Finitely and Freely Generated Lie Conformal Algebras.¶
AUTHORS:
- Reimundo Heluani (2019-08-09): Initial implementation. 
- class sage.algebras.lie_conformal_algebras.finitely_freely_generated_lca.FinitelyFreelyGeneratedLCA(R, index_set=None, central_elements=None, category=None, element_class=None, prefix=None, names=None, latex_names=None, **kwds)[source]¶
- Bases: - FreelyGeneratedLieConformalAlgebra- Abstract base class for finitely generated Lie conformal algebras. - This class provides minimal functionality, simply sets the number of generators. - central_elements()[source]¶
- The central elements of this Lie conformal algebra. - EXAMPLES: - sage: R = lie_conformal_algebras.NeveuSchwarz(QQ); R.central_elements() (C,) - >>> from sage.all import * >>> R = lie_conformal_algebras.NeveuSchwarz(QQ); R.central_elements() (C,) 
 - gens()[source]¶
- The generators for this Lie conformal algebra. - OUTPUT: - This method returns a tuple with the (finite) generators of this Lie conformal algebra. - EXAMPLES: - sage: Vir = lie_conformal_algebras.Virasoro(QQ); sage: Vir.gens() (L, C) - >>> from sage.all import * >>> Vir = lie_conformal_algebras.Virasoro(QQ); >>> Vir.gens() (L, C) - See also - lie_conformal_algebra_generators
 - ngens()[source]¶
- The number of generators of this Lie conformal algebra. - EXAMPLES: - sage: Vir = lie_conformal_algebras.Virasoro(QQ); Vir.ngens() 2 sage: V = lie_conformal_algebras.Affine(QQ, 'A1'); V.ngens() 4 - >>> from sage.all import * >>> Vir = lie_conformal_algebras.Virasoro(QQ); Vir.ngens() 2 >>> V = lie_conformal_algebras.Affine(QQ, 'A1'); V.ngens() 4