']) >>> p3 = plot([f1, f2], -pi, pi, fill=[Integer(0), [Integer(0)]], ... fillcolor=['orange','red'], fillalpha=Integer(1), color={Integer(1): 'blue'}) >>> p4 = plot([f1, f2], (x,-pi, pi), fill=[x/Integer(3), Integer(0)], ... fillcolor=['grey'], color=['red', 'blue']) >>> graphics_array([[p1, p2], # long time ... [p3, p4]]).show(frame=True, axes=False) - A example about the growth of prime numbers: - sage: plot(1.13*log(x), 1, 100, ....: fill=lambda x: nth_prime(x)/floor(x), fillcolor='red') Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> plot(RealNumber('1.13')*log(x), Integer(1), Integer(100), ... fill=lambda x: nth_prime(x)/floor(x), fillcolor='red') Graphics object consisting of 2 graphics primitives - Fill the area between a function and its asymptote: - sage: f = (2*x^3+2*x-1)/((x-2)*(x+1)) sage: plot([f, 2*x+2], -7, 7, fill={0: [1]}, fillcolor='#ccc').show(ymin=-20, ymax=20) - >>> from sage.all import * >>> f = (Integer(2)*x**Integer(3)+Integer(2)*x-Integer(1))/((x-Integer(2))*(x+Integer(1))) >>> plot([f, Integer(2)*x+Integer(2)], -Integer(7), Integer(7), fill={Integer(0): [Integer(1)]}, fillcolor='#ccc').show(ymin=-Integer(20), ymax=Integer(20)) - Fill the area between a list of functions and the x-axis: - sage: def b(n): return lambda x: bessel_J(n, x) sage: plot([b(n) for n in [1..5]], 0, 20, fill='axis') Graphics object consisting of 10 graphics primitives - >>> from sage.all import * >>> def b(n): return lambda x: bessel_J(n, x) >>> plot([b(n) for n in (ellipsis_range(Integer(1),Ellipsis,Integer(5)))], Integer(0), Integer(20), fill='axis') Graphics object consisting of 10 graphics primitives - Note that to fill between the ith and jth functions, you must use the dictionary key-value syntax - i:[j]; using key-value pairs like- i:jwill fill between the ith function and the line y=j:- sage: def b(n): return lambda x: bessel_J(n, x) + 0.5*(n-1) sage: plot([b(c) for c in [1..5]], 0, 20, fill={i: [i-1] for i in [1..4]}, ....: color={i: 'blue' for i in [1..5]}, aspect_ratio=3, ymax=3) Graphics object consisting of 9 graphics primitives sage: plot([b(c) for c in [1..5]], 0, 20, fill={i: i-1 for i in [1..4]}, # long time ....: color='blue', aspect_ratio=3) Graphics object consisting of 9 graphics primitives - >>> from sage.all import * >>> def b(n): return lambda x: bessel_J(n, x) + RealNumber('0.5')*(n-Integer(1)) >>> plot([b(c) for c in (ellipsis_range(Integer(1),Ellipsis,Integer(5)))], Integer(0), Integer(20), fill={i: [i-Integer(1)] for i in (ellipsis_range(Integer(1),Ellipsis,Integer(4)))}, ... color={i: 'blue' for i in (ellipsis_range(Integer(1),Ellipsis,Integer(5)))}, aspect_ratio=Integer(3), ymax=Integer(3)) Graphics object consisting of 9 graphics primitives >>> plot([b(c) for c in (ellipsis_range(Integer(1),Ellipsis,Integer(5)))], Integer(0), Integer(20), fill={i: i-Integer(1) for i in (ellipsis_range(Integer(1),Ellipsis,Integer(4)))}, # long time ... color='blue', aspect_ratio=Integer(3)) Graphics object consisting of 9 graphics primitives - Extra options will get passed on to - show(), as long as they are valid:- sage: plot(sin(x^2), (x, -3, 3), # These labels will be nicely typeset ....: title=r'Plot of $\sin(x^2)$', axes_labels=['$x$','$y$']) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(x**Integer(2)), (x, -Integer(3), Integer(3)), # These labels will be nicely typeset ... title=r'Plot of $\sin(x^2)$', axes_labels=['$x$','$y$']) Graphics object consisting of 1 graphics primitive - sage: plot(sin(x^2), (x, -3, 3), # These will not ....: title='Plot of sin(x^2)', axes_labels=['x','y']) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(x**Integer(2)), (x, -Integer(3), Integer(3)), # These