Ring of pari objects¶
AUTHORS:
- William Stein (2004): Initial version. 
- Simon King (2011-08-24): Use UniqueRepresentation, element_class and proper initialisation of elements. 
- class sage.rings.pari_ring.Pari(x, parent=None)[source]¶
- Bases: - RingElement- Element of Pari pseudo-ring. 
- class sage.rings.pari_ring.PariRing[source]¶
- 
EXAMPLES: sage: R = PariRing(); R Pseudoring of all PARI objects. sage: loads(R.dumps()) is R True >>> from sage.all import * >>> R = PariRing(); R Pseudoring of all PARI objects. >>> loads(R.dumps()) is R True - random_element(x=None, y=None, distribution=None)[source]¶
- Return a random integer in Pari. - Note - The given arguments are passed to - ZZ.random_element(...).- INPUT: - \(x\), \(y\) – optional integers, that are lower and upper bound for the result. If only \(x\) is provided, then the result is between 0 and \(x-1\), inclusive. If both are provided, then the result is between \(x\) and \(y-1\), inclusive. 
- distribution– (optional) string, so that- ZZcan make sense of it as a probability distribution
 - EXAMPLES: - sage: R = PariRing() sage: R.random_element().parent() is R True sage: R(5) <= R.random_element(5,13) < R(13) True sage: R.random_element(distribution='1/n').parent() is R True - >>> from sage.all import * >>> R = PariRing() >>> R.random_element().parent() is R True >>> R(Integer(5)) <= R.random_element(Integer(5),Integer(13)) < R(Integer(13)) True >>> R.random_element(distribution='1/n').parent() is R True