Finite complex reflection groups¶
Let \(V\) be a finite-dimensional complex vector space. A reflection of \(V\) is an operator \(r \in \operatorname{GL}(V)\) that has finite order and fixes pointwise a hyperplane in \(V\).
For more definitions and classification types of finite complex reflection groups, see Wikipedia article Complex_reflection_group.
The point of entry to work with reflection groups is ReflectionGroup()
which can be used with finite Cartan-Killing types:
sage: ReflectionGroup(['A',2])
Irreducible real reflection group of rank 2 and type A2
sage: ReflectionGroup(['F',4])
Irreducible real reflection group of rank 4 and type F4
sage: ReflectionGroup(['H',3])
Irreducible real reflection group of rank 3 and type H3
>>> from sage.all import *
>>> ReflectionGroup(['A',Integer(2)])
Irreducible real reflection group of rank 2 and type A2
>>> ReflectionGroup(['F',Integer(4)])
Irreducible real reflection group of rank 4 and type F4
>>> ReflectionGroup(['H',Integer(3)])
Irreducible real reflection group of rank 3 and type H3
or with Shephard-Todd types:
sage: ReflectionGroup((1,1,3))
Irreducible real reflection group of rank 2 and type A2
sage: ReflectionGroup((2,1,3))
Irreducible real reflection group of rank 3 and type B3
sage: ReflectionGroup((3,1,3))
Irreducible complex reflection group of rank 3 and type G(3,1,3)
sage: ReflectionGroup((4,2,3))
Irreducible complex reflection group of rank 3 and type G(4,2,3)
sage: ReflectionGroup(4)
Irreducible complex reflection group of rank 2 and type ST4
sage: ReflectionGroup(31)
Irreducible complex reflection group of rank 4 and type ST31
>>> from sage.all import *
>>> ReflectionGroup((Integer(1),Integer(1),Integer(3)))
Irreducible real reflection group of rank 2 and type A2
>>> ReflectionGroup((Integer(2),Integer(1),Integer(3)))
Irreducible real reflection group of rank 3 and type B3
>>> ReflectionGroup((Integer(3),Integer(1),Integer(3)))
Irreducible complex reflection group of rank 3 and type G(3,1,3)
>>> ReflectionGroup((Integer(4),Integer(2),Integer(3)))
Irreducible complex reflection group of rank 3 and type G(4,2,3)
>>> ReflectionGroup(Integer(4))
Irreducible complex reflection group of rank 2 and type ST4
>>> ReflectionGroup(Integer(31))
Irreducible complex reflection group of rank 4 and type ST31
Also reducible types are allowed using concatenation:
sage: ReflectionGroup(['A',3],(4,2,3))
Reducible complex reflection group of rank 6 and type A3 x G(4,2,3)
>>> from sage.all import *
>>> ReflectionGroup(['A',Integer(3)],(Integer(4),Integer(2),Integer(3)))
Reducible complex reflection group of rank 6 and type A3 x G(4,2,3)
Some special cases also occur, among them are:
sage: W = ReflectionGroup((2,2,2)); W
Reducible real reflection group of rank 2 and type A1 x A1
sage: W = ReflectionGroup((2,2,3)); W
Irreducible real reflection group of rank 3 and type A3
>>> from sage.all import *
>>> W = ReflectionGroup((Integer(2),Integer(2),Integer(2))); W
Reducible real reflection group of rank 2 and type A1 x A1
>>> W = ReflectionGroup((Integer(2),Integer(2),Integer(3))); W
Irreducible real reflection group of rank 3 and type A3
Warning
Uses the GAP3 package Chevie which is available as an
experimental package (installed by sage -i gap3) or to
download by hand from Jean Michel’s website.
A guided tour¶
We start with the example type \(B_2\):
sage: W = ReflectionGroup(['B',2]); W
Irreducible real reflection group of rank 2 and type B2
>>> from sage.all import *
>>> W = ReflectionGroup(['B',Integer(2)]); W
Irreducible real reflection group of rank 2 and type B2
Most importantly, observe that the group elements are usually represented by permutations of the roots:
sage: for w in W: print(w)
()
(1,3)(2,6)(5,7)
(1,5)(2,4)(6,8)
(1,7,5,3)(2,4,6,8)
(1,3,5,7)(2,8,6,4)
(2,8)(3,7)(4,6)
(1,7)(3,5)(4,8)
(1,5)(2,6)(3,7)(4,8)
>>> from sage.all import *
>>> for w in W: print(w)
()
(1,3)(2,6)(5,7)
(1,5)(2,4)(6,8)
(1,7,5,3)(2,4,6,8)
(1,3,5,7)(2,8,6,4)
(2,8)(3,7)(4,6)
(1,7)(3,5)(4,8)
(1,5)(2,6)(3,7)(4,8)
This has the drawback that one can hardly see anything. Usually, one would look at elements with either of the following methods:
sage: for w in W: w.reduced_word()
[]
[2]
[1]
[1, 2]
[2, 1]
[2, 1, 2]
[1, 2, 1]
[1, 2, 1, 2]
sage: for w in W: w.reduced_word_in_reflections()
[]
[2]
[1]
[1, 2]
[1, 4]
[3]
[4]
[1, 3]
sage: for w in W: w.reduced_word(); w.to_matrix(); print("")
[]
[1 0]
[0 1]
[2]
[ 1  1]
[ 0 -1]
[1]
[-1  0]
[ 2  1]
[1, 2]
[-1 -1]
[ 2  1]
[2, 1]
[ 1  1]
[-2 -1]
[2, 1, 2]
[ 1  0]
[-2 -1]
[1, 2, 1]
[-1 -1]
[ 0  1]
[1, 2, 1, 2]
[-1  0]
[ 0 -1]
>>> from sage.all import *
>>> for w in W: w.reduced_word()
[]
[2]
[1]
[1, 2]
[2, 1]
[2, 1, 2]
[1, 2, 1]
[1, 2, 1, 2]
>>> for w in W: w.reduced_word_in_reflections()
[]
[2]
[1]
[1, 2]
[1, 4]
[3]
[4]
[1, 3]
>>> for w in W: w.reduced_word(); w.to_matrix(); print("")
[]
[1 0]
[0 1]
<BLANKLINE>
[2]
[ 1  1]
[ 0 -1]
<BLANKLINE>
[1]
[-1  0]
[ 2  1]
<BLANKLINE>
[1, 2]
[-1 -1]
[ 2  1]
<BLANKLINE>
[2, 1]
[ 1  1]
[-2 -1]
<BLANKLINE>
[2, 1, 2]
[ 1  0]
[-2 -1]
<BLANKLINE>
[1, 2, 1]
[-1 -1]
[ 0  1]
<BLANKLINE>
[1, 2, 1, 2]
[-1  0]
[ 0 -1]
<BLANKLINE>
The standard references for actions of complex reflection groups have the matrices acting on the right, so:
sage: W.simple_reflection(1).to_matrix()
[-1  0]
[ 2  1]
>>> from sage.all import *
>>> W.simple_reflection(Integer(1)).to_matrix()
[-1  0]
[ 2  1]
sends the simple root \(\alpha_0\), or (1,0) in vector notation, to
its negative, while sending \(\alpha_1\) to \(2\alpha_0+\alpha_1\).
Todo
- properly provide root systems for real reflection groups 
- element class should be unique to be able to work with large groups without creating elements multiple times 
- is_shephard_group,- is_generalized_coxeter_group
- exponents and coexponents 
- coinvariant ring: - fake degrees from Torsten Hoge 
- operation of linear characters on all characters 
- harmonic polynomials 
 
- linear forms for hyperplanes 
- field of definition 
- intersection lattice and characteristic polynomial: - X = [ alpha(t) for t in W.distinguished_reflections() ] X = Matrix(CF,X).transpose() Y = Matroid(X) 
- linear characters 
- permutation pi on irreducibles 
- hyperplane orbits (76.13 in Gap Manual) 
- improve invariant_form with a code similar to the one in - reflection_group_real.py
- add a method - reflection_to_rootor- distinguished_reflection_to_positive_root
- diagrams in ASCII-art (76.15) 
- standard (BMR) presentations 
- character table directly from Chevie 
- GenericOrder(76.20),- TorusOrder(76.21)
- correct fundamental invariants for \(G_34\), check the others 
- copy hardcoded data (degrees, invariants, braid relations…) into sage 
- add other hardcoded data from the tables in chevie (location is SAGEDIR/local/gap3/gap-jm5-2015-02-01/gap3/pkg/chevie/tbl): basic derivations, discriminant, … 
- transfer code for - reduced_word_in_reflectionsinto Gap4 or Sage
- list of reduced words for an element 
- list of reduced words in reflections for an element 
- Hurwitz action? 
