Graded Lie Conformal Algebras¶
AUTHORS:
- Reimundo Heluani (2019-10-05): Initial implementation. 
- class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebras(base_category)[source]¶
- Bases: - GradedLieConformalAlgebrasCategory- The category of graded Lie conformal algebras. - EXAMPLES: - sage: C = LieConformalAlgebras(QQbar).Graded(); C # needs sage.rings.number_field Category of H-graded Lie conformal algebras over Algebraic Field sage: CS = LieConformalAlgebras(QQ).Graded().Super(); CS Category of H-graded super Lie conformal algebras over Rational Field sage: CS is LieConformalAlgebras(QQ).Super().Graded() True - >>> from sage.all import * >>> C = LieConformalAlgebras(QQbar).Graded(); C # needs sage.rings.number_field Category of H-graded Lie conformal algebras over Algebraic Field >>> CS = LieConformalAlgebras(QQ).Graded().Super(); CS Category of H-graded super Lie conformal algebras over Rational Field >>> CS is LieConformalAlgebras(QQ).Super().Graded() True 
- class sage.categories.graded_lie_conformal_algebras.GradedLieConformalAlgebrasCategory(base_category)[source]¶
- Bases: - GradedModulesCategory- Super(base_ring=None)[source]¶
- Return the super-analogue category of - self.- INPUT: - base_ring– this is ignored
 - EXAMPLES: - sage: # needs sage.rings.number_field sage: C = LieConformalAlgebras(QQbar) sage: C.Graded().Super() is C.Super().Graded() True sage: Cp = C.WithBasis() sage: Cp.Graded().Super() is Cp.Super().Graded() True - >>> from sage.all import * >>> # needs sage.rings.number_field >>> C = LieConformalAlgebras(QQbar) >>> C.Graded().Super() is C.Super().Graded() True >>> Cp = C.WithBasis() >>> Cp.Graded().Super() is Cp.Super().Graded() True