will not ... title='Plot of sin(x^2)', axes_labels=['x','y']) Graphics object consisting of 1 graphics primitive - sage: plot(sin(x^2), (x, -3, 3), # Large axes labels (w.r.t. the tick marks) ....: axes_labels=['x','y'], axes_labels_size=2.5) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(x**Integer(2)), (x, -Integer(3), Integer(3)), # Large axes labels (w.r.t. the tick marks) ... axes_labels=['x','y'], axes_labels_size=RealNumber('2.5')) Graphics object consisting of 1 graphics primitive - sage: plot(sin(x^2), (x, -3, 3), figsize=[8,2]) Graphics object consisting of 1 graphics primitive sage: plot(sin(x^2), (x, -3, 3)).show(figsize=[8,2]) # These are equivalent - >>> from sage.all import * >>> plot(sin(x**Integer(2)), (x, -Integer(3), Integer(3)), figsize=[Integer(8),Integer(2)]) Graphics object consisting of 1 graphics primitive >>> plot(sin(x**Integer(2)), (x, -Integer(3), Integer(3))).show(figsize=[Integer(8),Integer(2)]) # These are equivalent - This includes options for custom ticks and formatting. See documentation for - show()for more details.- sage: plot(sin(pi*x), (x, -8, 8), ticks=[[-7,-3,0,3,7], [-1/2,0,1/2]]) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(pi*x), (x, -Integer(8), Integer(8)), ticks=[[-Integer(7),-Integer(3),Integer(0),Integer(3),Integer(7)], [-Integer(1)/Integer(2),Integer(0),Integer(1)/Integer(2)]]) Graphics object consisting of 1 graphics primitive - sage: plot(2*x + 1, (x, 0, 5), ....: ticks=[[0, 1, e, pi, sqrt(20)], ....: [1, 3, 2*e + 1, 2*pi + 1, 2*sqrt(20) + 1]], ....: tick_formatter='latex') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(Integer(2)*x + Integer(1), (x, Integer(0), Integer(5)), ... ticks=[[Integer(0), Integer(1), e, pi, sqrt(Integer(20))], ... [Integer(1), Integer(3), Integer(2)*e + Integer(1), Integer(2)*pi + Integer(1), Integer(2)*sqrt(Integer(20)) + Integer(1)]], ... tick_formatter='latex') Graphics object consisting of 1 graphics primitive - This is particularly useful when setting custom ticks in multiples of \(\pi\). - sage: plot(sin(x), (x,0,2*pi), ticks=pi/3, tick_formatter=pi) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(sin(x), (x,Integer(0),Integer(2)*pi), ticks=pi/Integer(3), tick_formatter=pi) Graphics object consisting of 1 graphics primitive - You can even have custom tick labels along with custom positioning. - sage: plot(x**2, (x,0,3), ticks=[[1,2.5], [0.5,1,2]], ....: tick_formatter=[["$x_1$","$x_2$"],["$y_1$","$y_2$","$y_3$"]]) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(x**Integer(2), (x,Integer(0),Integer(3)), ticks=[[Integer(1),RealNumber('2.5')], [RealNumber('0.5'),Integer(1),Integer(2)]], ... tick_formatter=[["$x_1$","$x_2$"],["$y_1$","$y_2$","$y_3$"]]) Graphics object consisting of 1 graphics primitive - You can force Type 1 fonts in your figures by providing the relevant option as shown below. This also requires that LaTeX, dvipng and Ghostscript be installed: - sage: plot(x, typeset='type1') # optional - latex Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot(x, typeset='type1') # optional - latex Graphics object consisting of 1 graphics primitive - A example with excluded values: - sage: plot(floor(x), (x, 1, 10), exclude=[1..10]) Graphics object consisting of 11 graphics primitives - >>> from sage.all import * >>> plot(floor(x), (x, Integer(1), Integer(10)), exclude=(ellipsis_range(Integer(1),Ellipsis,Integer(10)))) Graphics object consisting of 11 graphics primitives - We exclude all points where - PrimePimakes a jump:- sage: jumps = [n for n in [1..100] if prime_pi(n) != prime_pi(n-1)] sage: plot(lambda