- is_crystallographic()should be hardcoded
AUTHORS:
- Christian Stump (2015): initial version 
- class sage.combinat.root_system.reflection_group_complex.ComplexReflectionGroup(W_types, index_set=None, hyperplane_index_set=None, reflection_index_set=None)[source]¶
- Bases: - UniqueRepresentation,- PermutationGroup_generic- A complex reflection group given as a permutation group. - See also - class Element[source]¶
- Bases: - ComplexReflectionGroupElement- conjugacy_class()[source]¶
- Return the conjugacy class of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: for w in W: sorted(w.conjugacy_class()) [()] [(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)] [(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)] [(1,2,6)(3,4,5), (1,6,2)(3,5,4)] [(1,2,6)(3,4,5), (1,6,2)(3,5,4)] [(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> for w in W: sorted(w.conjugacy_class()) [()] [(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)] [(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)] [(1,2,6)(3,4,5), (1,6,2)(3,5,4)] [(1,2,6)(3,4,5), (1,6,2)(3,5,4)] [(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)] 
 - conjugacy_class_representative()[source]¶
- Return a representative of the conjugacy class of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: for w in W: ....: print('%s %s'%(w.reduced_word(), w.conjugacy_class_representative().reduced_word())) [] [] [2] [1] [1] [1] [1, 2] [1, 2] [2, 1] [1, 2] [1, 2, 1] [1] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> for w in W: ... print('%s %s'%(w.reduced_word(), w.conjugacy_class_representative().reduced_word())) [] [] [2] [1] [1] [1] [1, 2] [1, 2] [2, 1] [1, 2] [1, 2, 1] [1] 
 - reflection_length(in_unitary_group=False)[source]¶
- Return the reflection length of - self.- This is the minimal numbers of reflections needed to obtain - self.- INPUT: - in_unitary_group– boolean (default:- False); if- True, the reflection length is computed in the unitary group which is the dimension of the move space of- self
 - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: sorted([t.reflection_length() for t in W]) [0, 1, 1, 1, 2, 2] sage: W = ReflectionGroup((2,1,2)) sage: sorted([t.reflection_length() for t in W]) [0, 1, 1, 1, 1, 2, 2, 2] sage: W = ReflectionGroup((2,2,2)) sage: sorted([t.reflection_length() for t in W]) [0, 1, 1, 2] sage: W = ReflectionGroup((3,1,2)) sage: sorted([t.reflection_length() for t in W]) [0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> sorted([t.reflection_length() for t in W]) [0, 1, 1, 1, 2, 2] >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(2))) >>> sorted([t.reflection_length() for t in W]) [0, 1, 1, 1, 1, 2, 2, 2] >>> W = ReflectionGroup((Integer(2),Integer(2),Integer(2))) >>> sorted([t.reflection_length() for t in W]) [0, 1, 1, 2] >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) >>> sorted([t.reflection_length() for t in W]) [0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] 
 
 - apply_vector_field(f, vf=None)[source]¶
- Return a rational function obtained by applying the vector field - vfto the rational function- f.- If - vfis not given, the primitive vector field is used.- EXAMPLES: - sage: W = ReflectionGroup(['A',2]) sage: for x in W.primitive_vector_field()[0].parent().gens(): ....: print(W.apply_vector_field(x)) 3*x1/(6*x0^2 - 6*x0*x1 - 12*x1^2) 1/(6*x0^2 - 6*x0*x1 - 12*x1^2) - >>> from sage.all import * >>> W = ReflectionGroup(['A',Integer(2)]) >>> for x in W.primitive_vector_field()[Integer(0)].parent().gens(): ... print(W.apply_vector_field(x)) 3*x1/(6*x0^2 - 6*x0*x1 - 12*x1^2) 1/(6*x0^2 - 6*x0*x1 - 12*x1^2) 
 - braid_relations()[source]¶
- Return the braid relations of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.braid_relations() [[[1, 2, 1], [2, 1, 2]]] sage: W = ReflectionGroup((2,1,3)) sage: W.braid_relations() [[[1, 2, 1, 2], [2, 1, 2, 1]], [[1, 3], [3, 1]], [[2, 3, 2], [3, 2, 3]]] sage: W = ReflectionGroup((2,2,3)) sage: W.braid_relations() [[[1, 2, 1], [2, 1, 2]], [[1, 3], [3, 1]], [[2, 3, 2], [3, 2, 3]]] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.braid_relations() [[[1, 2, 1], [2, 1, 2]]] >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(3))) >>> W.braid_relations() [[[1, 2, 1, 2], [2, 1, 2, 1]], [[1, 3], [3, 1]], [[2, 3, 2], [3, 2, 3]]] >>> W = ReflectionGroup((Integer(2),Integer(2),Integer(3))) >>> W.braid_relations() [[[1, 2, 1], [2, 1, 2]], [[1, 3], [3, 1]], [[2, 3, 2], [3, 2, 3]]] 
 - cartan_matrix()[source]¶
- Return the Cartan matrix associated with - self.- If - selfis crystallographic, the returned Cartan matrix is an instance of- CartanMatrix, and a normal matrix otherwise.- Let \(s_1, \ldots, s_n\) be a set of reflections which generate - selfwith associated simple roots \(s_1,\ldots,s_n\) and simple coroots \(s^\vee_i\). Then the Cartan matrix \(C = (c_{ij})\) is given by \(s^\vee_i(s_j)\). The Cartan matrix completely determines the reflection representation if the \(s_i\) are linearly independent.- EXAMPLES: - sage: ReflectionGroup(['A',4]).cartan_matrix() [ 2 -1 0 0] [-1 2 -1 0] [ 0 -1 2 -1] [ 0 0 -1 2] sage: ReflectionGroup(['H',4]).cartan_matrix() [ 2 E(5)^2 + E(5)^3 0 0] [E(5)^2 + E(5)^3 2 -1 0] [ 0 -1 2 -1] [ 0 0 -1 2] sage: ReflectionGroup(4).cartan_matrix() [-2*E(3) - E(3)^2 E(3)^2] [ -E(3)^2 -2*E(3) - E(3)^2] sage: ReflectionGroup((4,2,2)).cartan_matrix() [ 2 -2*E(4) -2] [ E(4) 2 1 - E(4)] [ -1 1 + E(4) 2] - >>> from sage.all import * >>> ReflectionGroup(['A',Integer(4)]).cartan_matrix() [ 2 -1 0 0] [-1 2 -1 0] [ 0 -1 2 -1] [ 0 0 -1 2] >>> ReflectionGroup(['H',Integer(4)]).cartan_matrix() [ 2 E(5)^2 + E(5)^3 0 0] [E(5)^2 + E(5)^3 2 -1 0] [ 0 -1 2 -1] [ 0 0 -1 2] >>> ReflectionGroup(Integer(4)).cartan_matrix() [-2*E(3) - E(3)^2 E(3)^2] [ -E(3)^2 -2*E(3) - E(3)^2] >>> ReflectionGroup((Integer(4),Integer(2),Integer(2))).cartan_matrix() [ 2 -2*E(4) -2] [ E(4) 2 1 - E(4)] [ -1 1 + E(4) 2] 
 - codegrees()[source]¶
- Return the codegrees of - selfordered within each irreducible component of- self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,4)) sage: W.codegrees() (2, 1, 0) sage: W = ReflectionGroup((2,1,4)) sage: W.codegrees() (6, 4, 2, 0) sage: W = ReflectionGroup((4,1,4)) sage: W.codegrees() (12, 8, 4, 0) sage: W = ReflectionGroup((4,2,4)) sage: W.codegrees() (12, 8, 4, 0) sage: W = ReflectionGroup((4,4,4)) sage: W.codegrees() (8, 8, 4, 0) sage: W = ReflectionGroup((1,1,4), (3,1,2)) sage: W.codegrees() (2, 1, 0, 3, 0) sage: W = ReflectionGroup((1,1,4), (6,1,12), 23) sage: W.codegrees() (2, 1, 0, 66, 60, 54, 48, 42, 36, 30, 24, 18, 12, 6, 0, 8, 4, 0) - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4))) >>> W.codegrees() (2, 1, 0) >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(4))) >>> W.codegrees() (6, 4, 2, 0) >>> W = ReflectionGroup((Integer(4),Integer(1),Integer(4))) >>> W.codegrees() (12, 8, 4, 0) >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(4))) >>> W.codegrees() (12, 8, 4, 0) >>> W = ReflectionGroup((Integer(4),Integer(4),Integer(4))) >>> W.codegrees() (8, 8, 4, 0) >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), (Integer(3),Integer(1),Integer(2))) >>> W.codegrees() (2, 1, 0, 3, 0) >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), (Integer(6),Integer(1),Integer(12)), Integer(23)) >>> W.codegrees() (2, 1, 0, 66, 60, 54, 48, 42, 36, 30, 24, 18, 12, 6, 0, 8, 4, 0) 
 - conjugacy_classes()[source]¶
- Return the conjugacy classes of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: for C in W.conjugacy_classes(): sorted(C) [()] [(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)] [(1,2,6)(3,4,5), (1,6,2)(3,5,4)] sage: W = ReflectionGroup((1,1,4)) sage: sum(len(C) for C in W.conjugacy_classes()) == W.cardinality() True sage: W = ReflectionGroup((3,1,2)) sage: sum(len(C) for C in W.conjugacy_classes()) == W.cardinality() True sage: W = ReflectionGroup(23) sage: sum(len(C) for C in W.conjugacy_classes()) == W.cardinality() True - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> for C in W.conjugacy_classes(): sorted(C) [()] [(1,3)(2,5)(4,6), (1,4)(2,3)(5,6), (1,5)(2,4)(3,6)] [(1,2,6)(3,4,5), (1,6,2)(3,5,4)] >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4))) >>> sum(len(C) for C in W.conjugacy_classes()) == W.cardinality() True >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) >>> sum(len(C) for C in W.conjugacy_classes()) == W.cardinality() True >>> W = ReflectionGroup(Integer(23)) >>> sum(len(C) for C in W.conjugacy_classes()) == W.cardinality() True 
 - conjugacy_classes_representatives()[source]¶
