Base class for dense matrices¶
- class sage.matrix.matrix_dense.Matrix_dense[source]¶
- Bases: - Matrix- antitranspose()[source]¶
- Return the antitranspose of - self, without changing- self.- EXAMPLES: - sage: A = matrix(2,3,range(6)); A [0 1 2] [3 4 5] sage: A.antitranspose() [5 2] [4 1] [3 0] - >>> from sage.all import * >>> A = matrix(Integer(2),Integer(3),range(Integer(6))); A [0 1 2] [3 4 5] >>> A.antitranspose() [5 2] [4 1] [3 0] - sage: A.subdivide(1,2); A [0 1|2] [---+-] [3 4|5] sage: A.antitranspose() [5|2] [-+-] [4|1] [3|0] - >>> from sage.all import * >>> A.subdivide(Integer(1),Integer(2)); A [0 1|2] [---+-] [3 4|5] >>> A.antitranspose() [5|2] [-+-] [4|1] [3|0] 
 - transpose()[source]¶
- Return the transpose of - self, without changing- self.- EXAMPLES: We create a matrix, compute its transpose, and note that the original matrix is not changed. - sage: M = MatrixSpace(QQ, 2) sage: A = M([1,2,3,4]) sage: B = A.transpose() sage: print(B) [1 3] [2 4] sage: print(A) [1 2] [3 4] - >>> from sage.all import * >>> M = MatrixSpace(QQ, Integer(2)) >>> A = M([Integer(1),Integer(2),Integer(3),Integer(4)]) >>> B = A.transpose() >>> print(B) [1 3] [2 4] >>> print(A) [1 2] [3 4] - .Tis a convenient shortcut for the transpose:- sage: A.T [1 3] [2 4] - >>> from sage.all import * >>> A.T [1 3] [2 4] - sage: A.subdivide(None, 1); A [1|2] [3|4] sage: A.transpose() [1 3] [---] [2 4] - >>> from sage.all import * >>> A.subdivide(None, Integer(1)); A [1|2] [3|4] >>> A.transpose() [1 3] [---] [2 4]