x: prime_pi(x), (x, 1, 100), exclude=jumps) Graphics object consisting of 26 graphics primitives - >>> from sage.all import * >>> jumps = [n for n in (ellipsis_range(Integer(1),Ellipsis,Integer(100))) if prime_pi(n) != prime_pi(n-Integer(1))] >>> plot(lambda x: prime_pi(x), (x, Integer(1), Integer(100)), exclude=jumps) Graphics object consisting of 26 graphics primitives - Excluded points can also be given by an equation: - sage: g(x) = x^2 - 2*x - 2 sage: plot(1/g(x), (x, -3, 4), exclude=g(x)==0, ymin=-5, ymax=5) # long time Graphics object consisting of 3 graphics primitives - >>> from sage.all import * >>> __tmp__=var("x"); g = symbolic_expression(x**Integer(2) - Integer(2)*x - Integer(2)).function(x) >>> plot(Integer(1)/g(x), (x, -Integer(3), Integer(4)), exclude=g(x)==Integer(0), ymin=-Integer(5), ymax=Integer(5)) # long time Graphics object consisting of 3 graphics primitives - excludeand- detect_polescan be used together:- sage: f(x) = (floor(x)+0.5) / (1-(x-0.5)^2) sage: plot(f, (x, -3.5, 3.5), detect_poles='show', exclude=[-3..3], ....: ymin=-5, ymax=5) Graphics object consisting of 12 graphics primitives - >>> from sage.all import * >>> __tmp__=var("x"); f = symbolic_expression((floor(x)+RealNumber('0.5')) / (Integer(1)-(x-RealNumber('0.5'))**Integer(2))).function(x) >>> plot(f, (x, -RealNumber('3.5'), RealNumber('3.5')), detect_poles='show', exclude=(ellipsis_range(-Integer(3),Ellipsis,Integer(3))), ... ymin=-Integer(5), ymax=Integer(5)) Graphics object consisting of 12 graphics primitives - Regions in which the plot has no values are automatically excluded. The regions thus excluded are in addition to the exclusion points present in the - excludekeyword argument.:- sage: set_verbose(-1) sage: plot(arcsec, (x, -2, 2)) # [-1, 1] is excluded automatically Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> set_verbose(-Integer(1)) >>> plot(arcsec, (x, -Integer(2), Integer(2))) # [-1, 1] is excluded automatically Graphics object consisting of 2 graphics primitives - sage: plot(arcsec, (x, -2, 2), exclude=[1.5]) # x=1.5 is also excluded Graphics object consisting of 3 graphics primitives - >>> from sage.all import * >>> plot(arcsec, (x, -Integer(2), Integer(2)), exclude=[RealNumber('1.5')]) # x=1.5 is also excluded Graphics object consisting of 3 graphics primitives - sage: plot(arcsec(x/2), -2, 2) # plot should be empty; no valid points Graphics object consisting of 0 graphics primitives sage: plot(sqrt(x^2 - 1), -2, 2) # [-1, 1] is excluded automatically Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> plot(arcsec(x/Integer(2)), -Integer(2), Integer(2)) # plot should be empty; no valid points Graphics object consisting of 0 graphics primitives >>> plot(sqrt(x**Integer(2) - Integer(1)), -Integer(2), Integer(2)) # [-1, 1] is excluded automatically Graphics object consisting of 2 graphics primitives - sage: plot(arccsc, -2, 2) # [-1, 1] is excluded automatically Graphics object consisting of 2 graphics primitives sage: set_verbose(0) - >>> from sage.all import * >>> plot(arccsc, -Integer(2), Integer(2)) # [-1, 1] is excluded automatically Graphics object consisting of 2 graphics primitives >>> set_verbose(Integer(0)) 
- sage.plot.plot.plot_loglog(funcs, base=10, *args, **kwds)[source]¶
- Plot graphics in ‘loglog’ scale, that is, both the horizontal and the vertical axes will be in logarithmic scale. - INPUT: - base– (default: \(10\)) the base of the logarithm; this must be greater than 1. The base can be also given as a list or tuple- (basex, basey).- basexsets the base of the logarithm along the horizontal axis and- baseysets the base along the vertical axis.