- Return the shortest representatives of the conjugacy classes of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: [w.reduced_word() for w in W.conjugacy_classes_representatives()] [[], [1], [1, 2]] sage: W = ReflectionGroup((1,1,4)) sage: [w.reduced_word() for w in W.conjugacy_classes_representatives()] [[], [1], [1, 3], [1, 2], [1, 3, 2]] sage: W = ReflectionGroup((3,1,2)) sage: [w.reduced_word() for w in W.conjugacy_classes_representatives()] [[], [1], [1, 1], [2, 1, 2, 1], [2, 1, 2, 1, 1], [2, 1, 1, 2, 1, 1], [2], [1, 2], [1, 1, 2]] sage: W = ReflectionGroup(23) sage: [w.reduced_word() for w in W.conjugacy_classes_representatives()] [[], [1], [1, 2], [1, 3], [2, 3], [1, 2, 3], [1, 2, 1, 2], [1, 2, 1, 2, 3], [1, 2, 1, 2, 3, 2, 1, 2, 3], [1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3]] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> [w.reduced_word() for w in W.conjugacy_classes_representatives()] [[], [1], [1, 2]] >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4))) >>> [w.reduced_word() for w in W.conjugacy_classes_representatives()] [[], [1], [1, 3], [1, 2], [1, 3, 2]] >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) >>> [w.reduced_word() for w in W.conjugacy_classes_representatives()] [[], [1], [1, 1], [2, 1, 2, 1], [2, 1, 2, 1, 1], [2, 1, 1, 2, 1, 1], [2], [1, 2], [1, 1, 2]] >>> W = ReflectionGroup(Integer(23)) >>> [w.reduced_word() for w in W.conjugacy_classes_representatives()] [[], [1], [1, 2], [1, 3], [2, 3], [1, 2, 3], [1, 2, 1, 2], [1, 2, 1, 2, 3], [1, 2, 1, 2, 3, 2, 1, 2, 3], [1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3]] 
 - coxeter_number(chi=None)[source]¶
- Return the Coxeter number associated to the irreducible character chi of the reflection group - self.- The Coxeter number of a complex reflection group \(W\) is the trace in a character \(\chi\) of \(\sum_t (Id - t)\), where \(t\) runs over all reflections. The result is always an integer. - When \(\chi\) is the reflection representation, the Coxeter number is equal to \(\frac{N + N^*}{n}\) where \(N\) is the number of reflections, \(N^*\) is the number of reflection hyperplanes, and \(n\) is the rank of \(W\). If \(W\) is further well-generated, the Coxeter number is equal to the highest degree d_n and to the order of a Coxeter element \(c\) of \(W\). - EXAMPLES: - sage: W = ReflectionGroup(["H",4]) sage: W.coxeter_number() 30 sage: all(W.coxeter_number(chi).is_integer() ....: for chi in W.irreducible_characters()) True sage: W = ReflectionGroup(14) sage: W.coxeter_number() 24 - >>> from sage.all import * >>> W = ReflectionGroup(["H",Integer(4)]) >>> W.coxeter_number() 30 >>> all(W.coxeter_number(chi).is_integer() ... for chi in W.irreducible_characters()) True >>> W = ReflectionGroup(Integer(14)) >>> W.coxeter_number() 24 
 - degrees()[source]¶
- Return the degrees of - selfordered within each irreducible component of- self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,4)) sage: W.degrees() (2, 3, 4) sage: W = ReflectionGroup((2,1,4)) sage: W.degrees() (2, 4, 6, 8) sage: W = ReflectionGroup((4,1,4)) sage: W.degrees() (4, 8, 12, 16) sage: W = ReflectionGroup((4,2,4)) sage: W.degrees() (4, 8, 8, 12) sage: W = ReflectionGroup((4,4,4)) sage: W.degrees() (4, 4, 8, 12) - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4))) >>> W.degrees() (2, 3, 4) >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(4))) >>> W.degrees() (2, 4, 6, 8) >>> W = ReflectionGroup((Integer(4),Integer(1),Integer(4))) >>> W.degrees() (4, 8, 12, 16) >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(4))) >>> W.degrees() (4, 8, 8, 12) >>> W = ReflectionGroup((Integer(4),Integer(4),Integer(4))) >>> W.degrees() (4, 4, 8, 12) - Examples of reducible types: - sage: W = ReflectionGroup((1,1,4), (3,1,2)); W Reducible complex reflection group of rank 5 and type A3 x G(3,1,2) sage: W.degrees() (2, 3, 4, 3, 6) sage: W = ReflectionGroup((1,1,4), (6,1,12), 23) sage: W.degrees() (2, 3, 4, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 2, 6, 10) - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), (Integer(3),Integer(1),Integer(2))); W Reducible complex reflection group of rank 5 and type A3 x G(3,1,2) >>> W.degrees() (2, 3, 4, 3, 6) >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), (Integer(6),Integer(1),Integer(12)), Integer(23)) >>> W.degrees() (2, 3, 4, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 2, 6, 10) 
 - discriminant()[source]¶
- Return the discriminant of - selfin the polynomial ring on which the group acts.- This is the product \[\prod_H \alpha_H^{e_H},\]- where \(\alpha_H\) is the linear form of the hyperplane \(H\) and \(e_H\) is its stabilizer order. - EXAMPLES: - sage: W = ReflectionGroup(['A',2]) sage: W.discriminant() x0^6 - 3*x0^5*x1 - 3/4*x0^4*x1^2 + 13/2*x0^3*x1^3 - 3/4*x0^2*x1^4 - 3*x0*x1^5 + x1^6 sage: W = ReflectionGroup(['B',2]) sage: W.discriminant() x0^6*x1^2 - 6*x0^5*x1^3 + 13*x0^4*x1^4 - 12*x0^3*x1^5 + 4*x0^2*x1^6 - >>> from sage.all import * >>> W = ReflectionGroup(['A',Integer(2)]) >>> W.discriminant() x0^6 - 3*x0^5*x1 - 3/4*x0^4*x1^2 + 13/2*x0^3*x1^3 - 3/4*x0^2*x1^4 - 3*x0*x1^5 + x1^6 >>> W = ReflectionGroup(['B',Integer(2)]) >>> W.discriminant() x0^6*x1^2 - 6*x0^5*x1^3 + 13*x0^4*x1^4 - 12*x0^3*x1^5 + 4*x0^2*x1^6 
 - discriminant_in_invariant_ring(invariants=None)[source]¶
- Return the discriminant of - selfin the invariant ring.- This is the function \(f\) in the invariants such that \(f(F_1(x), \ldots, F_n(x))\) is the discriminant. - EXAMPLES: - sage: W = ReflectionGroup(['A',3]) sage: W.discriminant_in_invariant_ring() 6*t0^3*t1^2 - 18*t0^4*t2 + 9*t1^4 - 36*t0*t1^2*t2 + 24*t0^2*t2^2 - 8*t2^3 sage: W = ReflectionGroup(['B',3]) sage: W.discriminant_in_invariant_ring() -t0^2*t1^2*t2 + 16*t0^3*t2^2 + 2*t1^3*t2 - 36*t0*t1*t2^2 + 108*t2^3 sage: W = ReflectionGroup(['H',3]) sage: W.discriminant_in_invariant_ring() # long time (-829*E(5) - 1658*E(5)^2 - 1658*E(5)^3 - 829*E(5)^4)*t0^15 + (213700*E(5) + 427400*E(5)^2 + 427400*E(5)^3 + 213700*E(5)^4)*t0^12*t1 + (-22233750*E(5) - 44467500*E(5)^2 - 44467500*E(5)^3 - 22233750*E(5)^4)*t0^9*t1^2 + (438750*E(5) + 877500*E(5)^2 + 877500*E(5)^3 + 438750*E(5)^4)*t0^10*t2 + (1162187500*E(5) + 2324375000*E(5)^2 + 2324375000*E(5)^3 + 1162187500*E(5)^4)*t0^6*t1^3 + (-74250000*E(5) - 148500000*E(5)^2 - 148500000*E(5)^3 - 74250000*E(5)^4)*t0^7*t1*t2 + (-28369140625*E(5) - 56738281250*E(5)^2 - 56738281250*E(5)^3 - 28369140625*E(5)^4)*t0^3*t1^4 + (1371093750*E(5) + 2742187500*E(5)^2 + 2742187500*E(5)^3 + 1371093750*E(5)^4)*t0^4*t1^2*t2 + (1191796875*E(5) + 2383593750*E(5)^2 + 2383593750*E(5)^3 + 1191796875*E(5)^4)*t0^5*t2^2 + (175781250000*E(5) + 351562500000*E(5)^2 + 351562500000*E(5)^3 + 175781250000*E(5)^4)*t1^5 + (131835937500*E(5) + 263671875000*E(5)^2 + 263671875000*E(5)^3 + 131835937500*E(5)^4)*t0*t1^3*t2 + (-100195312500*E(5) - 200390625000*E(5)^2 - 200390625000*E(5)^3 - 100195312500*E(5)^4)*t0^2*t1*t2^2 + (395507812500*E(5) + 791015625000*E(5)^2 + 791015625000*E(5)^3 + 395507812500*E(5)^4)*t2^3 - >>> from sage.all import * >>> W = ReflectionGroup(['A',Integer(3)]) >>> W.discriminant_in_invariant_ring() 6*t0^3*t1^2 - 18*t0^4*t2 + 9*t1^4 - 36*t0*t1^2*t2 + 24*t0^2*t2^2 - 8*t2^3 >>> W = ReflectionGroup(['B',Integer(3)]) >>> W.discriminant_in_invariant_ring() -t0^2*t1^2*t2 + 16*t0^3*t2^2 + 2*t1^3*t2 - 36*t0*t1*t2^2 + 108*t2^3 >>> W = ReflectionGroup(['H',Integer(3)]) >>> W.discriminant_in_invariant_ring() # long time (-829*E(5) - 1658*E(5)^2 - 1658*E(5)^3 - 829*E(5)^4)*t0^15 + (213700*E(5) + 427400*E(5)^2 + 427400*E(5)^3 + 213700*E(5)^4)*t0^12*t1 + (-22233750*E(5) - 44467500*E(5)^2 - 44467500*E(5)^3 - 22233750*E(5)^4)*t0^9*t1^2 + (438750*E(5) + 877500*E(5)^2 + 877500*E(5)^3 + 438750*E(5)^4)*t0^10*t2 + (1162187500*E(5) + 2324375000*E(5)^2 + 2324375000*E(5)^3 + 1162187500*E(5)^4)*t0^6*t1^3 + (-74250000*E(5) - 148500000*E(5)^2 - 148500000*E(5)^3 - 74250000*E(5)^4)*t0^7*t1*t2 + (-28369140625*E(5) - 56738281250*E(5)^2 - 56738281250*E(5)^3 - 28369140625*E(5)^4)*t0^3*t1^4 + (1371093750*E(5) + 2742187500*E(5)^2 + 2742187500*E(5)^3 + 1371093750*E(5)^4)*t0^4*t1^2*t2 + (1191796875*E(5) + 2383593750*E(5)^2 + 2383593750*E(5)^3 + 1191796875*E(5)^4)*t0^5*t2^2 + (175781250000*E(5) + 351562500000*E(5)^2 + 351562500000*E(5)^3 + 175781250000*E(5)^4)*t1^5 + (131835937500*E(5) + 263671875000*E(5)^2 + 263671875000*E(5)^3 + 131835937500*E(5)^4)*t0*t1^3*t2 + (-100195312500*E(5) - 200390625000*E(5)^2 - 200390625000*E(5)^3 - 100195312500*E(5)^4)*t0^2*t1*t2^2 + (395507812500*E(5) + 791015625000*E(5)^2 + 791015625000*E(5)^3 + 395507812500*E(5)^4)*t2^3 
 - distinguished_reflection(i)[source]¶
- Return the - i-th distinguished reflection of- self.- These are the reflections in - selfacting on the complement of the fixed hyperplane \(H\) as \(\operatorname{exp}(2 \pi i / n)\), where \(n\) is the order of the reflection subgroup fixing \(H\).- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.distinguished_reflection(1) (1,4)(2,3)(5,6) sage: W.distinguished_reflection(2) (1,3)(2,5)(4,6) sage: W.distinguished_reflection(3) (1,5)(2,4)(3,6) sage: W = ReflectionGroup((3,1,1),hyperplane_index_set=['a']) sage: W.distinguished_reflection('a') (1,2,3) sage: W = ReflectionGroup((1,1,3),(3,1,2)) sage: for i in range(W.number_of_reflection_hyperplanes()): ....: W.distinguished_reflection(i+1) (1,6)(2,5)(7,8) (1,5)(2,7)(6,8) (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30) (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,26)(29,30) (1,7)(2,6)(5,8) (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,23)(24,26) (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29) (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,22)(25,28) - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.distinguished_reflection(Integer(1)) (1,4)(2,3)(5,6) >>> W.distinguished_reflection(Integer(2)) (1,3)(2,5)(4,6) >>> W.distinguished_reflection(Integer(3)) (1,5)(2,4)(3,6) >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(1)),hyperplane_index_set=['a']) >>> W.distinguished_reflection('a') (1,2,3) >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3)),(Integer(3),Integer(1),Integer(2))) >>> for i in range(W.number_of_reflection_hyperplanes()): ... W.distinguished_reflection(i+Integer(1)) (1,6)(2,5)(7,8) (1,5)(2,7)(6,8) (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30) (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,26)(29,30) (1,7)(2,6)(5,8) (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,23)(24,26) (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29) (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,22)(25,28) 
