Integer factorization using FLINT¶
AUTHORS:
- Michael Orlitzky (2023) 
- sage.rings.factorint_flint.factor_using_flint(n)[source]¶
- Factor the nonzero integer - nusing FLINT.- This function returns a list of (factor, exponent) pairs. The factors will be of type - Integer, and the exponents will be of type- int.- INPUT: - n– a nonzero sage Integer; the number to factor
 - OUTPUT: - A list of - (Integer, int)pairs representing the factors and their exponents.- EXAMPLES: - sage: from sage.rings.factorint_flint import factor_using_flint sage: n = ZZ(9962572652930382) sage: factors = factor_using_flint(n) sage: factors [(2, 1), (3, 1), (1660428775488397, 1)] sage: prod( f^e for (f,e) in factors ) == n True Negative numbers will have a leading factor of ``(-1)^1``:: sage: n = ZZ(-1 * 2 * 3) sage: factor_using_flint(n) [(-1, 1), (2, 1), (3, 1)] - The factorization of unity is empty: - sage: factor_using_flint(ZZ.one()) [] - >>> from sage.all import * >>> factor_using_flint(ZZ.one()) [] - While zero has a single factor, of… zero: - sage: factor_using_flint(ZZ.zero()) [(0, 1)] - >>> from sage.all import * >>> factor_using_flint(ZZ.zero()) [(0, 1)]