- funcs– any Sage object which is acceptable to the- plot()
 - For all other inputs, look at the documentation of - plot().- EXAMPLES: - sage: plot_loglog(exp, (1,10)) # plot in loglog scale with base 10 Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot_loglog(exp, (Integer(1),Integer(10))) # plot in loglog scale with base 10 Graphics object consisting of 1 graphics primitive - sage: plot_loglog(exp, (1,10), base=2.1) # with base 2.1 on both axes # long time Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot_loglog(exp, (Integer(1),Integer(10)), base=RealNumber('2.1')) # with base 2.1 on both axes # long time Graphics object consisting of 1 graphics primitive - sage: plot_loglog(exp, (1,10), base=(2,3)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot_loglog(exp, (Integer(1),Integer(10)), base=(Integer(2),Integer(3))) Graphics object consisting of 1 graphics primitive 
- sage.plot.plot.plot_semilogx(funcs, base=10, *args, **kwds)[source]¶
- Plot graphics in ‘semilogx’ scale, that is, the horizontal axis will be in logarithmic scale. - INPUT: - base– (default: \(10\)) the base of the logarithm; this must be greater than 1
- funcs– any Sage object which is acceptable to the- plot()
 - For all other inputs, look at the documentation of - plot().- EXAMPLES: - sage: plot_semilogx(exp, (1,10)) # plot in semilogx scale, base 10 # long time Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot_semilogx(exp, (Integer(1),Integer(10))) # plot in semilogx scale, base 10 # long time Graphics object consisting of 1 graphics primitive - sage: plot_semilogx(exp, (1,10), base=2) # with base 2 Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot_semilogx(exp, (Integer(1),Integer(10)), base=Integer(2)) # with base 2 Graphics object consisting of 1 graphics primitive - sage: s = var('s') # Samples points logarithmically so graph is smooth sage: f = 4000000/(4000000 + 4000*s*i - s*s) sage: plot_semilogx(20*log(abs(f), 10), (s, 1, 1e6)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> s = var('s') # Samples points logarithmically so graph is smooth >>> f = Integer(4000000)/(Integer(4000000) + Integer(4000)*s*i - s*s) >>> plot_semilogx(Integer(20)*log(abs(f), Integer(10)), (s, Integer(1), RealNumber('1e6'))) Graphics object consisting of 1 graphics primitive 
- sage.plot.plot.plot_semilogy(funcs, base=10, *args, **kwds)[source]¶
- Plot graphics in ‘semilogy’ scale, that is, the vertical axis will be in logarithmic scale. - INPUT: - base– (default: \(10\)) the base of the logarithm; this must be greater than 1
- funcs– any Sage object which is acceptable to the- plot()
 - For all other inputs, look at the documentation of - plot().- EXAMPLES: - sage: plot_semilogy(exp, (1, 10)) # long time # plot in semilogy scale, base 10 Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot_semilogy(exp, (Integer(1), Integer(10))) # long time # plot in semilogy scale, base 10 Graphics object consisting of 1 graphics primitive - sage: plot_semilogy(exp, (1, 10), base=2) # long time # with base 2 Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> plot_semilogy(exp, (Integer(1), Integer(10)), base=Integer(2)) # long time # with base 2 Graphics object consisting of 1 graphics primitive 
- sage.plot.plot.polar_plot(funcs, aspect_ratio=1.0, *args, **kwds)[source]¶
- polar_plottakes a single function or a list or tuple of functions and plots them with polar coordinates in the given domain.- This function is equivalent to the - plot()command with the options- polar=Trueand- aspect_ratio=1. For more help on options, see the documentation for- plot().- INPUT: - funcs– a function
- other options are passed to plot 