 - distinguished_reflections()[source]¶
- Return a finite family containing the distinguished reflections of - selfindexed by- hyperplane_index_set().- These are the reflections in - selfacting on the complement of the fixed hyperplane \(H\) as \(\operatorname{exp}(2 \pi i / n)\), where \(n\) is the order of the reflection subgroup fixing \(H\).- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.distinguished_reflections() Finite family {1: (1,4)(2,3)(5,6), 2: (1,3)(2,5)(4,6), 3: (1,5)(2,4)(3,6)} sage: W = ReflectionGroup((1,1,3),hyperplane_index_set=['a','b','c']) sage: W.distinguished_reflections() Finite family {'a': (1,4)(2,3)(5,6), 'b': (1,3)(2,5)(4,6), 'c': (1,5)(2,4)(3,6)} sage: W = ReflectionGroup((3,1,1)) sage: W.distinguished_reflections() Finite family {1: (1,2,3)} sage: W = ReflectionGroup((1,1,3),(3,1,2)) sage: W.distinguished_reflections() Finite family {1: (1,6)(2,5)(7,8), 2: (1,5)(2,7)(6,8), 3: (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30), 4: (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,26)(29,30), 5: (1,7)(2,6)(5,8), 6: (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,23)(24,26), 7: (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29), 8: (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,22)(25,28)} - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.distinguished_reflections() Finite family {1: (1,4)(2,3)(5,6), 2: (1,3)(2,5)(4,6), 3: (1,5)(2,4)(3,6)} >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3)),hyperplane_index_set=['a','b','c']) >>> W.distinguished_reflections() Finite family {'a': (1,4)(2,3)(5,6), 'b': (1,3)(2,5)(4,6), 'c': (1,5)(2,4)(3,6)} >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(1))) >>> W.distinguished_reflections() Finite family {1: (1,2,3)} >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3)),(Integer(3),Integer(1),Integer(2))) >>> W.distinguished_reflections() Finite family {1: (1,6)(2,5)(7,8), 2: (1,5)(2,7)(6,8), 3: (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30), 4: (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,26)(29,30), 5: (1,7)(2,6)(5,8), 6: (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,23)(24,26), 7: (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29), 8: (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,22)(25,28)} 
 - fake_degrees()[source]¶
- Return the list of the fake degrees associated to - self.- The fake degrees are \(q\)-versions of the degree of the character. In particular, they sum to Hilbert series of the coinvariant algebra of - self.- Note - The ordering follows the one in Chevie and is not compatible with the current implementation of - irredubile_characters().- EXAMPLES: - sage: W = ReflectionGroup(12) sage: W.fake_degrees() [1, q^12, q^11 + q, q^8 + q^4, q^7 + q^5, q^6 + q^4 + q^2, q^10 + q^8 + q^6, q^9 + q^7 + q^5 + q^3] sage: W = ReflectionGroup(["H",4]) sage: W.cardinality() 14400 sage: sum(fdeg.subs(q=1)**2 for fdeg in W.fake_degrees()) 14400 - >>> from sage.all import * >>> W = ReflectionGroup(Integer(12)) >>> W.fake_degrees() [1, q^12, q^11 + q, q^8 + q^4, q^7 + q^5, q^6 + q^4 + q^2, q^10 + q^8 + q^6, q^9 + q^7 + q^5 + q^3] >>> W = ReflectionGroup(["H",Integer(4)]) >>> W.cardinality() 14400 >>> sum(fdeg.subs(q=Integer(1))**Integer(2) for fdeg in W.fake_degrees()) 14400 
 - fundamental_invariants()[source]¶
- Return the fundamental invariants of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.fundamental_invariants() (-2*x0^2 + 2*x0*x1 - 2*x1^2, 6*x0^2*x1 - 6*x0*x1^2) sage: W = ReflectionGroup((3,1,2)) sage: W.fundamental_invariants() (x0^3 + x1^3, x0^3*x1^3) - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.fundamental_invariants() (-2*x0^2 + 2*x0*x1 - 2*x1^2, 6*x0^2*x1 - 6*x0*x1^2) >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) >>> W.fundamental_invariants() (x0^3 + x1^3, x0^3*x1^3) 
 - hyperplane_index_set()[source]¶
- Return the index set of the hyperplanes of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,4)) sage: W.hyperplane_index_set() (1, 2, 3, 4, 5, 6) sage: W = ReflectionGroup((1,1,4), hyperplane_index_set=[1,3,'asdf',7,9,11]) sage: W.hyperplane_index_set() (1, 3, 'asdf', 7, 9, 11) sage: W = ReflectionGroup((1,1,4),hyperplane_index_set=('a','b','c','d','e','f')) sage: W.hyperplane_index_set() ('a', 'b', 'c', 'd', 'e', 'f') - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4))) >>> W.hyperplane_index_set() (1, 2, 3, 4, 5, 6) >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), hyperplane_index_set=[Integer(1),Integer(3),'asdf',Integer(7),Integer(9),Integer(11)]) >>> W.hyperplane_index_set() (1, 3, 'asdf', 7, 9, 11) >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)),hyperplane_index_set=('a','b','c','d','e','f')) >>> W.hyperplane_index_set() ('a', 'b', 'c', 'd', 'e', 'f') 
 - independent_roots()[source]¶
- Return a collection of simple roots generating the underlying vector space of - self.- For well-generated groups, these are all simple roots. Otherwise, a linearly independent subset of the simple roots is chosen. - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.independent_roots() Finite family {1: (1, 0), 2: (0, 1)} sage: W = ReflectionGroup((4,2,3)) sage: W.simple_roots() Finite family {1: (1, 0, 0), 2: (-E(4), 1, 0), 3: (-1, 1, 0), 4: (0, -1, 1)} sage: W.independent_roots() Finite family {1: (1, 0, 0), 2: (-E(4), 1, 0), 4: (0, -1, 1)} - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.independent_roots() Finite family {1: (1, 0), 2: (0, 1)} >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(3))) >>> W.simple_roots() Finite family {1: (1, 0, 0), 2: (-E(4), 1, 0), 3: (-1, 1, 0), 4: (0, -1, 1)} >>> W.independent_roots() Finite family {1: (1, 0, 0), 2: (-E(4), 1, 0), 4: (0, -1, 1)} 
 - index_set()[source]¶
- Return the index set of the simple reflections of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,4)) sage: W.index_set() (1, 2, 3) sage: W = ReflectionGroup((1,1,4), index_set=[1,3,'asdf']) sage: W.index_set() (1, 3, 'asdf') sage: W = ReflectionGroup((1,1,4), index_set=('a', 'b', 'c')) sage: W.index_set() ('a', 'b', 'c') - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4))) >>> W.index_set() (1, 2, 3) >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), index_set=[Integer(1),Integer(3),'asdf']) >>> W.index_set() (1, 3, 'asdf') >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), index_set=('a', 'b', 'c')) >>> W.index_set() ('a', 'b', 'c') 
 - invariant_form(brute_force=False)[source]¶
- Return the form that is invariant under the action of - self.- This is unique only up to a global scalar on the irreducible components. - INPUT: - brute_force– if- True, the computation is done by applying the Reynolds operator; this is, the invariant form of \(e_i\) and \(e_j\) is computed as the sum \(\langle w(e_i), w(e_j)\rangle\), where \(\langle \cdot, \cdot\rangle\) is the standard scalar product
 - EXAMPLES: - sage: W = ReflectionGroup(['A',3]) sage: F = W.invariant_form(); F [ 1 -1/2 0] [-1/2 1 -1/2] [ 0 -1/2 1] - >>> from sage.all import * >>> W = ReflectionGroup(['A',Integer(3)]) >>> F = W.invariant_form(); F [ 1 -1/2 0] [-1/2 1 -1/2] [ 0 -1/2 1] - To check that this is indeed the invariant form, see: - sage: S = W.simple_reflections() sage: all( F == S[i].matrix()*F*S[i].matrix().transpose() for i in W.index_set() ) True sage: W = ReflectionGroup(['B',3]) sage: F = W.invariant_form(); F [ 1 -1 0] [-1 2 -1] [ 0 -1 2] sage: w = W.an_element().to_matrix() sage: w * F * w.transpose().conjugate() == F True sage: S = W.simple_reflections() sage: all( F == S[i].matrix()*F*S[i].matrix().transpose() for i in W.index_set() ) True sage: W = ReflectionGroup((3,1,2)) sage: F = W.invariant_form(); F [1 0] [0 1] sage: S = W.simple_reflections() sage: all( F == S[i].matrix()*F*S[i].matrix().transpose().conjugate() for i in W.index_set() ) True - >>> from sage.all import * >>> S = W.simple_reflections() >>> all( F == S[i].matrix()*F*S[i].matrix().transpose() for i in W.index_set() ) True >>> W = ReflectionGroup(['B',Integer(3)]) >>> F = W.invariant_form(); F [ 1 -1 0] [-1 2 -1] [ 0 -1 2] >>> w = W.an_element().to_matrix() >>> w * F * w.transpose().conjugate() == F True >>> S = W.simple_reflections() >>> all( F == S[i].matrix()*F*S[i].matrix().transpose() for i in W.index_set() ) True >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) >>> F = W.invariant_form(); F [1 0] [0 1] >>> S = W.simple_reflections() >>> all( F == S[i].matrix()*F*S[i].matrix().transpose().conjugate() for i in W.index_set() ) True - It also worked for badly generated groups: - sage: W = ReflectionGroup(7) sage: W.is_well_generated() False sage: F = W.invariant_form(); F [1 0] [0 1] sage: S = W.simple_reflections() sage: all( F == S[i].matrix()*F*S[i].matrix().transpose().conjugate() for i in W.index_set() ) True - >>> from sage.all import * >>> W = ReflectionGroup(Integer(7)) >>> W.is_well_generated() False >>> F = W.invariant_form(); F [1 0] [0 1] >>> S = W.simple_reflections() >>> all( F == S[i].matrix()*F*S[i].matrix().transpose().conjugate() for i in W.index_set() ) True - And also for reducible types: - sage: W = ReflectionGroup(['B',3],(4,2,3),4,7); W Reducible complex reflection group of rank 10 and type B3 x G(4,2,3) x ST4 x ST7 sage: F = W.invariant_form(); S = W.simple_reflections() sage: all( F == S[i].matrix()*F*S[i].matrix().transpose().conjugate() for i in W.index_set() ) True - >>> from sage.all import * >>> W = ReflectionGroup(['B',Integer(3)],(Integer(4),Integer(2),Integer(3)),Integer(4),Integer(7)); W Reducible complex reflection group of rank 10 and type B3 x G(4,2,3) x ST4 x ST7 >>> F = W.invariant_form(); S = W.simple_reflections() >>> all( F == S[i].matrix()*F*S[i].matrix().transpose().conjugate() for i in W.index_set() ) True 
 - invariant_form_standardization()[source]¶
- Return the transformation of the space that turns the invariant form of - selfinto the standard scalar product.- Let \(I\) be the invariant form of a complex reflection group, and let \(A\) be the Hermitian matrix such that \(A^2 = I\). The matrix \(A\) defines a change of basis such that the identity matrix is the invariant form. Indeed, we have \[(A^{-1} x A) \mathcal{I} (A^{-1} y A)^* = A^{-1} x I y^* A^{-1} = A^{-1} I A^{-1} = \mathcal{I},\]- where \(\mathcal{I}\) is the identity matrix. - EXAMPLES: - sage: W = ReflectionGroup((4,2,5)) sage: I = W.invariant_form() sage: A = W.invariant_form_standardization() sage: A^2 == I True - >>> from sage.all import * >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(5))) >>> I = W.invariant_form() >>> A = W.invariant_form_standardization() >>> A**Integer(2) == I True 
 - irreducible_components()[source]¶
- Return a list containing the irreducible components of - selfas finite reflection groups.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.irreducible_components() [Irreducible real reflection group of rank 2 and type A2] sage: W = ReflectionGroup((1,1,3),(2,1,3)) sage: W.irreducible_components() [Irreducible real reflection group of rank 2 and type A2, Irreducible real reflection group of rank 3 and type B3] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.irreducible_components() [Irreducible real reflection group of rank 2 and type A2] >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3)),(Integer(2),Integer(1),Integer(3))) >>> W.irreducible_components() [Irreducible real reflection group of rank 2 and type A2, Irreducible real reflection group of rank 3 and type B3] 
 - is_crystallographic()[source]¶
- Return - Trueif- selfis crystallographic.- This is, if the field of definition is the rational field. - Todo - Make this more robust and do not use the matrix representation of the simple reflections. - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)); W Irreducible real reflection group of rank 2 and type A2 sage: W.is_crystallographic() True sage: W = ReflectionGroup((2,1,3)); W Irreducible real reflection group of rank 3 and type B3 sage: W.is_crystallographic() True sage: W = ReflectionGroup(23); W Irreducible real reflection group of rank 3 and type H3 sage: W.is_crystallographic() False sage: W = ReflectionGroup((3,1,3)); W Irreducible complex reflection group of rank 3 and type G(3,1,3) sage: W.is_crystallographic() False sage: W = ReflectionGroup((4,2,2)); W Irreducible complex reflection group of rank 2 and type G(4,2,2) sage: W.is_crystallographic() False - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))); W Irreducible real reflection group of rank 2 and type A2 >>> W.is_crystallographic() True >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(3))); W Irreducible real reflection group of rank 3 and type B3 >>> W.is_crystallographic() True >>> W = ReflectionGroup(Integer(23)); W Irreducible real reflection group of rank 3 and type H3 >>> W.is_crystallographic() False >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(3))); W Irreducible complex reflection group of rank 3 and type G(3,1,3) >>> W.is_crystallographic() False >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(2))); W Irreducible complex reflection group of rank 2 and type G(4,2,2) >>> W.is_crystallographic() False 
 - iteration_tracking_words()[source]¶
- Return an iterator going through all elements in - selfthat tracks the reduced expressions.- This can be much slower than using the iteration as a permutation group with strong generating set. - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: for w in W.iteration_tracking_words(): w () (1,4)(2,3)(5,6) (1,3)(2,5)(4,6) (1,6,2)(3,5,4) (1,2,6)(3,4,5) (1,5)(2,4)(3,6) - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> for w in W.iteration_tracking_words(): w () (1,4)(2,3)(5,6) (1,3)(2,5)(4,6) (1,6,2)(3,5,4) (1,2,6)(3,4,5) (1,5)(2,4)(3,6) 
 - jacobian_of_fundamental_invariants(invs=None)[source]¶
- Return the matrix \([ \partial_{x_i} F_j ]\), where - invsare are any polynomials \(F_1,\ldots,F_n\) in \(x_1,\ldots,x_n\).- INPUT: - invs– (default: the fundamental invariants) the polynomials \(F_1, \ldots, F_n\)
 - EXAMPLES: - sage: W = ReflectionGroup(['A',2]) sage: W.fundamental_invariants() (-2*x0^2 + 2*x0*x1 - 2*x1^2, 6*x0^2*x1 - 6*x0*x1^2) sage: W.jacobian_of_fundamental_invariants() [ -4*x0 + 2*x1 2*x0 - 4*x1] [12*x0*x1 - 6*x1^2 6*x0^2 - 12*x0*x1] - >>> from sage.all import * >>> W = ReflectionGroup(['A',Integer(2)]) >>> W.fundamental_invariants() (-2*x0^2 + 2*x0*x1 - 2*x1^2, 6*x0^2*x1 - 6*x0*x1^2) >>> W.jacobian_of_fundamental_invariants() [ -4*x0 + 2*x1 2*x0 - 4*x1] [12*x0*x1 - 6*x1^2 6*x0^2 - 12*x0*x1] 
 - number_of_irreducible_components()[source]¶
- Return the number of irreducible components of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.number_of_irreducible_components() 1 sage: W = ReflectionGroup((1,1,3),(2,1,3)) sage: W.number_of_irreducible_components() 2 - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.number_of_irreducible_components() 1 >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3)),(Integer(2),Integer(1),Integer(3))) >>> W.number_of_irreducible_components() 2 
 - primitive_vector_field(invs=None)[source]¶
- Return the primitive vector field of - selfis irreducible and well-generated.- The primitive vector field is given as the coefficients (being rational functions) in the basis \(\partial_{x_1}, \ldots, \partial_{x_n}\). - This is the partial derivation along the unique invariant of degree given by the Coxeter number. It can be computed as the row of the inverse of the Jacobian given by the highest degree. - EXAMPLES: - sage: W = ReflectionGroup(['A',2]) sage: W.primitive_vector_field() (3*x1/(6*x0^2 - 6*x0*x1 - 12*x1^2), 1/(6*x0^2 - 6*x0*x1 - 12*x1^2)) - >>> from sage.all import * >>> W = ReflectionGroup(['A',Integer(2)]) >>> W.primitive_vector_field() (3*x1/(6*x0^2 - 6*x0*x1 - 12*x1^2), 1/(6*x0^2 - 6*x0*x1 - 12*x1^2)) 
 - rank()[source]¶
- Return the rank of - self.- This is the dimension of the underlying vector space. - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.rank() 2 sage: W = ReflectionGroup((2,1,3)) sage: W.rank() 3 sage: W = ReflectionGroup((4,1,3)) sage: W.rank() 3 sage: W = ReflectionGroup((4,2,3)) sage: W.rank() 3 - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.rank() 2 >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(3))) >>> W.rank() 3 >>> W = ReflectionGroup((Integer(4),Integer(1),Integer(3))) >>> W.rank() 3 >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(3))) >>> W.rank() 3 
 - reflection(i)[source]¶
- Return the - i-th reflection of- self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.reflection(1) (1,4)(2,3)(5,6) sage: W.reflection(2) (1,3)(2,5)(4,6) sage: W.reflection(3) (1,5)(2,4)(3,6) sage: W = ReflectionGroup((3,1,1),reflection_index_set=['a','b']) sage: W.reflection('a') (1,2,3) sage: W.reflection('b') (1,3,2) - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.reflection(Integer(1)) (1,4)(2,3)(5,6) >>> W.reflection(Integer(2)) (1,3)(2,5)(4,6) >>> W.reflection(Integer(3)) (1,5)(2,4)(3,6) >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(1)),reflection_index_set=['a','b']) >>> W.reflection('a') (1,2,3) >>> W.reflection('b') (1,3,2) 
 - reflection_character()[source]¶
- Return the reflection characters of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.reflection_character() [2, 0, -1] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.reflection_character() [2, 0, -1] 
 - reflection_eigenvalues(w, is_class_representative=False)[source]¶
- Return the reflection eigenvalue of - win- self.- INPUT: - is_class_representative– boolean (default:- True) whether to compute instead on the conjugacy class representative
