Classical symmetric functions¶
- class sage.combinat.sf.classical.SymmetricFunctionAlgebra_classical(Sym, basis_name=None, prefix=None, graded=True)[source]¶
- Bases: - SymmetricFunctionAlgebra_generic- The class of classical symmetric functions. - Todo - delete this class once all coercions will be handled by Sage’s coercion model - class Element[source]¶
- Bases: - SymmetricFunctionAlgebra_generic_Element- A symmetric function. 
 
- sage.combinat.sf.classical.init()[source]¶
- Set up the conversion functions between the classical bases. - EXAMPLES: - sage: from sage.combinat.sf.classical import init sage: sage.combinat.sf.classical.conversion_functions = {} sage: init() sage: sage.combinat.sf.classical.conversion_functions[('Schur', 'powersum')] <built-in function t_SCHUR_POWSYM_symmetrica> - >>> from sage.all import * >>> from sage.combinat.sf.classical import init >>> sage.combinat.sf.classical.conversion_functions = {} >>> init() >>> sage.combinat.sf.classical.conversion_functions[('Schur', 'powersum')] <built-in function t_SCHUR_POWSYM_symmetrica> - The following checks if the bug described in Issue #15312 is fixed. - sage: change = sage.combinat.sf.classical.conversion_functions[('powersum', 'Schur')] sage: hideme = change({Partition([1]*47):ZZ(1)}) # long time sage: change({Partition([2,2]):QQ(1)}) s[1, 1, 1, 1] - s[2, 1, 1] + 2*s[2, 2] - s[3, 1] + s[4] - >>> from sage.all import * >>> change = sage.combinat.sf.classical.conversion_functions[('powersum', 'Schur')] >>> hideme = change({Partition([Integer(1)]*Integer(47)):ZZ(Integer(1))}) # long time >>> change({Partition([Integer(2),Integer(2)]):QQ(Integer(1))}) s[1, 1, 1, 1] - s[2, 1, 1] + 2*s[2, 2] - s[3, 1] + s[4]