 - EXAMPLES: - Here is a blue 8-leaved petal: - sage: polar_plot(sin(5*x)^2, (x, 0, 2*pi), color='blue') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> polar_plot(sin(Integer(5)*x)**Integer(2), (x, Integer(0), Integer(2)*pi), color='blue') Graphics object consisting of 1 graphics primitive - A red figure-8: - sage: polar_plot(abs(sqrt(1 - sin(x)^2)), (x, 0, 2*pi), color='red') Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> polar_plot(abs(sqrt(Integer(1) - sin(x)**Integer(2))), (x, Integer(0), Integer(2)*pi), color='red') Graphics object consisting of 1 graphics primitive - A green limacon of Pascal: - sage: polar_plot(2 + 2*cos(x), (x, 0, 2*pi), color=hue(0.3)) Graphics object consisting of 1 graphics primitive - >>> from sage.all import * >>> polar_plot(Integer(2) + Integer(2)*cos(x), (x, Integer(0), Integer(2)*pi), color=hue(RealNumber('0.3'))) Graphics object consisting of 1 graphics primitive - Several polar plots: - sage: polar_plot([2*sin(x), 2*cos(x)], (x, 0, 2*pi)) Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> polar_plot([Integer(2)*sin(x), Integer(2)*cos(x)], (x, Integer(0), Integer(2)*pi)) Graphics object consisting of 2 graphics primitives - A filled spiral: - sage: polar_plot(sqrt, 0, 2 * pi, fill=True) Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> polar_plot(sqrt, Integer(0), Integer(2) * pi, fill=True) Graphics object consisting of 2 graphics primitives - Fill the area between two functions: - sage: polar_plot(cos(4*x) + 1.5, 0, 2*pi, fill=0.5 * cos(4*x) + 2.5, ....: fillcolor='orange') Graphics object consisting of 2 graphics primitives - >>> from sage.all import * >>> polar_plot(cos(Integer(4)*x) + RealNumber('1.5'), Integer(0), Integer(2)*pi, fill=RealNumber('0.5') * cos(Integer(4)*x) + RealNumber('2.5'), ... fillcolor='orange') Graphics object consisting of 2 graphics primitives - Fill the area between several spirals: - sage: polar_plot([(1.2+k*0.2)*log(x) for k in range(6)], 1, 3 * pi, ....: fill={0: [1], 2: [3], 4: [5]}) Graphics object consisting of 9 graphics primitives - >>> from sage.all import * >>> polar_plot([(RealNumber('1.2')+k*RealNumber('0.2'))*log(x) for k in range(Integer(6))], Integer(1), Integer(3) * pi, ... fill={Integer(0): [Integer(1)], Integer(2): [Integer(3)], Integer(4): [Integer(5)]}) Graphics object consisting of 9 graphics primitives - Exclude points at discontinuities: - sage: polar_plot(log(floor(x)), (x, 1, 4*pi), exclude=[1..12]) Graphics object consisting of 12 graphics primitives - >>> from sage.all import * >>> polar_plot(log(floor(x)), (x, Integer(1), Integer(4)*pi), exclude=(ellipsis_range(Integer(1),Ellipsis,Integer(12)))) Graphics object consisting of 12 graphics primitives 
- sage.plot.plot.reshape(v, n, m)[source]¶
- Helper function for creating graphics arrays. - The input array is flattened and turned into an \(n imes m\) array, with blank graphics object padded at the end, if necessary. - INPUT: - v– list of lists or tuples
- n,- m– integers
 - OUTPUT: list of lists of graphics objects - EXAMPLES: - sage: L = [plot(sin(k*x), (x,-pi,pi)) for k in range(10)] sage: graphics_array(L,3,4) # long time (up to 4s on sage.math, 2012) Graphics Array of size 3 x 4 - >>> from sage.all import * >>> L = [plot(sin(k*x), (x,-pi,pi)) for k in range(Integer(10))] >>> graphics_array(L,Integer(3),Integer(4)) # long time (up to 4s on sage.math, 2012) Graphics Array of size 3 x 4 - sage: M = [[plot(sin(k*x), (x,-pi,pi)) for k in range(3)], ....: [plot(cos(j*x), (x,-pi,pi)) for j in [3..5]]] sage: graphics_array(M,6,1) # long time (up to 4s on sage.math, 2012) Graphics Array of size 6 x 1 - >>> from sage.all import * >>> M = [[plot(sin(k*x), (x,-pi,pi)) for k in range(Integer(3))], ... [plot(cos(j*x), (x,-pi,pi)) for j in (ellipsis_range(Integer(3),Ellipsis,Integer(5)))]] >>> graphics_array(M,Integer(6),Integer(1)) # long time (up to 4s on sage.math, 2012) Graphics Array of size 6 x 1 
- sage.plot.plot.to_float_list(v)[source]¶
- Given a list or tuple or iterable v, coerce each element of v to a float and make a list out of the result. - EXAMPLES: - sage: from sage.plot.plot import to_float_list sage: to_float_list([1,1/2,3]) [1.0, 0.5, 3.0] - >>> from sage.all import * >>> from sage.plot.plot import to_float_list >>> to_float_list([Integer(1),Integer(1)/Integer(2),Integer(3)]) [1.0, 0.5, 3.0] 
- sage.plot.plot.xydata_from_point_list(points)[source]¶
- Return two lists (xdata, ydata), each coerced to a list of floats, which correspond to the x-coordinates and the y-coordinates of the points. - The points parameter can be a list of 2-tuples or some object that yields a list of one or two numbers. - This function can potentially be very slow for large point sets.