 - See also - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: for w in W: ....: print('%s %s'%(w.reduced_word(), W.reflection_eigenvalues(w))) [] [0, 0] [2] [1/2, 0] [1] [1/2, 0] [1, 2] [1/3, 2/3] [2, 1] [1/3, 2/3] [1, 2, 1] [1/2, 0] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> for w in W: ... print('%s %s'%(w.reduced_word(), W.reflection_eigenvalues(w))) [] [0, 0] [2] [1/2, 0] [1] [1/2, 0] [1, 2] [1/3, 2/3] [2, 1] [1/3, 2/3] [1, 2, 1] [1/2, 0] 
 - reflection_eigenvalues_family()[source]¶
- Return the reflection eigenvalues of - selfas a finite family indexed by the class representatives of- self.- OUTPUT: list with entries \(k/n\) representing the eigenvalue \(\zeta_n^k\) - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.reflection_eigenvalues_family() Finite family {(): [0, 0], (1,4)(2,3)(5,6): [1/2, 0], (1,6,2)(3,5,4): [1/3, 2/3]} sage: W = ReflectionGroup((3,1,2)) sage: reflection_eigenvalues = W.reflection_eigenvalues_family() sage: for elt in sorted(reflection_eigenvalues.keys()): ....: print('%s %s'%(elt, reflection_eigenvalues[elt])) () [0, 0] (1,3,9)(2,4,10)(6,11,17)(8,12,18)(14,19,23)(15,16,20)(21,22,24) [1/3, 0] (1,3,9)(2,16,24)(4,20,21)(5,7,13)(6,12,23)(8,19,17)(10,15,22)(11,18,14) [1/3, 1/3] (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,20)(23,24) [1/2, 0] (1,7,3,13,9,5)(2,8,16,19,24,17)(4,14,20,11,21,18)(6,15,12,22,23,10) [1/6, 2/3] (1,9,3)(2,10,4)(6,17,11)(8,18,12)(14,23,19)(15,20,16)(21,24,22) [2/3, 0] (1,9,3)(2,20,22)(4,15,24)(5,7,13)(6,18,19)(8,23,11)(10,16,21)(12,14,17) [1/3, 2/3] (1,9,3)(2,24,16)(4,21,20)(5,13,7)(6,23,12)(8,17,19)(10,22,15)(11,14,18) [2/3, 2/3] (1,13,9,7,3,5)(2,14,24,18,16,11)(4,6,21,23,20,12)(8,22,17,15,19,10) [1/3, 5/6] sage: W = ReflectionGroup(23) sage: reflection_eigenvalues = W.reflection_eigenvalues_family() sage: for elt in sorted(reflection_eigenvalues.keys()): ....: print('%s %s'%(elt, reflection_eigenvalues[elt])) () [0, 0, 0] (1,8,4)(2,21,3)(5,10,11)(6,18,17)(7,9,12)(13,14,15)(16,23,19)(20,25,26)(22,24,27)(28,29,30) [1/3, 2/3, 0] (1,16)(2,5)(4,7)(6,9)(8,10)(11,13)(12,14)(17,20)(19,22)(21,24)(23,25)(26,28)(27,29) [1/2, 0, 0] (1,16)(2,9)(3,18)(4,10)(5,6)(7,8)(11,14)(12,13)(17,24)(19,25)(20,21)(22,23)(26,29)(27,28) [1/2, 1/2, 0] (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30) [1/2, 1/2, 1/2] (1,19,20,2,7)(3,6,11,13,9)(4,5,17,22,16)(8,12,15,14,10)(18,21,26,28,24)(23,27,30,29,25) [1/5, 4/5, 0] (1,20,7,19,2)(3,11,9,6,13)(4,17,16,5,22)(8,15,10,12,14)(18,26,24,21,28)(23,30,25,27,29) [2/5, 3/5, 0] (1,23,26,29,22,16,8,11,14,7)(2,10,4,9,18,17,25,19,24,3)(5,21,27,30,28,20,6,12,15,13) [1/10, 1/2, 9/10] (1,24,17,16,9,2)(3,12,13,18,27,28)(4,21,29,19,6,14)(5,25,26,20,10,11)(7,23,30,22,8,15) [1/6, 1/2, 5/6] (1,29,8,7,26,16,14,23,22,11)(2,9,25,3,4,17,24,10,18,19)(5,30,6,13,27,20,15,21,28,12) [3/10, 1/2, 7/10] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.reflection_eigenvalues_family() Finite family {(): [0, 0], (1,4)(2,3)(5,6): [1/2, 0], (1,6,2)(3,5,4): [1/3, 2/3]} >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) >>> reflection_eigenvalues = W.reflection_eigenvalues_family() >>> for elt in sorted(reflection_eigenvalues.keys()): ... print('%s %s'%(elt, reflection_eigenvalues[elt])) () [0, 0] (1,3,9)(2,4,10)(6,11,17)(8,12,18)(14,19,23)(15,16,20)(21,22,24) [1/3, 0] (1,3,9)(2,16,24)(4,20,21)(5,7,13)(6,12,23)(8,19,17)(10,15,22)(11,18,14) [1/3, 1/3] (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,20)(23,24) [1/2, 0] (1,7,3,13,9,5)(2,8,16,19,24,17)(4,14,20,11,21,18)(6,15,12,22,23,10) [1/6, 2/3] (1,9,3)(2,10,4)(6,17,11)(8,18,12)(14,23,19)(15,20,16)(21,24,22) [2/3, 0] (1,9,3)(2,20,22)(4,15,24)(5,7,13)(6,18,19)(8,23,11)(10,16,21)(12,14,17) [1/3, 2/3] (1,9,3)(2,24,16)(4,21,20)(5,13,7)(6,23,12)(8,17,19)(10,22,15)(11,14,18) [2/3, 2/3] (1,13,9,7,3,5)(2,14,24,18,16,11)(4,6,21,23,20,12)(8,22,17,15,19,10) [1/3, 5/6] >>> W = ReflectionGroup(Integer(23)) >>> reflection_eigenvalues = W.reflection_eigenvalues_family() >>> for elt in sorted(reflection_eigenvalues.keys()): ... print('%s %s'%(elt, reflection_eigenvalues[elt])) () [0, 0, 0] (1,8,4)(2,21,3)(5,10,11)(6,18,17)(7,9,12)(13,14,15)(16,23,19)(20,25,26)(22,24,27)(28,29,30) [1/3, 2/3, 0] (1,16)(2,5)(4,7)(6,9)(8,10)(11,13)(12,14)(17,20)(19,22)(21,24)(23,25)(26,28)(27,29) [1/2, 0, 0] (1,16)(2,9)(3,18)(4,10)(5,6)(7,8)(11,14)(12,13)(17,24)(19,25)(20,21)(22,23)(26,29)(27,28) [1/2, 1/2, 0] (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30) [1/2, 1/2, 1/2] (1,19,20,2,7)(3,6,11,13,9)(4,5,17,22,16)(8,12,15,14,10)(18,21,26,28,24)(23,27,30,29,25) [1/5, 4/5, 0] (1,20,7,19,2)(3,11,9,6,13)(4,17,16,5,22)(8,15,10,12,14)(18,26,24,21,28)(23,30,25,27,29) [2/5, 3/5, 0] (1,23,26,29,22,16,8,11,14,7)(2,10,4,9,18,17,25,19,24,3)(5,21,27,30,28,20,6,12,15,13) [1/10, 1/2, 9/10] (1,24,17,16,9,2)(3,12,13,18,27,28)(4,21,29,19,6,14)(5,25,26,20,10,11)(7,23,30,22,8,15) [1/6, 1/2, 5/6] (1,29,8,7,26,16,14,23,22,11)(2,9,25,3,4,17,24,10,18,19)(5,30,6,13,27,20,15,21,28,12) [3/10, 1/2, 7/10] 
 - reflection_hyperplane(i, as_linear_functional=False, with_order=False)[source]¶
- Return the - i-th reflection hyperplane of- self.- The - i-th reflection hyperplane corresponds to the- idistinguished reflection.- INPUT: - i– an index in the index set
- as_linear_functionals– boolean (default:- False); whether to return the hyperplane or its linear functional in the basis dual to the given root basis
 - EXAMPLES: - sage: W = ReflectionGroup((2,1,2)) sage: W.reflection_hyperplane(3) Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 0] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(2))) >>> W.reflection_hyperplane(Integer(3)) Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 0] - One can ask for the result as a linear form: - sage: W.reflection_hyperplane(3, True) (0, 1) - >>> from sage.all import * >>> W.reflection_hyperplane(Integer(3), True) (0, 1) 
 - reflection_hyperplanes(as_linear_functionals=False, with_order=False)[source]¶
- Return the list of all reflection hyperplanes of - self, either as a codimension 1 space, or as its linear functional.- INPUT: - as_linear_functionals– boolean (default:- False); whether to return the hyperplane or its linear functional in the basis dual to the given root basis
 - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: for H in W.reflection_hyperplanes(): H Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 2] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 1/2] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 -1] sage: for H in W.reflection_hyperplanes(as_linear_functionals=True): H (1, -1/2) (1, -2) (1, 1) sage: W = ReflectionGroup((2,1,2)) sage: for H in W.reflection_hyperplanes(): H Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 1] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 1/2] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 0] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [0 1] sage: for H in W.reflection_hyperplanes(as_linear_functionals=True): H (1, -1) (1, -2) (0, 1) (1, 0) sage: for H in W.reflection_hyperplanes(as_linear_functionals=True, with_order=True): H ((1, -1), 2) ((1, -2), 2) ((0, 1), 2) ((1, 0), 2) - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> for H in W.reflection_hyperplanes(): H Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 2] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 1/2] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 -1] >>> for H in W.reflection_hyperplanes(as_linear_functionals=True): H (1, -1/2) (1, -2) (1, 1) >>> W = ReflectionGroup((Integer(2),Integer(1),Integer(2))) >>> for H in W.reflection_hyperplanes(): H Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 1] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 1/2] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [1 0] Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [0 1] >>> for H in W.reflection_hyperplanes(as_linear_functionals=True): H (1, -1) (1, -2) (0, 1) (1, 0) >>> for H in W.reflection_hyperplanes(as_linear_functionals=True, with_order=True): H ((1, -1), 2) ((1, -2), 2) ((0, 1), 2) ((1, 0), 2) 
 - reflection_index_set()[source]¶
- Return the index set of the reflections of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,4)) sage: W.reflection_index_set() (1, 2, 3, 4, 5, 6) sage: W = ReflectionGroup((1,1,4), reflection_index_set=[1,3,'asdf',7,9,11]) sage: W.reflection_index_set() (1, 3, 'asdf', 7, 9, 11) sage: W = ReflectionGroup((1,1,4), reflection_index_set=('a','b','c','d','e','f')) sage: W.reflection_index_set() ('a', 'b', 'c', 'd', 'e', 'f') - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4))) >>> W.reflection_index_set() (1, 2, 3, 4, 5, 6) >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), reflection_index_set=[Integer(1),Integer(3),'asdf',Integer(7),Integer(9),Integer(11)]) >>> W.reflection_index_set() (1, 3, 'asdf', 7, 9, 11) >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), reflection_index_set=('a','b','c','d','e','f')) >>> W.reflection_index_set() ('a', 'b', 'c', 'd', 'e', 'f') 
 - reflections()[source]¶
- Return a finite family containing the reflections of - self, indexed by- self.reflection_index_set().- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.reflections() Finite family {1: (1,4)(2,3)(5,6), 2: (1,3)(2,5)(4,6), 3: (1,5)(2,4)(3,6)} sage: W = ReflectionGroup((1,1,3),reflection_index_set=['a','b','c']) sage: W.reflections() Finite family {'a': (1,4)(2,3)(5,6), 'b': (1,3)(2,5)(4,6), 'c': (1,5)(2,4)(3,6)} sage: W = ReflectionGroup((3,1,1)) sage: W.reflections() Finite family {1: (1,2,3), 2: (1,3,2)} sage: W = ReflectionGroup((1,1,3),(3,1,2)) sage: W.reflections() Finite family {1: (1,6)(2,5)(7,8), 2: (1,5)(2,7)(6,8), 3: (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30), 4: (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,26)(29,30), 5: (1,7)(2,6)(5,8), 6: (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,23)(24,26), 7: (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29), 8: (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,22)(25,28), 9: (3,15,9)(4,16,10)(12,23,17)(14,24,18)(20,29,25)(21,26,22)(27,30,28), 10: (4,27,21)(10,28,22)(11,19,13)(12,20,14)(16,30,26)(17,25,18)(23,29,24)} - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.reflections() Finite family {1: (1,4)(2,3)(5,6), 2: (1,3)(2,5)(4,6), 3: (1,5)(2,4)(3,6)} >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3)),reflection_index_set=['a','b','c']) >>> W.reflections() Finite family {'a': (1,4)(2,3)(5,6), 'b': (1,3)(2,5)(4,6), 'c': (1,5)(2,4)(3,6)} >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(1))) >>> W.reflections() Finite family {1: (1,2,3), 2: (1,3,2)} >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3)),(Integer(3),Integer(1),Integer(2))) >>> W.reflections() Finite family {1: (1,6)(2,5)(7,8), 2: (1,5)(2,7)(6,8), 3: (3,9,15)(4,10,16)(12,17,23)(14,18,24)(20,25,29)(21,22,26)(27,28,30), 4: (3,11)(4,12)(9,13)(10,14)(15,19)(16,20)(17,21)(18,22)(23,27)(24,28)(25,26)(29,30), 5: (1,7)(2,6)(5,8), 6: (3,19)(4,25)(9,11)(10,17)(12,28)(13,15)(14,30)(16,18)(20,27)(21,29)(22,23)(24,26), 7: (4,21,27)(10,22,28)(11,13,19)(12,14,20)(16,26,30)(17,18,25)(23,24,29), 8: (3,13)(4,24)(9,19)(10,29)(11,15)(12,26)(14,21)(16,23)(17,30)(18,27)(20,22)(25,28), 9: (3,15,9)(4,16,10)(12,23,17)(14,24,18)(20,29,25)(21,26,22)(27,30,28), 10: (4,27,21)(10,28,22)(11,19,13)(12,20,14)(16,30,26)(17,25,18)(23,29,24)} 
 - roots()[source]¶
- Return all roots corresponding to all reflections of - self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.roots() [(1, 0), (0, 1), (1, 1), (-1, 0), (0, -1), (-1, -1)] sage: W = ReflectionGroup((3,1,2)) sage: W.roots() [(1, 0), (-1, 1), (E(3), 0), (-E(3), 1), (0, 1), (1, -1), (0, E(3)), (1, -E(3)), (E(3)^2, 0), (-E(3)^2, 1), (E(3), -1), (E(3), -E(3)), (0, E(3)^2), (1, -E(3)^2), (-1, E(3)), (-E(3), E(3)), (E(3)^2, -1), (E(3)^2, -E(3)), (E(3), -E(3)^2), (-E(3)^2, E(3)), (-1, E(3)^2), (-E(3), E(3)^2), (E(3)^2, -E(3)^2), (-E(3)^2, E(3)^2)] sage: W = ReflectionGroup((4,2,2)) sage: W.roots() [(1, 0), (-E(4), 1), (-1, 1), (-1, 0), (E(4), 1), (1, 1), (0, -E(4)), (E(4), -1), (E(4), E(4)), (0, E(4)), (E(4), -E(4)), (0, 1), (1, -E(4)), (1, -1), (0, -1), (1, E(4)), (-E(4), 0), (-1, E(4)), (E(4), 0), (-E(4), E(4)), (-E(4), -1), (-E(4), -E(4)), (-1, -E(4)), (-1, -1)] sage: W = ReflectionGroup((1,1,4), (3,1,2)) sage: W.roots() [(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, -1, 1), (1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (1, 1, 1, 0, 0), (-1, 0, 0, 0, 0), (0, -1, 0, 0, 0), (0, 0, -1, 0, 0), (-1, -1, 0, 0, 0), (0, -1, -1, 0, 0), (-1, -1, -1, 0, 0), (0, 0, 0, E(3), 0), (0, 0, 0, -E(3), 1), (0, 0, 0, 0, 1), (0, 0, 0, 1, -1), (0, 0, 0, 0, E(3)), (0, 0, 0, 1, -E(3)), (0, 0, 0, E(3)^2, 0), (0, 0, 0, -E(3)^2, 1), (0, 0, 0, E(3), -1), (0, 0, 0, E(3), -E(3)), (0, 0, 0, 0, E(3)^2), (0, 0, 0, 1, -E(3)^2), (0, 0, 0, -1, E(3)), (0, 0, 0, -E(3), E(3)), (0, 0, 0, E(3)^2, -1), (0, 0, 0, E(3)^2, -E(3)), (0, 0, 0, E(3), -E(3)^2), (0, 0, 0, -E(3)^2, E(3)), (0, 0, 0, -1, E(3)^2), (0, 0, 0, -E(3), E(3)^2), (0, 0, 0, E(3)^2, -E(3)^2), (0, 0, 0, -E(3)^2, E(3)^2)] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.roots() [(1, 0), (0, 1), (1, 1), (-1, 0), (0, -1), (-1, -1)] >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) >>> W.roots() [(1, 0), (-1, 1), (E(3), 0), (-E(3), 1), (0, 1), (1, -1), (0, E(3)), (1, -E(3)), (E(3)^2, 0), (-E(3)^2, 1), (E(3), -1), (E(3), -E(3)), (0, E(3)^2), (1, -E(3)^2), (-1, E(3)), (-E(3), E(3)), (E(3)^2, -1), (E(3)^2, -E(3)), (E(3), -E(3)^2), (-E(3)^2, E(3)), (-1, E(3)^2), (-E(3), E(3)^2), (E(3)^2, -E(3)^2), (-E(3)^2, E(3)^2)] >>> W = ReflectionGroup((Integer(4),Integer(2),Integer(2))) >>> W.roots() [(1, 0), (-E(4), 1), (-1, 1), (-1, 0), (E(4), 1), (1, 1), (0, -E(4)), (E(4), -1), (E(4), E(4)), (0, E(4)), (E(4), -E(4)), (0, 1), (1, -E(4)), (1, -1), (0, -1), (1, E(4)), (-E(4), 0), (-1, E(4)), (E(4), 0), (-E(4), E(4)), (-E(4), -1), (-E(4), -E(4)), (-1, -E(4)), (-1, -1)] >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), (Integer(3),Integer(1),Integer(2))) >>> W.roots() [(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, -1, 1), (1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (1, 1, 1, 0, 0), (-1, 0, 0, 0, 0), (0, -1, 0, 0, 0), (0, 0, -1, 0, 0), (-1, -1, 0, 0, 0), (0, -1, -1, 0, 0), (-1, -1, -1, 0, 0), (0, 0, 0, E(3), 0), (0, 0, 0, -E(3), 1), (0, 0, 0, 0, 1), (0, 0, 0, 1, -1), (0, 0, 0, 0, E(3)), (0, 0, 0, 1, -E(3)), (0, 0, 0, E(3)^2, 0), (0, 0, 0, -E(3)^2, 1), (0, 0, 0, E(3), -1), (0, 0, 0, E(3), -E(3)), (0, 0, 0, 0, E(3)^2), (0, 0, 0, 1, -E(3)^2), (0, 0, 0, -1, E(3)), (0, 0, 0, -E(3), E(3)), (0, 0, 0, E(3)^2, -1), (0, 0, 0, E(3)^2, -E(3)), (0, 0, 0, E(3), -E(3)^2), (0, 0, 0, -E(3)^2, E(3)), (0, 0, 0, -1, E(3)^2), (0, 0, 0, -E(3), E(3)^2), (0, 0, 0, E(3)^2, -E(3)^2), (0, 0, 0, -E(3)^2, E(3)^2)] 
 - series()[source]¶
- Return the series of the classification type to which - selfbelongs.- For real reflection groups, these are the Cartan-Killing classification types “A”,”B”,”C”,”D”,”E”,”F”,”G”,”H”,”I”, and for complx non-real reflection groups these are the Shephard-Todd classification type “ST”. - EXAMPLES: - sage: ReflectionGroup((1,1,3)).series() ['A'] sage: ReflectionGroup((3,1,3)).series() ['ST'] - >>> from sage.all import * >>> ReflectionGroup((Integer(1),Integer(1),Integer(3))).series() ['A'] >>> ReflectionGroup((Integer(3),Integer(1),Integer(3))).series() ['ST'] 
 - set_reflection_representation(refl_repr=None)[source]¶
- Set the reflection representation of - self.- INPUT: - refl_repr– dictionary representing the matrices of the generators of- selfwith keys given by the index set, or- Noneto reset to the default reflection representation
 - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: for w in W: w.to_matrix(); print("-----") [1 0] [0 1] ----- [ 1 1] [ 0 -1] ----- [-1 0] [ 1 1] ----- [-1 -1] [ 1 0] ----- [ 0 1] [-1 -1] ----- [ 0 -1] [-1 0] ----- sage: W.set_reflection_representation({1: matrix([[0,1,0],[1,0,0],[0,0,1]]), 2: matrix([[1,0,0],[0,0,1],[0,1,0]])}) sage: for w in W: w.to_matrix(); print("-----") [1 0 0] [0 1 0] [0 0 1] ----- [1 0 0] [0 0 1] [0 1 0] ----- [0 1 0] [1 0 0] [0 0 1] ----- [0 0 1] [1 0 0] [0 1 0] ----- [0 1 0] [0 0 1] [1 0 0] ----- [0 0 1] [0 1 0] [1 0 0] ----- sage: W.set_reflection_representation() - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> for w in W: w.to_matrix(); print("-----") [1 0] [0 1] ----- [ 1 1] [ 0 -1] ----- [-1 0] [ 1 1] ----- [-1 -1] [ 1 0] ----- [ 0 1] [-1 -1] ----- [ 0 -1] [-1 0] ----- >>> W.set_reflection_representation({Integer(1): matrix([[Integer(0),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(0)],[Integer(0),Integer(0),Integer(1)]]), Integer(2): matrix([[Integer(1),Integer(0),Integer(0)],[Integer(0),Integer(0),Integer(1)],[Integer(0),Integer(1),Integer(0)]])}) >>> for w in W: w.to_matrix(); print("-----") [1 0 0] [0 1 0] [0 0 1] ----- [1 0 0] [0 0 1] [0 1 0] ----- [0 1 0] [1 0 0] [0 0 1] ----- [0 0 1] [1 0 0] [0 1 0] ----- [0 1 0] [0 0 1] [1 0 0] ----- [0 0 1] [0 1 0] [1 0 0] ----- >>> W.set_reflection_representation() 
 - simple_coroot(i)[source]¶
- Return the simple root with index - i.- EXAMPLES: - sage: W = ReflectionGroup(['A',3]) sage: W.simple_coroot(1) (2, -1, 0) - >>> from sage.all import * >>> W = ReflectionGroup(['A',Integer(3)]) >>> W.simple_coroot(Integer(1)) (2, -1, 0) 
 - simple_coroots()[source]¶
- Return the simple coroots of - self.- These are the coroots corresponding to the simple reflections. - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.simple_coroots() Finite family {1: (2, -1), 2: (-1, 2)} sage: W = ReflectionGroup((1,1,4), (2,1,2)) sage: W.simple_coroots() Finite family {1: (2, -1, 0, 0, 0), 2: (-1, 2, -1, 0, 0), 3: (0, -1, 2, 0, 0), 4: (0, 0, 0, 2, -2), 5: (0, 0, 0, -1, 2)} sage: W = ReflectionGroup((3,1,2)) sage: W.simple_coroots() Finite family {1: (-2*E(3) - E(3)^2, 0), 2: (-1, 1)} sage: W = ReflectionGroup((1,1,4), (3,1,2)) sage: W.simple_coroots() Finite family {1: (2, -1, 0, 0, 0), 2: (-1, 2, -1, 0, 0), 3: (0, -1, 2, 0, 0), 4: (0, 0, 0, -2*E(3) - E(3)^2, 0), 5: (0, 0, 0, -1, 1)} - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.simple_coroots() Finite family {1: (2, -1), 2: (-1, 2)} >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), (Integer(2),Integer(1),Integer(2))) >>> W.simple_coroots() Finite family {1: (2, -1, 0, 0, 0), 2: (-1, 2, -1, 0, 0), 3: (0, -1, 2, 0, 0), 4: (0, 0, 0, 2, -2), 5: (0, 0, 0, -1, 2)} >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) >>> W.simple_coroots() Finite family {1: (-2*E(3) - E(3)^2, 0), 2: (-1, 1)} >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), (Integer(3),Integer(1),Integer(2))) >>> W.simple_coroots() Finite family {1: (2, -1, 0, 0, 0), 2: (-1, 2, -1, 0, 0), 3: (0, -1, 2, 0, 0), 4: (0, 0, 0, -2*E(3) - E(3)^2, 0), 5: (0, 0, 0, -1, 1)} 
 - simple_reflection(i)[source]¶
- Return the - i-th simple reflection of- self.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.simple_reflection(1) (1,4)(2,3)(5,6) sage: W.simple_reflections() Finite family {1: (1,4)(2,3)(5,6), 2: (1,3)(2,5)(4,6)} - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.simple_reflection(Integer(1)) (1,4)(2,3)(5,6) >>> W.simple_reflections() Finite family {1: (1,4)(2,3)(5,6), 2: (1,3)(2,5)(4,6)} 
 - simple_root(i)[source]¶
- Return the simple root with index - i.- EXAMPLES: - sage: W = ReflectionGroup(['A',3]) sage: W.simple_root(1) (1, 0, 0) sage: W.simple_root(2) (0, 1, 0) sage: W.simple_root(3) (0, 0, 1) - >>> from sage.all import * >>> W = ReflectionGroup(['A',Integer(3)]) >>> W.simple_root(Integer(1)) (1, 0, 0) >>> W.simple_root(Integer(2)) (0, 1, 0) >>> W.simple_root(Integer(3)) (0, 0, 1) 
 - simple_roots()[source]¶
- Return the simple roots of - self.- These are the roots corresponding to the simple reflections. - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: W.simple_roots() Finite family {1: (1, 0), 2: (0, 1)} sage: W = ReflectionGroup((1,1,4), (2,1,2)) sage: W.simple_roots() Finite family {1: (1, 0, 0, 0, 0), 2: (0, 1, 0, 0, 0), 3: (0, 0, 1, 0, 0), 4: (0, 0, 0, 1, 0), 5: (0, 0, 0, 0, 1)} sage: W = ReflectionGroup((3,1,2)) sage: W.simple_roots() Finite family {1: (1, 0), 2: (-1, 1)} sage: W = ReflectionGroup((1,1,4), (3,1,2)) sage: W.simple_roots() Finite family {1: (1, 0, 0, 0, 0), 2: (0, 1, 0, 0, 0), 3: (0, 0, 1, 0, 0), 4: (0, 0, 0, 1, 0), 5: (0, 0, 0, -1, 1)} - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> W.simple_roots() Finite family {1: (1, 0), 2: (0, 1)} >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), (Integer(2),Integer(1),Integer(2))) >>> W.simple_roots() Finite family {1: (1, 0, 0, 0, 0), 2: (0, 1, 0, 0, 0), 3: (0, 0, 1, 0, 0), 4: (0, 0, 0, 1, 0), 5: (0, 0, 0, 0, 1)} >>> W = ReflectionGroup((Integer(3),Integer(1),Integer(2))) >>> W.simple_roots() Finite family {1: (1, 0), 2: (-1, 1)} >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(4)), (Integer(3),Integer(1),Integer(2))) >>> W.simple_roots() Finite family {1: (1, 0, 0, 0, 0), 2: (0, 1, 0, 0, 0), 3: (0, 0, 1, 0, 0), 4: (0, 0, 0, 1, 0), 5: (0, 0, 0, -1, 1)} 
 
- class sage.combinat.root_system.reflection_group_complex.IrreducibleComplexReflectionGroup(W_types, index_set=None, hyperplane_index_set=None, reflection_index_set=None)[source]¶
- Bases: - ComplexReflectionGroup- class Element[source]¶
- Bases: - Element- is_coxeter_element(which_primitive=1, is_class_representative=False)[source]¶
- Return - Trueif- selfis a Coxeter element.- This is, whether - selfhas an eigenvalue that is a primitive \(h\)-th root of unity.- INPUT: - which_primitive– (default:- 1) for which power of the first primitive- h-th root of unity to look as a reflection eigenvalue for a regular element
- is_class_representative– boolean (default:- True); whether to compute instead on the conjugacy class representative
 - See also - coxeter_element()- coxeter_elements()- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: for w in W: ....: print('%s %s'%(w.reduced_word(), w.is_coxeter_element())) [] False [2] False [1] False [1, 2] True [2, 1] True [1, 2, 1] False - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> for w in W: ... print('%s %s'%(w.reduced_word(), w.is_coxeter_element())) [] False [2] False [1] False [1, 2] True [2, 1] True [1, 2, 1] False 
 - is_h_regular(is_class_representative=False)[source]¶
- Return whether - selfis regular.- This is if - selfhas an eigenvector with eigenvalue \(h\) and which does not lie in any reflection hyperplane. Here, \(h\) denotes the Coxeter number.- EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: for w in W: ....: print('%s %s'%(w.reduced_word(), w.is_h_regular())) [] False [2] False [1] False [1, 2] True [2, 1] True [1, 2, 1] False - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> for w in W: ... print('%s %s'%(w.reduced_word(), w.is_h_regular())) [] False [2] False [1] False [1, 2] True [2, 1] True [1, 2, 1] False 
 - is_regular(h, is_class_representative=False)[source]¶
- Return whether - selfis regular.- This is, if - selfhas an eigenvector with eigenvalue of order- hand which does not lie in any reflection hyperplane.- INPUT: - h– the order of the eigenvalue
- is_class_representative– boolean (default:- True); whether to compute instead on the conjugacy class representative
 - EXAMPLES: - sage: W = ReflectionGroup((1,1,3)) sage: h = W.coxeter_number() sage: for w in W: ....: print("{} {}".format(w.reduced_word(), w.is_regular(h))) [] False [2] False [1] False [1, 2] True [2, 1] True [1, 2, 1] False sage: W = ReflectionGroup(23); h = W.coxeter_number() sage: for w in W: ....: if w.is_regular(h): ....: w.reduced_word() [1, 2, 3] [2, 1, 3] [1, 3, 2] [3, 2, 1] [2, 1, 2, 3, 2] [2, 3, 2, 1, 2] [1, 2, 1, 2, 3, 2, 1] [1, 2, 3, 2, 1, 2, 1] [1, 2, 1, 2, 3, 2, 1, 2, 3] [2, 1, 2, 1, 3, 2, 1, 2, 3] [2, 1, 2, 3, 2, 1, 2, 1, 3] [1, 2, 3, 2, 1, 2, 1, 3, 2] [3, 2, 1, 2, 1, 3, 2, 1, 2] [1, 2, 1, 2, 1, 3, 2, 1, 2] [2, 3, 2, 1, 2, 1, 3, 2, 1] [2, 1, 2, 1, 3, 2, 1, 2, 1] [2, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3] [1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3] [1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 3] [1, 2, 1, 2, 3, 2, 1, 2, 1, 3, 2] [1, 2, 3, 2, 1, 2, 1, 3, 2, 1, 2] [2, 1, 2, 3, 2, 1, 2, 1, 3, 2, 1] [2, 1, 2, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3] [1, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3] - >>> from sage.all import * >>> W = ReflectionGroup((Integer(1),Integer(1),Integer(3))) >>> h = W.coxeter_number() >>> for w in W: ... print("{} {}".format(w.reduced_word(), w.is_regular(h))) [] False [2] False [1] False [1, 2] True [2, 1] True [1, 2, 1] False >>> W = ReflectionGroup(Integer(23)); h = W.coxeter_number() >>> for w in W: ... if w.is_regular(h): ... w.reduced_word() [1, 2, 3] [2, 1, 3] [1, 3, 2] [3, 2, 1] [2, 1, 2, 3, 2] [2, 3, 2, 1, 2] [1, 2, 1, 2, 3, 2, 1] [1, 2, 3, 2, 1, 2, 1] [1, 2, 1, 2, 3, 2, 1, 2, 3] [2, 1, 2, 1, 3, 2, 1, 2, 3] [2, 1, 2, 3, 2, 1, 2, 1, 3] [1, 2, 3, 2, 1, 2, 1, 3, 2] [3, 2, 1, 2, 1, 3, 2, 1, 2] [1, 2, 1, 2, 1, 3, 2, 1, 2] [2, 3, 2, 1, 2, 1, 3, 2, 1] [2, 1, 2, 1, 3, 2, 1, 2, 1] [2, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3] [1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3] [1, 2, 1, 2, 1, 3, 2, 1, 2, 1, 3] [1, 2, 1, 2, 3, 2, 1, 2, 1, 3, 2] [1, 2, 3, 2, 1, 2, 1, 3, 2, 1, 2] [2, 1, 2, 3, 2, 1, 2, 1, 3, 2, 1] [2, 1, 2, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3] [1, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1, 2, 3] - Check that Issue #25478 is fixed: - sage: W = ReflectionGroup(["A",5]) sage: w = W.from_reduced_word([1,2,3,5]) sage: w.is_regular(4) False sage: W = ReflectionGroup(["A",3]) sage: len([w for w in W if w.is_regular(w.order())]) 18 - >>> from sage.all import * >>> W = ReflectionGroup(["A",Integer(5)]) >>> w = W.from_reduced_word([Integer(1),Integer(2),Integer(3),Integer(5)]) >>> w.is_regular(Integer(4)) False >>> W = ReflectionGroup(["A",Integer(3)]) >>> len([w for w in W if w.is_regular(w.order())]) 18 
 
 
- sage.combinat.root_system.reflection_group_complex.multi_partitions(n, S, i=None)[source]¶
- Return all vectors as lists of the same length as - Swhose standard inner product with- Sequals- n.- EXAMPLES: - sage: from sage.combinat.root_system.reflection_group_complex import multi_partitions sage: multi_partitions(10, [2,3,3,4]) [[5, 0, 0, 0], [3, 0, 0, 1], [2, 2, 0, 0], [2, 1, 1, 0], [2, 0, 2, 0], [1, 0, 0, 2], [0, 2, 0, 1], [0, 1, 1, 1], [0, 0, 2, 1]] - >>> from sage.all import * >>> from sage.combinat.root_system.reflection_group_complex import multi_partitions >>> multi_partitions(Integer(10), [Integer(2),Integer(3),Integer(3),Integer(4)]) [[5, 0, 0, 0], [3, 0, 0, 1], [2, 2, 0, 0], [2, 1, 1, 0], [2, 0, 2, 0], [1, 0, 0, 2], [0, 2, 0, 1], [0, 1, 1, 1], [0, 0, 2, 1]] 
- sage.combinat.root_system.reflection_group_complex.power(k)[source]¶
- Return \(f^k\) and caching all intermediate results. - Speeds the computation if one has to compute \(f^k\)’s for many values of \(k\). - EXAMPLES: - sage: P.<x,y,z> = PolynomialRing(QQ) sage: f = -2*x^2 + 2*x*y - 2*y^2 + 2*y*z - 2*z^2 sage: all( f^k == power(f,k) for k in range(20) ) True - >>> from sage.all import * >>> P = PolynomialRing(QQ, names=('x', 'y', 'z',)); (x, y, z,) = P._first_ngens(3) >>> f = -Integer(2)*x**Integer(2) + Integer(2)*x*y - Integer(2)*y**Integer(2) + Integer(2)*y*z - Integer(2)*z**Integer(2) >>> all( f**k == power(f,k) for k in range(Integer(20)) ) True